// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/incremental-marking.h" #include "src/code-stubs.h" #include "src/compilation-cache.h" #include "src/conversions.h" #include "src/heap/gc-idle-time-handler.h" #include "src/heap/gc-tracer.h" #include "src/heap/mark-compact-inl.h" #include "src/heap/objects-visiting.h" #include "src/heap/objects-visiting-inl.h" #include "src/v8.h" namespace v8 { namespace internal { IncrementalMarking::StepActions IncrementalMarking::IdleStepActions() { return StepActions(IncrementalMarking::NO_GC_VIA_STACK_GUARD, IncrementalMarking::FORCE_MARKING, IncrementalMarking::DO_NOT_FORCE_COMPLETION); } IncrementalMarking::IncrementalMarking(Heap* heap) : heap_(heap), observer_(*this, kAllocatedThreshold), state_(STOPPED), is_compacting_(false), steps_count_(0), old_generation_space_available_at_start_of_incremental_(0), old_generation_space_used_at_start_of_incremental_(0), bytes_rescanned_(0), should_hurry_(false), marking_speed_(0), bytes_scanned_(0), allocated_(0), write_barriers_invoked_since_last_step_(0), idle_marking_delay_counter_(0), no_marking_scope_depth_(0), unscanned_bytes_of_large_object_(0), was_activated_(false), finalize_marking_completed_(false), incremental_marking_finalization_rounds_(0), request_type_(COMPLETE_MARKING) {} bool IncrementalMarking::BaseRecordWrite(HeapObject* obj, Object* value) { HeapObject* value_heap_obj = HeapObject::cast(value); MarkBit value_bit = Marking::MarkBitFrom(value_heap_obj); DCHECK(!Marking::IsImpossible(value_bit)); MarkBit obj_bit = Marking::MarkBitFrom(obj); DCHECK(!Marking::IsImpossible(obj_bit)); bool is_black = Marking::IsBlack(obj_bit); if (is_black && Marking::IsWhite(value_bit)) { WhiteToGreyAndPush(value_heap_obj, value_bit); RestartIfNotMarking(); } return is_compacting_ && is_black; } void IncrementalMarking::RecordWriteSlow(HeapObject* obj, Object** slot, Object* value) { if (BaseRecordWrite(obj, value) && slot != NULL) { // Object is not going to be rescanned we need to record the slot. heap_->mark_compact_collector()->RecordSlot(obj, slot, value); } } void IncrementalMarking::RecordWriteFromCode(HeapObject* obj, Object** slot, Isolate* isolate) { DCHECK(obj->IsHeapObject()); IncrementalMarking* marking = isolate->heap()->incremental_marking(); MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); int counter = chunk->write_barrier_counter(); if (counter < (MemoryChunk::kWriteBarrierCounterGranularity / 2)) { marking->write_barriers_invoked_since_last_step_ += MemoryChunk::kWriteBarrierCounterGranularity - chunk->write_barrier_counter(); chunk->set_write_barrier_counter( MemoryChunk::kWriteBarrierCounterGranularity); } marking->RecordWrite(obj, slot, *slot); } void IncrementalMarking::RecordCodeTargetPatch(Code* host, Address pc, HeapObject* value) { if (IsMarking()) { RelocInfo rinfo(heap_->isolate(), pc, RelocInfo::CODE_TARGET, 0, host); RecordWriteIntoCode(host, &rinfo, value); } } void IncrementalMarking::RecordCodeTargetPatch(Address pc, HeapObject* value) { if (IsMarking()) { Code* host = heap_->isolate() ->inner_pointer_to_code_cache() ->GcSafeFindCodeForInnerPointer(pc); RelocInfo rinfo(heap_->isolate(), pc, RelocInfo::CODE_TARGET, 0, host); RecordWriteIntoCode(host, &rinfo, value); } } void IncrementalMarking::RecordWriteOfCodeEntrySlow(JSFunction* host, Object** slot, Code* value) { if (BaseRecordWrite(host, value)) { DCHECK(slot != NULL); heap_->mark_compact_collector()->RecordCodeEntrySlot( host, reinterpret_cast
(slot), value); } } void IncrementalMarking::RecordWriteIntoCodeSlow(HeapObject* obj, RelocInfo* rinfo, Object* value) { if (BaseRecordWrite(obj, value)) { // Object is not going to be rescanned. We need to record the slot. heap_->mark_compact_collector()->RecordRelocSlot(rinfo, Code::cast(value)); } } void IncrementalMarking::RecordWrites(HeapObject* obj) { if (IsMarking()) { MarkBit obj_bit = Marking::MarkBitFrom(obj); if (Marking::IsBlack(obj_bit)) { MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); if (chunk->IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR)) { chunk->set_progress_bar(0); } BlackToGreyAndUnshift(obj, obj_bit); RestartIfNotMarking(); } } } void IncrementalMarking::BlackToGreyAndUnshift(HeapObject* obj, MarkBit mark_bit) { DCHECK(Marking::MarkBitFrom(obj) == mark_bit); DCHECK(obj->Size() >= 2 * kPointerSize); DCHECK(IsMarking()); Marking::BlackToGrey(mark_bit); int obj_size = obj->Size(); MemoryChunk::IncrementLiveBytesFromGC(obj, -obj_size); bytes_scanned_ -= obj_size; int64_t old_bytes_rescanned = bytes_rescanned_; bytes_rescanned_ = old_bytes_rescanned + obj_size; if ((bytes_rescanned_ >> 20) != (old_bytes_rescanned >> 20)) { if (bytes_rescanned_ > 2 * heap_->PromotedSpaceSizeOfObjects()) { // If we have queued twice the heap size for rescanning then we are // going around in circles, scanning the same objects again and again // as the program mutates the heap faster than we can incrementally // trace it. In this case we switch to non-incremental marking in // order to finish off this marking phase. if (FLAG_trace_incremental_marking) { PrintIsolate( heap()->isolate(), "Hurrying incremental marking because of lack of progress\n"); } marking_speed_ = kMaxMarkingSpeed; } } heap_->mark_compact_collector()->marking_deque()->Unshift(obj); } void IncrementalMarking::WhiteToGreyAndPush(HeapObject* obj, MarkBit mark_bit) { Marking::WhiteToGrey(mark_bit); heap_->mark_compact_collector()->marking_deque()->Push(obj); } static void MarkObjectGreyDoNotEnqueue(Object* obj) { if (obj->IsHeapObject()) { HeapObject* heap_obj = HeapObject::cast(obj); MarkBit mark_bit = Marking::MarkBitFrom(HeapObject::cast(obj)); if (Marking::IsBlack(mark_bit)) { MemoryChunk::IncrementLiveBytesFromGC(heap_obj, -heap_obj->Size()); } Marking::AnyToGrey(mark_bit); } } static inline void MarkBlackOrKeepBlack(HeapObject* heap_object, MarkBit mark_bit, int size) { DCHECK(!Marking::IsImpossible(mark_bit)); if (Marking::IsBlack(mark_bit)) return; Marking::MarkBlack(mark_bit); MemoryChunk::IncrementLiveBytesFromGC(heap_object, size); } class IncrementalMarkingMarkingVisitor : public StaticMarkingVisitor { public: static void Initialize() { StaticMarkingVisitor::Initialize(); table_.Register(kVisitFixedArray, &VisitFixedArrayIncremental); table_.Register(kVisitNativeContext, &VisitNativeContextIncremental); table_.Register(kVisitJSRegExp, &VisitJSRegExp); } static const int kProgressBarScanningChunk = 32 * 1024; static void VisitFixedArrayIncremental(Map* map, HeapObject* object) { MemoryChunk* chunk = MemoryChunk::FromAddress(object->address()); // TODO(mstarzinger): Move setting of the flag to the allocation site of // the array. The visitor should just check the flag. if (FLAG_use_marking_progress_bar && chunk->owner()->identity() == LO_SPACE) { chunk->SetFlag(MemoryChunk::HAS_PROGRESS_BAR); } if (chunk->IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR)) { Heap* heap = map->GetHeap(); // When using a progress bar for large fixed arrays, scan only a chunk of // the array and try to push it onto the marking deque again until it is // fully scanned. Fall back to scanning it through to the end in case this // fails because of a full deque. int object_size = FixedArray::BodyDescriptor::SizeOf(map, object); int start_offset = Max(FixedArray::BodyDescriptor::kStartOffset, chunk->progress_bar()); int end_offset = Min(object_size, start_offset + kProgressBarScanningChunk); int already_scanned_offset = start_offset; bool scan_until_end = false; do { VisitPointers(heap, object, HeapObject::RawField(object, start_offset), HeapObject::RawField(object, end_offset)); start_offset = end_offset; end_offset = Min(object_size, end_offset + kProgressBarScanningChunk); scan_until_end = heap->mark_compact_collector()->marking_deque()->IsFull(); } while (scan_until_end && start_offset < object_size); chunk->set_progress_bar(start_offset); if (start_offset < object_size) { if (Marking::IsGrey(Marking::MarkBitFrom(object))) { heap->mark_compact_collector()->marking_deque()->Unshift(object); } else { DCHECK(Marking::IsBlack(Marking::MarkBitFrom(object))); heap->mark_compact_collector()->UnshiftBlack(object); } heap->incremental_marking()->NotifyIncompleteScanOfObject( object_size - (start_offset - already_scanned_offset)); } } else { FixedArrayVisitor::Visit(map, object); } } static void VisitNativeContextIncremental(Map* map, HeapObject* object) { Context* context = Context::cast(object); // We will mark cache black with a separate pass when we finish marking. // Note that GC can happen when the context is not fully initialized, // so the cache can be undefined. Object* cache = context->get(Context::NORMALIZED_MAP_CACHE_INDEX); if (!cache->IsUndefined()) { MarkObjectGreyDoNotEnqueue(cache); } VisitNativeContext(map, context); } INLINE(static void VisitPointer(Heap* heap, HeapObject* object, Object** p)) { Object* target = *p; if (target->IsHeapObject()) { heap->mark_compact_collector()->RecordSlot(object, p, target); MarkObject(heap, target); } } INLINE(static void VisitPointers(Heap* heap, HeapObject* object, Object** start, Object** end)) { for (Object** p = start; p < end; p++) { Object* target = *p; if (target->IsHeapObject()) { heap->mark_compact_collector()->RecordSlot(object, p, target); MarkObject(heap, target); } } } // Marks the object grey and pushes it on the marking stack. INLINE(static void