• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //--------------------------------------------------------------------*/
2 //--- Massif: a heap profiling tool.                     ms_main.c ---*/
3 //--------------------------------------------------------------------*/
4 
5 /*
6    This file is part of Massif, a Valgrind tool for profiling memory
7    usage of programs.
8 
9    Copyright (C) 2003-2015 Nicholas Nethercote
10       njn@valgrind.org
11 
12    This program is free software; you can redistribute it and/or
13    modify it under the terms of the GNU General Public License as
14    published by the Free Software Foundation; either version 2 of the
15    License, or (at your option) any later version.
16 
17    This program is distributed in the hope that it will be useful, but
18    WITHOUT ANY WARRANTY; without even the implied warranty of
19    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20    General Public License for more details.
21 
22    You should have received a copy of the GNU General Public License
23    along with this program; if not, write to the Free Software
24    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
25    02111-1307, USA.
26 
27    The GNU General Public License is contained in the file COPYING.
28 */
29 
30 //---------------------------------------------------------------------------
31 // XXX:
32 //---------------------------------------------------------------------------
33 // Todo -- nice, but less critical:
34 // - do a graph-drawing test
35 // - make file format more generic.  Obstacles:
36 //   - unit prefixes are not generic
37 //   - preset column widths for stats are not generic
38 //   - preset column headers are not generic
39 //   - "Massif arguments:" line is not generic
40 // - do snapshots on some specific client requests
41 //     - "show me the extra allocations since the last snapshot"
42 //     - "start/stop logging" (eg. quickly skip boring bits)
43 // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total.
44 //   Give each graph a title.  (try to do it generically!)
45 // - make --show-below-main=no work
46 // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)'
47 //   don't work in a .valgrindrc file or in $VALGRIND_OPTS.
48 //   m_commandline.c:add_args_from_string() needs to respect single quotes.
49 // - With --stack=yes, want to add a stack trace for detailed snapshots so
50 //   it's clear where/why the peak is occurring. (Mattieu Castet)  Also,
51 //   possibly useful even with --stack=no? (Andi Yin)
52 //
53 // Performance:
54 // - To run the benchmarks:
55 //
56 //     perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif
57 //     time valgrind --tool=massif --depth=100 konqueror
58 //
59 //   The other benchmarks don't do much allocation, and so give similar speeds
60 //   to Nulgrind.
61 //
62 //   Timing results on 'nevermore' (njn's machine) as of r7013:
63 //
64 //     heap      0.53s  ma:12.4s (23.5x, -----)
65 //     tinycc    0.46s  ma: 4.9s (10.7x, -----)
66 //     many-xpts 0.08s  ma: 2.0s (25.0x, -----)
67 //     konqueror 29.6s real  0:21.0s user
68 //
69 //   [Introduction of --time-unit=i as the default slowed things down by
70 //   roughly 0--20%.]
71 //
72 // - get_XCon accounts for about 9% of konqueror startup time.  Try
73 //   keeping XPt children sorted by 'ip' and use binary search in get_XCon.
74 //   Requires factoring out binary search code from various places into a
75 //   VG_(bsearch) function.
76 //
77 // Todo -- low priority:
78 // - In each XPt, record both bytes and the number of allocations, and
79 //   possibly the global number of allocations.
80 // - (Andy Lin) Give a stack trace on detailed snapshots?
81 // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger
82 //   than a certain size!  Because: "linux's malloc allows to set a
83 //   MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will
84 //   be handled directly by the kernel, and are guaranteed to be returned to
85 //   the system when freed. So we needed to profile only blocks below this
86 //   limit."
87 //
88 // File format working notes:
89 
90 #if 0
91 desc: --heap-admin=foo
92 cmd: date
93 time_unit: ms
94 #-----------
95 snapshot=0
96 #-----------
97 time=0
98 mem_heap_B=0
99 mem_heap_admin_B=0
100 mem_stacks_B=0
101 heap_tree=empty
102 #-----------
103 snapshot=1
104 #-----------
105 time=353
106 mem_heap_B=5
107 mem_heap_admin_B=0
108 mem_stacks_B=0
109 heap_tree=detailed
110 n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
111  n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
112   n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so)
113    n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so)
114     n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so)
115      n1: 5 0x8049821: (within /bin/date)
116       n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so)
117 
118 
119 n_events: n  time(ms)  total(B)    useful-heap(B)  admin-heap(B)  stacks(B)
120 t_events: B
121 n 0 0 0 0 0
122 n 0 0 0 0 0
123 t1: 5 <string...>
124  t1: 6 <string...>
125 
126 Ideas:
127 - each snapshot specifies an x-axis value and one or more y-axis values.
128 - can display the y-axis values separately if you like
129 - can completely separate connection between snapshots and trees.
130 
131 Challenges:
132 - how to specify and scale/abbreviate units on axes?
133 - how to combine multiple values into the y-axis?
