/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "assembler_mips.h" #include "base/bit_utils.h" #include "base/casts.h" #include "entrypoints/quick/quick_entrypoints.h" #include "entrypoints/quick/quick_entrypoints_enum.h" #include "memory_region.h" #include "thread.h" namespace art { namespace mips { std::ostream& operator<<(std::ostream& os, const DRegister& rhs) { if (rhs >= D0 && rhs < kNumberOfDRegisters) { os << "d" << static_cast(rhs); } else { os << "DRegister[" << static_cast(rhs) << "]"; } return os; } void MipsAssembler::FinalizeCode() { for (auto& exception_block : exception_blocks_) { EmitExceptionPoll(&exception_block); } PromoteBranches(); } void MipsAssembler::FinalizeInstructions(const MemoryRegion& region) { size_t number_of_delayed_adjust_pcs = cfi().NumberOfDelayedAdvancePCs(); EmitBranches(); Assembler::FinalizeInstructions(region); PatchCFI(number_of_delayed_adjust_pcs); } void MipsAssembler::PatchCFI(size_t number_of_delayed_adjust_pcs) { if (cfi().NumberOfDelayedAdvancePCs() == 0u) { DCHECK_EQ(number_of_delayed_adjust_pcs, 0u); return; } typedef DebugFrameOpCodeWriterForAssembler::DelayedAdvancePC DelayedAdvancePC; const auto data = cfi().ReleaseStreamAndPrepareForDelayedAdvancePC(); const std::vector& old_stream = data.first; const std::vector& advances = data.second; // PCs recorded before EmitBranches() need to be adjusted. // PCs recorded during EmitBranches() are already adjusted. // Both ranges are separately sorted but they may overlap. if (kIsDebugBuild) { auto cmp = [](const DelayedAdvancePC& lhs, const DelayedAdvancePC& rhs) { return lhs.pc < rhs.pc; }; CHECK(std::is_sorted(advances.begin(), advances.begin() + number_of_delayed_adjust_pcs, cmp)); CHECK(std::is_sorted(advances.begin() + number_of_delayed_adjust_pcs, advances.end(), cmp)); } // Append initial CFI data if any. size_t size = advances.size(); DCHECK_NE(size, 0u); cfi().AppendRawData(old_stream, 0u, advances[0].stream_pos); // Emit PC adjustments interleaved with the old CFI stream. size_t adjust_pos = 0u; size_t late_emit_pos = number_of_delayed_adjust_pcs; while (adjust_pos != number_of_delayed_adjust_pcs || late_emit_pos != size) { size_t adjusted_pc = (adjust_pos != number_of_delayed_adjust_pcs) ? GetAdjustedPosition(advances[adjust_pos].pc) : static_cast(-1); size_t late_emit_pc = (late_emit_pos != size) ? advances[late_emit_pos].pc : static_cast(-1); size_t advance_pc = std::min(adjusted_pc, late_emit_pc); DCHECK_NE(advance_pc, static_cast(-1)); size_t entry = (adjusted_pc <= late_emit_pc) ? adjust_pos : late_emit_pos; if (adjusted_pc <= late_emit_pc) { ++adjust_pos; } else { ++late_emit_pos; } cfi().AdvancePC(advance_pc); size_t end_pos = (entry + 1u == size) ? old_stream.size() : advances[entry + 1u].stream_pos; cfi().AppendRawData(old_stream, advances[entry].stream_pos, end_pos); } } void MipsAssembler::EmitBranches() { CHECK(!overwriting_); // Switch from appending instructions at the end of the buffer to overwriting // existing instructions (branch placeholders) in the buffer. overwriting_ = true; for (auto& branch : branches_) { EmitBranch(&branch); } overwriting_ = false; } void MipsAssembler::Emit(uint32_t value) { if (overwriting_) { // Branches to labels are emitted into their placeholders here. buffer_.Store(overwrite_location_, value); overwrite_location_ += sizeof(uint32_t); } else { // Other instructions are simply appended at the end here. AssemblerBuffer::EnsureCapacity ensured(&buffer_); buffer_.Emit(value); } } void MipsAssembler::EmitR(int opcode, Register rs, Register rt, Register rd, int shamt, int funct) { CHECK_NE(rs, kNoRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(rd, kNoRegister); uint32_t encoding = static_cast(opcode) << kOpcodeShift | static_cast(rs) << kRsShift | static_cast(rt) << kRtShift | static_cast(rd) << kRdShift | shamt << kShamtShift | funct; Emit(encoding); } void MipsAssembler::EmitI(int opcode, Register rs, Register rt, uint16_t imm) { CHECK_NE(rs, kNoRegister); CHECK_NE(rt, kNoRegister); uint32_t encoding = static_cast(opcode) << kOpcodeShift | static_cast(rs) << kRsShift | static_cast(rt) << kRtShift | imm; Emit(encoding); } void MipsAssembler::EmitI21(int opcode, Register rs, uint32_t imm21) { CHECK_NE(rs, kNoRegister); CHECK(IsUint<21>(imm21)) << imm21; uint32_t encoding = static_cast(opcode) << kOpcodeShift | static_cast(rs) << kRsShift | imm21; Emit(encoding); } void MipsAssembler::EmitI26(int opcode, uint32_t imm26) { CHECK(IsUint<26>(imm26)) << imm26; uint32_t encoding = static_cast(opcode) << kOpcodeShift | imm26; Emit(encoding); } void MipsAssembler::EmitFR(int opcode, int fmt, FRegister ft, FRegister fs, FRegister fd, int funct) { CHECK_NE(ft, kNoFRegister); CHECK_NE(fs, kNoFRegister); CHECK_NE(fd, kNoFRegister); uint32_t encoding = static_cast(opcode) << kOpcodeShift | fmt << kFmtShift | static_cast(ft) << kFtShift | static_cast(fs) << kFsShift | static_cast(fd) << kFdShift | funct; Emit(encoding); } void MipsAssembler::EmitFI(int opcode, int fmt, FRegister ft, uint16_t imm) { CHECK_NE(ft, kNoFRegister); uint32_t encoding = static_cast(opcode) << kOpcodeShift | fmt << kFmtShift | static_cast(ft) << kFtShift | imm; Emit(encoding); } void MipsAssembler::Addu(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x21); } void MipsAssembler::Addiu(Register rt, Register rs, uint16_t imm16) { EmitI(0x9, rs, rt, imm16); } void MipsAssembler::Subu(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x23); } void MipsAssembler::MultR2(Register rs, Register rt) { CHECK(!IsR6()); EmitR(0, rs, rt, static_cast(0), 0, 0x18); } void MipsAssembler::MultuR2(Register rs, Register rt) { CHECK(!IsR6()); EmitR(0, rs, rt, static_cast(0), 0, 0x19); } void MipsAssembler::DivR2(Register rs, Register rt) { CHECK(!IsR6()); EmitR(0, rs, rt, static_cast(0), 0, 0x1a); } void MipsAssembler::DivuR2(Register rs, Register rt) { CHECK(!IsR6()); EmitR(0, rs, rt, static_cast(0), 0, 0x1b); } void MipsAssembler::MulR2(Register rd, Register rs, Register rt) { CHECK(!IsR6()); EmitR(0x1c, rs, rt, rd, 0, 2); } void MipsAssembler::DivR2(Register rd, Register rs, Register rt) { CHECK(!IsR6()); DivR2(rs, rt); Mflo(rd); } void MipsAssembler::ModR2(Register rd, Register rs, Register rt) { CHECK(!IsR6()); DivR2(rs, rt); Mfhi(rd); } void MipsAssembler::DivuR2(Register rd, Register rs, Register rt) { CHECK(!IsR6()); DivuR2(rs, rt); Mflo(rd); } void MipsAssembler::ModuR2(Register rd, Register rs, Register rt) { CHECK(!IsR6()); DivuR2(rs, rt); Mfhi(rd); } void MipsAssembler::MulR6(Register rd, Register rs, Register rt) { CHECK(IsR6()); EmitR(0, rs, rt, rd, 2, 0x18); } void MipsAssembler::MuhR6(Register rd, Register rs, Register rt) { CHECK(IsR6()); EmitR(0, rs, rt, rd, 3, 0x18); } void MipsAssembler::MuhuR6(Register rd, Register rs, Register rt) { CHECK(IsR6()); EmitR(0, rs, rt, rd, 3, 0x19); } void MipsAssembler::DivR6(Register rd, Register rs, Register rt) { CHECK(IsR6()); EmitR(0, rs, rt, rd, 2, 0x1a); } void MipsAssembler::ModR6(Register rd, Register rs, Register rt) { CHECK(IsR6()); EmitR(0, rs, rt, rd, 3, 0x1a); } void MipsAssembler::DivuR6(Register rd, Register rs, Register rt) { CHECK(IsR6()); EmitR(0, rs, rt, rd, 2, 0x1b); } void MipsAssembler::ModuR6(Register rd, Register rs, Register rt) { CHECK(IsR6()); EmitR(0, rs, rt, rd, 3, 0x1b); } void MipsAssembler::And(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x24); } void MipsAssembler::Andi(Register rt, Register rs, uint16_t imm16) { EmitI(0xc, rs, rt, imm16); } void MipsAssembler::Or(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x25); } void MipsAssembler::Ori(Register rt, Register rs, uint16_t imm16) { EmitI(0xd, rs, rt, imm16); } void MipsAssembler::Xor(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x26); } void MipsAssembler::Xori(Register rt, Register rs, uint16_t imm16) { EmitI(0xe, rs, rt, imm16); } void MipsAssembler::Nor(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x27); } void MipsAssembler::Movz(Register rd, Register rs, Register rt) { CHECK(!IsR6()); EmitR(0, rs, rt, rd, 0, 0x0A); } void MipsAssembler::Movn(Register rd, Register rs, Register rt) { CHECK(!IsR6()); EmitR(0, rs, rt, rd, 0, 0x0B); } void MipsAssembler::Seleqz(Register rd, Register rs, Register rt) { CHECK(IsR6()); EmitR(0, rs, rt, rd, 0, 0x35); } void MipsAssembler::Selnez(Register rd, Register rs, Register rt) { CHECK(IsR6()); EmitR(0, rs, rt, rd, 0, 0x37); } void MipsAssembler::ClzR6(Register rd, Register rs) { CHECK(IsR6()); EmitR(0, rs, static_cast(0), rd, 0x01, 0x10); } void MipsAssembler::ClzR2(Register rd, Register rs) { CHECK(!IsR6()); EmitR(0x1C, rs, rd, rd, 0, 0x20); } void MipsAssembler::CloR6(Register rd, Register rs) { CHECK(IsR6()); EmitR(0, rs, static_cast(0), rd, 0x01, 0x11); } void MipsAssembler::CloR2(Register rd, Register rs) { CHECK(!IsR6()); EmitR(0x1C, rs, rd, rd, 0, 0x21); } void MipsAssembler::Seb(Register rd, Register rt) { EmitR(0x1f, static_cast(0), rt, rd, 0x10, 0x20); } void MipsAssembler::Seh(Register rd, Register rt) { EmitR(0x1f, static_cast(0), rt, rd, 0x18, 0x20); } void MipsAssembler::Wsbh(Register rd, Register rt) { EmitR(0x1f, static_cast(0), rt, rd, 2, 0x20); } void MipsAssembler::Bitswap(Register rd, Register rt) { CHECK(IsR6()); EmitR(0x1f, static_cast(0), rt, rd, 0x0, 0x20); } void MipsAssembler::Sll(Register rd, Register rt, int shamt) { CHECK(IsUint<5>(shamt)) << shamt; EmitR(0, static_cast(0), rt, rd, shamt, 0x00); } void MipsAssembler::Srl(Register rd, Register rt, int shamt) { CHECK(IsUint<5>(shamt)) << shamt; EmitR(0, static_cast(0), rt, rd, shamt, 0x02); } void