MarkObject(Heap* heap, Object* obj)) { IncrementalMarking::MarkObject(heap, HeapObject::cast(obj)); } // Marks the object black without pushing it on the marking stack. // Returns true if object needed marking and false otherwise. INLINE(static bool MarkObjectWithoutPush(Heap* heap, Object* obj)) { HeapObject* heap_object = HeapObject::cast(obj); MarkBit mark_bit = Marking::MarkBitFrom(heap_object); if (Marking::IsWhite(mark_bit)) { Marking::MarkBlack(mark_bit); MemoryChunk::IncrementLiveBytesFromGC(heap_object, heap_object->Size()); return true; } return false; } }; class IncrementalMarkingRootMarkingVisitor : public ObjectVisitor { public: explicit IncrementalMarkingRootMarkingVisitor( IncrementalMarking* incremental_marking) : heap_(incremental_marking->heap()) {} void VisitPointer(Object** p) override { MarkObjectByPointer(p); } void VisitPointers(Object** start, Object** end) override { for (Object** p = start; p < end; p++) MarkObjectByPointer(p); } private: void MarkObjectByPointer(Object** p) { Object* obj = *p; if (!obj->IsHeapObject()) return; IncrementalMarking::MarkObject(heap_, HeapObject::cast(obj)); } Heap* heap_; }; void IncrementalMarking::Initialize() { IncrementalMarkingMarkingVisitor::Initialize(); } void IncrementalMarking::SetOldSpacePageFlags(MemoryChunk* chunk, bool is_marking, bool is_compacting) { if (is_marking) { chunk->SetFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING); chunk->SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING); } else { chunk->ClearFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING); chunk->SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING); } } void IncrementalMarking::SetNewSpacePageFlags(MemoryChunk* chunk, bool is_marking) { chunk->SetFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING); if (is_marking) { chunk->SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING); } else { chunk->ClearFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING); } chunk->SetFlag(MemoryChunk::SCAN_ON_SCAVENGE); } void IncrementalMarking::DeactivateIncrementalWriteBarrierForSpace( PagedSpace* space) { PageIterator it(space); while (it.has_next()) { Page* p = it.next(); SetOldSpacePageFlags(p, false, false); } } void IncrementalMarking::DeactivateIncrementalWriteBarrierForSpace( NewSpace* space) { NewSpacePageIterator it(space); while (it.has_next()) { NewSpacePage* p = it.next(); SetNewSpacePageFlags(p, false); } } void IncrementalMarking::DeactivateIncrementalWriteBarrier() { DeactivateIncrementalWriteBarrierForSpace(heap_->old_space()); DeactivateIncrementalWriteBarrierForSpace(heap_->map_space()); DeactivateIncrementalWriteBarrierForSpace(heap_->code_space()); DeactivateIncrementalWriteBarrierForSpace(heap_->new_space()); LargePage* lop = heap_->lo_space()->first_page(); while (lop->is_valid()) { SetOldSpacePageFlags(lop, false, false); lop = lop->next_page(); } } void IncrementalMarking::ActivateIncrementalWriteBarrier(PagedSpace* space) { PageIterator it(space); while (it.has_next()) { Page* p = it.next(); SetOldSpacePageFlags(p, true, is_compacting_); } } void IncrementalMarking::ActivateIncrementalWriteBarrier(NewSpace* space) { NewSpacePageIterator it(space->ToSpaceStart(), space->ToSpaceEnd()); while (it.has_next()) { NewSpacePage* p = it.next(); SetNewSpacePageFlags(p, true); } } void IncrementalMarking::ActivateIncrementalWriteBarrier() { ActivateIncrementalWriteBarrier(heap_->old_space()); ActivateIncrementalWriteBarrier(heap_->map_space()); ActivateIncrementalWriteBarrier(heap_->code_space()); ActivateIncrementalWriteBarrier(heap_->new_space()); LargePage* lop = heap_->lo_space()->first_page(); while (lop->is_valid()) { SetOldSpacePageFlags(lop, true, is_compacting_); lop = lop->next_page(); } } bool IncrementalMarking::ShouldActivateEvenWithoutIdleNotification() { return CanBeActivated() && heap_->HeapIsFullEnoughToStartIncrementalMarking( heap_->old_generation_allocation_limit()); } bool IncrementalMarking::WasActivated() { return was_activated_; } bool IncrementalMarking::CanBeActivated() { #ifndef DEBUG static const intptr_t kActivationThreshold = 8 * MB; #else // TODO(gc) consider setting this to some low level so that some // debug tests run with incremental marking and some without. static const intptr_t kActivationThreshold = 0; #endif // Only start incremental marking in a safe state: 1) when incremental // marking is turned on, 2) when we are currently not in a GC, and // 3) when we are currently not serializing or deserializing the heap. // Don't switch on for very small heaps. return FLAG_incremental_marking && heap_->gc_state() == Heap::NOT_IN_GC && heap_->deserialization_complete() && !heap_->isolate()->serializer_enabled() && heap_->PromotedSpaceSizeOfObjects() > kActivationThreshold; } void