/* * Author: Brendan Le Foll * Copyright (c) 2014 Intel Corporation. * * Code based on LSM303DLH sample by Jim Lindblom SparkFun Electronics * and the CompensatedCompass.ino by Frankie Chu from SeedStudio * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include "lsm303.h" using namespace upm; LSM303::LSM303(int bus, int addrMag, int addrAcc, int accScale) : m_i2c(bus) { m_addrMag = addrMag; m_addrAcc = addrAcc; // 0x27 is the 'normal' mode with X/Y/Z enable setRegisterSafe(m_addrAcc, CTRL_REG1_A, 0x27); // scale can be 2, 4 or 8 if (2 == accScale) { setRegisterSafe(m_addrAcc, CTRL_REG4_A, 0x00); } else if (4 == accScale) { setRegisterSafe(m_addrAcc, CTRL_REG4_A, 0x10); } else { // default; equivalent to 8g setRegisterSafe(m_addrAcc, CTRL_REG4_A, 0x30); } // 0x10 = minimum datarate ~15Hz output rate setRegisterSafe(m_addrMag, CRA_REG_M, 0x10); // magnetic scale = +/-1.3 // Gaussmagnetic scale = +/-1.3Gauss (0x20) // +-8.1Gauss (0xe0) setRegisterSafe(m_addrMag, CRB_REG_M, 0xe0); // 0x00 = continouous conversion mode setRegisterSafe(m_addrMag, MR_REG_M, 0x00); } float LSM303::getHeading() { if (getCoordinates() != mraa::SUCCESS) { return -1; } float heading = 180.0 * atan2(double(coor[Y]), double(coor[X]))/M_PI; if (heading < 0.0) heading += 360.0; return heading; } int16_t* LSM303::getRawAccelData() { return &accel[0]; } int16_t* LSM303::getRawCoorData() { return &coor[0]; } int16_t LSM303::getAccelX() { return accel[X]; } int16_t LSM303::getAccelY() { return accel[Y]; } int16_t LSM303::getAccelZ() { return accel[Z]; } mraa::Result LSM303::getCoordinates() { mraa::Result ret = mraa::SUCCESS; memset(&buf[0], 0, sizeof(uint8_t)*6); ret = m_i2c.address(m_addrMag); ret = m_i2c.writeByte(OUT_X_H_M); ret = m_i2c.address(m_addrMag); int num = m_i2c.read(buf, 6); if (num != 6) { return ret; } // convert to coordinates for (int i=0; i<3; i++) { coor[i] = (int16_t(buf[2*i] << 8)) | int16_t(buf[(2*i)+1]); } // swap elements 1 and 2 to get things in natural XYZ order int16_t t = coor[2]; coor[2] = coor[1]; coor[1] = t; //printf("X=%x, Y=%x, Z=%x\n", coor[X], coor[Y], coor[Z]); return ret; } int16_t LSM303::getCoorX() { return coor[X]; } int16_t LSM303::getCoorY() { return coor[Y]; } int16_t LSM303::getCoorZ() { return coor[Z]; } // helper function that writes a value to the acc and then reads // FIX: shouldn't this be write-then-read? int LSM303::readThenWrite(uint8_t reg) { m_i2c.address(m_addrAcc); m_i2c.writeByte(reg); m_i2c.address(m_addrAcc); return (int) m_i2c.readByte(); } mraa::Result LSM303::getAcceleration() { mraa::Result ret = mraa::SUCCESS; accel[X] = (int16_t(readThenWrite(OUT_X_H_A)) << 8) | int16_t(readThenWrite(OUT_X_L_A)); accel[Y] = (int16_t(readThenWrite(OUT_Y_H_A)) << 8) | int16_t(readThenWrite(OUT_Y_L_A)); accel[Z] = (int16_t(readThenWrite(OUT_Z_H_A)) << 8) | int16_t(readThenWrite(OUT_Z_L_A)); //printf("X=%x, Y=%x, Z=%x\n", accel[X], accel[Y], accel[Z]); return ret; } // helper function that sets a register and then checks the set was succesful mraa::Result LSM303::setRegisterSafe(uint8_t slave, uint8_t sregister, uint8_t data) { buf[0] = sregister; buf[1] = data; if (m_i2c.address(slave) != mraa::SUCCESS) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_i2c_address() failed"); return mraa::ERROR_INVALID_HANDLE; } if (m_i2c.write(buf, 2) != mraa::SUCCESS) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_i2c_write() failed"); return mraa::ERROR_INVALID_HANDLE; } uint8_t val = m_i2c.readReg(sregister); if (val != data) { throw std::invalid_argument(std::string(__FUNCTION__) + ": failed to set register correctly"); return mraa::ERROR_UNSPECIFIED; } return mraa::SUCCESS; }