/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrAtlasTextBlob_DEFINED #define GrAtlasTextBlob_DEFINED #include "GrBatchAtlas.h" #include "GrBatchFontCache.h" #include "GrColor.h" #include "GrMemoryPool.h" #include "SkDescriptor.h" #include "SkMaskFilter.h" #include "SkSurfaceProps.h" #include "SkTInternalLList.h" class GrBlobRegenHelper; struct GrDistanceFieldAdjustTable; class GrMemoryPool; class SkDrawFilter; class SkTextBlob; class SkTextBlobRunIterator; // With this flag enabled, the GrAtlasTextContext will, as a sanity check, regenerate every blob // that comes in to verify the integrity of its cache #define CACHE_SANITY_CHECK 0 /* * A GrAtlasTextBlob contains a fully processed SkTextBlob, suitable for nearly immediate drawing * on the GPU. These are initially created with valid positions and colors, but invalid * texture coordinates. The GrAtlasTextBlob itself has a few Blob-wide properties, and also * consists of a number of runs. Runs inside a blob are flushed individually so they can be * reordered. * * The only thing(aside from a memcopy) required to flush a GrAtlasTextBlob is to ensure that * the GrAtlas will not evict anything the Blob needs. * * Note: This struct should really be named GrCachedAtasTextBlob, but that is too verbose. * * *WARNING* If you add new fields to this struct, then you may need to to update AssertEqual */ class GrAtlasTextBlob : public SkNVRefCnt { public: SK_DECLARE_INTERNAL_LLIST_INTERFACE(GrAtlasTextBlob); static GrAtlasTextBlob* Create(GrMemoryPool* pool, int glyphCount, int runCount); struct Key { Key() { sk_bzero(this, sizeof(Key)); } uint32_t fUniqueID; // Color may affect the gamma of the mask we generate, but in a fairly limited way. // Each color is assigned to on of a fixed number of buckets based on its // luminance. For each luminance bucket there is a "canonical color" that // represents the bucket. This functionality is currently only supported for A8 SkColor fCanonicalColor; SkPaint::Style fStyle; SkPixelGeometry fPixelGeometry; bool fHasBlur; bool operator==(const Key& other) const { return 0 == memcmp(this, &other, sizeof(Key)); } }; void setupKey(const GrAtlasTextBlob::Key& key, const SkMaskFilter::BlurRec& blurRec, const SkPaint& paint) { fKey = key; if (key.fHasBlur) { fBlurRec = blurRec; } if (key.fStyle != SkPaint::kFill_Style) { fStrokeInfo.fFrameWidth = paint.getStrokeWidth(); fStrokeInfo.fMiterLimit = paint.getStrokeMiter(); fStrokeInfo.fJoin = paint.getStrokeJoin(); } } static const Key& GetKey(const GrAtlasTextBlob& blob) { return blob.fKey; } static uint32_t Hash(const Key& key) { return SkChecksum::Murmur3(&key, sizeof(Key)); } void operator delete(void* p) { GrAtlasTextBlob* blob = reinterpret_cast(p); blob->fPool->release(p); } void* operator new(size_t) { SkFAIL("All blobs are created by placement new."); return sk_malloc_throw(0); } void* operator new(size_t, void* p) { return p; } void operator delete(void* target, void* placement) { ::operator delete(target, placement); } bool hasDistanceField() const { return SkToBool(fTextType & kHasDistanceField_TextType); } bool hasBitmap() const { return SkToBool(fTextType & kHasBitmap_TextType); } void setHasDistanceField() { fTextType |= kHasDistanceField_TextType; } void setHasBitmap() { fTextType |= kHasBitmap_TextType; } int runCount() const { return fRunCount; } void push_back_run(int currRun) { SkASSERT(currRun < fRunCount); if (currRun > 0) { Run::SubRunInfo& newRun = fRuns[currRun].fSubRunInfo.back(); Run::SubRunInfo& lastRun = fRuns[currRun - 1].fSubRunInfo.back(); newRun.setAsSuccessor(lastRun); } } // sets the last subrun of runIndex to use distance field text void setSubRunHasDistanceFields(int runIndex, bool hasLCD) { Run& run = fRuns[runIndex]; Run::SubRunInfo& subRun = run.fSubRunInfo.back(); subRun.setUseLCDText(hasLCD); subRun.setDrawAsDistanceFields(); } void setRunDrawAsPaths(int runIndex) { fRuns[runIndex].fDrawAsPaths = true; } void setMinAndMaxScale(SkScalar scaledMax, SkScalar scaledMin) { // we init fMaxMinScale and fMinMaxScale in the constructor fMaxMinScale = SkMaxScalar(scaledMax, fMaxMinScale); fMinMaxScale = SkMinScalar(scaledMin, fMinMaxScale); } // inits the override descriptor on the current run. All following subruns must use this // descriptor void initOverride(int runIndex) { Run& run = fRuns[runIndex]; // Push back a new subrun to fill and set the override descriptor run.push_back(); run.fOverrideDescriptor.reset(new SkAutoDescriptor); } SkGlyphCache* setupCache(int runIndex, const SkSurfaceProps& props, SkPaint::FakeGamma fakeGamma, const SkPaint& skPaint, const SkMatrix* viewMatrix); // Appends a glyph to the blob. If the glyph is too large, the glyph will be appended // as a path. void appendGlyph(int runIndex, const SkRect& positions, GrColor color, GrBatchTextStrike* strike, GrGlyph* glyph, GrFontScaler* scaler, const SkGlyph& skGlyph, SkScalar x, SkScalar y, SkScalar scale, bool applyVM); static size_t GetVertexStride(GrMaskFormat maskFormat) { switch (maskFormat) { case kA8_GrMaskFormat: return kGrayTextVASize; case kARGB_GrMaskFormat: return kColorTextVASize; default: return kLCDTextVASize; } } bool mustRegenerate(const SkPaint& paint, GrColor color, const SkMaskFilter::BlurRec& blurRec, const SkMatrix& viewMatrix, SkScalar x, SkScalar y); // flush a GrAtlasTextBlob associated with a SkTextBlob void flushCached(GrContext* context, GrDrawContext* dc, const SkTextBlob* blob, const SkSurfaceProps& props, const GrDistanceFieldAdjustTable* distanceAdjustTable, const SkPaint& skPaint, const GrPaint& grPaint, SkDrawFilter* drawFilter, const GrClip& clip, const SkMatrix& viewMatrix, const SkIRect& clipBounds, SkScalar x, SkScalar y); // flush a throwaway GrAtlasTextBlob *not* associated with an SkTextBlob void flushThrowaway(GrContext* context, GrDrawContext* dc, const SkSurfaceProps& props, const GrDistanceFieldAdjustTable* distanceAdjustTable, const SkPaint& skPaint, const GrPaint& grPaint, const GrClip& clip, const SkMatrix& viewMatrix, const SkIRect& clipBounds, SkScalar x, SkScalar y); void computeSubRunBounds(SkRect* outBounds, int runIndex, int subRunIndex, const SkMatrix& viewMatrix, SkScalar x, SkScalar y) { // We don't yet position distance field text on the cpu, so we have to map the vertex bounds // into device space. // We handle vertex bounds differently for distance field text and bitmap text because // the vertex bounds of bitmap text are in device space. If we are flushing multiple runs // from one blob then we are going to pay the price here of mapping the rect for each run. const Run& run = fRuns[runIndex]; const Run::SubRunInfo& subRun = run.fSubRunInfo[subRunIndex]; *outBounds = subRun.vertexBounds(); if (subRun.drawAsDistanceFields()) { // Distance field text is positioned with the (X,Y) as part of the glyph position, // and currently the view matrix is applied on the GPU outBounds->offset(x - fInitialX, y - fInitialY); viewMatrix.mapRect(outBounds); } else { // Bitmap text is fully positioned on the CPU, and offset by an (X,Y) translate in // device space. SkMatrix boundsMatrix = fInitialViewMatrixInverse; boundsMatrix.postTranslate(-fInitialX, -fInitialY); boundsMatrix.postTranslate(x, y); boundsMatrix.postConcat(viewMatrix); boundsMatrix.mapRect(outBounds); // Due to floating point numerical inaccuracies, we have to round out here outBounds->roundOut(outBounds); } } // position + local coord static const size_t kColorTextVASize = sizeof(SkPoint) + sizeof(SkIPoint16); static