pktgen the linux packet generator
Robert Olsson
UppsalaUniversitet & SLU

Abstract

pktgen is a high-performance testing tool included in the Linux kernel. Being part of the
kernel is currently best way to test the TX process of device driver and NIC. pktgen can also
be used to generate ordinary packets to test other network devices. Especialy of interest is
the use of pktgen to test routers or bridges which use the Linux network stack. Because
pktgen is"in-kerngl", it can generate very high packet rates and with few systems saturate
network devices as routers or bridges.

Introduction

This paper describes anovel, major rework of pktgen intended for Linux 2.7 and is now
publicly available for testing. Much of the rework has been focused on multi-threaded, SMP
support. The main god is to have one pktgen thread per CPU which can then drive one or
more NICs. An in-kernel pseudo driver offers unique possibilitiesin performance and
capabilities. The trade-off is additional responsibility in terms of robustness and avoiding
kernel bloat (vs user mode application). Pktgen is not an all-in-one testing tool. It offersa
very efficient direct accessto the host system NIC driver/chip TX-process and bypasses
most of the Linux networking stack. Because of this, use of pktgen requires root access. The
packet stream generated by pktgen can be used as input to other network devices. Pktgen
also tests other subsystems as packet memory alocators and 1/0 buses. The author has done
tests sending packets from memory to several GIGE interfaces on different PCI-buses using
several CPU's. Rates > 10 GBit/s have been seen.

Other testing tools

There are lots of good testing tools for network and TCP testing. netperf and ttcp is
probably among the most widespread. Pktgen is not a substitute for those tools and
complements for some types of tests. The test possibilitiesis described later in this
paper. Worth to note that pktgen cannot do any TCP testing.

Pktgen performance

Performance varies of course with hardware and type of test. Some examples. A single flow
of 870 kppsis seen with aPIll 733 MHz over €1000 NIC (64 byte packets) also with
bcm5703 in rx2600 (Itanium2, 1Ghz). Aggregated performance of >10 Ghit/s (1500 byte
packets) from 12 GIGE NIC'swith DUAL XEON 2.66 MHz with hyperthreading
(motherboard with 4 independent PCI-X buses) and of 2.4 Mppswith DUAL1.6 GHz
Opterons. Testsinvolving lots of alloc's results in lower sending performance see clone_skb.

Many other things also effects performance: PCI bus speed, PCI vs PCI-X, PCI-PCI Bridge,
CPU speed, memory latency, DMA latency, number of MMIO reads/writes etc.

The graph below shows performance on an Dual Opteron 242 with Linux 2.6.7 64 bit with
€1000 driver with Intels DUAL NIC (2 x 82546EB) and Intels QUAD NIC (4 x 82546EB
and PCI-X bridge towards the NIC uses 120 Mhz). Sending small packets involves many
PCI transactions. The graph shows afaster 1/0O bus gives higher performance as this
probably lowers DMA latency. We also see the effects of the PCI-X bridge as the bridge is
the difference between the DUAL and QUAD boards,

TX performance with Intel 82546EB

at differnt bus speeds
900 —
800 —
700 —
600 —

500 —
400 —
300 —
200 —
100 —

133 MHz 100 MHz 66 MHz

Getting pktgen torun

Enable CONFIG_NET_PKTGEN in the .config, compile and build pktgen.o either in-kernel
or as module, insmod pktgen if needed. Once running, pktgen creates a kernel process on
each running CPU. Each process has CPU-affinity. Devices are added to different processes.
A device can only belong to one process to give full control of the device to CPU
relationship. Modern platforms allow interrupts to be assigned to a CPU (aka IRQ affinity)
and this is necessary to minimize cache-line bouncing. Generally, we want the same CPU
that generates the packets to al so take the interrupts given a symmetrical configuration
(several CPUs, severa NICs).

On adua system we see two pktgen processes: [pktgen/0], [pktgen/1]

pktgen is controlled and monitored via the /proc file system. To help document atest
configuration and parameters, shell scripts are recommended to setup and start atest.
Again referring to our dual system, at start up the files below are created in
/proc/net/pktgen/ kpktgend O, kpktgend 1, pgctrl

Assigning devices (e.g. ethl, eth2) to kpktgend X thread, makes instances of the devices
show up in /proc/net/pktgen/ to be further configured at the device level.

A test can be configured to run forever or terminate after a fixed number of packets. Ctrl-C
aborts the run. pktgen sends UDP packetsto port 9 (discard port) by default. IP, MAC
addresses, etc. can be configured. Pktgen packets can hence be identified within the kernel
network stack for profiling and testing.

