// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler/js-native-context-specialization.h" #include "src/accessors.h" #include "src/code-factory.h" #include "src/compilation-dependencies.h" #include "src/compiler/access-builder.h" #include "src/compiler/access-info.h" #include "src/compiler/js-graph.h" #include "src/compiler/js-operator.h" #include "src/compiler/linkage.h" #include "src/compiler/node-matchers.h" #include "src/field-index-inl.h" #include "src/isolate-inl.h" #include "src/objects-inl.h" // TODO(mstarzinger): Temporary cycle breaker! #include "src/type-cache.h" #include "src/type-feedback-vector.h" namespace v8 { namespace internal { namespace compiler { JSNativeContextSpecialization::JSNativeContextSpecialization( Editor* editor, JSGraph* jsgraph, Flags flags, MaybeHandle<Context> native_context, CompilationDependencies* dependencies, Zone* zone) : AdvancedReducer(editor), jsgraph_(jsgraph), flags_(flags), native_context_(native_context), dependencies_(dependencies), zone_(zone), type_cache_(TypeCache::Get()) {} Reduction JSNativeContextSpecialization::Reduce(Node* node) { switch (node->opcode()) { case IrOpcode::kJSLoadNamed: return ReduceJSLoadNamed(node); case IrOpcode::kJSStoreNamed: return ReduceJSStoreNamed(node); case IrOpcode::kJSLoadProperty: return ReduceJSLoadProperty(node); case IrOpcode::kJSStoreProperty: return ReduceJSStoreProperty(node); default: break; } return NoChange(); } Reduction JSNativeContextSpecialization::ReduceNamedAccess( Node* node, Node* value, MapHandleList const& receiver_maps, Handle<Name> name, AccessMode access_mode, LanguageMode language_mode, Node* index) { DCHECK(node->opcode() == IrOpcode::kJSLoadNamed || node->opcode() == IrOpcode::kJSStoreNamed || node->opcode() == IrOpcode::kJSLoadProperty || node->opcode() == IrOpcode::kJSStoreProperty); Node* receiver = NodeProperties::GetValueInput(node, 0); Node* frame_state = NodeProperties::GetFrameStateInput(node, 1); Node* effect = NodeProperties::GetEffectInput(node); Node* control = NodeProperties::GetControlInput(node); // Not much we can do if deoptimization support is disabled. if (!(flags() & kDeoptimizationEnabled)) return NoChange(); // Retrieve the native context from the given {node}. Handle<Context> native_context; if (!GetNativeContext(node).ToHandle(&native_context)) return NoChange(); // Compute property access infos for the receiver maps. AccessInfoFactory access_info_factory(dependencies(), native_context, graph()->zone()); ZoneVector<PropertyAccessInfo> access_infos(zone()); if (!access_info_factory.ComputePropertyAccessInfos( receiver_maps, name, access_mode, &access_infos)) { return NoChange(); } // Nothing to do if we have no non-deprecated maps. if (access_infos.empty()) return NoChange(); // The final states for every polymorphic branch. We join them with // Merge++Phi+EffectPhi at the bottom. ZoneVector<Node*> values(zone()); ZoneVector<Node*> effects(zone()); ZoneVector<Node*> controls(zone()); // The list of "exiting" controls, which currently go to a single deoptimize. // TODO(bmeurer): Consider using an IC as fallback. Node* const exit_effect = effect; ZoneVector<Node*> exit_controls(zone()); // Ensure that {index} matches the specified {name} (if {index} is given). if (index != nullptr) { Node* check = graph()->NewNode(simplified()->ReferenceEqual(Type::Name()), index, jsgraph()->HeapConstant(name)); Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue), check, control); exit_controls.push_back(graph()->NewNode(common()->IfFalse(), branch)); control = graph()->NewNode(common()->IfTrue(), branch); } // Ensure that {receiver} is a heap object. Node* check = graph()->NewNode(simplified()->ObjectIsSmi(), receiver); Node* branch = graph()->NewNode(common()->Branch(), check, control); control = graph()->NewNode(common()->IfFalse(), branch); Node* receiverissmi_control = graph()->NewNode(common()->IfTrue(), branch); Node* receiverissmi_effect = effect; // Load the {receiver} map. The resulting effect is the dominating effect for // all (polymorphic) branches. Node* receiver_map = effect = graph()->NewNode(simplified()->LoadField(AccessBuilder::ForMap()), receiver, effect, control); // Generate code for the various different property access patterns. Node* fallthrough_control = control; for (PropertyAccessInfo const& access_info : access_infos) { Node* this_value = value; Node* this_receiver = receiver; Node* this_effect = effect; Node* this_control; // Perform map check on {receiver}. Type* receiver_type = access_info.receiver_type(); if (receiver_type->Is(Type::String())) { // Emit an instance type check for strings. Node* receiver_instance_type = this_effect = graph()->NewNode( simplified()->LoadField(AccessBuilder::ForMapInstanceType()), receiver_map, this_effect, fallthrough_control); Node* check = graph()->NewNode(machine()->Uint32LessThan(), receiver_instance_type, jsgraph()->Uint32Constant(FIRST_NONSTRING_TYPE)); Node* branch = graph()->NewNode(common()->Branch(), check, fallthrough_control); fallthrough_control = graph()->NewNode(common()->IfFalse(), branch); this_control = graph()->NewNode(common()->IfTrue(), branch); } else { // Emit a (sequence of) map checks for other {receiver}s. ZoneVector<Node*> this_controls(zone()); ZoneVector<Node*> this_effects(zone()); for (auto i = access_info.receiver_type()->Classes(); !i.Done(); i.Advance()) { Handle<Map> map = i.Current(); Node* check = graph()->NewNode(simplified()->ReferenceEqual(Type::Internal()), receiver_map, jsgraph()->Constant(map)); Node* branch = graph()->NewNode(common()->Branch(), check, fallthrough_control); fallthrough_control = graph()->NewNode(common()->IfFalse(), branch); this_controls.push_back(graph()->NewNode(common()->IfTrue(), branch)); this_effects.push_back(this_effect); } // The Number case requires special treatment to also deal with Smis. if (receiver_type->Is(Type::Number())) { // Join this check with the "receiver is smi" check above, and mark the // "receiver is smi" check as "consumed" so that we don't deoptimize if // the {receiver} is actually a Smi. if (receiverissmi_control != nullptr) { this_controls.push_back(receiverissmi_control); this_effects.push_back(receiverissmi_effect); receiverissmi_control = receiverissmi_effect = nullptr; } } // Create dominating Merge+EffectPhi for this {receiver} type. int const this_control_count = static_cast<int>(this_controls.size()); this_control = (this_control_count == 1) ? this_controls.front() : graph()->NewNode(common()->Merge(this_control_count), this_control_count, &this_controls.front()); this_effects.push_back(this_control); int const this_effect_count = static_cast<int>(this_effects.size()); this_effect = (this_control_count == 1) ? this_effects.front() : graph()->NewNode(common()->EffectPhi(this_control_count), this_effect_count, &this_effects.front()); } // Determine actual holder and perform prototype chain checks. Handle<JSObject> holder; if (access_info.holder().ToHandle(&holder)) { AssumePrototypesStable(receiver_type, native_context, holder); } // Generate the actual property access. if (access_info.IsNotFound()) { DCHECK_EQ(AccessMode::kLoad, access_mode); if (is_strong(language_mode)) { // TODO(bmeurer/mstarzinger): Add support for lowering inside try // blocks rewiring the IfException edge to a runtime call/throw. exit_controls.push_back(this_control); continue; } else { this_value = jsgraph()->UndefinedConstant(); } } else if (access_info.IsDataConstant()) { this_value = jsgraph()->Constant(access_info.constant()); if (access_mode == AccessMode::kStore) { Node* check = graph()->NewNode( simplified()->ReferenceEqual(Type::Tagged()), value, this_value); Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue), check, this_control); exit_controls.push_back(graph()->NewNode(common()->IfFalse(), branch)); this_control = graph()->NewNode(common()->IfTrue(), branch); } } else { DCHECK(access_info.IsDataField()); FieldIndex const field_index = access_info.field_index(); FieldCheck const field_check = access_info.field_check(); Type* const field_type = access_info.field_type(); switch (field_check) { case FieldCheck::kNone: break; case FieldCheck::kJSArrayBufferViewBufferNotNeutered: { Node* this_buffer = this_effect = graph()->NewNode(simplified()->LoadField( AccessBuilder::ForJSArrayBufferViewBuffer()), this_receiver, this_effect, this_control); Node* this_buffer_bit_field = this_effect = graph()->NewNode(simplified()->LoadField( AccessBuilder::ForJSArrayBufferBitField()), this_buffer, this_effect, this_control); Node* check = graph()->NewNode( machine()->Word32Equal(), graph()->NewNode(machine()->Word32And(), this_buffer_bit_field, jsgraph()->Int32Constant( 1 << JSArrayBuffer::WasNeutered::kShift)), jsgraph()->Int32Constant(0)); Node* branch = graph()->NewNode(common()->Branch(BranchHint::kFalse), check, this_control); exit_controls.push_back(graph()->NewNode(common()->IfTrue(), branch)); this_control = graph()->NewNode(common()->IfFalse(), branch); break; } } if (access_mode == AccessMode::kLoad && access_info.holder().ToHandle(&holder)) { this_receiver = jsgraph()->Constant(holder); } Node* this_storage = this_receiver; if (!field_index.is_inobject()) { this_storage = this_effect = graph()->NewNode( simplified()->LoadField(AccessBuilder::ForJSObjectProperties()), this_storage, this_effect, this_control); } FieldAccess field_access = {kTaggedBase, field_index.offset(), name, field_type, MachineType::AnyTagged()}; if (access_mode == AccessMode::kLoad) { if (field_type->Is(Type::UntaggedFloat64())) { if (!field_index.is_inobject() || field_index.is_hidden_field() || !FLAG_unbox_double_fields) { this_storage = this_effect = graph()->NewNode(simplified()->LoadField(field_access), this_storage, this_effect, this_control); field_access.offset = HeapNumber::kValueOffset; field_access.name = MaybeHandle<Name>(); } field_access.machine_type = MachineType::Float64(); } this_value = this_effect = graph()->NewNode(simplified()->LoadField(field_access), this_storage, this_effect, this_control); } else { DCHECK_EQ(AccessMode::kStore, access_mode); if (field_type->Is(Type::UntaggedFloat64())) { Node* check = graph()->NewNode(simplified()->ObjectIsNumber(), this_value); Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue), check, this_control); exit_controls.push_back( graph()->NewNode(common()->IfFalse(), branch)); this_control = graph()->NewNode(common()->IfTrue(), branch); this_value = graph()->NewNode(common()->Guard(Type::Number()), this_value, this_control); if (!field_index.is_inobject() || field_index.is_hidden_field() || !FLAG_unbox_double_fields) { if (access_info.HasTransitionMap()) { // Allocate a MutableHeapNumber for the new property. Callable callable = CodeFactory::AllocateMutableHeapNumber(isolate()); CallDescriptor* desc = Linkage::GetStubCallDescriptor( isolate(), jsgraph()->zone(), callable.descriptor(), 0, CallDescriptor::kNoFlags, Operator::kNoThrow); Node* this_box = this_effect = graph()->NewNode( common()->Call(desc), jsgraph()->HeapConstant(callable.code()), jsgraph()->NoContextConstant(), this_effect, this_control); this_effect = graph()->NewNode( simplified()->StoreField(AccessBuilder::ForHeapNumberValue()), this_box, this_value, this_effect, this_control); this_value = this_box; field_access.type = Type::TaggedPointer(); } else { // We just store directly to the MutableHeapNumber. this_storage = this_effect = graph()->NewNode(simplified()->LoadField(field_access), this_storage, this_effect, this_control); field_access.offset = HeapNumber::kValueOffset; field_access.name = MaybeHandle<Name>(); field_access.machine_type = MachineType::Float64(); } } else { // Unboxed double field, we store directly to the field. field_access.machine_type = MachineType::Float64(); } } else if (field_type->Is(Type::TaggedSigned())) { Node* check = graph()->NewNode(simplified()->ObjectIsSmi(), this_value); Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue), check, this_control); exit_controls.push_back( graph()->NewNode(common()->IfFalse(), branch)); this_control = graph()->NewNode(common()->IfTrue(), branch); this_value = graph()->NewNode(common()->Guard(type_cache_.kSmi), this_value, this_control); } else if (field_type->Is(Type::TaggedPointer())) { Node* check = graph()->NewNode(simplified()->ObjectIsSmi(), this_value); Node* branch = graph()->NewNode(common()->Branch(BranchHint::kFalse), check, this_control); exit_controls.push_back(graph()->NewNode(common()->IfTrue(), branch)); this_control = graph()->NewNode(common()->IfFalse(), branch); if (field_type->NumClasses() > 0) { // Emit a (sequence of) map checks for the value. ZoneVector<Node*> this_controls(zone()); Node* this_value_map = this_effect = graph()->NewNode( simplified()->LoadField(AccessBuilder::ForMap()), this_value, this_effect, this_control); for (auto i = field_type->Classes(); !i.Done(); i.Advance()) { Handle<Map> field_map(i.Current()); check = graph()->NewNode( simplified()->ReferenceEqual(Type::Internal()), this_value_map, jsgraph()->Constant(field_map)); branch = graph()->NewNode(common()->Branch(BranchHint::kTrue), check, this_control); this_control = graph()->NewNode(common()->IfFalse(), branch); this_controls.push_back( graph()->NewNode(common()->IfTrue(), branch)); } exit_controls.push_back(this_control); int const this_control_count = static_cast<int>(this_controls.size()); this_control = (this_control_count == 1) ? this_controls.front() : graph()->NewNode(common()->Merge(this_control_count), this_control_count, &this_controls.front()); } } else { DCHECK(field_type->Is(Type::Tagged())); } Handle<Map> transition_map; if (access_info.transition_map().ToHandle(&transition_map)) { this_effect = graph()->NewNode(common()->BeginRegion(), this_effect); this_effect = graph()->NewNode( simplified()->StoreField(AccessBuilder::ForMap()), this_receiver, jsgraph()->Constant(transition_map), this_effect, this_control); } this_effect = graph()->NewNode(simplified()->StoreField(field_access), this_storage, this_value, this_effect, this_control); if (access_info.HasTransitionMap()) { this_effect = graph()->NewNode(common()->FinishRegion(), jsgraph()->UndefinedConstant(), this_effect); } } } // Remember the final state for this property access. values.push_back(this_value); effects.push_back(this_effect); controls.push_back(this_control); } // Collect the fallthrough control as final "exit" control. if (fallthrough_control != control) { // Mark the last fallthrough branch as deferred. MarkAsDeferred(fallthrough_control); } exit_controls.push_back(fallthrough_control); // Also collect the "receiver is smi" control if we didn't handle the case of // Number primitives in the polymorphic branches above. if (receiverissmi_control != nullptr) { // Mark the "receiver is smi" case as deferred. MarkAsDeferred(receiverissmi_control); DCHECK_EQ(exit_effect, receiverissmi_effect); exit_controls.push_back(receiverissmi_control); } // Generate the single "exit" point, where we get if either all map/instance // type checks failed, or one of the assumptions inside one of the cases // failes (i.e. failing prototype chain check). // TODO(bmeurer): Consider falling back to IC here if deoptimization is // disabled. int const exit_control_count = static_cast<int>(exit_controls.size()); Node* exit_control = (exit_control_count == 1) ? exit_controls.front() : graph()->NewNode(common()->Merge(exit_control_count), exit_control_count, &exit_controls.front()); Node* deoptimize = graph()->NewNode(common()->Deoptimize(DeoptimizeKind::kEager), frame_state, exit_effect, exit_control); // TODO(bmeurer): This should be on the AdvancedReducer somehow. NodeProperties::MergeControlToEnd(graph(), common(), deoptimize); // Generate the final merge point for all (polymorphic) branches. int const control_count = static_cast<int>(controls.size()); if (control_count == 0) { value = effect = control = jsgraph()->Dead(); } else if (control_count == 1) { value = values.front(); effect = effects.front(); control = controls.front(); } else { control = graph()->NewNode(common()->Merge(control_count), control_count, &controls.front()); values.push_back(control); value = graph()->NewNode( common()->Phi(MachineRepresentation::kTagged, control_count), control_count + 1, &values.front()); effects.push_back(control); effect = graph()->NewNode(common()->EffectPhi(control_count), control_count + 1, &effects.front()); } ReplaceWithValue(node, value, effect, control); return Replace(value); } Reduction JSNativeContextSpecialization::ReduceJSLoadNamed(Node* node) { DCHECK_EQ(IrOpcode::kJSLoadNamed, node->opcode()); NamedAccess const& p = NamedAccessOf(node->op()); Node* const value = jsgraph()->Dead(); // Extract receiver maps from the LOAD_IC using the LoadICNexus. MapHandleList receiver_maps; if (!p.feedback().IsValid()) return NoChange(); LoadICNexus nexus(p.feedback().vector(), p.feedback().slot()); if (nexus.ExtractMaps(&receiver_maps) == 0) return NoChange(); DCHECK_LT(0, receiver_maps.length()); // Try to lower the named access based on the {receiver_maps}. return ReduceNamedAccess(node, value, receiver_maps, p.name(), AccessMode::kLoad, p.language_mode()); } Reduction JSNativeContextSpecialization::ReduceJSStoreNamed(Node* node) { DCHECK_EQ(IrOpcode::kJSStoreNamed, node->opcode()); NamedAccess const& p = NamedAccessOf(node->op()); Node* const value = NodeProperties::GetValueInput(node, 1); // Extract receiver maps from the STORE_IC using the StoreICNexus. MapHandleList receiver_maps; if (!p.feedback().IsValid()) return NoChange(); StoreICNexus nexus(p.feedback().vector(), p.feedback().slot()); if (nexus.ExtractMaps(&receiver_maps) == 0) return NoChange(); DCHECK_LT(0, receiver_maps.length()); // Try to lower the named access based on the {receiver_maps}. return ReduceNamedAccess(node, value, receiver_maps, p.name(), AccessMode::kStore, p.language_mode()); } Reduction JSNativeContextSpecialization::ReduceElementAccess( Node* node, Node* index, Node* value, MapHandleList const& receiver_maps, AccessMode access_mode, LanguageMode language_mode, KeyedAccessStoreMode store_mode) { DCHECK(node->opcode() == IrOpcode::kJSLoadProperty || node->opcode() == IrOpcode::kJSStoreProperty); Node* receiver = NodeProperties::GetValueInput(node, 0); Node* context = NodeProperties::GetContextInput(node); Node* frame_state = NodeProperties::GetFrameStateInput(node, 1); Node* effect = NodeProperties::GetEffectInput(node); Node* control = NodeProperties::GetControlInput(node); // Not much we can do if deoptimization support is disabled. if (!(flags() & kDeoptimizationEnabled)) return NoChange(); // TODO(bmeurer): Add support for non-standard stores. if (store_mode != STANDARD_STORE) return NoChange(); // Retrieve the native context from the given {node}. Handle<Context> native_context; if (!GetNativeContext(node).ToHandle(&native_context)) return NoChange(); // Compute element access infos for the receiver maps. AccessInfoFactory access_info_factory(dependencies(), native_context, graph()->zone()); ZoneVector<ElementAccessInfo> access_infos(zone()); if (!access_info_factory.ComputeElementAccessInfos(receiver_maps, access_mode, &access_infos)) { return NoChange(); } // Nothing to do if we have no non-deprecated maps. if (access_infos.empty()) return NoChange(); // The final states for every polymorphic branch. We join them with // Merge+Phi+EffectPhi at the bottom. ZoneVector<Node*> values(zone()); ZoneVector<Node*> effects(zone()); ZoneVector<Node*> controls(zone()); // The