const size_t kGrayTextVASize = sizeof(SkPoint) + sizeof(GrColor) + sizeof(SkIPoint16); static const size_t kLCDTextVASize = kGrayTextVASize; static const size_t kMaxVASize = kGrayTextVASize; static const int kVerticesPerGlyph = 4; static void AssertEqual(const GrAtlasTextBlob&, const GrAtlasTextBlob&); // The color here is the GrPaint color, and it is used to determine whether we // have to regenerate LCD text blobs. // We use this color vs the SkPaint color because it has the colorfilter applied. void initReusableBlob(GrColor color, const SkMatrix& viewMatrix, SkScalar x, SkScalar y) { fPaintColor = color; this->setupViewMatrix(viewMatrix, x, y); } void initThrowawayBlob(const SkMatrix& viewMatrix, SkScalar x, SkScalar y) { this->setupViewMatrix(viewMatrix, x, y); } void regenInBatch(GrDrawBatch::Target* target, GrBatchFontCache* fontCache, GrBlobRegenHelper *helper, int run, int subRun, SkGlyphCache** cache, SkTypeface** typeface, GrFontScaler** scaler, const SkDescriptor** desc, size_t vertexStride, const SkMatrix& viewMatrix, SkScalar x, SkScalar y, GrColor color, void** vertices, size_t* byteCount, int* glyphCount); const Key& key() const { return fKey; } ~GrAtlasTextBlob() { for (int i = 0; i < fRunCount; i++) { fRuns[i].~Run(); } } //////////////////////////////////////////////////////////////////////////////////////////////// // Internal test methods GrDrawBatch* test_createBatch(int glyphCount, int run, int subRun, const SkMatrix& viewMatrix, SkScalar x, SkScalar y, GrColor color, const SkPaint& skPaint, const SkSurfaceProps& props, const GrDistanceFieldAdjustTable* distanceAdjustTable, GrBatchFontCache* cache); private: GrAtlasTextBlob() : fMaxMinScale(-SK_ScalarMax) , fMinMaxScale(SK_ScalarMax) , fTextType(0) {} void appendLargeGlyph(GrGlyph* glyph, GrFontScaler* scaler, const SkGlyph& skGlyph, SkScalar x, SkScalar y, SkScalar scale, bool applyVM); inline void flushRun(GrDrawContext* dc, GrPipelineBuilder* pipelineBuilder, int run, const SkMatrix& viewMatrix, SkScalar x, SkScalar y, GrColor color, const SkPaint& skPaint, const SkSurfaceProps& props, const GrDistanceFieldAdjustTable* distanceAdjustTable, GrBatchFontCache* cache); void flushBigGlyphs(GrContext* context, GrDrawContext* dc, const GrClip& clip, const SkPaint& skPaint, const SkMatrix& viewMatrix, SkScalar x, SkScalar y, const SkIRect& clipBounds); void flushRunAsPaths(GrContext* context, GrDrawContext* dc, const SkSurfaceProps& props, const SkTextBlobRunIterator& it, const GrClip& clip, const SkPaint& skPaint, SkDrawFilter* drawFilter, const SkMatrix& viewMatrix, const SkIRect& clipBounds, SkScalar x, SkScalar y); // This function will only be called when we are generating a blob from scratch. We record the // initial view matrix and initial offsets(x,y), because we record vertex bounds relative to // these numbers. When blobs are reused with new matrices, we need to return to model space so // we can update the vertex bounds appropriately. void setupViewMatrix(const SkMatrix& viewMatrix, SkScalar x, SkScalar y) { fInitialViewMatrix = viewMatrix; if (!viewMatrix.invert(&fInitialViewMatrixInverse)) { fInitialViewMatrixInverse = SkMatrix::I(); SkDebugf("Could not invert viewmatrix\n"); } fInitialX = x; fInitialY = y; // make sure all initial subruns have the correct VM and X/Y applied for (int i = 0; i < fRunCount; i++) { fRuns[i].fSubRunInfo[0].init(fInitialViewMatrix, x, y); } } /* * Each Run inside of the blob can have its texture coordinates regenerated if required. * To determine if regeneration is necessary, fAtlasGeneration is used. If there have been * any evictions inside of the atlas, then we will simply regenerate Runs. We could track * this at a more fine grained level, but its not clear if this