MipsAssembler::Rotr(Register rd, Register rt, int shamt) { CHECK(IsUint<5>(shamt)) << shamt; EmitR(0, static_cast(1), rt, rd, shamt, 0x02); } void MipsAssembler::Sra(Register rd, Register rt, int shamt) { CHECK(IsUint<5>(shamt)) << shamt; EmitR(0, static_cast(0), rt, rd, shamt, 0x03); } void MipsAssembler::Sllv(Register rd, Register rt, Register rs) { EmitR(0, rs, rt, rd, 0, 0x04); } void MipsAssembler::Srlv(Register rd, Register rt, Register rs) { EmitR(0, rs, rt, rd, 0, 0x06); } void MipsAssembler::Rotrv(Register rd, Register rt, Register rs) { EmitR(0, rs, rt, rd, 1, 0x06); } void MipsAssembler::Srav(Register rd, Register rt, Register rs) { EmitR(0, rs, rt, rd, 0, 0x07); } void MipsAssembler::Ext(Register rd, Register rt, int pos, int size) { CHECK(IsUint<5>(pos)) << pos; CHECK(0 < size && size <= 32) << size; CHECK(0 < pos + size && pos + size <= 32) << pos << " + " << size; EmitR(0x1f, rt, rd, static_cast(size - 1), pos, 0x00); } void MipsAssembler::Ins(Register rd, Register rt, int pos, int size) { CHECK(IsUint<5>(pos)) << pos; CHECK(0 < size && size <= 32) << size; CHECK(0 < pos + size && pos + size <= 32) << pos << " + " << size; EmitR(0x1f, rt, rd, static_cast(pos + size - 1), pos, 0x04); } void MipsAssembler::Lb(Register rt, Register rs, uint16_t imm16) { EmitI(0x20, rs, rt, imm16); } void MipsAssembler::Lh(Register rt, Register rs, uint16_t imm16) { EmitI(0x21, rs, rt, imm16); } void MipsAssembler::Lw(Register rt, Register rs, uint16_t imm16) { EmitI(0x23, rs, rt, imm16); } void MipsAssembler::Lwl(Register rt, Register rs, uint16_t imm16) { CHECK(!IsR6()); EmitI(0x22, rs, rt, imm16); } void MipsAssembler::Lwr(Register rt, Register rs, uint16_t imm16) { CHECK(!IsR6()); EmitI(0x26, rs, rt, imm16); } void MipsAssembler::Lbu(Register rt, Register rs, uint16_t imm16) { EmitI(0x24, rs, rt, imm16); } void MipsAssembler::Lhu(Register rt, Register rs, uint16_t imm16) { EmitI(0x25, rs, rt, imm16); } void MipsAssembler::Lui(Register rt, uint16_t imm16) { EmitI(0xf, static_cast(0), rt, imm16); } void MipsAssembler::Sync(uint32_t stype) { EmitR(0, static_cast(0), static_cast(0), static_cast(0), stype & 0x1f, 0xf); } void MipsAssembler::Mfhi(Register rd) { CHECK(!IsR6()); EmitR(0, static_cast(0), static_cast(0), rd, 0, 0x10); } void MipsAssembler::Mflo(Register rd) { CHECK(!IsR6()); EmitR(0, static_cast(0), static_cast(0), rd, 0, 0x12); } void MipsAssembler::Sb(Register rt, Register rs, uint16_t imm16) { EmitI(0x28, rs, rt, imm16); } void MipsAssembler::Sh(Register rt, Register rs, uint16_t imm16) { EmitI(0x29, rs, rt, imm16); } void MipsAssembler::Sw(Register rt, Register rs, uint16_t imm16) { EmitI(0x2b, rs, rt, imm16); } void MipsAssembler::Swl(Register rt, Register rs, uint16_t imm16) { CHECK(!IsR6()); EmitI(0x2a, rs, rt, imm16); } void MipsAssembler::Swr(Register rt, Register rs, uint16_t imm16) { CHECK(!IsR6()); EmitI(0x2e, rs, rt, imm16); } void MipsAssembler::LlR2(Register rt, Register base, int16_t imm16) { CHECK(!IsR6()); EmitI(0x30, base, rt, imm16); } void MipsAssembler::ScR2(Register rt, Register base, int16_t imm16) { CHECK(!IsR6()); EmitI(0x38, base, rt, imm16); } void MipsAssembler::LlR6(Register rt, Register base, int16_t imm9) { CHECK(IsR6()); CHECK(IsInt<9>(imm9)); EmitI(0x1f, base, rt, ((imm9 & 0x1ff) << 7) | 0x36); } void MipsAssembler::ScR6(Register rt, Register base, int16_t imm9) { CHECK(IsR6()); CHECK(IsInt<9>(imm9)); EmitI(0x1f, base, rt, ((imm9 & 0x1ff) << 7) | 0x26); } void MipsAssembler::Slt(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x2a); } void MipsAssembler::Sltu(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x2b); } void MipsAssembler::Slti(Register rt, Register rs, uint16_t imm16) { EmitI(0xa, rs, rt, imm16); } void MipsAssembler::Sltiu(Register rt, Register rs, uint16_t imm16) { EmitI(0xb, rs, rt, imm16); } void MipsAssembler::B(uint16_t imm16) { EmitI(0x4, static_cast(0), static_cast(0), imm16); } void MipsAssembler::Beq(Register rs, Register rt, uint16_t imm16) { EmitI(0x4, rs, rt, imm16); } void MipsAssembler::Bne(Register rs, Register rt, uint16_t imm16) { EmitI(0x5, rs, rt, imm16); } void MipsAssembler::Beqz(Register rt, uint16_t imm16) { Beq(ZERO, rt, imm16); } void MipsAssembler::Bnez(Register rt, uint16_t imm16) { Bne(ZERO, rt, imm16); } void MipsAssembler::Bltz(Register rt, uint16_t imm16) { EmitI(0x1, rt, static_cast(0), imm16); } void MipsAssembler::Bgez(Register rt, uint16_t imm16) { EmitI(0x1, rt, static_cast(0x1), imm16); } void MipsAssembler::Blez(Register rt, uint16_t imm16) { EmitI(0x6, rt, static_cast(0), imm16); } void MipsAssembler::Bgtz(Register rt, uint16_t imm16) { EmitI(0x7, rt, static_cast(0), imm16); } void MipsAssembler::Bc1f(uint16_t imm16) { Bc1f(0, imm16); } void MipsAssembler::Bc1f(int cc, uint16_t imm16) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitI(0x11, static_cast(0x8), static_cast(cc << 2), imm16); } void MipsAssembler::Bc1t(uint16_t imm16) { Bc1t(0, imm16); } void MipsAssembler::Bc1t(int cc, uint16_t imm16) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitI(0x11, static_cast(0x8), static_cast((cc << 2) | 1), imm16); } void MipsAssembler::J(uint32_t addr26) { EmitI26(0x2, addr26); } void MipsAssembler::Jal(uint32_t addr26) { EmitI26(0x3, addr26); } void MipsAssembler::Jalr(Register rd, Register rs) { EmitR(0, rs, static_cast(0), rd, 0, 0x09); } void MipsAssembler::Jalr(Register rs) { Jalr(RA, rs); } void MipsAssembler::Jr(Register rs) { Jalr(ZERO, rs); } void MipsAssembler::Nal() { EmitI(0x1, static_cast(0), static_cast(0x10), 0); } void MipsAssembler::Auipc(Register rs, uint16_t imm16) { CHECK(IsR6()); EmitI(0x3B, rs, static_cast(0x1E), imm16); } void MipsAssembler::Addiupc(Register rs, uint32_t imm19) { CHECK(IsR6()); CHECK(IsUint<19>(imm19)) << imm19; EmitI21(0x3B, rs, imm19); } void MipsAssembler::Bc(uint32_t imm26) { CHECK(IsR6()); EmitI26(0x32, imm26); } void MipsAssembler::Jic(Register rt, uint16_t imm16) { CHECK(IsR6()); EmitI(0x36, static_cast(0), rt, imm16); } void MipsAssembler::Jialc(Register rt, uint16_t imm16) { CHECK(IsR6()); EmitI(0x3E, static_cast(0), rt, imm16); } void MipsAssembler::Bltc(Register rs, Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x17, rs, rt, imm16); } void MipsAssembler::Bltzc(Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rt, ZERO); EmitI(0x17, rt, rt, imm16); } void MipsAssembler::Bgtzc(Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rt, ZERO); EmitI(0x17, static_cast(0), rt, imm16); } void MipsAssembler::Bgec(Register rs, Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x16, rs, rt, imm16); } void MipsAssembler::Bgezc(Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rt, ZERO); EmitI(0x16, rt, rt, imm16); } void MipsAssembler::Blezc(Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rt, ZERO); EmitI(0x16, static_cast(0), rt, imm16); } void MipsAssembler::Bltuc(Register rs, Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x7, rs, rt, imm16); } void MipsAssembler::Bgeuc(Register rs, Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x6, rs, rt, imm16); } void MipsAssembler::Beqc(Register rs, Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x8, std::min(rs, rt), std::max(rs, rt), imm16); } void MipsAssembler::Bnec(Register rs, Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); EmitI(0x18, std::min(rs, rt), std::max(rs, rt), imm16); } void MipsAssembler::Beqzc(Register rs, uint32_t imm21) { CHECK(IsR6()); CHECK_NE(rs, ZERO); EmitI21(0x36, rs, imm21); } void MipsAssembler::Bnezc(Register rs, uint32_t imm21) { CHECK(IsR6()); CHECK_NE(rs, ZERO); EmitI21(0x3E, rs, imm21); } void MipsAssembler::Bc1eqz(FRegister ft, uint16_t imm16) { CHECK(IsR6()); EmitFI(0x11, 0x9, ft, imm16); } void MipsAssembler::Bc1nez(FRegister ft, uint16_t imm16) { CHECK(IsR6()); EmitFI(0x11, 0xD, ft, imm16); } void MipsAssembler::EmitBcondR2(BranchCondition cond, Register rs, Register rt, uint16_t imm16) { switch (cond) { case kCondLTZ: CHECK_EQ(rt, ZERO); Bltz(rs, imm16); break; case kCondGEZ: CHECK_EQ(rt, ZERO); Bgez(rs, imm16); break; case kCondLEZ: CHECK_EQ(rt, ZERO); Blez(rs, imm16); break; case kCondGTZ: CHECK_EQ(rt, ZERO); Bgtz(rs, imm16); break; case kCondEQ: Beq(rs, rt, imm16); break; case kCondNE: Bne(rs, rt, imm16); break; case kCondEQZ: CHECK_EQ(rt, ZERO); Beqz(rs, imm16); break; case kCondNEZ: CHECK_EQ(rt, ZERO); Bnez(rs, imm16); break; case kCondF: CHECK_EQ(rt, ZERO); Bc1f(static_cast(rs), imm16); break; case kCondT: CHECK_EQ(rt, ZERO); Bc1t(static_cast(rs), imm16); break; case kCondLT: case kCondGE: case kCondLE: case kCondGT: case kCondLTU: case kCondGEU: case kUncond: // We don't support synthetic R2 branches (preceded with slt[u]) at this level // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >). LOG(FATAL) << "Unexpected branch condition " << cond; UNREACHABLE(); } } void MipsAssembler::EmitBcondR6(BranchCondition cond, Register rs, Register rt, uint32_t imm16_21) { switch (cond) { case kCondLT: Bltc(rs, rt, imm16_21); break; case kCondGE: Bgec(rs, rt, imm16_21); break; case kCondLE: Bgec(rt, rs, imm16_21); break; case kCondGT: Bltc(rt, rs, imm16_21); break; case kCondLTZ: CHECK_EQ(rt, ZERO); Bltzc(rs, imm16_21); break; case kCondGEZ: CHECK_EQ(rt, ZERO); Bgezc(rs, imm16_21); break; case kCondLEZ: CHECK_EQ(rt, ZERO); Blezc(rs, imm16_21); break; case kCondGTZ: CHECK_EQ(rt, ZERO); Bgtzc(rs, imm16_21); break; case kCondEQ: Beqc(rs, rt, imm16_21); break; case kCondNE: Bnec(rs, rt, imm16_21); break; case kCondEQZ: CHECK_EQ(rt, ZERO); Beqzc(rs, imm16_21); break; case kCondNEZ: CHECK_EQ(rt, ZERO); Bnezc(rs, imm16_21); break; case