list of "exiting" controls, which currently go to a single deoptimize. // TODO(bmeurer): Consider using an IC as fallback. Node* const exit_effect = effect; ZoneVector<Node*> exit_controls(zone()); // Ensure that {receiver} is a heap object. Node* check = graph()->NewNode(simplified()->ObjectIsSmi(), receiver); Node* branch = graph()->NewNode(common()->Branch(BranchHint::kFalse), check, control); exit_controls.push_back(graph()->NewNode(common()->IfTrue(), branch)); control = graph()->NewNode(common()->IfFalse(), branch); // Load the {receiver} map. The resulting effect is the dominating effect for // all (polymorphic) branches. Node* receiver_map = effect = graph()->NewNode(simplified()->LoadField(AccessBuilder::ForMap()), receiver, effect, control); // Generate code for the various different element access patterns. Node* fallthrough_control = control; for (ElementAccessInfo const& access_info : access_infos) { Node* this_receiver = receiver; Node* this_value = value; Node* this_index = index; Node* this_effect; Node* this_control; // Perform map check on {receiver}. Type* receiver_type = access_info.receiver_type(); bool receiver_is_jsarray = true; { ZoneVector<Node*> this_controls(zone()); ZoneVector<Node*> this_effects(zone()); for (auto i = access_info.receiver_type()->Classes(); !i.Done(); i.Advance()) { Handle<Map> map = i.Current(); Node* check = graph()->NewNode(simplified()->ReferenceEqual(Type::Any()), receiver_map, jsgraph()->Constant(map)); Node* branch = graph()->NewNode(common()->Branch(), check, fallthrough_control); this_controls.push_back(graph()->NewNode(common()->IfTrue(), branch)); this_effects.push_back(effect); fallthrough_control = graph()->NewNode(common()->IfFalse(), branch); if (!map->IsJSArrayMap()) receiver_is_jsarray = false; } // Generate possible elements kind transitions. for (auto transition : access_info.transitions()) { Handle<Map> transition_source = transition.first; Handle<Map> transition_target = transition.second; // Check if {receiver} has the specified {transition_source} map. Node* check = graph()->NewNode( simplified()->ReferenceEqual(Type::Any()), receiver_map, jsgraph()->HeapConstant(transition_source)); Node* branch = graph()->NewNode(common()->Branch(), check, fallthrough_control); // Migrate {receiver} from {transition_source} to {transition_target}. Node* transition_control = graph()->NewNode(common()->IfTrue(), branch); Node* transition_effect = effect; if (IsSimpleMapChangeTransition(transition_source->elements_kind(), transition_target->elements_kind())) { // In-place migration, just store the {transition_target} map. transition_effect = graph()->NewNode( simplified()->StoreField(AccessBuilder::ForMap()), receiver, jsgraph()->HeapConstant(transition_target), transition_effect, transition_control); } else { // Instance migration, let the stub deal with the {receiver}. TransitionElementsKindStub stub(isolate(), transition_source->elements_kind(), transition_target->elements_kind(), transition_source->IsJSArrayMap()); CallDescriptor const* const desc = Linkage::GetStubCallDescriptor( isolate(), graph()->zone(), stub.GetCallInterfaceDescriptor(), 0, CallDescriptor::kNeedsFrameState, node->op()->properties()); transition_effect = graph()->NewNode( common()->Call(desc), jsgraph()->HeapConstant(stub.GetCode()), receiver, jsgraph()->HeapConstant(transition_target), context, frame_state, transition_effect, transition_control); } this_controls.push_back(transition_control); this_effects.push_back(transition_effect); fallthrough_control = graph()->NewNode(common()->IfFalse(), branch); } // Create single chokepoint for the control. int const this_control_count = static_cast<int>(this_controls.size()); if (this_control_count == 1) { this_control = this_controls.front(); this_effect = this_effects.front(); } else { this_control = graph()->NewNode(common()->Merge(this_control_count), this_control_count, &this_controls.front()); this_effects.push_back(this_control); this_effect = graph()->NewNode(common()->EffectPhi(this_control_count), this_control_count + 1, &this_effects.front()); } } // Certain stores need a prototype chain check because shape changes // could allow callbacks on elements in the prototype chain that are // not compatible with (monomorphic) keyed stores. Handle<JSObject> holder; if (access_info.holder().ToHandle(&holder)) { AssumePrototypesStable(receiver_type, native_context, holder); } // Check that the {index} is actually a Number. if (!NumberMatcher(this_index).HasValue()) { Node* check = graph()->NewNode(simplified()->ObjectIsNumber(), this_index); Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue), check, this_control); exit_controls.push_back(graph()->NewNode(common()->IfFalse(), branch)); this_control = graph()->NewNode(common()->IfTrue(), branch); this_index = graph()->NewNode(common()->Guard(Type::Number()), this_index, this_control); } // Convert the {index} to an unsigned32 value and check if the result is // equal to the original {index}. if (!NumberMatcher(this_index).IsInRange(0.0, kMaxUInt32)) { Node* this_index32 = graph()->NewNode(simplified()->NumberToUint32(), this_index); Node* check = graph()->NewNode(simplified()->NumberEqual(), this_index32, this_index); Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue), check, this_control); exit_controls.push_back(graph()->NewNode(common()->IfFalse(), branch)); this_control = graph()->NewNode(common()->IfTrue(), branch); this_index = this_index32; } // TODO(bmeurer): We currently specialize based on elements kind. We should // also be able to properly support strings and other JSObjects here. ElementsKind elements_kind = access_info.elements_kind(); // Load the elements for the {receiver}. Node* this_elements = this_effect = graph()->NewNode( simplified()->LoadField(AccessBuilder::ForJSObjectElements()), this_receiver, this_effect, this_control); // Don't try to store to a copy-on-write backing store. if (access_mode == AccessMode::kStore && IsFastSmiOrObjectElementsKind(elements_kind)) { Node* this_elements_map = this_effect = graph()->NewNode(simplified()->LoadField(AccessBuilder::ForMap()), this_elements, this_effect, this_control); check = graph()->NewNode( simplified()->ReferenceEqual(Type::Any()), this_elements_map, jsgraph()->HeapConstant(factory()->fixed_array_map())); branch = graph()->NewNode(common()->Branch(BranchHint::kTrue), check, this_control); exit_controls.push_back(graph()->NewNode(common()->IfFalse(), branch)); this_control = graph()->NewNode(common()->IfTrue(), branch); } // Load the length of the {receiver}. Node* this_length = this_effect = receiver_is_jsarray ? graph()->NewNode( simplified()->LoadField( AccessBuilder::ForJSArrayLength(elements_kind)), this_receiver, this_effect, this_control) : graph()->NewNode( simplified()->LoadField(AccessBuilder::ForFixedArrayLength()), this_elements, this_effect, this_control); // Check that the {index} is in the valid range for the {receiver}. Node* check = graph()->NewNode(simplified()->NumberLessThan(), this_index, this_length); Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue), check, this_control); exit_controls.push_back(graph()->NewNode(common()->IfFalse(), branch)); this_control = graph()->NewNode(common()->IfTrue(), branch); // Compute the element access. Type* element_type = Type::Any(); MachineType element_machine_type = MachineType::AnyTagged(); if (IsFastDoubleElementsKind(elements_kind)) { element_type = type_cache_.kFloat64; element_machine_type = MachineType::Float64(); } else if (IsFastSmiElementsKind(elements_kind)) { element_type = type_cache_.kSmi; } ElementAccess element_access = {kTaggedBase, FixedArray::kHeaderSize, element_type, element_machine_type}; // Access the actual element. // TODO(bmeurer): Refactor this into separate methods or even a separate // class that deals with the elements access. if (access_mode == AccessMode::kLoad) { // Compute the real element access type, which includes the hole in case // of holey backing stores. if (elements_kind == FAST_HOLEY_ELEMENTS || elements_kind == FAST_HOLEY_SMI_ELEMENTS) { element_access.type = Type::Union( element_type, Type::Constant(factory()->the_hole_value(), graph()->zone()), graph()->zone()); } // Perform the actual backing store access. this_value = this_effect = graph()->NewNode( simplified()->LoadElement(element_access), this_elements, this_index, this_effect, this_control); // Handle loading from holey backing stores correctly, by either mapping // the hole to undefined if possible, or deoptimizing otherwise. if (elements_kind == FAST_HOLEY_ELEMENTS || elements_kind == FAST_HOLEY_SMI_ELEMENTS) { // Perform the hole check on the result. Node* check = graph()->NewNode(simplified()->ReferenceEqual(element_access.type), this_value, jsgraph()->TheHoleConstant()); Node* branch = graph()->NewNode(common()->Branch(BranchHint::kFalse), check, this_control); Node* if_true = graph()->NewNode(common()->IfTrue(), branch); Node* if_false = graph()->NewNode(common()->IfFalse(), branch); // Check if we are allowed to turn the hole into undefined. Type* initial_holey_array_type = Type::Class( handle(isolate()->get_initial_js_array_map(elements_kind)), graph()->zone()); if (receiver_type->NowIs(initial_holey_array_type) && isolate()->IsFastArrayConstructorPrototypeChainIntact()) { // Add a code dependency on the array protector cell. AssumePrototypesStable(receiver_type, native_context, isolate()->initial_object_prototype()); dependencies()->AssumePropertyCell(factory()->array_protector()); // Turn the hole into undefined. this_control = graph()->NewNode(common()->Merge(2), if_true, if_false); this_value = graph()->NewNode( common()->Phi(MachineRepresentation::kTagged, 