is worth it, as evictions * should be fairly rare. * * One additional point, each run can contain glyphs with any of the three mask formats. * We call these SubRuns. Because a subrun must be a contiguous range, we have to create * a new subrun each time the mask format changes in a run. In theory, a run can have as * many SubRuns as it has glyphs, ie if a run alternates between color emoji and A8. In * practice, the vast majority of runs have only a single subrun. * * Finally, for runs where the entire thing is too large for the GrAtlasTextContext to * handle, we have a bit to mark the run as flusahable via rendering as paths. It is worth * pointing. It would be a bit expensive to figure out ahead of time whether or not a run * can flush in this manner, so we always allocate vertices for the run, regardless of * whether or not it is too large. The benefit of this strategy is that we can always reuse * a blob allocation regardless of viewmatrix changes. We could store positions for these * glyphs. However, its not clear if this is a win because we'd still have to either go the * glyph cache to get the path at flush time, or hold onto the path in the cache, which * would greatly increase the memory of these cached items. */ struct Run { Run() : fInitialized(false) , fDrawAsPaths(false) { // To ensure we always have one subrun, we push back a fresh run here fSubRunInfo.push_back(); } struct SubRunInfo { SubRunInfo() : fAtlasGeneration(GrBatchAtlas::kInvalidAtlasGeneration) , fVertexStartIndex(0) , fVertexEndIndex(0) , fGlyphStartIndex(0) , fGlyphEndIndex(0) , fColor(GrColor_ILLEGAL) , fMaskFormat(kA8_GrMaskFormat) , fDrawAsDistanceFields(false) , fUseLCDText(false) { fVertexBounds.setLargestInverted(); } SubRunInfo(const SubRunInfo& that) : fBulkUseToken(that.fBulkUseToken) , fStrike(SkSafeRef(that.fStrike.get())) , fCurrentViewMatrix(that.fCurrentViewMatrix) , fVertexBounds(that.fVertexBounds) , fAtlasGeneration(that.fAtlasGeneration) , fVertexStartIndex(that.fVertexStartIndex) , fVertexEndIndex(that.fVertexEndIndex) , fGlyphStartIndex(that.fGlyphStartIndex) , fGlyphEndIndex(that.fGlyphEndIndex) , fX(that.fX) , fY(that.fY) , fColor(that.fColor) , fMaskFormat(that.fMaskFormat) , fDrawAsDistanceFields(that.fDrawAsDistanceFields) , fUseLCDText(that.fUseLCDText) { } // TODO when this object is more internal, drop the privacy void resetBulkUseToken() { fBulkUseToken.reset(); } GrBatchAtlas::BulkUseTokenUpdater* bulkUseToken() { return &fBulkUseToken; } void setStrike(GrBatchTextStrike* strike) { fStrike.reset(SkRef(strike)); } GrBatchTextStrike* strike() const { return fStrike.get(); } void setAtlasGeneration(uint64_t atlasGeneration) { fAtlasGeneration = atlasGeneration;} uint64_t atlasGeneration() const { return fAtlasGeneration; } size_t byteCount() const { return fVertexEndIndex - fVertexStartIndex; } size_t vertexStartIndex() const { return fVertexStartIndex; } size_t vertexEndIndex() const { return fVertexEndIndex; } void appendVertices(size_t vertexStride) { fVertexEndIndex += vertexStride * kVerticesPerGlyph; } uint32_t glyphCount() const { return fGlyphEndIndex - fGlyphStartIndex; } uint32_t glyphStartIndex() const { return fGlyphStartIndex; } uint32_t glyphEndIndex() const { return fGlyphEndIndex; } void glyphAppended() { fGlyphEndIndex++; } void setColor(GrColor color) { fColor = color; } GrColor color() const { return fColor; } void setMaskFormat(GrMaskFormat format) { fMaskFormat = format; } GrMaskFormat maskFormat() const { return fMaskFormat; } void setAsSuccessor(const SubRunInfo& prev) { fGlyphStartIndex = prev.glyphEndIndex(); fGlyphEndIndex = prev.glyphEndIndex(); fVertexStartIndex = prev.vertexEndIndex(); fVertexEndIndex = prev.vertexEndIndex(); // copy over