IncrementalMarking::ActivateGeneratedStub(Code* stub) { DCHECK(RecordWriteStub::GetMode(stub) == RecordWriteStub::STORE_BUFFER_ONLY); if (!IsMarking()) { // Initially stub is generated in STORE_BUFFER_ONLY mode thus // we don't need to do anything if incremental marking is // not active. } else if (IsCompacting()) { RecordWriteStub::Patch(stub, RecordWriteStub::INCREMENTAL_COMPACTION); } else { RecordWriteStub::Patch(stub, RecordWriteStub::INCREMENTAL); } } void IncrementalMarking::NotifyOfHighPromotionRate() { if (IsMarking()) { if (marking_speed_ < kFastMarking) { if (FLAG_trace_gc) { PrintIsolate(heap()->isolate(), "Increasing marking speed to %d " "due to high promotion rate\n", static_cast(kFastMarking)); } marking_speed_ = kFastMarking; } } } static void PatchIncrementalMarkingRecordWriteStubs( Heap* heap, RecordWriteStub::Mode mode) { UnseededNumberDictionary* stubs = heap->code_stubs(); int capacity = stubs->Capacity(); for (int i = 0; i < capacity; i++) { Object* k = stubs->KeyAt(i); if (stubs->IsKey(k)) { uint32_t key = NumberToUint32(k); if (CodeStub::MajorKeyFromKey(key) == CodeStub::RecordWrite) { Object* e = stubs->ValueAt(i); if (e->IsCode()) { RecordWriteStub::Patch(Code::cast(e), mode); } } } } } void IncrementalMarking::Start(const char* reason) { if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Start (%s)\n", (reason == nullptr) ? "unknown reason" : reason); } DCHECK(FLAG_incremental_marking); DCHECK(state_ == STOPPED); DCHECK(heap_->gc_state() == Heap::NOT_IN_GC); DCHECK(!heap_->isolate()->serializer_enabled()); HistogramTimerScope incremental_marking_scope( heap_->isolate()->counters()->gc_incremental_marking_start()); ResetStepCounters(); was_activated_ = true; if (!heap_->mark_compact_collector()->sweeping_in_progress()) { StartMarking(); } else { if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Start sweeping.\n"); } state_ = SWEEPING; } heap_->new_space()->AddInlineAllocationObserver(&observer_); incremental_marking_job()->Start(heap_); } void IncrementalMarking::StartMarking() { if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Start marking\n"); } is_compacting_ = !FLAG_never_compact && heap_->mark_compact_collector()->StartCompaction( MarkCompactCollector::INCREMENTAL_COMPACTION); state_ = MARKING; RecordWriteStub::Mode mode = is_compacting_ ? RecordWriteStub::INCREMENTAL_COMPACTION : RecordWriteStub::INCREMENTAL; PatchIncrementalMarkingRecordWriteStubs(heap_, mode); heap_->mark_compact_collector()->EnsureMarkingDequeIsCommittedAndInitialize( MarkCompactCollector::kMaxMarkingDequeSize); ActivateIncrementalWriteBarrier(); // Marking bits are cleared by the sweeper. #ifdef VERIFY_HEAP if (FLAG_verify_heap) { heap_->mark_compact_collector()->VerifyMarkbitsAreClean(); } #endif heap_->CompletelyClearInstanceofCache(); heap_->isolate()->compilation_cache()->MarkCompactPrologue(); if (FLAG_cleanup_code_caches_at_gc) { // We will mark cache black with a separate pass // when we finish marking. MarkObjectGreyDoNotEnqueue(heap_->polymorphic_code_cache()); } // Mark strong roots grey. IncrementalMarkingRootMarkingVisitor visitor(this); heap_->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG); // Ready to start incremental marking. if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Running\n"); } } void IncrementalMarking::MarkRoots() { DCHECK(!finalize_marking_completed_); DCHECK(IsMarking()); IncrementalMarkingRootMarkingVisitor visitor(this); heap_->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG); } void IncrementalMarking::MarkObjectGroups() { DCHECK(!finalize_marking_completed_); DCHECK(IsMarking()); IncrementalMarkingRootMarkingVisitor visitor(this); heap_->mark_compact_collector()->MarkImplicitRefGroups(&MarkObject); heap_->isolate()->global_handles()->IterateObjectGroups( &visitor, &MarkCompactCollector::IsUnmarkedHeapObjectWithHeap); heap_->isolate()->global_handles()->RemoveImplicitRefGroups(); heap_->isolate()->global_handles()->RemoveObjectGroups(); } void IncrementalMarking::ProcessWeakCells() { DCHECK(!finalize_marking_completed_); DCHECK(IsMarking()); Object* the_hole_value = heap()->the_hole_value(); Object* weak_cell_obj = heap()->encountered_weak_cells(); Object* weak_cell_head = Smi::FromInt(0); WeakCell* prev_weak_cell_obj = NULL; while (weak_cell_obj != Smi::FromInt(0)) { WeakCell* weak_cell = reinterpret_cast(weak_cell_obj); // We do not insert cleared weak cells into the list, so the value // cannot be a Smi here. HeapObject* value = HeapObject::cast(weak_cell->value()); // Remove weak cells with live objects from the list, they do not need // clearing. if (MarkCompactCollector::IsMarked(value)) { // Record slot, if value is pointing to an evacuation candidate. Object** slot = HeapObject::RawField(weak_cell, WeakCell::kValueOffset); heap_->mark_compact_collector()->RecordSlot(weak_cell, slot, *slot); // Remove entry somewhere after top. if (prev_weak_cell_obj != NULL) { prev_weak_cell_obj->set_next(weak_cell->next()); } weak_cell_obj = weak_cell->next(); weak_cell->clear_next(the_hole_value); } else { if (weak_cell_head == Smi::FromInt(0)) { weak_cell_head = weak_cell; } prev_weak_cell_obj = weak_cell; weak_cell_obj = weak_cell->next(); } } // Top may have changed. heap()->set_encountered_weak_cells(weak_cell_head); } bool ShouldRetainMap(Map* map, int age) { if (age == 0) { // The map has aged. Do not retain this map. return false; } Object* constructor = map->GetConstructor(); if (!constructor->IsHeapObject() || Marking::IsWhite(Marking::MarkBitFrom(HeapObject::cast(constructor)))) { // The constructor is dead, no new objects with this map can // be created. Do not retain this map. return false; } return true; } void IncrementalMarking::RetainMaps() { // Do not retain dead maps if flag disables it or there is // - memory pressure (reduce_memory_footprint_), // - GC is requested by tests or dev-tools (abort_incremental_marking_). bool map_retaining_is_disabled = heap()->ShouldReduceMemory() || heap()->ShouldAbortIncrementalMarking() || FLAG_retain_maps_for_n_gc == 0; ArrayList* retained_maps = heap()->retained_maps(); int length = retained_maps->Length(); // The number_of_disposed_maps separates maps in the retained_maps // array that were created before and after context disposal. // We do not age and retain disposed maps to avoid memory leaks. int number_of_disposed_maps = heap()->number_of_disposed_maps_; for (int i = 0; i < length; i += 2) { DCHECK(retained_maps->Get(i)->IsWeakCell()); WeakCell* cell = WeakCell::cast(retained_maps->Get(i)); if (cell->cleared()) continue; int age = Smi::cast(retained_maps->Get(i + 1))->value(); int new_age; Map* map = Map::cast(cell->value()); MarkBit map_mark = Marking::MarkBitFrom(map); if (i >= number_of_disposed_maps && !map_retaining_is_disabled && Marking::IsWhite(map_mark)) { if (ShouldRetainMap(map, age)) { MarkObject(heap(), map); } Object* prototype = map->prototype(); if (age > 0 && prototype->IsHeapObject() && Marking::IsWhite(Marking::MarkBitFrom(HeapObject::cast(prototype)))) { // The prototype is not marked, age the map. new_age = age - 1; } else { // The prototype and the constructor are marked, this map keeps only // transition tree alive, not JSObjects. Do not age the map. new_age = age; } } else { new_age = FLAG_retain_maps_for_n_gc; } // Compact the array and update the age. if (new_age != age) { retained_maps->Set(i + 1, Smi::FromInt(new_age)); } } } void IncrementalMarking::FinalizeIncrementally() { DCHECK(!finalize_marking_completed_); DCHECK(IsMarking()); double start = heap_->MonotonicallyIncreasingTimeInMs(); int old_marking_deque_top = heap_->mark_compact_collector()->marking_deque()->top(); // After finishing incremental marking, we try to discover all unmarked // objects to reduce the marking load in the final pause. // 1) We scan and mark the roots again to find all changes to the root set. // 2) We mark the object groups. // 3) Age and retain maps embedded in optimized code. // 4) Remove weak cell with live values from the list of weak cells, they // do not need processing during GC. MarkRoots(); MarkObjectGroups(); if (incremental_marking_finalization_rounds_ == 0) { // Map retaining is needed for perfromance, not correctness, // so we can do it only once at the beginning of the finalization. RetainMaps(); } ProcessWeakCells(); int marking_progress = abs(old_marking_deque_top - heap_->mark_compact_collector()->marking_deque()->top()); double end = heap_->MonotonicallyIncreasingTimeInMs(); double delta = end - start; heap_->tracer()->AddMarkingTime(delta); heap_->tracer()->AddIncrementalMarkingFinalizationStep(delta); if (FLAG_trace_incremental_marking) { PrintF( "[IncrementalMarking] Finalize incrementally round %d, " "spent %d ms, marking progress %d.