kCondLTU: Bltuc(rs, rt, imm16_21); break; case kCondGEU: Bgeuc(rs, rt, imm16_21); break; case kCondF: CHECK_EQ(rt, ZERO); Bc1eqz(static_cast(rs), imm16_21); break; case kCondT: CHECK_EQ(rt, ZERO); Bc1nez(static_cast(rs), imm16_21); break; case kUncond: LOG(FATAL) << "Unexpected branch condition " << cond; UNREACHABLE(); } } void MipsAssembler::AddS(FRegister fd, FRegister fs, FRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x0); } void MipsAssembler::SubS(FRegister fd, FRegister fs, FRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x1); } void MipsAssembler::MulS(FRegister fd, FRegister fs, FRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x2); } void MipsAssembler::DivS(FRegister fd, FRegister fs, FRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x3); } void MipsAssembler::AddD(FRegister fd, FRegister fs, FRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x0); } void MipsAssembler::SubD(FRegister fd, FRegister fs, FRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x1); } void MipsAssembler::MulD(FRegister fd, FRegister fs, FRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x2); } void MipsAssembler::DivD(FRegister fd, FRegister fs, FRegister ft) { EmitFR(0x11, 0x11, ft, fs, fd, 0x3); } void MipsAssembler::SqrtS(FRegister fd, FRegister fs) { EmitFR(0x11, 0x10, static_cast(0), fs, fd, 0x4); } void MipsAssembler::SqrtD(FRegister fd, FRegister fs) { EmitFR(0x11, 0x11, static_cast(0), fs, fd, 0x4); } void MipsAssembler::AbsS(FRegister fd, FRegister fs) { EmitFR(0x11, 0x10, static_cast(0), fs, fd, 0x5); } void MipsAssembler::AbsD(FRegister fd, FRegister fs) { EmitFR(0x11, 0x11, static_cast(0), fs, fd, 0x5); } void MipsAssembler::MovS(FRegister fd, FRegister fs) { EmitFR(0x11, 0x10, static_cast(0), fs, fd, 0x6); } void MipsAssembler::MovD(FRegister fd, FRegister fs) { EmitFR(0x11, 0x11, static_cast(0), fs, fd, 0x6); } void MipsAssembler::NegS(FRegister fd, FRegister fs) { EmitFR(0x11, 0x10, static_cast(0), fs, fd, 0x7); } void MipsAssembler::NegD(FRegister fd, FRegister fs) { EmitFR(0x11, 0x11, static_cast(0), fs, fd, 0x7); } void MipsAssembler::CunS(FRegister fs, FRegister ft) { CunS(0, fs, ft); } void MipsAssembler::CunS(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x10, ft, fs, static_cast(cc << 2), 0x31); } void MipsAssembler::CeqS(FRegister fs, FRegister ft) { CeqS(0, fs, ft); } void MipsAssembler::CeqS(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x10, ft, fs, static_cast(cc << 2), 0x32); } void MipsAssembler::CueqS(FRegister fs, FRegister ft) { CueqS(0, fs, ft); } void MipsAssembler::CueqS(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x10, ft, fs, static_cast(cc << 2), 0x33); } void MipsAssembler::ColtS(FRegister fs, FRegister ft) { ColtS(0, fs, ft); } void MipsAssembler::ColtS(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x10, ft, fs, static_cast(cc << 2), 0x34); } void MipsAssembler::CultS(FRegister fs, FRegister ft) { CultS(0, fs, ft); } void MipsAssembler::CultS(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x10, ft, fs, static_cast(cc << 2), 0x35); } void MipsAssembler::ColeS(FRegister fs, FRegister ft) { ColeS(0, fs, ft); } void MipsAssembler::ColeS(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x10, ft, fs, static_cast(cc << 2), 0x36); } void MipsAssembler::CuleS(FRegister fs, FRegister ft) { CuleS(0, fs, ft); } void MipsAssembler::CuleS(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x10, ft, fs, static_cast(cc << 2), 0x37); } void MipsAssembler::CunD(FRegister fs, FRegister ft) { CunD(0, fs, ft); } void MipsAssembler::CunD(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x11, ft, fs, static_cast(cc << 2), 0x31); } void MipsAssembler::CeqD(FRegister fs, FRegister ft) { CeqD(0, fs, ft); } void MipsAssembler::CeqD(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x11, ft, fs, static_cast(cc << 2), 0x32); } void MipsAssembler::CueqD(FRegister fs, FRegister ft) { CueqD(0, fs, ft); } void MipsAssembler::CueqD(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x11, ft, fs, static_cast(cc << 2), 0x33); } void MipsAssembler::ColtD(FRegister fs, FRegister ft) { ColtD(0, fs, ft); } void MipsAssembler::ColtD(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x11, ft, fs, static_cast(cc << 2), 0x34); } void MipsAssembler::CultD(FRegister fs, FRegister ft) { CultD(0, fs, ft); } void MipsAssembler::CultD(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x11, ft, fs, static_cast(cc << 2), 0x35); } void MipsAssembler::ColeD(FRegister fs, FRegister ft) { ColeD(0, fs, ft); } void MipsAssembler::ColeD(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x11, ft, fs, static_cast(cc << 2), 0x36); } void MipsAssembler::CuleD(FRegister fs, FRegister ft) { CuleD(0, fs, ft); } void MipsAssembler::CuleD(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x11, ft, fs, static_cast(cc << 2), 0x37); } void MipsAssembler::CmpUnS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x14, ft, fs, fd, 0x01); } void MipsAssembler::CmpEqS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x14, ft, fs, fd, 0x02); } void MipsAssembler::CmpUeqS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x14, ft, fs, fd, 0x03); } void MipsAssembler::CmpLtS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x14, ft, fs, fd, 0x04); } void MipsAssembler::CmpUltS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x14, ft, fs, fd, 0x05); } void MipsAssembler::CmpLeS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x14, ft, fs, fd, 0x06); } void MipsAssembler::CmpUleS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x14, ft, fs, fd, 0x07); } void MipsAssembler::CmpOrS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x14, ft, fs, fd, 0x11); } void MipsAssembler::CmpUneS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x14, ft, fs, fd, 0x12); } void MipsAssembler::CmpNeS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x14, ft, fs, fd, 0x13); } void MipsAssembler::CmpUnD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x15, ft, fs, fd, 0x01); } void MipsAssembler::CmpEqD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x15, ft, fs, fd, 0x02); } void MipsAssembler::CmpUeqD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x15, ft, fs, fd, 0x03); } void MipsAssembler::CmpLtD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x15, ft, fs, fd, 0x04); } void MipsAssembler::CmpUltD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x15, ft, fs, fd, 0x05); } void MipsAssembler::CmpLeD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x15, ft, fs, fd, 0x06); } void MipsAssembler::CmpUleD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x15, ft, fs, fd, 0x07); } void MipsAssembler::CmpOrD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x15, ft, fs, fd, 0x11); } void MipsAssembler::CmpUneD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x15, ft, fs, fd, 0x12); } void MipsAssembler::CmpNeD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x15, ft, fs, fd, 0x13); } void MipsAssembler::Movf(Register rd, Register rs, int cc) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitR(0, rs, static_cast(cc << 2), rd, 0, 0x01); } void MipsAssembler::Movt(Register rd, Register rs, int cc) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitR(0, rs, static_cast((cc << 2) | 1), rd, 0, 0x01); } void MipsAssembler::MovfS(FRegister fd, FRegister fs, int cc) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x10, static_cast(cc << 2), fs, fd, 0x11); } void MipsAssembler::MovfD(FRegister fd, FRegister fs, int cc) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x11, static_cast(cc << 2), fs, fd, 0x11); } void MipsAssembler::MovtS(FRegister fd, FRegister fs, int cc) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x10, static_cast((cc << 2) | 1), fs, fd, 0x11); } void MipsAssembler::MovtD(FRegister fd, FRegister fs, int cc) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; EmitFR(0x11, 0x11, static_cast((cc << 2) | 1), fs, fd, 0x11); } void MipsAssembler::SelS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x10, ft, fs, fd, 0x10); } void MipsAssembler::SelD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x11, ft, fs, fd, 0x10); } void MipsAssembler::ClassS(FRegister fd, FRegister fs) { CHECK(IsR6()); EmitFR(0x11, 0x10, static_cast(0), fs, fd, 0x1b); } void MipsAssembler::ClassD(FRegister fd, FRegister fs) { CHECK(IsR6()); EmitFR(0x11, 0x11, static_cast(0), fs, fd, 0x1b); } void MipsAssembler::MinS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x10, ft, fs, fd, 0x1c); } void MipsAssembler::MinD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x11, ft, fs, fd, 0x1c); } void MipsAssembler::MaxS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x10, ft, fs, fd, 0x1e); } void MipsAssembler::MaxD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); EmitFR(0x11, 0x11, ft, fs, fd, 0x1e); } void MipsAssembler::TruncLS(FRegister fd, FRegister fs) { EmitFR(0x11, 0x10, static_cast(0), fs, fd, 0x09); } void MipsAssembler::TruncLD(FRegister fd, FRegister fs) { EmitFR(0x11, 0x11, static_cast(0), fs, fd, 0x09); } void MipsAssembler::TruncWS(FRegister fd, FRegister fs) { EmitFR(0x11, 0x10, static_cast(0), fs, fd, 0x0D); } void MipsAssembler::TruncWD(FRegister fd, FRegister fs) { EmitFR(0x11, 0x11, static_cast(0), fs, fd, 0x0D); } void MipsAssembler::Cvtsw(FRegister fd, FRegister fs) { EmitFR(0x11, 0x14, static_cast(0), fs, fd, 0x20); } void MipsAssembler::Cvtdw(FRegister fd, FRegister fs) { EmitFR(0x11, 0x14, static_cast(0), fs, fd, 0x21); } void MipsAssembler::Cvtsd(FRegister fd, FRegister