2), jsgraph()->UndefinedConstant(), this_value, this_control); element_type = Type::Union(element_type, Type::Undefined(), graph()->zone()); } else { // Deoptimize in case of the hole. exit_controls.push_back(if_true); this_control = if_false; } // Rename the result to represent the actual type (not polluted by the // hole). this_value = graph()->NewNode(common()->Guard(element_type), this_value, this_control); } else if (elements_kind == FAST_HOLEY_DOUBLE_ELEMENTS) { // Perform the hole check on the result. Node* check = graph()->NewNode(simplified()->NumberIsHoleNaN(), this_value); // Check if we are allowed to return the hole directly. Type* initial_holey_array_type = Type::Class( handle(isolate()->get_initial_js_array_map(elements_kind)), graph()->zone()); if (receiver_type->NowIs(initial_holey_array_type) && isolate()->IsFastArrayConstructorPrototypeChainIntact()) { // Add a code dependency on the array protector cell. AssumePrototypesStable(receiver_type, native_context, isolate()->initial_object_prototype()); dependencies()->AssumePropertyCell(factory()->array_protector()); // Turn the hole into undefined. this_value = graph()->NewNode( common()->Select(MachineRepresentation::kTagged, BranchHint::kFalse), check, jsgraph()->UndefinedConstant(), this_value); } else { // Deoptimize in case of the hole. Node* branch = graph()->NewNode(common()->Branch(BranchHint::kFalse), check, this_control); this_control = graph()->NewNode(common()->IfFalse(), branch); exit_controls.push_back(graph()->NewNode(common()->IfTrue(), branch)); } } } else { DCHECK_EQ(AccessMode::kStore, access_mode); if (IsFastSmiElementsKind(elements_kind)) { Node* check = graph()->NewNode(simplified()->ObjectIsSmi(), this_value); Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue), check, this_control); exit_controls.push_back(graph()->NewNode(common()->IfFalse(), branch)); this_control = graph()->NewNode(common()->IfTrue(), branch); this_value = graph()->NewNode(common()->Guard(type_cache_.kSmi), this_value, this_control); } else if (IsFastDoubleElementsKind(elements_kind)) { Node* check = graph()->NewNode(simplified()->ObjectIsNumber(), this_value); Node* branch = graph()->NewNode(common()->Branch(BranchHint::kTrue), check, this_control); exit_controls.push_back(graph()->NewNode(common()->IfFalse(), branch)); this_control = graph()->NewNode(common()->IfTrue(), branch); this_value = graph()->NewNode(common()->Guard(Type::Number()), this_value, this_control); } this_effect = graph()->NewNode(simplified()->StoreElement(element_access), this_elements, this_index, this_value, this_effect, this_control); } // Remember the final state for this element access. values.push_back(this_value); effects.push_back(this_effect); controls.push_back(this_control); } // Collect the fallthrough control as final "exit" control. if (fallthrough_control != control) { // Mark the last fallthrough branch as deferred. MarkAsDeferred(fallthrough_control); } exit_controls.push_back(fallthrough_control); // Generate the single "exit" point, where we get if either all map/instance // type checks failed, or one of the assumptions inside one of the cases // failes (i.e. failing prototype chain check). // TODO(bmeurer): Consider falling back to IC here if deoptimization is // disabled. int const exit_control_count = static_cast<int>(exit_controls.size()); Node* exit_control = (exit_control_count == 1) ? exit_controls.front() : graph()->NewNode(common()->Merge(exit_control_count), exit_control_count, &exit_controls.front()); Node* deoptimize = graph()->NewNode(common()->Deoptimize(DeoptimizeKind::kEager), frame_state, exit_effect, exit_control); // TODO(bmeurer): This should be on the AdvancedReducer somehow. NodeProperties::MergeControlToEnd(graph(), common(), deoptimize); // Generate the final merge point for all (polymorphic) branches. int const control_count = static_cast<int>(controls.size()); if (control_count == 0) { value = effect = control = jsgraph()->Dead(); } else if (control_count == 1) { value = values.front(); effect = effects.front(); control = controls.front(); } else { control = graph()->NewNode(common()->Merge(control_count), control_count, &controls.front()); values.push_back(control); value = graph()->NewNode( common()->Phi(MachineRepresentation::kTagged, control_count), control_count + 1, &values.front()); effects.push_back(control); effect = graph()->NewNode(common()->EffectPhi(control_count), control_count + 1, &effects.front()); } ReplaceWithValue(node, value, effect, control); return Replace(value); } Reduction JSNativeContextSpecialization::ReduceKeyedAccess( Node* node, Node* index, Node* value, FeedbackNexus const& nexus, AccessMode access_mode, LanguageMode language_mode, KeyedAccessStoreMode store_mode) { DCHECK(node->opcode() == IrOpcode::kJSLoadProperty || node->opcode() == IrOpcode::kJSStoreProperty); // Extract receiver maps from the {nexus}. MapHandleList receiver_maps; if (nexus.ExtractMaps(&receiver_maps) == 0) return NoChange(); DCHECK_LT(0, receiver_maps.length()); // Optimize access for constant {index}. HeapObjectMatcher mindex(index); if (mindex.HasValue() && mindex.Value()->IsPrimitive()) { // Keyed access requires a ToPropertyKey on the {index} first before // looking up the property on the object (see ES6 section 12.3.2.1). // We can only do this for non-observable ToPropertyKey invocations, // so we limit the constant indices to primitives at this point. Handle<Name> name; if (Object::ToName(isolate(), mindex.Value()).ToHandle(&name)) { uint32_t array_index; if (name->AsArrayIndex(&array_index)) { // Use the constant array index. index = jsgraph()->Constant(static_cast<double>(array_index)); } else { name = factory()->InternalizeName(name); return ReduceNamedAccess(node, value, receiver_maps, name, access_mode, language_mode); } } } // Check if we have feedback for a named access. if (Name* name = nexus.FindFirstName()) { return ReduceNamedAccess(node, value, receiver_maps, handle(name, isolate()), access_mode, language_mode, index); } // Try to lower the element access based on the {receiver_maps}. return ReduceElementAccess(node, index, value, receiver_maps, access_mode, language_mode, store_mode); } Reduction JSNativeContextSpecialization::ReduceJSLoadProperty(Node* node) { DCHECK_EQ(IrOpcode::kJSLoadProperty, node->opcode()); PropertyAccess const& p = PropertyAccessOf(node->op()); Node* const index = NodeProperties::GetValueInput(node, 1); Node* const value = jsgraph()->Dead(); // Extract receiver maps from the KEYED_LOAD_IC using the KeyedLoadICNexus. if (!p.feedback().IsValid()) return NoChange(); KeyedLoadICNexus nexus(p.feedback().vector(), p.feedback().slot()); // Try to lower the keyed access based on the {nexus}. return ReduceKeyedAccess(node, index, value, nexus, AccessMode::kLoad, p.language_mode(), STANDARD_STORE); } Reduction JSNativeContextSpecialization::ReduceJSStoreProperty(Node* node) { DCHECK_EQ(IrOpcode::kJSStoreProperty, node->opcode()); PropertyAccess const& p = PropertyAccessOf(node->op()); Node* const index = NodeProperties::GetValueInput(node, 1); Node* const value = NodeProperties::GetValueInput(node, 2); // Extract receiver maps from the KEYED_STORE_IC using the KeyedStoreICNexus. if (!p.feedback().IsValid()) return NoChange(); KeyedStoreICNexus nexus(p.feedback().vector(), p.feedback().slot()); // Extract the keyed access store mode from the KEYED_STORE_IC. KeyedAccessStoreMode store_mode = nexus.GetKeyedAccessStoreMode(); // Try to lower the keyed access based on the {nexus}. return ReduceKeyedAccess(node, index, value, nexus, AccessMode::kStore, p.language_mode(), store_mode); } void JSNativeContextSpecialization::AssumePrototypesStable( Type* receiver_type, Handle<Context> native_context, Handle<JSObject> holder) { // Determine actual holder and perform prototype chain checks. for (auto i = receiver_type->Classes(); !i.Done(); i.Advance()) { Handle<Map> map = i.Current(); // Perform the implicit ToObject for primitives here. // Implemented according to ES6 section 7.3.2 GetV (V, P). Handle<JSFunction> constructor; if (Map::GetConstructorFunction(map, native_context) .ToHandle(&constructor)) { map = handle(constructor->initial_map(), isolate()); } dependencies()->AssumePrototypeMapsStable(map, holder); } } void JSNativeContextSpecialization::MarkAsDeferred(Node* if_projection) { Node* branch = NodeProperties::GetControlInput(if_projection); DCHECK_EQ(IrOpcode::kBranch, branch->opcode()); if (if_projection->opcode() == IrOpcode::kIfTrue) { NodeProperties::ChangeOp(branch, common()->Branch(BranchHint::kFalse)); } else { DCHECK_EQ(IrOpcode::kIfFalse, if_projection->opcode()); NodeProperties::ChangeOp(branch, common()->Branch(BranchHint::kTrue)); } } MaybeHandle<Context> JSNativeContextSpecialization::GetNativeContext( Node* node) { Node* const context = NodeProperties::GetContextInput(node); return NodeProperties::GetSpecializationNativeContext(context, native_context()); } Graph* JSNativeContextSpecialization::graph() const { return jsgraph()->graph(); } Isolate* JSNativeContextSpecialization::isolate() const { return jsgraph()->isolate(); } Factory* JSNativeContextSpecialization::factory() const { return isolate()->factory(); } MachineOperatorBuilder* JSNativeContextSpecialization::machine() const { return jsgraph()->machine(); } CommonOperatorBuilder* JSNativeContextSpecialization::common() const { return jsgraph()->common(); } JSOperatorBuilder* JSNativeContextSpecialization::javascript() const { return jsgraph()->javascript(); } SimplifiedOperatorBuilder* JSNativeContextSpecialization::simplified() const { return jsgraph()->simplified(); } } // namespace compiler } // namespace internal } // namespace v8