\n", static_cast(delta), incremental_marking_finalization_rounds_, marking_progress); } ++incremental_marking_finalization_rounds_; if ((incremental_marking_finalization_rounds_ >= FLAG_max_incremental_marking_finalization_rounds) || (marking_progress < FLAG_min_progress_during_incremental_marking_finalization)) { finalize_marking_completed_ = true; } } void IncrementalMarking::UpdateMarkingDequeAfterScavenge() { if (!IsMarking()) return; MarkingDeque* marking_deque = heap_->mark_compact_collector()->marking_deque(); int current = marking_deque->bottom(); int mask = marking_deque->mask(); int limit = marking_deque->top(); HeapObject** array = marking_deque->array(); int new_top = current; Map* filler_map = heap_->one_pointer_filler_map(); while (current != limit) { HeapObject* obj = array[current]; DCHECK(obj->IsHeapObject()); current = ((current + 1) & mask); if (heap_->InNewSpace(obj)) { MapWord map_word = obj->map_word(); if (map_word.IsForwardingAddress()) { HeapObject* dest = map_word.ToForwardingAddress(); array[new_top] = dest; new_top = ((new_top + 1) & mask); DCHECK(new_top != marking_deque->bottom()); #ifdef DEBUG MarkBit mark_bit = Marking::MarkBitFrom(obj); DCHECK(Marking::IsGrey(mark_bit) || (obj->IsFiller() && Marking::IsWhite(mark_bit))); #endif } } else if (obj->map() != filler_map) { // Skip one word filler objects that appear on the // stack when we perform in place array shift. array[new_top] = obj; new_top = ((new_top + 1) & mask); DCHECK(new_top != marking_deque->bottom()); #ifdef DEBUG MarkBit mark_bit = Marking::MarkBitFrom(obj); MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); DCHECK(Marking::IsGrey(mark_bit) || (obj->IsFiller() && Marking::IsWhite(mark_bit)) || (chunk->IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR) && Marking::IsBlack(mark_bit))); #endif } } marking_deque->set_top(new_top); } void IncrementalMarking::VisitObject(Map* map, HeapObject* obj, int size) { MarkObject(heap_, map); IncrementalMarkingMarkingVisitor::IterateBody(map, obj); MarkBit mark_bit = Marking::MarkBitFrom(obj); #if ENABLE_SLOW_DCHECKS MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); SLOW_DCHECK(Marking::IsGrey(mark_bit) || (obj->IsFiller() && Marking::IsWhite(mark_bit)) || (chunk->IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR) && Marking::IsBlack(mark_bit))); #endif MarkBlackOrKeepBlack(obj, mark_bit, size); } void IncrementalMarking::MarkObject(Heap* heap, HeapObject* obj) { MarkBit mark_bit = Marking::MarkBitFrom(obj); if (Marking::IsWhite(mark_bit)) { heap->incremental_marking()->WhiteToGreyAndPush(obj, mark_bit); } } intptr_t IncrementalMarking::ProcessMarkingDeque(intptr_t bytes_to_process) { intptr_t bytes_processed = 0; Map* filler_map = heap_->one_pointer_filler_map(); MarkingDeque* marking_deque = heap_->mark_compact_collector()->marking_deque(); while (!marking_deque->IsEmpty() && bytes_processed < bytes_to_process) { HeapObject* obj = marking_deque->Pop(); // Explicitly skip one word fillers. Incremental markbit patterns are // correct only for objects that occupy at least two words. Map* map = obj->map(); if (map == filler_map) continue; int size = obj->SizeFromMap(map); unscanned_bytes_of_large_object_ = 0; VisitObject(map, obj, size); bytes_processed += size - unscanned_bytes_of_large_object_; } return bytes_processed; } void IncrementalMarking::ProcessMarkingDeque() { Map* filler_map = heap_->one_pointer_filler_map(); MarkingDeque* marking_deque = heap_->mark_compact_collector()->marking_deque(); while (!marking_deque->IsEmpty()) { HeapObject* obj = marking_deque->Pop(); // Explicitly skip one word fillers. Incremental markbit patterns are // correct only for objects that occupy at least two words. Map* map = obj->map(); if (map == filler_map) continue; VisitObject(map, obj, obj->SizeFromMap(map)); } } void IncrementalMarking::Hurry() { if (state() == MARKING) { double start = 0.0; if (FLAG_trace_incremental_marking || FLAG_print_cumulative_gc_stat) { start = heap_->MonotonicallyIncreasingTimeInMs(); if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Hurry\n"); } } // TODO(gc) hurry can mark objects it encounters black as mutator // was stopped. ProcessMarkingDeque(); state_ = COMPLETE; if (FLAG_trace_incremental_marking || FLAG_print_cumulative_gc_stat) { double end = heap_->MonotonicallyIncreasingTimeInMs(); double delta = end - start; heap_->tracer()->AddMarkingTime(delta); if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Complete (hurry), spent %d ms.\n", static_cast(delta)); } } } if (FLAG_cleanup_code_caches_at_gc) { PolymorphicCodeCache* poly_cache = heap_->polymorphic_code_cache(); Marking::GreyToBlack(Marking::MarkBitFrom(poly_cache)); MemoryChunk::IncrementLiveBytesFromGC(poly_cache, PolymorphicCodeCache::kSize); } Object* context = heap_->native_contexts_list(); while (!context->IsUndefined()) { // GC can happen when the context is not fully initialized, // so the cache can be undefined. HeapObject* cache = HeapObject::cast( Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX)); if (!cache->IsUndefined()) { MarkBit mark_bit = Marking::MarkBitFrom(cache); if (Marking::IsGrey(mark_bit)) { Marking::GreyToBlack(mark_bit); MemoryChunk::IncrementLiveBytesFromGC(cache, cache->Size()); } } context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK); } } void IncrementalMarking::Stop() { if (IsStopped()) return; if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Stopping.