fs) { EmitFR(0x11, 0x11, static_cast(0), fs, fd, 0x20); } void MipsAssembler::Cvtds(FRegister fd, FRegister fs) { EmitFR(0x11, 0x10, static_cast(0), fs, fd, 0x21); } void MipsAssembler::Cvtsl(FRegister fd, FRegister fs) { EmitFR(0x11, 0x15, static_cast(0), fs, fd, 0x20); } void MipsAssembler::Cvtdl(FRegister fd, FRegister fs) { EmitFR(0x11, 0x15, static_cast(0), fs, fd, 0x21); } void MipsAssembler::FloorWS(FRegister fd, FRegister fs) { EmitFR(0x11, 0x10, static_cast(0), fs, fd, 0xf); } void MipsAssembler::FloorWD(FRegister fd, FRegister fs) { EmitFR(0x11, 0x11, static_cast(0), fs, fd, 0xf); } void MipsAssembler::Mfc1(Register rt, FRegister fs) { EmitFR(0x11, 0x00, static_cast(rt), fs, static_cast(0), 0x0); } void MipsAssembler::Mtc1(Register rt, FRegister fs) { EmitFR(0x11, 0x04, static_cast(rt), fs, static_cast(0), 0x0); } void MipsAssembler::Mfhc1(Register rt, FRegister fs) { EmitFR(0x11, 0x03, static_cast(rt), fs, static_cast(0), 0x0); } void MipsAssembler::Mthc1(Register rt, FRegister fs) { EmitFR(0x11, 0x07, static_cast(rt), fs, static_cast(0), 0x0); } void MipsAssembler::MoveFromFpuHigh(Register rt, FRegister fs) { if (Is32BitFPU()) { CHECK_EQ(fs % 2, 0) << fs; Mfc1(rt, static_cast(fs + 1)); } else { Mfhc1(rt, fs); } } void MipsAssembler::MoveToFpuHigh(Register rt, FRegister fs) { if (Is32BitFPU()) { CHECK_EQ(fs % 2, 0) << fs; Mtc1(rt, static_cast(fs + 1)); } else { Mthc1(rt, fs); } } void MipsAssembler::Lwc1(FRegister ft, Register rs, uint16_t imm16) { EmitI(0x31, rs, static_cast(ft), imm16); } void MipsAssembler::Ldc1(FRegister ft, Register rs, uint16_t imm16) { EmitI(0x35, rs, static_cast(ft), imm16); } void MipsAssembler::Swc1(FRegister ft, Register rs, uint16_t imm16) { EmitI(0x39, rs, static_cast(ft), imm16); } void MipsAssembler::Sdc1(FRegister ft, Register rs, uint16_t imm16) { EmitI(0x3d, rs, static_cast(ft), imm16); } void MipsAssembler::Break() { EmitR(0, static_cast(0), static_cast(0), static_cast(0), 0, 0xD); } void MipsAssembler::Nop() { EmitR(0x0, static_cast(0), static_cast(0), static_cast(0), 0, 0x0); } void MipsAssembler::Move(Register rd, Register rs) { Or(rd, rs, ZERO); } void MipsAssembler::Clear(Register rd) { Move(rd, ZERO); } void MipsAssembler::Not(Register rd, Register rs) { Nor(rd, rs, ZERO); } void MipsAssembler::Push(Register rs) { IncreaseFrameSize(kMipsWordSize); Sw(rs, SP, 0); } void MipsAssembler::Pop(Register rd) { Lw(rd, SP, 0); DecreaseFrameSize(kMipsWordSize); } void MipsAssembler::PopAndReturn(Register rd, Register rt) { Lw(rd, SP, 0); Jr(rt); DecreaseFrameSize(kMipsWordSize); } void MipsAssembler::LoadConst32(Register rd, int32_t value) { if (IsUint<16>(value)) { // Use OR with (unsigned) immediate to encode 16b unsigned int. Ori(rd, ZERO, value); } else if (IsInt<16>(value)) { // Use ADD with (signed) immediate to encode 16b signed int. Addiu(rd, ZERO, value); } else { Lui(rd, High16Bits(value)); if (value & 0xFFFF) Ori(rd, rd, Low16Bits(value)); } } void MipsAssembler::LoadConst64(Register reg_hi, Register reg_lo, int64_t value) { uint32_t low = Low32Bits(value); uint32_t high = High32Bits(value); LoadConst32(reg_lo, low); if (high != low) { LoadConst32(reg_hi, high); } else { Move(reg_hi, reg_lo); } } void MipsAssembler::StoreConst32ToOffset(int32_t value, Register base, int32_t offset, Register temp) { if (!IsInt<16>(offset)) { CHECK_NE(temp, AT); // Must not use AT as temp, as not to overwrite the loaded value. LoadConst32(AT, offset); Addu(AT, AT, base); base = AT; offset = 0; } if (value == 0) { temp = ZERO; } else { LoadConst32(temp, value); } Sw(temp, base, offset); } void MipsAssembler::StoreConst64ToOffset(int64_t value, Register base, int32_t offset, Register temp) { // IsInt<16> must be passed a signed value. if (!IsInt<16>(offset) || !IsInt<16>(static_cast(offset + kMipsWordSize))) { CHECK_NE(temp, AT); // Must not use AT as temp, as not to overwrite the loaded value. LoadConst32(AT, offset); Addu(AT, AT, base); base = AT; offset = 0; } uint32_t low = Low32Bits(value); uint32_t high = High32Bits(value); if (low == 0) { Sw(ZERO, base, offset); } else { LoadConst32(temp, low); Sw(temp, base, offset); } if (high == 0) { Sw(ZERO, base, offset + kMipsWordSize); } else { if (high != low) { LoadConst32(temp, high); } Sw(temp, base, offset + kMipsWordSize); } } void MipsAssembler::LoadSConst32(FRegister r, int32_t value, Register temp) { if (value == 0) { temp = ZERO; } else { LoadConst32(temp, value); } Mtc1(temp, r); } void MipsAssembler::LoadDConst64(FRegister rd, int64_t value, Register temp) { uint32_t low = Low32Bits(value); uint32_t high = High32Bits(value); if (low == 0) { Mtc1(ZERO, rd); } else { LoadConst32(temp, low); Mtc1(temp, rd); } if (high == 0) { MoveToFpuHigh(ZERO, rd); } else { LoadConst32(temp, high); MoveToFpuHigh(temp, rd); } } void MipsAssembler::Addiu32(Register rt, Register rs, int32_t value, Register temp) { if (IsInt<16>(value)) { Addiu(rt, rs, value); } else { LoadConst32(temp, value); Addu(rt, rs, temp); } } void MipsAssembler::Branch::InitShortOrLong(MipsAssembler::Branch::OffsetBits offset_size, MipsAssembler::Branch::Type short_type, MipsAssembler::Branch::Type long_type) { type_ = (offset_size <= branch_info_[short_type].offset_size) ? short_type : long_type; } void MipsAssembler::Branch::InitializeType(bool is_call, bool is_r6) { OffsetBits offset_size = GetOffsetSizeNeeded(location_, target_); if (is_r6) { // R6 if (is_call) { InitShortOrLong(offset_size, kR6Call, kR6LongCall); } else if (condition_ == kUncond) { InitShortOrLong(offset_size, kR6UncondBranch, kR6LongUncondBranch); } else { if (condition_ == kCondEQZ || condition_ == kCondNEZ) { // Special case for beqzc/bnezc with longer offset than in other bc instructions. type_ = (offset_size <= kOffset23) ? kR6CondBranch : kR6LongCondBranch; } else { InitShortOrLong(offset_size, kR6CondBranch, kR6LongCondBranch); } } } else { // R2 if (is_call) { InitShortOrLong(offset_size, kCall, kLongCall); } else if (condition_ == kUncond) { InitShortOrLong(offset_size, kUncondBranch, kLongUncondBranch); } else { InitShortOrLong(offset_size, kCondBranch, kLongCondBranch); } } old_type_ = type_; } bool MipsAssembler::Branch::IsNop(BranchCondition condition, Register lhs, Register rhs) { switch (condition) { case kCondLT: case kCondGT: case kCondNE: case kCondLTU: return lhs == rhs; default: return false; } } bool MipsAssembler::Branch::IsUncond(BranchCondition condition, Register lhs, Register rhs) { switch (condition) { case kUncond: return true; case kCondGE: case kCondLE: case kCondEQ: case kCondGEU: return lhs == rhs; default: return false; } } MipsAssembler::Branch::Branch(bool is_r6, uint32_t location, uint32_t target) : old_location_(location), location_(location), target_(target), lhs_reg_(0), rhs_reg_(0), condition_(kUncond) { InitializeType(false, is_r6); } MipsAssembler::Branch::Branch(bool is_r6, uint32_t location, uint32_t target, MipsAssembler::BranchCondition condition, Register lhs_reg, Register rhs_reg) : old_location_(location), location_(location), target_(target), lhs_reg_(lhs_reg), rhs_reg_(rhs_reg), condition_(condition) { CHECK_NE(condition, kUncond); switch (condition) { case kCondLT: case kCondGE: case kCondLE: case kCondGT: case kCondLTU: case kCondGEU: // We don't support synthetic R2 branches (preceded with slt[u]) at this level // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >). // We leave this up to the caller. CHECK(is_r6); FALLTHROUGH_INTENDED; case kCondEQ: case kCondNE: // Require registers other than 0 not only for R6, but also for R2 to catch errors. // To compare with 0, use dedicated kCond*Z conditions. CHECK_NE(lhs_reg, ZERO); CHECK_NE(rhs_reg, ZERO); break; case kCondLTZ: case kCondGEZ: case kCondLEZ: case kCondGTZ: case kCondEQZ: case kCondNEZ: // Require registers other than 0 not only for R6, but also for R2 to catch errors. CHECK_NE(lhs_reg, ZERO); CHECK_EQ(rhs_reg, ZERO); break; case kCondF: case kCondT: CHECK_EQ(rhs_reg, ZERO); break; case kUncond: UNREACHABLE(); } CHECK(!IsNop(condition, lhs_reg, rhs_reg)); if (IsUncond(condition, lhs_reg, rhs_reg)) { // Branch condition is always true, make the branch unconditional. condition_ = kUncond; } InitializeType(false, is_r6); } MipsAssembler::Branch::Branch(bool is_r6, uint32_t location, uint32_t target, Register indirect_reg) : old_location_(location), location_(location), target_(target), lhs_reg_(indirect_reg), rhs_reg_(0), condition_(kUncond) { CHECK_NE(indirect_reg, ZERO); CHECK_NE(indirect_reg, AT); InitializeType(true, is_r6); } MipsAssembler::BranchCondition MipsAssembler::Branch::OppositeCondition( MipsAssembler::BranchCondition cond) { switch (cond) { case kCondLT: return kCondGE; case kCondGE: return kCondLT; case kCondLE: return kCondGT; case kCondGT: return kCondLE; case kCondLTZ: return kCondGEZ; case kCondGEZ: return kCondLTZ; case kCondLEZ: return kCondGTZ; case kCondGTZ: return kCondLEZ; case kCondEQ: return kCondNE; case kCondNE: return kCondEQ; case kCondEQZ: return kCondNEZ; case kCondNEZ: return kCondEQZ; case kCondLTU: return kCondGEU; case kCondGEU: return kCondLTU; case kCondF: return kCondT; case kCondT: return kCondF; case kUncond: LOG(FATAL) << "Unexpected branch condition " << cond; } UNREACHABLE(); } MipsAssembler::Branch::Type MipsAssembler::Branch::GetType() const { return type_; } MipsAssembler::BranchCondition MipsAssembler::Branch::GetCondition() const { return condition_; } Register MipsAssembler::Branch::GetLeftRegister() const { return static_cast(lhs_reg_); } Register MipsAssembler::Branch::GetRightRegister() const { return