viewmatrix settings this->init(prev.fCurrentViewMatrix, prev.fX, prev.fY); } const SkRect& vertexBounds() const { return fVertexBounds; } void joinGlyphBounds(const SkRect& glyphBounds) { fVertexBounds.joinNonEmptyArg(glyphBounds); } void init(const SkMatrix& viewMatrix, SkScalar x, SkScalar y) { fCurrentViewMatrix = viewMatrix; fX = x; fY = y; } // This function assumes the translation will be applied before it is called again void computeTranslation(const SkMatrix& viewMatrix, SkScalar x, SkScalar y, SkScalar*transX, SkScalar* transY); // df properties void setUseLCDText(bool useLCDText) { fUseLCDText = useLCDText; } bool hasUseLCDText() const { return fUseLCDText; } void setDrawAsDistanceFields() { fDrawAsDistanceFields = true; } bool drawAsDistanceFields() const { return fDrawAsDistanceFields; } private: GrBatchAtlas::BulkUseTokenUpdater fBulkUseToken; SkAutoTUnref fStrike; SkMatrix fCurrentViewMatrix; SkRect fVertexBounds; uint64_t fAtlasGeneration; size_t fVertexStartIndex; size_t fVertexEndIndex; uint32_t fGlyphStartIndex; uint32_t fGlyphEndIndex; SkScalar fX; SkScalar fY; GrColor fColor; GrMaskFormat fMaskFormat; bool fDrawAsDistanceFields; // df property bool fUseLCDText; // df property }; SubRunInfo& push_back() { // Forward glyph / vertex information to seed the new sub run SubRunInfo& newSubRun = fSubRunInfo.push_back(); const SubRunInfo& prevSubRun = fSubRunInfo.fromBack(1); newSubRun.setAsSuccessor(prevSubRun); return newSubRun; } static const int kMinSubRuns = 1; SkAutoTUnref fTypeface; SkSTArray fSubRunInfo; SkAutoDescriptor fDescriptor; // Distance field text cannot draw coloremoji, and so has to fall back. However, // though the distance field text and the coloremoji may share the same run, they // will have different descriptors. If fOverrideDescriptor is non-nullptr, then it // will be used in place of the run's descriptor to regen texture coords SkAutoTDelete fOverrideDescriptor; // df properties bool fInitialized; bool fDrawAsPaths; }; template void regenInBatch(GrDrawBatch::Target* target, GrBatchFontCache* fontCache, GrBlobRegenHelper* helper, Run* run, Run::SubRunInfo* info, SkGlyphCache** cache, SkTypeface** typeface, GrFontScaler** scaler, const SkDescriptor** desc, int glyphCount, size_t vertexStride, GrColor color, SkScalar transX, SkScalar transY) const; inline GrDrawBatch* createBatch(const Run::SubRunInfo& info, int glyphCount, int run, int subRun, const SkMatrix& viewMatrix, SkScalar x, SkScalar y, GrColor color, const SkPaint& skPaint, const SkSurfaceProps& props, const GrDistanceFieldAdjustTable* distanceAdjustTable, GrBatchFontCache* cache); struct BigGlyph { BigGlyph(const SkPath& path, SkScalar vx, SkScalar vy, SkScalar scale, bool applyVM) : fPath(path) , fScale(scale) , fX(vx) , fY(vy) , fApplyVM(applyVM) {} SkPath fPath; SkScalar fScale; SkScalar fX; SkScalar fY; bool fApplyVM; }; struct StrokeInfo { SkScalar fFrameWidth; SkScalar fMiterLimit; SkPaint::Join fJoin; }; enum TextType { kHasDistanceField_TextType = 0x1, kHasBitmap_TextType = 0x2, }; // all glyph / vertex offsets are into these pools. unsigned char* fVertices; GrGlyph** fGlyphs; Run* fRuns; GrMemoryPool* fPool; SkMaskFilter::BlurRec fBlurRec; StrokeInfo fStrokeInfo; SkTArray fBigGlyphs; Key fKey; SkMatrix fInitialViewMatrix; SkMatrix fInitialViewMatrixInverse; size_t fSize; GrColor fPaintColor; SkScalar fInitialX; SkScalar fInitialY; // We can reuse distance field text, but only if the new viewmatrix would not result in // a mip change. Because there can be multiple runs in a blob, we track the overall // maximum minimum scale, and minimum maximum scale, we can support before we need to regen SkScalar fMaxMinScale; SkScalar fMinMaxScale; int fRunCount; uint8_t fTextType; }; #endif