\n"); } heap_->new_space()->RemoveInlineAllocationObserver(&observer_); IncrementalMarking::set_should_hurry(false); ResetStepCounters(); if (IsMarking()) { PatchIncrementalMarkingRecordWriteStubs(heap_, RecordWriteStub::STORE_BUFFER_ONLY); DeactivateIncrementalWriteBarrier(); if (is_compacting_) { LargeObjectIterator it(heap_->lo_space()); for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { Page* p = Page::FromAddress(obj->address()); if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) { p->ClearFlag(Page::RESCAN_ON_EVACUATION); } } } } heap_->isolate()->stack_guard()->ClearGC(); state_ = STOPPED; is_compacting_ = false; } void IncrementalMarking::Finalize() { Hurry(); state_ = STOPPED; is_compacting_ = false; heap_->new_space()->RemoveInlineAllocationObserver(&observer_); IncrementalMarking::set_should_hurry(false); ResetStepCounters(); PatchIncrementalMarkingRecordWriteStubs(heap_, RecordWriteStub::STORE_BUFFER_ONLY); DeactivateIncrementalWriteBarrier(); DCHECK(heap_->mark_compact_collector()->marking_deque()->IsEmpty()); heap_->isolate()->stack_guard()->ClearGC(); } void IncrementalMarking::FinalizeMarking(CompletionAction action) { DCHECK(!finalize_marking_completed_); if (FLAG_trace_incremental_marking) { PrintF( "[IncrementalMarking] requesting finalization of incremental " "marking.\n"); } request_type_ = FINALIZATION; if (action == GC_VIA_STACK_GUARD) { heap_->isolate()->stack_guard()->RequestGC(); } } void IncrementalMarking::MarkingComplete(CompletionAction action) { state_ = COMPLETE; // We will set the stack guard to request a GC now. This will mean the rest // of the GC gets performed as soon as possible (we can't do a GC here in a // record-write context). If a few things get allocated between now and then // that shouldn't make us do a scavenge and keep being incremental, so we set // the should-hurry flag to indicate that there can't be much work left to do. set_should_hurry(true); if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Complete (normal).\n"); } request_type_ = COMPLETE_MARKING; if (action == GC_VIA_STACK_GUARD) { heap_->isolate()->stack_guard()->RequestGC(); } } void IncrementalMarking::Epilogue() { was_activated_ = false; finalize_marking_completed_ = false; incremental_marking_finalization_rounds_ = 0; } double IncrementalMarking::AdvanceIncrementalMarking( intptr_t step_size_in_bytes, double deadline_in_ms, IncrementalMarking::StepActions step_actions) { DCHECK(!IsStopped()); if (step_size_in_bytes == 0) { step_size_in_bytes = GCIdleTimeHandler::EstimateMarkingStepSize( static_cast(GCIdleTimeHandler::kIncrementalMarkingStepTimeInMs), static_cast( heap() ->tracer() ->FinalIncrementalMarkCompactSpeedInBytesPerMillisecond())); } double remaining_time_in_ms = 0.0; do { Step(step_size_in_bytes, step_actions.completion_action, step_actions.force_marking, step_actions.force_completion); remaining_time_in_ms = deadline_in_ms - heap()->MonotonicallyIncreasingTimeInMs(); } while (remaining_time_in_ms >= 2.0 * GCIdleTimeHandler::kIncrementalMarkingStepTimeInMs && !IsComplete() && !heap()->mark_compact_collector()->marking_deque()->IsEmpty()); return remaining_time_in_ms; } void IncrementalMarking::OldSpaceStep(intptr_t allocated) { if (IsStopped() && ShouldActivateEvenWithoutIdleNotification()) { heap()->StartIncrementalMarking(Heap::kNoGCFlags, kNoGCCallbackFlags, "old space step"); } else { Step(allocated * kFastMarking / kInitialMarkingSpeed, GC_VIA_STACK_GUARD); } } void IncrementalMarking::SpeedUp() { bool speed_up = false; if ((steps_count_ % kMarkingSpeedAccellerationInterval) == 0) { if (FLAG_trace_incremental_marking) { PrintIsolate(heap()->isolate(), "Speed up marking after %d steps\n", static_cast(kMarkingSpeedAccellerationInterval)); } speed_up = true; } bool space_left_is_very_small = (old_generation_space_available_at_start_of_incremental_ < 10 * MB); bool only_1_nth_of_space_that_was_available_still_left = (SpaceLeftInOldSpace() * (marking_speed_ + 1) < old_generation_space_available_at_start_of_incremental_); if (space_left_is_very_small || only_1_nth_of_space_that_was_available_still_left) { if (FLAG_trace_incremental_marking) PrintIsolate(heap()->isolate(), "Speed up marking because of low space left\n"); speed_up = true; } bool size_of_old_space_multiplied_by_n_during_marking = (heap_->PromotedTotalSize() > (marking_speed_ + 1) * old_generation_space_used_at_start_of_incremental_); if (size_of_old_space_multiplied_by_n_during_marking) { speed_up = true; if (FLAG_trace_incremental_marking) { PrintIsolate(heap()->isolate(), "Speed up marking because of heap size increase\n"); } } int64_t promoted_during_marking = heap_->PromotedTotalSize() - old_generation_space_used_at_start_of_incremental_; intptr_t delay = marking_speed_ * MB; intptr_t scavenge_slack = heap_->MaxSemiSpaceSize(); // We try to scan at at least twice the speed that we are allocating. if (promoted_during_marking > bytes_scanned_ / 2 + scavenge_slack + delay) { if (FLAG_trace_incremental_marking) { PrintIsolate(heap()->isolate(), "Speed up marking because marker was not keeping up\n"); } speed_up = true; } if (speed_up) { if (state_ != MARKING) { if (FLAG_trace_incremental_marking) { PrintIsolate(heap()->isolate(), "Postponing speeding up marking until marking starts\n"); } } else { marking_speed_ += kMarkingSpeedAccelleration; marking_speed_ = static_cast( Min(kMaxMarkingSpeed, static_cast(marking_speed_ * 1.3))); if (FLAG_trace_incremental_marking) { PrintIsolate(heap()->isolate(), "Marking speed increased to %d\n", marking_speed_); } } } } intptr_t IncrementalMarking::Step(intptr_t allocated_bytes, CompletionAction action, ForceMarkingAction marking, ForceCompletionAction completion) { DCHECK(allocated_bytes >= 0); if (heap_->gc_state() != Heap::NOT_IN_GC || !FLAG_incremental_marking || (state_ != SWEEPING && state_ != MARKING)) { return 0; } allocated_ += allocated_bytes; if (marking == DO_NOT_FORCE_MARKING && allocated_ < kAllocatedThreshold && write_barriers_invoked_since_last_step_ < kWriteBarriersInvokedThreshold) { return 0; } // If an idle notification happened recently, we delay marking steps. if (marking == DO_NOT_FORCE_MARKING && heap_->RecentIdleNotificationHappened()) { return 0; } if (state_ == MARKING && no_marking_scope_depth_ > 0) return 0; intptr_t bytes_processed = 0; { HistogramTimerScope incremental_marking_scope( heap_->isolate()->counters()->gc_incremental_marking()); double start = heap_->MonotonicallyIncreasingTimeInMs(); // The marking speed is driven either by the allocation rate or by the rate // at which we are having to check the color of objects in the write // barrier. // It is possible for a tight non-allocating loop to run a lot of write // barriers before we get here and check them (marking can only take place // on // allocation), so to reduce the lumpiness we don't use the write barriers // invoked since last step directly to determine the amount of work to do. intptr_t bytes_to_process = marking_speed_ * Max(allocated_, write_barriers_invoked_since_last_step_); allocated_ = 0; write_barriers_invoked_since_last_step_ = 0; bytes_scanned_ += bytes_to_process; if (state_ == SWEEPING) { if (heap_->mark_compact_collector()->sweeping_in_progress() && (heap_->mark_compact_collector()->IsSweepingCompleted() || !FLAG_concurrent_sweeping)) { heap_->mark_compact_collector()->EnsureSweepingCompleted(); } if (!heap_->mark_compact_collector()->sweeping_in_progress()) { bytes_scanned_ = 0; StartMarking(); } } else if (state_ == MARKING) { bytes_processed = ProcessMarkingDeque(bytes_to_process); if (heap_->mark_compact_collector()->marking_deque()->IsEmpty()) { if (completion == FORCE_COMPLETION || IsIdleMarkingDelayCounterLimitReached()) { if (!finalize_marking_completed_) { FinalizeMarking(action); } else { MarkingComplete(action); } } else { IncrementIdleMarkingDelayCounter(); } } } steps_count_++; // Speed up marking if we are marking too slow or if we are almost done // with marking. SpeedUp(); double end = heap_->MonotonicallyIncreasingTimeInMs(); double duration = (end - start); // Note that we report zero bytes here when sweeping was in progress or // when we just started incremental marking. In these cases we did not // process the marking deque. heap_->tracer()->AddIncrementalMarkingStep(duration, bytes_processed); } return bytes_processed; } void IncrementalMarking::ResetStepCounters() { steps_count_ = 0; old_generation_space_available_at_start_of_incremental_ = SpaceLeftInOldSpace(); old_generation_space_used_at_start_of_incremental_ = heap_->PromotedTotalSize(); bytes_rescanned_ = 0; marking_speed_ = kInitialMarkingSpeed; bytes_scanned_ = 0; write_barriers_invoked_since_last_step_ = 0; } int64_t IncrementalMarking::SpaceLeftInOldSpace() { return heap_->MaxOldGenerationSize() - heap_->PromotedSpaceSizeOfObjects(); } bool IncrementalMarking::IsIdleMarkingDelayCounterLimitReached() { return idle_marking_delay_counter_ > kMaxIdleMarkingDelayCounter; } void IncrementalMarking::IncrementIdleMarkingDelayCounter() { idle_marking_delay_counter_++; } void IncrementalMarking::ClearIdleMarkingDelayCounter() { idle_marking_delay_counter_ = 0; } } // namespace internal } // namespace v8