Pktgen versioninfo
The pktgen version is printed in dmesg when pktgen starts. Version infoisasoin
/proc/net/pktgen/pgctrl.

Interrupt affinity

When adding adevice to a specific pktgen thread, setting /proc/irg/X/smp_affinity bindsthe
associated NIC to the same CPU. This reduces cache line bouncing when freeing skb's. The
clone_skb can, to some extent, mitigate the effect of cache line bouncing as skb'sis not fully
freed. Some experimentation might be required to achieve maximum performance.

Theirg numbers assigned to particular NICs can be seen in /proc/interrupts In the example
below, ethO usesirq 26, ethl usesirq 27 etc.

26: 933931 0 IOAPIClevel ethO
27: 936392 0 IOAPIClevel ethl
28: 8 936457 1O APIC-level eth2
29: 8 939310 IO APIClevel eth3

The example below assigns eth0, ethl to CPUO, and eth2, eth3 to CPU1

echo 1 > /proc/irg/26/smp_affinity
echo 1 > /proc/irg/27/smp_affinity
echo 2 > /proc/irg/28/smp_affinity
echo 2 > /proc/irg/29/smp_affinity

The graph below illustrates the performance effects of affinity assignment of PIl system.

TX performance IRQ affinty w. tulip
Pl 2x350 MHz

160 —
140 —

120 —

100 —| [Correct Affinity

Il Incorrect Affinity

80 —

60 |
40

20 —|

TXin Kpps

Controlling memory allocation

pktgen uses atrick to increment the skb's refent to avoid full path of kfree and dloc when
sending identical skb's. This generally gives very high sending rates. For Denial of Service
(DoS) and flow tests this technique can not be used as each skb has to be modified.

The parameter clone_skb controls this functionality. Think of clone_skb as the number of
packet clones followed by amaster packet. Setting clone_skb=0 gives no clones just
master packets and clone_skb=1000000 givs 1 master packet followed by one million
clones.

Inter-Packet Gap

pktgen can insert an extra artificial delay (ipg) between packets, the unit is nanoseconds. For
small delays pktgen busywaits before putting this skb on TX-ring this means traffic is still
bursty and somewhat hard to control. Experimentation is probably needed.

Setup examples
Below avery smple example of pktgen sending on ethO. One only needs to bring up the

link.
m

Keeping link up can be done even with the same box using a crossover cable. If generated
packets should be seen (ie Received) by the same host just set dstmac to match the NIC on
the cross over cable.

On SMP systems, it's better if the TX flow (pktgen thread) is on adifferent CPU from the
RX flow (set IRQ affinity). One way to test Full Duplex functionality isto connect two
hosts and point the TX flows to each other's NIC.

ethl

ethO

Next, the box with pktgen is used just a packet source to inject packetsinto aloca or remote
system. Note you need to configure dstmac of localhost or gateway appropriate.

H

Below pktgen in aforwarding setup. The sink host receives and discards packets. Of course,
forwarding hasto be configured on all boxes. It might be possible to use adummy device
instead of sink box.

ethO ethl

Forwarding setup using dual devices. Pktgen can use different threads to achieve high load
in terms of small packets or concurrent flows.

==

Viewing pktgen processes
/ proc/ net/ pkt gen/ kpkt gend_0

Nane: kpktgend_O0 nax_before_softirg: 10000
Runni ng:

St opped: ethl

Result: OK: max_before_softirq=10000

Viewing pktgen devices
'Parm sections holds configured info. Current holds running stats. Result is printed
after run or after interruption for example:

/proc/net/pktgenlethl

Parans: count 10000000 m n_pkt_size: 60 nmax_pkt_size: 60
frags: 0 ipg: O clone_skb: 1000000 ifnanme: ethl
flows: 0 flowen: O
dst_nin: 10.10.11.2 dst_max:
src_mn: Src_max:
src_mac: 00: 00: 00: 00: 00: 00 dst_mac: 00: 07: E9: 13: 5C: 3E
udp_src_min: 9 wudp_src_max: 9 wudp_dst_min: 9 udp_dst_max: 9
src_mac_count: O dst_mac_count: O
Fl ags
Current:
pkts-sofar: 10000000 errors: 39192
started: 1076616572728240us stopped: 1076616585502839us idle: 1037781us
seq_num 11 cur_dst_mac_offset: 0O cur_src_mac_offset: 0
cur_saddr: Oxl10a0a0a cur_daddr: 0x20bOaOa
cur_udp_dst: 9 cur_udp_src: 9
flows: 0O
Result: OK 12774599(c11736818+d1037781) usec, 10000000 (64byte) 782840pps 382Mv/ sec
(400814080bps) errors: 39192

