/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels_stitching.hpp" namespace cv { namespace detail { void ProjectorBase::setCameraParams(InputArray _K, InputArray _R, InputArray _T) { Mat K = _K.getMat(), R = _R.getMat(), T = _T.getMat(); CV_Assert(K.size() == Size(3, 3) && K.type() == CV_32F); CV_Assert(R.size() == Size(3, 3) && R.type() == CV_32F); CV_Assert((T.size() == Size(1, 3) || T.size() == Size(3, 1)) && T.type() == CV_32F); Mat_<float> K_(K); k[0] = K_(0,0); k[1] = K_(0,1); k[2] = K_(0,2); k[3] = K_(1,0); k[4] = K_(1,1); k[5] = K_(1,2); k[6] = K_(2,0); k[7] = K_(2,1); k[8] = K_(2,2); Mat_<float> Rinv = R.t(); rinv[0] = Rinv(0,0); rinv[1] = Rinv(0,1); rinv[2] = Rinv(0,2); rinv[3] = Rinv(1,0); rinv[4] = Rinv(1,1); rinv[5] = Rinv(1,2); rinv[6] = Rinv(2,0); rinv[7] = Rinv(2,1); rinv[8] = Rinv(2,2); Mat_<float> R_Kinv = R * K.inv(); r_kinv[0] = R_Kinv(0,0); r_kinv[1] = R_Kinv(0,1); r_kinv[2] = R_Kinv(0,2); r_kinv[3] = R_Kinv(1,0); r_kinv[4] = R_Kinv(1,1); r_kinv[5] = R_Kinv(1,2); r_kinv[6] = R_Kinv(2,0); r_kinv[7] = R_Kinv(2,1); r_kinv[8] = R_Kinv(2,2); Mat_<float> K_Rinv = K * Rinv; k_rinv[0] = K_Rinv(0,0); k_rinv[1] = K_Rinv(0,1); k_rinv[2] = K_Rinv(0,2); k_rinv[3] = K_Rinv(1,0); k_rinv[4] = K_Rinv(1,1); k_rinv[5] = K_Rinv(1,2); k_rinv[6] = K_Rinv(2,0); k_rinv[7] = K_Rinv(2,1); k_rinv[8] = K_Rinv(2,2); Mat_<float> T_(T.reshape(0, 3)); t[0] = T_(0,0); t[1] = T_(1,0); t[2] = T_(2,0); } Point2f PlaneWarper::warpPoint(const Point2f &pt, InputArray K, InputArray R, InputArray T) { projector_.setCameraParams(K, R, T); Point2f uv; projector_.mapForward(pt.x, pt.y, uv.x, uv.y); return uv; } Point2f PlaneWarper::warpPoint(const Point2f &pt, InputArray K, InputArray R) { float tz[] = {0.f, 0.f, 0.f}; Mat_<float> T(3, 1, tz); return warpPoint(pt, K, R, T); } Rect PlaneWarper::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap) { return buildMaps(src_size, K, R, Mat::zeros(3, 1, CV_32FC1), xmap, ymap); } Rect PlaneWarper::buildMaps(Size src_size, InputArray K, InputArray R, InputArray T, OutputArray _xmap, OutputArray _ymap) { projector_.setCameraParams(K, R, T); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); Size dsize(dst_br.x - dst_tl.x + 1, dst_br.y - dst_tl.y + 1); _xmap.create(dsize, CV_32FC1); _ymap.create(dsize, CV_32FC1); if (ocl::useOpenCL()) { ocl::Kernel k("buildWarpPlaneMaps", ocl::stitching::warpers_oclsrc); if (!k.empty()) { int rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; Mat k_rinv(1, 9, CV_32FC1, projector_.k_rinv), t(1, 3, CV_32FC1, projector_.t); UMat uxmap = _xmap.getUMat(), uymap = _ymap.getUMat(), uk_rinv = k_rinv.getUMat(ACCESS_READ), ut = t.getUMat(ACCESS_READ); k.args(ocl::KernelArg::WriteOnlyNoSize(uxmap), ocl::KernelArg::WriteOnly(uymap), ocl::KernelArg::PtrReadOnly(uk_rinv), ocl::KernelArg::PtrReadOnly(ut), dst_tl.x, dst_tl.y, 1/projector_.scale, rowsPerWI); size_t globalsize[2] = { dsize.width, (dsize.height + rowsPerWI - 1) / rowsPerWI }; if (k.run(2, globalsize, NULL, true)) { CV_IMPL_ADD(CV_IMPL_OCL); return Rect(dst_tl, dst_br); } } } Mat xmap = _xmap.getMat(), ymap = _ymap.getMat(); float x, y; for (int v = dst_tl.y; v <= dst_br.y; ++v) { for (int u = dst_tl.x; u <= dst_br.x; ++u) { projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y); xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x; ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y; } } return Rect(dst_tl, dst_br); } Point PlaneWarper::warp(InputArray src, InputArray K, InputArray R, InputArray T, int interp_mode, int border_mode, OutputArray dst) { UMat uxmap, uymap; Rect dst_roi = buildMaps(src.size(), K, R, T, uxmap, uymap); dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type()); remap(src, dst, uxmap, uymap, interp_mode, border_mode); return