static_cast(rhs_reg_); } uint32_t MipsAssembler::Branch::GetTarget() const { return target_; } uint32_t MipsAssembler::Branch::GetLocation() const { return location_; } uint32_t MipsAssembler::Branch::GetOldLocation() const { return old_location_; } uint32_t MipsAssembler::Branch::GetLength() const { return branch_info_[type_].length; } uint32_t MipsAssembler::Branch::GetOldLength() const { return branch_info_[old_type_].length; } uint32_t MipsAssembler::Branch::GetSize() const { return GetLength() * sizeof(uint32_t); } uint32_t MipsAssembler::Branch::GetOldSize() const { return GetOldLength() * sizeof(uint32_t); } uint32_t MipsAssembler::Branch::GetEndLocation() const { return GetLocation() + GetSize(); } uint32_t MipsAssembler::Branch::GetOldEndLocation() const { return GetOldLocation() + GetOldSize(); } bool MipsAssembler::Branch::IsLong() const { switch (type_) { // R2 short branches. case kUncondBranch: case kCondBranch: case kCall: // R6 short branches. case kR6UncondBranch: case kR6CondBranch: case kR6Call: return false; // R2 long branches. case kLongUncondBranch: case kLongCondBranch: case kLongCall: // R6 long branches. case kR6LongUncondBranch: case kR6LongCondBranch: case kR6LongCall: return true; } UNREACHABLE(); } bool MipsAssembler::Branch::IsResolved() const { return target_ != kUnresolved; } MipsAssembler::Branch::OffsetBits MipsAssembler::Branch::GetOffsetSize() const { OffsetBits offset_size = (type_ == kR6CondBranch && (condition_ == kCondEQZ || condition_ == kCondNEZ)) ? kOffset23 : branch_info_[type_].offset_size; return offset_size; } MipsAssembler::Branch::OffsetBits MipsAssembler::Branch::GetOffsetSizeNeeded(uint32_t location, uint32_t target) { // For unresolved targets assume the shortest encoding // (later it will be made longer if needed). if (target == kUnresolved) return kOffset16; int64_t distance = static_cast(target) - location; // To simplify calculations in composite branches consisting of multiple instructions // bump up the distance by a value larger than the max byte size of a composite branch. distance += (distance >= 0) ? kMaxBranchSize : -kMaxBranchSize; if (IsInt(distance)) return kOffset16; else if (IsInt(distance)) return kOffset18; else if (IsInt(distance)) return kOffset21; else if (IsInt(distance)) return kOffset23; else if (IsInt(distance)) return kOffset28; return kOffset32; } void MipsAssembler::Branch::Resolve(uint32_t target) { target_ = target; } void MipsAssembler::Branch::Relocate(uint32_t expand_location, uint32_t delta) { if (location_ > expand_location) { location_ += delta; } if (!IsResolved()) { return; // Don't know the target yet. } if (target_ > expand_location) { target_ += delta; } } void MipsAssembler::Branch::PromoteToLong() { switch (type_) { // R2 short branches. case kUncondBranch: type_ = kLongUncondBranch; break; case kCondBranch: type_ = kLongCondBranch; break; case kCall: type_ = kLongCall; break; // R6 short branches. case kR6UncondBranch: type_ = kR6LongUncondBranch; break; case kR6CondBranch: type_ = kR6LongCondBranch; break; case kR6Call: type_ = kR6LongCall; break; default: // Note: 'type_' is already long. break; } CHECK(IsLong()); } uint32_t MipsAssembler::Branch::PromoteIfNeeded(uint32_t max_short_distance) { // If the branch is still unresolved or already long, nothing to do. if (IsLong() || !IsResolved()) { return 0; } // Promote the short branch to long if the offset size is too small // to hold the distance between location_ and target_. if (GetOffsetSizeNeeded(location_, target_) > GetOffsetSize()) { PromoteToLong(); uint32_t old_size = GetOldSize(); uint32_t new_size = GetSize(); CHECK_GT(new_size, old_size); return new_size - old_size; } // The following logic is for debugging/testing purposes. // Promote some short branches to long when it's not really required. if (UNLIKELY(max_short_distance != std::numeric_limits::max())) { int64_t distance = static_cast(target_) - location_; distance = (distance >= 0) ? distance : -distance; if (distance >= max_short_distance) { PromoteToLong(); uint32_t old_size = GetOldSize(); uint32_t new_size = GetSize(); CHECK_GT(new_size, old_size); return new_size - old_size; } } return 0; } uint32_t MipsAssembler::Branch::GetOffsetLocation() const { return location_ + branch_info_[type_].instr_offset * sizeof(uint32_t); } uint32_t MipsAssembler::Branch::GetOffset() const { CHECK(IsResolved()); uint32_t ofs_mask = 0xFFFFFFFF >> (32 - GetOffsetSize()); // Calculate the byte distance between instructions and also account for // different PC-relative origins. uint32_t offset = target_ - GetOffsetLocation() - branch_info_[type_].pc_org * sizeof(uint32_t); // Prepare the offset for encoding into the instruction(s). offset = (offset & ofs_mask) >> branch_info_[type_].offset_shift; return offset; } MipsAssembler::Branch* MipsAssembler::GetBranch(uint32_t branch_id) { CHECK_LT(branch_id, branches_.size()); return &branches_[branch_id]; } const MipsAssembler::Branch* MipsAssembler::GetBranch(uint32_t branch_id) const { CHECK_LT(branch_id, branches_.size()); return &branches_[branch_id]; } void MipsAssembler::Bind(MipsLabel* label) { CHECK(!label->IsBound()); uint32_t bound_pc = buffer_.Size(); // Walk the list of branches referring to and preceding this label. // Store the previously unknown target addresses in them. while (label->IsLinked()) { uint32_t branch_id = label->Position(); Branch* branch = GetBranch(branch_id); branch->Resolve(bound_pc); uint32_t branch_location = branch->GetLocation(); // Extract the location of the previous branch in the list (walking the list backwards; // the previous branch ID was stored in the space reserved for this branch). uint32_t prev = buffer_.Load(branch_location); // On to the previous branch in the list... label->position_ = prev; } // Now make the label object contain its own location (relative to the end of the preceding // branch, if any; it will be used by the branches referring to and following this label). label->prev_branch_id_plus_one_ = branches_.size(); if (label->prev_branch_id_plus_one_) { uint32_t branch_id = label->prev_branch_id_plus_one_ - 1; const Branch* branch = GetBranch(branch_id); bound_pc -= branch->GetEndLocation(); } label->BindTo(bound_pc); } uint32_t MipsAssembler::GetLabelLocation(MipsLabel* label) const { CHECK(label->IsBound()); uint32_t target = label->Position(); if (label->prev_branch_id_plus_one_) { // Get label location based on the branch preceding it. uint32_t branch_id = label->prev_branch_id_plus_one_ - 1; const Branch* branch = GetBranch(branch_id); target += branch->GetEndLocation(); } return target; } uint32_t MipsAssembler::GetAdjustedPosition(uint32_t old_position) { // We can reconstruct the adjustment by going through all the branches from the beginning // up to the old_position. Since we expect AdjustedPosition() to be called in a loop // with increasing old_position, we can use the data from last AdjustedPosition() to // continue where we left off and the whole loop should be O(m+n) where m is the number // of positions to adjust and n is the number of branches. if (old_position < last_old_position_) { last_position_adjustment_ = 0; last_old_position_ = 0; last_branch_id_ = 0; } while (last_branch_id_ != branches_.size()) { const Branch* branch = GetBranch(last_branch_id_); if (branch->GetLocation() >= old_position + last_position_adjustment_) { break; } last_position_adjustment_ += branch->GetSize() - branch->GetOldSize(); ++last_branch_id_; } last_old_position_ = old_position; return old_position + last_position_adjustment_; } void MipsAssembler::FinalizeLabeledBranch(MipsLabel* label) { uint32_t length = branches_.back().GetLength(); if (!label->IsBound()) { // Branch forward (to a following label), distance is unknown. // The first branch forward will contain 0, serving as the terminator of // the list of forward-reaching branches. Emit(label->position_); length--; // Now make the label object point to this branch // (this forms a linked list of branches preceding this label). uint32_t branch_id = branches_.size() - 1; label->LinkTo(branch_id); } // Reserve space for the branch. while (length--) { Nop(); } } void MipsAssembler::Buncond(MipsLabel* label) { uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved; branches_.emplace_back(IsR6(), buffer_.Size(), target); FinalizeLabeledBranch(label); } void MipsAssembler::Bcond(MipsLabel* label, BranchCondition condition, Register lhs, Register rhs) { // If lhs = rhs, this can be a NOP. if (Branch::IsNop(condition, lhs, rhs)) { return; } uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved; branches_.emplace_back(IsR6(), buffer_.Size(), target, condition, lhs, rhs); FinalizeLabeledBranch(label); } void MipsAssembler::Call(MipsLabel* label, Register indirect_reg) { uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved; branches_.emplace_back(IsR6(), buffer_.Size(), target, indirect_reg); FinalizeLabeledBranch(label); } void MipsAssembler::PromoteBranches() { // Promote short branches to long as necessary. bool changed; do { changed = false; for (auto& branch : branches_) { CHECK(branch.IsResolved()); uint32_t delta = branch.PromoteIfNeeded(); // If this branch has been promoted and needs to expand in size, // relocate all branches by the expansion size. if (delta) { changed = true; uint32_t expand_location = branch.GetLocation(); for (auto& branch2 : branches_) { branch2.Relocate(expand_location, delta); } } } } while (changed); // Account for branch expansion by resizing the code buffer // and moving the code in it to