10 millon 64 byte packets were sent on ethl with arate at 783 kpps

Configuring
Configuring is done viathe /proc interface thisis easiest done via scripts. Select asuitable
script and customize. See the section with example scriptsin this paper.

ftp://robur.slu.se/pub/L i nux/net-devel opment/pktgen-testing/examples/
Other examples has been contributed by Grant Grundler <grundler@parisc-linux.org>
ftp://gsyprf10.external .hp.com/pub/pktgen-testing/

Below is short description for current implemented commands.
Pgcontrol commands

start Starts sending on all processes

stop

Process commands

add_devi ce Add a device to process i.e ethO

remdevi ce_al | Renmoves all devices fromthis process config
max_bef ore_softirq do_softirqg() after sending a nunmber of packets

Device commands

debug

cl one_skb Number of identical copies of the same packet
0 means alloc for each skb. For DoS etc we mnust
al | oc new skb's.

cl ear _counters

pkt _si ze

m n_pkt _si ze
max_pkt _si ze
frags

count

i pg

dst
dst_mn

dst _max
src_mn
Src_max

dst 6

srcé

dst mac
srcmac
src_nac_count

dst _nac_count

flag [nane]

udp_src_nin

udp_sr c_nax
udp_dst _nin

udp_dst _max

st op

flows
flow en

Example scripts

Li nk packet size minus CRC (4)
Range pkt_size setting If < nmax_pkt_size, then
cycl e through the port range.

Nunber of fragnents for a packet

Nunmber of packets to send, zero for continious sending
Inter-Packet Gap. Artificial gap inserted between packets
i n nanoseconds

| P destination address i.e 10.0.0.1

Sane as dst |f < dst_nax, then

cycl e through the port range

Maxi mum destination IP. i.e 10.0.0..1

M ni num (or only) source IP. i.e 10.0.0.254 |f < src_max, then
cycl e through the port range.

Maxi mum source | P.

| PV6 destination address i.e fecO::1

| PV6 source address i.e fec0::2

MAC destination adress 00: 00: 00: 00: 00: 00

MAC source adress. If omtted it's automatically taken
from source device

Nunber of MACs we'll range through.

M ninum MAC is what you set with srcnac.

Nunmber of MACs we'll range through.

M nimumi MAC i s what you set w th dstmac.

Flag to nodi fy behaviour.

| PSRC_RND I P Source is random (between nin/ max),
| PDST_RND Etc

TXSI ZE_RND

UDPSRC_RND

UDPDST_RND

MACSRC_RND

MACDST_RND

UDP source port mn, |If < udp_src_nax, then

cycl e through the port range.

UDP source port max.

UDP destination port mn, |f < udp_dst_nax, then
cycl e through the port range.

UDP destination port max.

Aborts packet injection. Crl-C also aborts generator.
Note: It is generally better to use count O (forever)
and stop the run with CGrl-C when multiple devices
are assigned to one pktgen thread.

Thi s avoi ds sone devices finishing before others and
skewing the results since we are prinarily interested
in packets over time, not absol ute nunmber of packets.
Nunmber of concurrent flows

Length flows

A collection of small tutorial scripts for pktgen are in examplesdir.

pktgen.conf-1-1
pktgen.conf-1-2
pktgen.conf-2-1
pktgen.conf-2-2

#1 CPU 1 dev
#1 CPU 2 dev
#2 CPU's 1 dev
#2 CPU's 2 dev

#1 CPU 1 dev w. route DoS

#1 CPU 1 dev ipv6

#1 CPU 1 dev ipv6 w. route DoS
#1 CPU 1 dev multiple flows.

pktgen.conf-1-1-rdos
pktgen.conf-1-1-ip6
pktgen.conf-1-1-ip6-rdos
pktgen.conf-1-1-flows

Run in shell: ./pktgen.conf-X-Y It does al the setup including sending. The scripts will need

to be adjusted for actually configuration based on which NICs one wishesto test.

Thefull pktgen.conf-1-1 script

#!' /bin/sh

#nodpr obe pktgen

function pgset() {
| ocal result

echo $1 > $PCGDEV

result="cat $PGDEV | fgrep "Result: OK""
if ["$result" ="" 1; then
cat $PCDEV | fgrep Result:
fi
}

function pg() {
echo inject > $PCDEV
cat $PCDEV

}

Config Start Here ----------mmmmm

thread config
Each CPU has own thread. Two CPU exammple. W add ethl, eth2 respectivly.