dst_roi.tl(); } Point PlaneWarper::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, OutputArray dst) { float tz[] = {0.f, 0.f, 0.f}; Mat_<float> T(3, 1, tz); return warp(src, K, R, T, interp_mode, border_mode, dst); } Rect PlaneWarper::warpRoi(Size src_size, InputArray K, InputArray R, InputArray T) { projector_.setCameraParams(K, R, T); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)); } Rect PlaneWarper::warpRoi(Size src_size, InputArray K, InputArray R) { float tz[] = {0.f, 0.f, 0.f}; Mat_<float> T(3, 1, tz); return warpRoi(src_size, K, R, T); } void PlaneWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br) { float tl_uf = std::numeric_limits<float>::max(); float tl_vf = std::numeric_limits<float>::max(); float br_uf = -std::numeric_limits<float>::max(); float br_vf = -std::numeric_limits<float>::max(); float u, v; projector_.mapForward(0, 0, u, v); tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); projector_.mapForward(0, static_cast<float>(src_size.height - 1), u, v); tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); projector_.mapForward(static_cast<float>(src_size.width - 1), 0, u, v); tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); projector_.mapForward(static_cast<float>(src_size.width - 1), static_cast<float>(src_size.height - 1), u, v); tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); dst_tl.x = static_cast<int>(tl_uf); dst_tl.y = static_cast<int>(tl_vf); dst_br.x = static_cast<int>(br_uf); dst_br.y = static_cast<int>(br_vf); } void SphericalWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br) { detectResultRoiByBorder(src_size, dst_tl, dst_br); float tl_uf = static_cast<float>(dst_tl.x); float tl_vf = static_cast<float>(dst_tl.y); float br_uf = static_cast<float>(dst_br.x); float br_vf = static_cast<float>(dst_br.y); float x = projector_.rinv[1]; float y = projector_.rinv[4]; float z = projector_.rinv[7]; if (y > 0.f) { float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2]; float y_ = projector_.k[4] * y / z + projector_.k[5]; if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height) { tl_uf = std::min(tl_uf, 0.f); tl_vf = std::min(tl_vf, static_cast<float>(CV_PI * projector_.scale)); br_uf = std::max(br_uf, 0.f); br_vf = std::max(br_vf, static_cast<float>(CV_PI * projector_.scale)); } } x = projector_.rinv[1]; y = -projector_.rinv[4]; z = projector_.rinv[7]; if (y > 0.f) { float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2]; float y_ = projector_.k[4] * y / z + projector_.k[5]; if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height) { tl_uf = std::min(tl_uf, 0.f); tl_vf = std::min(tl_vf, static_cast<float>(0)); br_uf = std::max(br_uf, 0.f); br_vf = std::max(br_vf, static_cast<float>(0)); } } dst_tl.x = static_cast<int>(tl_uf); dst_tl.y = static_cast<int>(tl_vf); dst_br.x = static_cast<int>(br_uf); dst_br.y = static_cast<int>(br_vf); } void SphericalPortraitWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br) { detectResultRoiByBorder(src_size, dst_tl, dst_br); float tl_uf = static_cast<float>(dst_tl.x); float tl_vf = static_cast<float>(dst_tl.y); float br_uf = static_cast<float>(dst_br.x); float br_vf = static_cast<float>(dst_br.y); float x = projector_.rinv[0]; float y = projector_.rinv[3]; float z = projector_.rinv[6]; if (y > 0.f) { float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2]; float y_ = projector_.k[4] * y / z + projector_.k[5]; if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height) { tl_uf = std::min(tl_uf, 0.f); tl_vf = std::min(tl_vf, static_cast<float>(CV_PI * projector_.scale)); br_uf = std::max(br_uf, 0.f); br_vf = std::max(br_vf, static_cast<float>(CV_PI * projector_.scale)); } } x = projector_.rinv[0]; y = -projector_.rinv[3]; z = projector_.rinv[6]; if (y > 0.f) { float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2]; float y_ = projector_.k[4] * y / z + projector_.k[5]; if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height) { tl_uf = std::min(tl_uf, 0.f); tl_vf = std::min(tl_vf, static_cast<float>(0)); br_uf = std::max(br_uf, 0.f); br_vf = std::max(br_vf, static_cast<float>(0)); } } dst_tl.x = static_cast<int>(tl_uf); dst_tl.y = static_cast<int>(tl_vf); dst_br.x = static_cast<int>(br_uf); dst_br.y = static_cast<int>(br_vf); } /////////////////////////////////////////// SphericalWarper //////////////////////////////////////// Rect SphericalWarper::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap) { if (ocl::useOpenCL()) { ocl::Kernel k("buildWarpSphericalMaps", ocl::stitching::warpers_oclsrc); if (!k.empty()) { int rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; projector_.setCameraParams(K, R); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); Size dsize(dst_br.x - dst_tl.x + 1, dst_br.y - dst_tl.y + 1); xmap.create(dsize, CV_32FC1); ymap.create(dsize, CV_32FC1); Mat k_rinv(1, 9, CV_32FC1, projector_.k_rinv); UMat uxmap = xmap.getUMat(), uymap = ymap.getUMat(), uk_rinv = k_rinv.getUMat(ACCESS_READ); k.args(ocl::KernelArg::WriteOnlyNoSize(uxmap), ocl::KernelArg::WriteOnly(uymap), ocl::KernelArg::PtrReadOnly(uk_rinv), dst_tl.x, dst_tl.y, 1/projector_.scale, rowsPerWI); size_t globalsize[2] = { dsize.width, (dsize.height + rowsPerWI - 1) / rowsPerWI }; if (k.run(2, globalsize, NULL, true)) { CV_IMPL_ADD(CV_IMPL_OCL); return Rect(dst_tl, dst_br); } } } return RotationWarperBase<SphericalProjector>::buildMaps(src_size, K, R, xmap, ymap); } Point SphericalWarper::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, OutputArray dst) { UMat uxmap, uymap; Rect dst_roi = buildMaps(src.size(), K, R, uxmap, uymap); dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type()); remap(src, dst, uxmap, uymap, interp_mode, border_mode); return dst_roi.tl(); } /////////////////////////////////////////// CylindricalWarper //////////////////////////////////////// Rect CylindricalWarper::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap) { if (ocl::useOpenCL()) { ocl::Kernel k("buildWarpCylindricalMaps", ocl::stitching::warpers_oclsrc); if (!k.empty()) { int rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; projector_.setCameraParams(K, R); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); Size dsize(dst_br.x - dst_tl.x + 1, dst_br.y - dst_tl.y + 1); xmap.create(dsize, CV_32FC1); ymap.create(dsize, CV_32FC1); Mat k_rinv(1, 9, CV_32FC1, projector_.k_rinv); UMat uxmap = xmap.getUMat(), uymap = ymap.getUMat(), uk_rinv = k_rinv.getUMat(ACCESS_READ); k.args(ocl::KernelArg::WriteOnlyNoSize(uxmap), ocl::KernelArg::WriteOnly(uymap), ocl::KernelArg::PtrReadOnly(uk_rinv), dst_tl.x, dst_tl.y, 1/projector_.scale, rowsPerWI); size_t globalsize[2] = { dsize.width, (dsize.height + rowsPerWI - 1) / rowsPerWI }; if (k.run(2, globalsize, NULL, true)) { CV_IMPL_ADD(CV_IMPL_OCL); return Rect(dst_tl, dst_br); } } } return RotationWarperBase<CylindricalProjector>::buildMaps(src_size, K, R, xmap, ymap); } Point CylindricalWarper::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, OutputArray dst) { UMat uxmap, uymap; Rect dst_roi = buildMaps(src.size(), K, R, uxmap, uymap); dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type()); remap(src, dst, uxmap, uymap, interp_mode, border_mode); return dst_roi.tl(); } } // namespace detail } // namespace cv