// License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Niko Li, newlife20080214@gmail.com // Zero Lin, zero.lin@amd.com // Yao Wang, bitwangyaoyao@gmail.com // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // // #ifdef DOUBLE_SUPPORT #ifdef cl_amd_fp64 #pragma OPENCL EXTENSION cl_amd_fp64:enable #elif defined (cl_khr_fp64) #pragma OPENCL EXTENSION cl_khr_fp64:enable #endif #endif #define noconvert #if cn != 3 #define loadpix(addr) *(__global const T *)(addr) #define storepix(val, addr) *(__global T *)(addr) = val #define TSIZE (int)sizeof(T) #else #define loadpix(addr) vload3(0, (__global const T1 *)(addr)) #define storepix(val, addr) vstore3(val, 0, (__global T1 *)(addr)) #define TSIZE ((int)sizeof(T1)*3) #endif #ifdef DEPTH_0 #define MIN_VAL 0 #define MAX_VAL UCHAR_MAX #elif defined DEPTH_1 #define MIN_VAL SCHAR_MIN #define MAX_VAL SCHAR_MAX #elif defined DEPTH_2 #define MIN_VAL 0 #define MAX_VAL USHRT_MAX #elif defined DEPTH_3 #define MIN_VAL SHRT_MIN #define MAX_VAL SHRT_MAX #elif defined DEPTH_4 #define MIN_VAL INT_MIN #define MAX_VAL INT_MAX #elif defined DEPTH_5 #define MIN_VAL (-FLT_MAX) #define MAX_VAL FLT_MAX #elif defined DEPTH_6 #define MIN_VAL (-DBL_MAX) #define MAX_VAL DBL_MAX #endif #ifdef OP_ERODE #define VAL MAX_VAL #elif defined OP_DILATE #define VAL MIN_VAL #else #error "Unknown operation" #endif #ifdef OP_ERODE #if defined INTEL_DEVICE && defined DEPTH_0 #define MORPH_OP(A, B) ((A) < (B) ? (A) : (B)) #else #define MORPH_OP(A, B) min((A), (B)) #endif #endif #ifdef OP_DILATE #define MORPH_OP(A, B) max((A), (B)) #endif #define PROCESS(y, x) \ temp = LDS_DAT[mad24(l_y + y, width, l_x + x)]; \ res = MORPH_OP(res, temp); // BORDER_CONSTANT: iiiiii|abcdefgh|iiiiiii #define ELEM(i, l_edge, r_edge, elem1, elem2) (i) < (l_edge) | (i) >= (r_edge) ? (elem1) : (elem2) #if defined OP_GRADIENT || defined OP_TOPHAT || defined OP_BLACKHAT #define EXTRA_PARAMS , __global const uchar * matptr, int mat_step, int mat_offset #else #define EXTRA_PARAMS #endif __kernel void morph(__global const uchar * srcptr, int src_step, int src_offset, __global uchar * dstptr, int dst_step, int dst_offset, int src_offset_x, int src_offset_y, int cols, int rows, int src_whole_cols, int src_whole_rows EXTRA_PARAMS) { int gidx = get_global_id(0), gidy = get_global_id(1); int l_x = get_local_id(0), l_y = get_local_id(1); int x = get_group_id(0) * LSIZE0, y = get_group_id(1) * LSIZE1; int start_x = x + src_offset_x - RADIUSX; int width = mad24(RADIUSX, 2, LSIZE0 + 1); int start_y = y + src_offset_y - RADIUSY; int point1 = mad24(l_y, LSIZE0, l_x); int point2 = point1 + LSIZE0 * LSIZE1; int tl_x = point1 % width, tl_y = point1 / width; int tl_x2 = point2 % width, tl_y2 = point2 / width; int cur_x = start_x + tl_x, cur_y = start_y + tl_y; int cur_x2 = start_x + tl_x2, cur_y2 = start_y + tl_y2; int start_addr = mad24(cur_y, src_step, cur_x * TSIZE); int start_addr2 = mad24(cur_y2, src_step, cur_x2 * TSIZE); __local T LDS_DAT[2 * LSIZE1 * LSIZE0]; // read pixels from src int end_addr = mad24(src_whole_rows - 1, src_step, src_whole_cols * TSIZE); start_addr = start_addr < end_addr && start_addr > 0 ? start_addr : 0; start_addr2 = start_addr2 < end_addr && start_addr2 > 0 ? start_addr2 : 0; T temp0 = loadpix(srcptr + start_addr); T temp1 = loadpix(srcptr + start_addr2); // judge if read out of boundary temp0 = ELEM(cur_x, 0, src_whole_cols, (T)(VAL), temp0); temp0 = ELEM(cur_y, 0, src_whole_rows, (T)(VAL), temp0); temp1 = ELEM(cur_x2, 0, src_whole_cols, (T)(VAL), temp1); temp1 = ELEM(cur_y2, 0, src_whole_rows, (T)(VAL), temp1); LDS_DAT[point1] = temp0; LDS_DAT[point2] = temp1; barrier(CLK_LOCAL_MEM_FENCE); if (gidx < cols && gidy < rows) { T res = (T)(VAL), temp; PROCESS_ELEMS; int dst_index = mad24(gidy, dst_step, mad24(gidx, TSIZE, dst_offset)); #if defined OP_GRADIENT || defined OP_TOPHAT || defined OP_BLACKHAT int mat_index = mad24(gidy, mat_step, mad24(gidx, TSIZE, mat_offset)); T value = loadpix(matptr + mat_index); #ifdef OP_GRADIENT storepix(convertToT(convertToWT(res) - convertToWT(value)), dstptr + dst_index); #elif defined OP_TOPHAT storepix(convertToT(convertToWT(value) - convertToWT(res)), dstptr + dst_index); #elif defined OP_BLACKHAT storepix(convertToT(convertToWT(res) - convertToWT(value)), dstptr + dst_index); #endif #else // erode or dilate storepix(res, dstptr + dst_index); #endif } }