PGDEV=/ pr oc/ net / pkt gen/ kpkt gend_0O
echo "Renoving all devices"
pgset “"remdevice_all"
echo "Addi ng ethl"
pgset "add_device et hl"
echo "Setting max_before_softirg 10000"
pgset "nmax_before_softirqg 10000"

device config
ipg is inter packet gap. 0 means naxi mum speed.

CLONE_SKB="cl one_skb 1000000"
N C adds 4 bytes CRC
PKT_SI ZE=" pkt _si ze 60"

COUNT 0 neans forever
#COUNT="count 0"
COUNT="count 10000000"
| PG="i pg 0"

PGDEV=/ pr oc/ net / pkt gen/ et hl
echo "Configuring $PGDEV"
pgset " $COUNT"
pgset "$CLONE_SKB"
pgset "$PKT_SI ZE"
pgset "$I PG'
pgset "dst 10.10.11.2"
pgset "dst_mac 00:04:23:08:91: dc"

Time to run
PGDEV=/ pr oc/ net / pkt gen/ pgctrl

echo "Running... ctrl~C to stop"

pgset "start"
echo "Done"

Result can be vieved in /proc/net/pktgen/ethl

Configuration examples
Below is concentrated anatomi of the example scripts. This should be easy to follow.

pktgen.conf-1-2
A script fragment assigning ethl, eth2 to CPU on single CPU system

PGDEV=/ pr oc/ net / pkt gen/ kpkt gend_0
pgset "remdevice_all"
pgset "add_devi ce et hl"
pgset "add_devi ce et h2"

pktgen.conf-2-2
A script fragnent assigning ethl to CPUO respectivly eth2 to CPUL

PGDEV=/ pr oc/ net / pkt gen/ kpkt gend_0O
pgset “"remdevice_all"
pgset "add_device ethl"

PGDEV=/ pr oc/ net / pkt gen/ kpkt gend_1
pgset “"remdevice_all"
pgset "add_devi ce et h2"

pktgen.conf-2-1

A script fragment assigning ethl and eth2 to CPUD on a dual CPU system

PGDEV=/ pr oc/ net / pkt gen/ kpkt gend_0
pgset "remdevice_all"
pgset "add_device et hl"
pgset "add_devi ce et h2"

PGDEV=/ pr oc/ net / pkt gen/ kpkt gend_1
pgset “remdevice_all"

pktgen.conf-1-2
A script fragment assigning ethl, eth2 to CPU on single CPU system

PGDEV=/ pr oc/ net / pkt gen/ kpkt gend_0
pgset “"remdevice_all"
pgset "add_devi ce ethl"
pgset "add_devi ce et h2"

pktgen.conf-1-1-rdos
A script fragnent for route DoS testing. Note clone_skb O

PGDEV=/ pr oc/ net / pkt gen/ et h1

pgset "clone_skb 0"

Random address with in the m n-max range
pgset "flag | PDST_RND'

pgset "dst_mn 10.0.0.0"

pgset "dst_max 10.255. 255. 255"

pktgen.conf-1-1-ipv6
Setting device ipv6 addresses.

PGDEV=/ pr oc/ net/ pkt gen/ et hl
pgset "dst6 fecO::1"
pgset "src6 fecO::2"

pktgen.conf-1-1-ipv6-rdos
PGDEV=/ pr oc/ net/ pkt gen/ et hl
pgset "clone_skb 0"
pgset "flag | PDST_RND"
pgset "dst6_min fecO::1"
pgset "dst6_max fecO:: FFFF: FFFF"

pktgen.conf-1-1-flows
A script fragnent for route flow testing. Note clone_skb 0O

PGDEV=/ pr oc/ net / pkt gen/ et hl

pgset "clone_skb 0"

Random address with in the m n-max range
pgset "flag | PDST_RND'

pgset "dst_min 10.0.0.0"

pgset "dst_max 10. 255. 255. 255"
8k Concurrent flows at 4 pkts

pgset “"flows 8192"

pgset “flow en 4"

2x4+2 script
Script contributed by Grant G undl er <grundl er @ari sc-1inux. org>
Note! 10 devices

PGDEV=/ pr oc/ net / pkt gen/ kpkt gend_0
pgset "remdevice_all"

pgset "add_devi ce et h3"

pgset "add_devi ce et h5"

pgset "add_device eth7"

pgset "add_devi ce et h9"

pgset "add_device ethll"

pgset "max_before_softirg 10000"