its final location. size_t branch_count = branches_.size(); if (branch_count > 0) { // Resize. Branch& last_branch = branches_[branch_count - 1]; uint32_t size_delta = last_branch.GetEndLocation() - last_branch.GetOldEndLocation(); uint32_t old_size = buffer_.Size(); buffer_.Resize(old_size + size_delta); // Move the code residing between branch placeholders. uint32_t end = old_size; for (size_t i = branch_count; i > 0; ) { Branch& branch = branches_[--i]; uint32_t size = end - branch.GetOldEndLocation(); buffer_.Move(branch.GetEndLocation(), branch.GetOldEndLocation(), size); end = branch.GetOldLocation(); } } } // Note: make sure branch_info_[] and EmitBranch() are kept synchronized. const MipsAssembler::Branch::BranchInfo MipsAssembler::Branch::branch_info_[] = { // R2 short branches. { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kUncondBranch { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kCondBranch { 5, 2, 0, MipsAssembler::Branch::kOffset16, 0 }, // kCall // R2 long branches. { 9, 3, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongUncondBranch { 10, 4, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongCondBranch { 6, 1, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongCall // R6 short branches. { 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6UncondBranch { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kR6CondBranch // Exception: kOffset23 for beqzc/bnezc. { 2, 0, 0, MipsAssembler::Branch::kOffset21, 2 }, // kR6Call // R6 long branches. { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongUncondBranch { 3, 1, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongCondBranch { 3, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongCall }; // Note: make sure branch_info_[] and mitBranch() are kept synchronized. void MipsAssembler::EmitBranch(MipsAssembler::Branch* branch) { CHECK_EQ(overwriting_, true); overwrite_location_ = branch->GetLocation(); uint32_t offset = branch->GetOffset(); BranchCondition condition = branch->GetCondition(); Register lhs = branch->GetLeftRegister(); Register rhs = branch->GetRightRegister(); switch (branch->GetType()) { // R2 short branches. case Branch::kUncondBranch: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); B(offset); Nop(); // TODO: improve by filling the delay slot. break; case Branch::kCondBranch: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); EmitBcondR2(condition, lhs, rhs, offset); Nop(); // TODO: improve by filling the delay slot. break; case Branch::kCall: Nal(); Nop(); // TODO: is this NOP really needed here? CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Addiu(lhs, RA, offset); Jalr(lhs); Nop(); break; // R2 long branches. case Branch::kLongUncondBranch: // To get the value of the PC register we need to use the NAL instruction. // NAL clobbers the RA register. However, RA must be preserved if the // method is compiled without the entry/exit sequences that would take care // of preserving RA (typically, leaf methods don't preserve RA explicitly). // So, we need to preserve RA in some temporary storage ourselves. The AT // register can't be used for this because we need it to load a constant // which will be added to the value that NAL stores in RA. And we can't // use T9 for this in the context of the JNI compiler, which uses it // as a scratch register (see InterproceduralScratchRegister()). // If we were to add a 32-bit constant to RA using two ADDIU instructions, // we'd also need to use the ROTR instruction, which requires no less than // MIPSR2. // Perhaps, we could use T8 or one of R2's multiplier/divider registers // (LO or HI) or even a floating-point register, but that doesn't seem // like a nice solution. We may want this to work on both R6 and pre-R6. // For now simply use the stack for RA. This should be OK since for the // vast majority of code a short PC-relative branch is sufficient. // TODO: can this be improved? Push(RA); Nal(); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Lui(AT, High16Bits(offset)); Ori(AT, AT, Low16Bits(offset)); Addu(AT, AT, RA); Lw(RA, SP, 0); Jr(AT); DecreaseFrameSize(kMipsWordSize); break; case Branch::kLongCondBranch: // The comment on case 'Branch::kLongUncondBranch' applies here as well. // Note: the opposite condition branch encodes 8 as the distance, which is equal to the // number of instructions skipped: // (PUSH(IncreaseFrameSize(ADDIU) + SW) + NAL + LUI + ORI + ADDU + LW + JR). EmitBcondR2(Branch::OppositeCondition(condition), lhs, rhs, 8); Push(RA); Nal(); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Lui(AT, High16Bits(offset)); Ori(AT, AT, Low16Bits(offset)); Addu(AT, AT, RA); Lw(RA, SP, 0); Jr(AT); DecreaseFrameSize(kMipsWordSize); break; case Branch::kLongCall: Nal(); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Lui(AT, High16Bits(offset)); Ori(AT, AT, Low16Bits(offset)); Addu(lhs, AT, RA); Jalr(lhs); Nop(); break; // R6 short branches. case Branch::kR6UncondBranch: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Bc(offset); break; case Branch::kR6CondBranch: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); EmitBcondR6(condition, lhs, rhs, offset); Nop(); // TODO: improve by filling the forbidden/delay slot. break; case Branch::kR6Call: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Addiupc(lhs, offset); Jialc(lhs, 0); break; // R6 long branches. case Branch::kR6LongUncondBranch: offset += (offset & 0x8000) << 1; // Account for sign extension in jic. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(AT, High16Bits(offset)); Jic(AT, Low16Bits(offset)); break; case Branch::kR6LongCondBranch: EmitBcondR6(Branch::OppositeCondition(condition), lhs, rhs, 2); offset += (offset & 0x8000) << 1; // Account for sign extension in jic. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(AT, High16Bits(offset)); Jic(AT, Low16Bits(offset)); break; case Branch::kR6LongCall: offset += (offset & 0x8000) << 1; // Account for sign extension in addiu. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(lhs, High16Bits(offset)); Addiu(lhs, lhs, Low16Bits(offset)); Jialc(lhs, 0); break; } CHECK_EQ(overwrite_location_, branch->GetEndLocation()); CHECK_LT(branch->GetSize(), static_cast(Branch::kMaxBranchSize)); } void MipsAssembler::B(MipsLabel* label) { Buncond(label); } void MipsAssembler::Jalr(MipsLabel* label, Register indirect_reg) { Call(label, indirect_reg); } void MipsAssembler::Beq(Register rs, Register rt, MipsLabel* label) { Bcond(label, kCondEQ, rs, rt); } void MipsAssembler::Bne(Register rs, Register rt, MipsLabel* label) { Bcond(label, kCondNE, rs, rt); } void MipsAssembler::Beqz(Register rt, MipsLabel* label) { Bcond(label, kCondEQZ, rt); } void MipsAssembler::Bnez(Register rt, MipsLabel* label) { Bcond(label, kCondNEZ, rt); } void MipsAssembler::Bltz(Register rt, MipsLabel* label) { Bcond(label, kCondLTZ, rt); } void MipsAssembler::Bgez(Register rt, MipsLabel* label) { Bcond(label, kCondGEZ, rt); } void MipsAssembler::Blez(Register rt, MipsLabel* label) { Bcond(label, kCondLEZ, rt); } void MipsAssembler::Bgtz(Register rt, MipsLabel* label) { Bcond(label, kCondGTZ, rt); } void MipsAssembler::Blt(Register rs, Register rt, MipsLabel* label) { if (IsR6()) { Bcond(label, kCondLT, rs, rt); } else if (!Branch::IsNop(kCondLT, rs, rt)) { // Synthesize the instruction (not available on R2). Slt(AT, rs, rt); Bnez(AT, label); } } void MipsAssembler::Bge(Register rs, Register rt, MipsLabel* label) { if (IsR6()) { Bcond(label, kCondGE, rs, rt); } else if (Branch::IsUncond(kCondGE, rs, rt)) { B(label); } else { // Synthesize the instruction (not available on R2). Slt(AT, rs, rt); Beqz(AT, label); } } void MipsAssembler::Bltu(Register rs, Register rt, MipsLabel* label) { if (IsR6()) { Bcond(label, kCondLTU, rs, rt); } else if (!Branch::IsNop(kCondLTU, rs, rt)) { // Synthesize the instruction (not available on R2). Sltu(AT, rs, rt); Bnez(AT, label); } } void MipsAssembler::Bgeu(Register rs, Register rt, MipsLabel* label) { if (IsR6()) { Bcond(label, kCondGEU, rs, rt); } else if (Branch::IsUncond(kCondGEU, rs, rt)) { B(label); } else { // Synthesize the instruction (not available on R2). Sltu(AT, rs, rt); Beqz(AT, label); } } void MipsAssembler::Bc1f(MipsLabel* label) { Bc1f(0, label); } void MipsAssembler::Bc1f(int cc, MipsLabel* label) { CHECK(IsUint<3>(cc)) << cc; Bcond(label, kCondF, static_cast(cc), ZERO); } void MipsAssembler::Bc1t(MipsLabel* label) { Bc1t(0, label); } void MipsAssembler::Bc1t(int cc, MipsLabel* label) { CHECK(IsUint<3>(cc)) << cc; Bcond(label, kCondT, static_cast(cc), ZERO); } void MipsAssembler::Bc1eqz(FRegister ft, MipsLabel* label) { Bcond(label, kCondF, static_cast(ft), ZERO); } void MipsAssembler::Bc1nez(FRegister ft, MipsLabel* label) { Bcond(label, kCondT, static_cast(ft), ZERO); } void MipsAssembler::LoadFromOffset(LoadOperandType type, Register reg, Register base, int32_t offset) { // IsInt<16> must be passed a signed value. if (!IsInt<16>(offset) || (type == kLoadDoubleword && !IsInt<16>(static_cast(offset + kMipsWordSize)))) { LoadConst32(AT, offset); Addu(AT, AT, base); base = AT; offset = 0; } switch (type) { case kLoadSignedByte: Lb(reg, base, offset); break; case kLoadUnsignedByte: Lbu(reg, base, offset); break; case kLoadSignedHalfword: Lh(reg, base, offset); break; case kLoadUnsignedHalfword: Lhu(reg, base, offset); break; case kLoadWord: Lw(reg, base, offset); break; case kLoadDoubleword: if (reg == base) { // This will clobber the base when loading the lower register. Since we have to load the // higher register as well, this will fail. Solution: reverse the order. Lw(static_cast(reg + 1), base, offset + kMipsWordSize); Lw(reg, base, offset); } else { Lw(reg, base, offset); Lw(static_cast(reg + 1), base, offset + kMipsWordSize); } break; default: LOG(FATAL) << "UNREACHABLE"; } } void MipsAssembler::LoadSFromOffset(FRegister reg, Register base, int32_t offset) { if (!IsInt<16>(offset)) { LoadConst32(AT, offset); Addu(AT, AT, base); base = AT; offset = 0; } Lwc1(reg, base, offset); } void MipsAssembler::LoadDFromOffset(FRegister reg, Register base, int32_t offset) { // IsInt<16> must be passed a signed value. if (!IsInt<16>(offset) || (!IsAligned(offset) && !IsInt<16>(static_cast(offset + kMipsWordSize)))) { LoadConst32(AT, offset); Addu(AT, AT, base); base = AT; offset = 0; } if (offset & 0x7) { if (Is32BitFPU()) { Lwc1(reg, base, offset); Lwc1(static_cast(reg + 1), base, offset + kMipsWordSize); } else { // 64-bit FPU. Lwc1(reg, base, offset); Lw(T8, base, offset + kMipsWordSize); Mthc1(T8, reg); } } else { Ldc1(reg, base, offset); } } void MipsAssembler::EmitLoad(ManagedRegister m_dst, Register src_register, int32_t src_offset, size_t size) { MipsManagedRegister dst = m_dst.AsMips(); if (dst.IsNoRegister()) { CHECK_EQ(0u, size) << dst; } else if (dst.IsCoreRegister()) { CHECK_EQ(kMipsWordSize, size) << dst; LoadFromOffset(kLoadWord, dst.AsCoreRegister(), src_register, src_offset); } else if (dst.IsRegisterPair()) { CHECK_EQ(kMipsDoublewordSize, size) << dst; LoadFromOffset(kLoadDoubleword, dst.AsRegisterPairLow(), src_register, src_offset); } else if (dst.IsFRegister()) { if (size == kMipsWordSize) { LoadSFromOffset(dst.AsFRegister(), src_register, src_offset); } else { CHECK_EQ(kMipsDoublewordSize, size) << dst; LoadDFromOffset(dst.AsFRegister(), src_register, src_offset); } } } void MipsAssembler::StoreToOffset(StoreOperandType type, Register reg, Register base, int32_t offset) { // IsInt<16> must be passed a signed value. if (!IsInt<16>(offset) || (type == kStoreDoubleword && !IsInt<16>(static_cast(offset + kMipsWordSize)))) { LoadConst32(AT, offset); Addu(AT, AT, base); base = AT; offset = 0; } switch (type) { case kStoreByte: Sb(reg, base, offset); break; case kStoreHalfword: Sh(reg, base, offset); break; case kStoreWord: Sw(reg, base, offset); break; case kStoreDoubleword: CHECK_NE(reg, base); CHECK_NE(static_cast(reg + 1), base); Sw(reg, base, offset); Sw(static_cast(reg + 1), base, offset + kMipsWordSize); break; default: LOG(FATAL) << "UNREACHABLE"; } } void MipsAssembler::StoreSToOffset(FRegister reg, Register base, int32_t offset) { if (!IsInt<16>(offset)) { LoadConst32(AT, offset); Addu(AT, AT, base); base = AT; offset = 0; } Swc1(reg, base, offset); } void MipsAssembler::StoreDToOffset(FRegister reg, Register base, int32_t offset) { // IsInt<16> must be passed a signed value. if (!IsInt<16>(offset) || (!IsAligned(offset) && !IsInt<16>(static_cast(offset + kMipsWordSize)))) { LoadConst32(AT, offset); Addu(AT, AT, base); base = AT; offset = 0; } if (offset & 0x7) { if (Is32BitFPU()) { Swc1(reg, base, offset); Swc1(static_cast(reg + 1), base, offset + kMipsWordSize); } else { // 64-bit FPU. Mfhc1(T8, reg); Swc1(reg, base, offset); Sw(T8, base, offset + kMipsWordSize); } } else { Sdc1(reg, base, offset); } } static dwarf::Reg DWARFReg(Register reg) { return dwarf::Reg::MipsCore(static_cast(reg)); } constexpr size_t kFramePointerSize = 4; void MipsAssembler::BuildFrame(size_t frame_size, ManagedRegister method_reg, const std::vector& callee_save_regs, const ManagedRegisterEntrySpills& entry_spills) { CHECK_ALIGNED(frame_size, kStackAlignment); DCHECK(!overwriting_); // Increase frame to required size. IncreaseFrameSize(frame_size); // Push callee saves and return address. int stack_offset = frame_size - kFramePointerSize; StoreToOffset(kStoreWord, RA, SP, stack_offset); cfi_.RelOffset(DWARFReg(RA), stack_offset); for (int i = callee_save_regs.size() - 1; i >= 0; --i) { stack_offset -= kFramePointerSize; Register reg = callee_save_regs.at(i).AsMips().AsCoreRegister(); StoreToOffset(kStoreWord, reg, SP, stack_offset); cfi_.RelOffset(DWARFReg(reg), stack_offset); } // Write out Method*. StoreToOffset(kStoreWord, method_reg.AsMips().AsCoreRegister(), SP, 0); // Write out entry spills. int32_t offset = frame_size + kFramePointerSize; for (size_t i = 0; i < entry_spills.size(); ++i) { MipsManagedRegister reg = entry_spills.at(i).AsMips(); if (reg.IsNoRegister()) { ManagedRegisterSpill spill = entry_spills.at(i); offset += spill.getSize(); } else if (reg.IsCoreRegister()) { StoreToOffset(kStoreWord, reg.AsCoreRegister(), SP, offset); offset += kMipsWordSize; } else if (reg.IsFRegister()) { StoreSToOffset(reg.AsFRegister(), SP, offset); offset += kMipsWordSize; } else if (reg.IsDRegister()) { StoreDToOffset(reg.AsOverlappingDRegisterLow(), SP, offset); offset += kMipsDoublewordSize; } } } void MipsAssembler::RemoveFrame(size_t frame_size, const std::vector& callee_save_regs) { CHECK_ALIGNED(frame_size, kStackAlignment); DCHECK(!overwriting_); cfi_.RememberState(); // Pop callee saves and return address. int stack_offset = frame_size - (callee_save_regs.size() * kFramePointerSize) - kFramePointerSize; for (size_t i = 0; i < callee_save_regs.size(); ++i) { Register reg = callee_save_regs.at(i).AsMips().AsCoreRegister(); LoadFromOffset(kLoadWord, reg, SP, stack_offset); cfi_.Restore(DWARFReg(reg)); stack_offset += kFramePointerSize; } LoadFromOffset(kLoadWord, RA, SP, stack_offset); cfi_.Restore(DWARFReg(RA)); // Decrease frame to required size. DecreaseFrameSize(frame_size); // Then jump to the return address. Jr(RA); Nop(); // The CFI should be restored for any code that follows the exit block. cfi_.RestoreState(); cfi_.DefCFAOffset(frame_size); } void MipsAssembler::IncreaseFrameSize(size_t adjust) { CHECK_ALIGNED(adjust, kFramePointerSize); Addiu32(SP, SP, -adjust); cfi_.AdjustCFAOffset(adjust); if (overwriting_) { cfi_.OverrideDelayedPC(overwrite_location_); } } void MipsAssembler::DecreaseFrameSize(size_t adjust) { CHECK_ALIGNED(adjust, kFramePointerSize); Addiu32(SP, SP, adjust); cfi_.AdjustCFAOffset(-adjust); if (overwriting_) { cfi_.OverrideDelayedPC(overwrite_location_); } } void MipsAssembler::Store(FrameOffset dest, ManagedRegister msrc, size_t size) { MipsManagedRegister src = msrc.AsMips(); if (src.IsNoRegister()) { CHECK_EQ(0u, size); } else if (src.IsCoreRegister()) { CHECK_EQ(kMipsWordSize, size); StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); } else if (src.IsRegisterPair()) { CHECK_EQ(kMipsDoublewordSize, size); StoreToOffset(kStoreWord, src.AsRegisterPairLow(), SP, dest.Int32Value()); StoreToOffset(kStoreWord, src.AsRegisterPairHigh(), SP, dest.Int32Value() + kMipsWordSize); } else if (src.IsFRegister()) { if (size == kMipsWordSize) { StoreSToOffset(src.AsFRegister(), SP, dest.Int32Value()); } else { CHECK_EQ(kMipsDoublewordSize, size); StoreDToOffset(src.AsFRegister(), SP, dest.Int32Value()); } } } void MipsAssembler::StoreRef(FrameOffset dest, ManagedRegister msrc) { MipsManagedRegister src = msrc.AsMips(); CHECK(src.IsCoreRegister()); StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); } void MipsAssembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) { MipsManagedRegister src = msrc.AsMips(); CHECK(src.IsCoreRegister()); StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); } void MipsAssembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; LoadConst32(scratch.AsCoreRegister(), imm); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); } void MipsAssembler::StoreImmediateToThread32(ThreadOffset dest, uint32_t imm, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; // Is this function even referenced anywhere else in the code? LoadConst32(scratch.AsCoreRegister(), imm); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), S1, dest.Int32Value()); } void MipsAssembler::StoreStackOffsetToThread32(ThreadOffset thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; Addiu32(scratch.AsCoreRegister(), SP, fr_offs.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), S1, thr_offs.Int32Value()); } void MipsAssembler::StoreStackPointerToThread32(ThreadOffset thr_offs) { StoreToOffset(kStoreWord, SP, S1, thr_offs.Int32Value()); } void MipsAssembler::StoreSpanning(FrameOffset dest, ManagedRegister msrc, FrameOffset in_off, ManagedRegister mscratch) { MipsManagedRegister src = msrc.AsMips(); MipsManagedRegister scratch = mscratch.AsMips(); StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, in_off.