134 
135 --------------------------------------------------------------------------------Command:            date
136 Massif arguments:   --heap-admin=foo
137 ms_print arguments: massif.out
138 --------------------------------------------------------------------------------
139     KB
140 6.472^                                                       :#
141      |                                                       :#  ::  .    .
142      ...
143      |                                     ::@  :@    :@ :@:::#  ::  :    ::::
144    0 +-----------------------------------@---@---@-----@--@---#-------------->ms     0                                                                     713
145 
146 Number of snapshots: 50
147  Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)]
148 --------------------------------------------------------------------------------  n       time(ms)         total(B)   useful-heap(B) admin-heap(B)    stacks(B)
149 --------------------------------------------------------------------------------  0              0                0                0             0            0
150   1            345                5                5             0            0
151   2            353                5                5             0            0
152 100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
153 ->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
154 #endif
155 
156 //---------------------------------------------------------------------------
157 
158 #include "pub_tool_basics.h"
159 #include "pub_tool_vki.h"
160 #include "pub_tool_aspacemgr.h"
161 #include "pub_tool_debuginfo.h"
162 #include "pub_tool_hashtable.h"
163 #include "pub_tool_libcbase.h"
164 #include "pub_tool_libcassert.h"
165 #include "pub_tool_libcfile.h"
166 #include "pub_tool_libcprint.h"
167 #include "pub_tool_libcproc.h"
168 #include "pub_tool_machine.h"
169 #include "pub_tool_mallocfree.h"
170 #include "pub_tool_options.h"
171 #include "pub_tool_replacemalloc.h"
172 #include "pub_tool_stacktrace.h"
173 #include "pub_tool_threadstate.h"
174 #include "pub_tool_tooliface.h"
175 #include "pub_tool_xarray.h"
176 #include "pub_tool_clientstate.h"
177 #include "pub_tool_gdbserver.h"
178 
179 #include "pub_tool_clreq.h"           // For {MALLOC,FREE}LIKE_BLOCK
180 
181 //------------------------------------------------------------*/
182 //--- Overview of operation                                ---*/
183 //------------------------------------------------------------*/
184 
185 // The size of the stacks and heap is tracked.  The heap is tracked in a lot
186 // of detail, enough to tell how many bytes each line of code is responsible
187 // for, more or less.  The main data structure is a tree representing the
188 // call tree beneath all the allocation functions like malloc().
189 // (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at
190 // the page level, and each page is treated much like a heap block.  We use
191 // "heap" throughout below to cover this case because the concepts are all the
192 // same.)
193 //
194 // "Snapshots" are recordings of the memory usage.  There are two basic
195 // kinds:
196 // - Normal:  these record the current time, total memory size, total heap
197 //   size, heap admin size and stack size.
198 // - Detailed: these record those things in a normal snapshot, plus a very
199 //   detailed XTree (see below) indicating how the heap is structured.
200 //
201 // Snapshots are taken every so often.  There are two storage classes of
202 // snapshots:
203 // - Temporary:  Massif does a temporary snapshot every so often.  The idea
204 //   is to always have a certain number of temporary snapshots around.  So
205 //   we take them frequently to begin with, but decreasingly often as the
206 //   program continues to run.  Also, we remove some old ones after a while.
207 //   Overall it's a kind of exponential decay thing.  Most of these are
208 //   normal snapshots, a small fraction are detailed snapshots.
209 // - Permanent:  Massif takes a permanent (detailed) snapshot in some
210 //   circumstances.  They are:
211 //   - Peak snapshot:  When the memory usage peak is reached, it takes a
212 //     snapshot.  It keeps this, unless the peak is subsequently exceeded,
213 //     in which case it will overwrite the peak snapshot.
214 //   - User-requested snapshots:  These are done in response to client
215 //     requests.  They are always kept.
216 
217 // Used for printing things when clo_verbosity > 1.
218 #define VERB(verb, format, args...) \
219    if (VG_(clo_verbosity) > verb) { \
220       VG_(dmsg)("Massif: " format, ##args); \
221    }
222 
223 //------------------------------------------------------------//
224 //--- Statistics                                           ---//
225 //------------------------------------------------------------//
226 
227 // Konqueror startup, to give an idea of the numbers involved with a biggish
228 // program, with default depth:
229 //
230 //  depth=3                   depth=40
231 //  - 310,000 allocations
232 //  - 300,000 frees
233 //  -  15,000 XPts            800,000 XPts
234 //  -   1,800 top-XPts
235 
236 static UInt n_heap_allocs           = 0;
237 static UInt n_heap_reallocs         = 0;
238 static UInt n_heap_frees            = 0;
239 static UInt n_ignored_heap_allocs   = 0;
240 static UInt n_ignored_heap_frees    = 0;
241 static UInt n_ignored_heap_reallocs = 0;
242 static UInt n_stack_allocs          = 0;
243 static UInt n_stack_frees           = 0;
244 static UInt n_xpts                  = 0;
245 static UInt n_xpt_init_expansions   = 0;
246 static UInt n_xpt_later_expansions  = 0;
247 static UInt n_sxpt_allocs           = 0;
248 static UInt n_sxpt_frees            = 0;
249 static UInt n_skipped_snapshots     = 0;
250 static UInt n_real_snapshots        = 0;
251 static UInt n_detailed_snapshots    = 0;
252 static UInt n_peak_snapshots        = 0;
253 static UInt n_cullings              = 0;
254 static UInt n_XCon_redos            = 0;
255 
256 //------------------------------------------------------------//
257 //--- Globals                                              ---//
258 //------------------------------------------------------------//
259 
260 // Number of guest instructions executed so far.  Only used with
261 // --time-unit=i.