PGDEV=/ pr oc/ net / pkt gen/ kpkt gend_1
pgset "remdevice_all"

pgset "add_device eth2"

pgset "add_devi ce et h4"

pgset "add_devi ce et h6"

pgset "add_devi ce et h8"

pgset "add_devi ce et hl0"

pgset "max_before_softirg 10000"

Configure the individual devices

for i in23456789 1011

do
PGDEV=/ pr oc/ net / pkt gen/ et h$
echo "Confi guring $PGDEV"
pgset "clone_skb 500000"
pgset "m n_pkt_size 60"
pgset "max_pkt_size 60"
pgset "dst 192.168.3.10%i "
pgset "dst_mac 01:02: 03: 04: 05: 0$i "
pgset "count 0"

done

echo "Running... ctrl~C to stop"

PGDEV=/ pr oc/ net / pkt gen/ pgctr
pgset "start"

cat /proc/net/pktgen/eth* | fgrep Result

Some suggestions for driver/chip testing

When testing a particular driver/chip/platform, start with TX flows using pktgen on the host
system to get a sense of which ptkgen parameters are optimal and how well a particular NIC
can perform. Try with arange of packet sizes from 64 bytesto 1500 bytes or jumbo frames.

Then start looking at the RX flows on the target platform. Use pktgen to inject packets
directed at (or routed through) the target system. Again, vary the packet size aswith the TX
to get a sense of how many packets a particular NIC (or pair of NICs) can handle asingle
flow. To isolate driver/chip from other parts of kernel stack pktgen packets can be counted
and dropped at various points. See section on detecting pktgen packets.

Then repeat the process with additional flows, one at atime. Multiple flows are trickier
since one needsto know 1/O bustopology. Typicaly one tries to balance 1/O loads by
ingalling the NICsin the "right" dots or utilizing built-in devices appropriately.

With multiple flows, it is best to use ~C to stop atest run. This prevents any pktgen thread
from stopping before others and skewing the test results. Sometimes, one NIC will TX
packets faster than another NIC just because of biasin the DMA latency or PCI bus arbiter
(to name only two of severa possibilities). Using ~C to stop atest run aborts al pktgen
threads at once and results in amuch better snapshot of how many packets a given
configuration could generate. After the "C is received, pktgen will print the statistics the
same asif the test had been stopped by a counter going to zero.

If the tested system has only one interface the dummy interface can be setup as the output
device. The advantage with this test is we can test the system at very high load and that
results are very reproduceable. Of course other functions as different types of offload and
checksumming should be tested as well.

Other testing aspects

Besides knowing the hardware topology, one a so needs to know what other workloads are

expected to be present on the target system when placesin production eg rea world use. An
FTP server can see quite a different workload than aweb server, mail handler, or router etc.

Roughly about 160 kpps seems fill a Ghit link with a FTP server. Of course this can change
but may give some idea about packet per second (pps) versus bandwidth for thistype of
production systems.

For routers the number of routesin the routing table is also an issue as lookup times and
other behaviour may be affected. The author has taken snapshots from current Internet
routing table IPV4 and IPV6 (BGP) and formed into scripts for this purpose. The routes are
added viatheip utility so the tested system does not need any routing connectivity nor
routing daemon. Some scripts are available from:

ftp://robur.slu.se/pub/L inux/net-devel opment/inet_routes/

Detecting pktgen packetsin kernel

Detecting pktgen packetsin kernel. Some timesit's very useful to monitor/drop pktgen
packets within the driver/network stack either at ingress or egress. The technique is very
much the same. The little patchlet below drops at ingress and uses an unused counter.

--- linux/net/ipvd/ip_input.c.orig Mon Feb 10 19: 37:57 2003
+++ linux/net/ipv4/ip_input.c Fri Feb 21 21:42:45 2003
@ -372,6 +372,23 @@

| P_I NC_STATS_BH(| pl nDi scar ds);

goto out;
}
{
_u8 *data = (__u8 *) skb->dat a+20;
/* src and dst port 9 --> pktgen */
if(data[0] == 0 &&
data[1l] == 9 &&
data[2] == 0 &&
data[3] == 9) {

netdev_rx_stat[snp_processor_id()].
astroute_hit+

got o drop;

A+ T+ o+ +

if (!pskb_may_pul | (skb, sizeof(struct iphdr)))
goto inhdr_error;

Thanks to Grant Grundler, Jamal Hadi Salim Jens L&&s, Hans Wassen for comments and
useful insights on this paper.

Relevant site ftp://robur.dlu.se://pub/Linux/net-devel opment/pktgen-testing/
Good luck with the linux net-development!