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + kMipsWordSize); } void MipsAssembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) { return EmitLoad(mdest, SP, src.Int32Value(), size); } void MipsAssembler::LoadFromThread32(ManagedRegister mdest, ThreadOffset src, size_t size) { return EmitLoad(mdest, S1, src.Int32Value(), size); } void MipsAssembler::LoadRef(ManagedRegister mdest, FrameOffset src) { MipsManagedRegister dest = mdest.AsMips(); CHECK(dest.IsCoreRegister()); LoadFromOffset(kLoadWord, dest.AsCoreRegister(), SP, src.Int32Value()); } void MipsAssembler::LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs, bool unpoison_reference) { MipsManagedRegister dest = mdest.AsMips(); CHECK(dest.IsCoreRegister() && base.AsMips().IsCoreRegister()); LoadFromOffset(kLoadWord, dest.AsCoreRegister(), base.AsMips().AsCoreRegister(), offs.Int32Value()); if (kPoisonHeapReferences && unpoison_reference) { Subu(dest.AsCoreRegister(), ZERO, dest.AsCoreRegister()); } } void MipsAssembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) { MipsManagedRegister dest = mdest.AsMips(); CHECK(dest.IsCoreRegister() && base.AsMips().IsCoreRegister()); LoadFromOffset(kLoadWord, dest.AsCoreRegister(), base.AsMips().AsCoreRegister(), offs.Int32Value()); } void MipsAssembler::LoadRawPtrFromThread32(ManagedRegister mdest, ThreadOffset offs) { MipsManagedRegister dest = mdest.AsMips(); CHECK(dest.IsCoreRegister()); LoadFromOffset(kLoadWord, dest.AsCoreRegister(), S1, offs.Int32Value()); } void MipsAssembler::SignExtend(ManagedRegister /*mreg*/, size_t /*size*/) { UNIMPLEMENTED(FATAL) << "no sign extension necessary for mips"; } void MipsAssembler::ZeroExtend(ManagedRegister /*mreg*/, size_t /*size*/) { UNIMPLEMENTED(FATAL) << "no zero extension necessary for mips"; } void MipsAssembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) { MipsManagedRegister dest = mdest.AsMips(); MipsManagedRegister src = msrc.AsMips(); if (!dest.Equals(src)) { if (dest.IsCoreRegister()) { CHECK(src.IsCoreRegister()) << src; Move(dest.AsCoreRegister(), src.AsCoreRegister()); } else if (dest.IsFRegister()) { CHECK(src.IsFRegister()) << src; if (size == kMipsWordSize) { MovS(dest.AsFRegister(), src.AsFRegister()); } else { CHECK_EQ(kMipsDoublewordSize, size); MovD(dest.AsFRegister(), src.AsFRegister()); } } else if (dest.IsDRegister()) { CHECK(src.IsDRegister()) << src; MovD(dest.AsOverlappingDRegisterLow(), src.AsOverlappingDRegisterLow()); } else { CHECK(dest.IsRegisterPair()) << dest; CHECK(src.IsRegisterPair()) << src; // Ensure that the first move doesn't clobber the input of the second. if (src.AsRegisterPairHigh() != dest.AsRegisterPairLow()) { Move(dest.AsRegisterPairLow(), src.AsRegisterPairLow()); Move(dest.AsRegisterPairHigh(), src.AsRegisterPairHigh()); } else { Move(dest.AsRegisterPairHigh(), src.AsRegisterPairHigh()); Move(dest.AsRegisterPairLow(), src.AsRegisterPairLow()); } } } } void MipsAssembler::CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); } void MipsAssembler::CopyRawPtrFromThread32(FrameOffset fr_offs, ThreadOffset thr_offs, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), S1, thr_offs.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, fr_offs.Int32Value()); } void MipsAssembler::CopyRawPtrToThread32(ThreadOffset thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, fr_offs.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), S1, thr_offs.Int32Value()); } void MipsAssembler::Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; CHECK(size == kMipsWordSize || size == kMipsDoublewordSize) << size; if (size == kMipsWordSize) { LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); } else if (size == kMipsDoublewordSize) { LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value() + kMipsWordSize); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + kMipsWordSize); } } void MipsAssembler::Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, ManagedRegister mscratch, size_t size) { Register scratch = mscratch.AsMips().AsCoreRegister(); CHECK_EQ(size, kMipsWordSize); LoadFromOffset(kLoadWord, scratch, src_base.AsMips().AsCoreRegister(), src_offset.Int32Value()); StoreToOffset(kStoreWord, scratch, SP, dest.Int32Value()); } void MipsAssembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, ManagedRegister mscratch, size_t size) { Register scratch = mscratch.AsMips().AsCoreRegister(); CHECK_EQ(size, kMipsWordSize); LoadFromOffset(kLoadWord, scratch, SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch, dest_base.AsMips().AsCoreRegister(), dest_offset.Int32Value()); } void MipsAssembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED, FrameOffset src_base ATTRIBUTE_UNUSED, Offset src_offset ATTRIBUTE_UNUSED, ManagedRegister mscratch ATTRIBUTE_UNUSED, size_t size ATTRIBUTE_UNUSED) { UNIMPLEMENTED(FATAL) << "no MIPS implementation"; } void MipsAssembler::Copy(ManagedRegister dest, Offset dest_offset, ManagedRegister src, Offset src_offset, ManagedRegister mscratch, size_t size) { CHECK_EQ(size, kMipsWordSize); Register scratch = mscratch.AsMips().AsCoreRegister(); LoadFromOffset(kLoadWord, scratch, src.AsMips().AsCoreRegister(), src_offset.Int32Value()); StoreToOffset(kStoreWord, scratch, dest.AsMips().AsCoreRegister(), dest_offset.Int32Value()); } void MipsAssembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED, Offset dest_offset ATTRIBUTE_UNUSED, FrameOffset src ATTRIBUTE_UNUSED, Offset src_offset ATTRIBUTE_UNUSED, ManagedRegister mscratch ATTRIBUTE_UNUSED, size_t size ATTRIBUTE_UNUSED) { UNIMPLEMENTED(FATAL) << "no MIPS implementation"; } void MipsAssembler::MemoryBarrier(ManagedRegister) { // TODO: sync? UNIMPLEMENTED(FATAL) << "no MIPS implementation"; } void MipsAssembler::CreateHandleScopeEntry(ManagedRegister mout_reg, FrameOffset handle_scope_offset, ManagedRegister min_reg, bool null_allowed) { MipsManagedRegister out_reg = mout_reg.AsMips(); MipsManagedRegister in_reg = min_reg.AsMips(); CHECK(in_reg.IsNoRegister() || in_reg.IsCoreRegister()) << in_reg; CHECK(out_reg.IsCoreRegister()) << out_reg; if (null_allowed) { MipsLabel null_arg; // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is // the address in the handle scope holding the reference. // E.g. out_reg = (handle == 0) ? 0 : (SP+handle_offset). if (in_reg.IsNoRegister()) { LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); in_reg = out_reg; } if (!out_reg.Equals(in_reg)) { LoadConst32(out_reg.AsCoreRegister(), 0); } Beqz(in_reg.AsCoreRegister(), &null_arg); Addiu32(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); Bind(&null_arg); } else { Addiu32(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); } } void MipsAssembler::CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handle_scope_offset, ManagedRegister mscratch, bool null_allowed) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; if (null_allowed) { MipsLabel null_arg; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is // the address in the handle scope holding the reference. // E.g. scratch = (scratch == 0) ? 0 : (SP+handle_scope_offset). Beqz(scratch.AsCoreRegister(), &null_arg); Addiu32(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); Bind(&null_arg); } else { Addiu32(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); } StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, out_off.Int32Value()); } // Given a handle scope entry, load the associated reference. void MipsAssembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg, ManagedRegister min_reg) { MipsManagedRegister out_reg = mout_reg.AsMips(); MipsManagedRegister in_reg = min_reg.AsMips(); CHECK(out_reg.IsCoreRegister()) << out_reg; CHECK(in_reg.IsCoreRegister()) << in_reg; MipsLabel null_arg; if (!out_reg.Equals(in_reg)) { LoadConst32(out_reg.AsCoreRegister(), 0); } Beqz(in_reg.AsCoreRegister(), &null_arg); LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(), in_reg.AsCoreRegister(), 0); Bind(&null_arg); } void MipsAssembler::VerifyObject(ManagedRegister src ATTRIBUTE_UNUSED, bool could_be_null ATTRIBUTE_UNUSED) { // TODO: not validating references. } void MipsAssembler::VerifyObject(FrameOffset src ATTRIBUTE_UNUSED, bool could_be_null ATTRIBUTE_UNUSED) { // TODO: not validating references. } void MipsAssembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister mscratch) { MipsManagedRegister base = mbase.AsMips(); MipsManagedRegister scratch = mscratch.AsMips(); CHECK(base.IsCoreRegister()) << base; CHECK(scratch.IsCoreRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), base.AsCoreRegister(), offset.Int32Value()); Jalr(scratch.AsCoreRegister()); Nop(); // TODO: place reference map on call. } void MipsAssembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; // Call *(*(SP + base) + offset) LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, base.Int32Value()); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), scratch.AsCoreRegister(), offset.Int32Value()); Jalr(scratch.AsCoreRegister()); Nop(); // TODO: place reference map on call. } void MipsAssembler::CallFromThread32(ThreadOffset offset ATTRIBUTE_UNUSED, ManagedRegister mscratch ATTRIBUTE_UNUSED) { UNIMPLEMENTED(FATAL) << "no mips implementation"; } void MipsAssembler::GetCurrentThread(ManagedRegister tr) { Move(tr.AsMips().AsCoreRegister(), S1); } void MipsAssembler::GetCurrentThread(FrameOffset offset, ManagedRegister mscratch ATTRIBUTE_UNUSED) { StoreToOffset(kStoreWord, S1, SP, offset.Int32Value()); } void MipsAssembler::ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) { MipsManagedRegister scratch = mscratch.AsMips(); exception_blocks_.emplace_back(scratch, stack_adjust); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), S1, Thread::ExceptionOffset().Int32Value()); // TODO: on MIPS32R6 prefer Bnezc(scratch.AsCoreRegister(), slow.Entry()); // as the NAL instruction (occurring in long R2 branches) may become deprecated. // For now use common for R2 and R6 instructions as this code must execute on both. Bnez(scratch.AsCoreRegister(), exception_blocks_.back().Entry()); } void MipsAssembler::EmitExceptionPoll(MipsExceptionSlowPath* exception) { Bind(exception->Entry()); if (exception->stack_adjust_ != 0) { // Fix up the frame. DecreaseFrameSize(exception->stack_adjust_); } // Pass exception object as argument. // Don't care about preserving A0 as this call won't return. CheckEntrypointTypes(); Move(A0, exception->scratch_.AsCoreRegister()); // Set up call to Thread::Current()->pDeliverException. LoadFromOffset(kLoadWord, T9, S1, QUICK_ENTRYPOINT_OFFSET(kMipsWordSize, pDeliverException).Int32Value()); Jr(T9); Nop(); // Call never returns. Break(); } } // namespace mips } // namespace art