262 static Long guest_instrs_executed = 0;
263 
264 static SizeT heap_szB       = 0; // Live heap size
265 static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes
266 static SizeT stacks_szB     = 0; // Live stacks size
267 
268 // This is the total size from the current peak snapshot, or 0 if no peak
269 // snapshot has been taken yet.
270 static SizeT peak_snapshot_total_szB = 0;
271 
272 // Incremented every time memory is allocated/deallocated, by the
273 // allocated/deallocated amount;  includes heap, heap-admin and stack
274 // memory.  An alternative to milliseconds as a unit of program "time".
275 static ULong total_allocs_deallocs_szB = 0;
276 
277 // When running with --heap=yes --pages-as-heap=no, we don't start taking
278 // snapshots until the first basic block is executed, rather than doing it in
279 // ms_post_clo_init (which is the obvious spot), for two reasons.
280 // - It lets us ignore stack events prior to that, because they're not
281 //   really proper ones and just would screw things up.
282 // - Because there's still some core initialisation to do, and so there
283 //   would be an artificial time gap between the first and second snapshots.
284 //
285 // When running with --heap=yes --pages-as-heap=yes, snapshots start much
286 // earlier due to new_mem_startup so this isn't relevant.
287 //
288 static Bool have_started_executing_code = False;
289 
290 //------------------------------------------------------------//
291 //--- Alloc fns                                            ---//
292 //------------------------------------------------------------//
293 
294 static XArray* alloc_fns;
295 static XArray* ignore_fns;
296 
init_alloc_fns(void)297 static void init_alloc_fns(void)
298 {
299    // Create the list, and add the default elements.
300    alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1",
301                                        VG_(free), sizeof(HChar*));
302    #define DO(x)  { const HChar* s = x; VG_(addToXA)(alloc_fns, &s); }
303 
304    // Ordered roughly according to (presumed) frequency.
305    // Nb: The C++ "operator new*" ones are overloadable.  We include them
306    // always anyway, because even if they're overloaded, it would be a
307    // prodigiously stupid overloading that caused them to not allocate
308    // memory.
309    //
310    // XXX: because we don't look at the first stack entry (unless it's a
311    // custom allocation) there's not much point to having all these alloc
312    // functions here -- they should never appear anywhere (I think?) other
313    // than the top stack entry.  The only exceptions are those that in
314    // vg_replace_malloc.c are partly or fully implemented in terms of another
315    // alloc function: realloc (which uses malloc);  valloc,
316    // malloc_zone_valloc, posix_memalign and memalign_common (which use
317    // memalign).
318    //
319    DO("malloc"                                              );
320    DO("__builtin_new"                                       );
321    DO("operator new(unsigned)"                              );
322    DO("operator new(unsigned long)"                         );
323    DO("__builtin_vec_new"                                   );
324    DO("operator new[](unsigned)"                            );
325    DO("operator new[](unsigned long)"                       );
326    DO("calloc"                                              );
327    DO("realloc"                                             );
328    DO("memalign"                                            );
329    DO("posix_memalign"                                      );
330    DO("valloc"                                              );
331    DO("operator new(unsigned, std::nothrow_t const&)"       );
332    DO("operator new[](unsigned, std::nothrow_t const&)"     );
333    DO("operator new(unsigned long, std::nothrow_t const&)"  );
334    DO("operator new[](unsigned long, std::nothrow_t const&)");
335 #if defined(VGO_darwin)
336    DO("malloc_zone_malloc"                                  );
337    DO("malloc_zone_calloc"                                  );
338    DO("malloc_zone_realloc"                                 );
339    DO("malloc_zone_memalign"                                );
340    DO("malloc_zone_valloc"                                  );
341 #endif
342 }
343 
init_ignore_fns(void)344 static void init_ignore_fns(void)
345 {
346    // Create the (empty) list.
347    ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1",
348                                         VG_(free), sizeof(HChar*));
349 }
350 
351 // Determines if the named function is a member of the XArray.
is_member_fn(const XArray * fns,const HChar * fnname)352 static Bool is_member_fn(const XArray* fns, const HChar* fnname)
353 {
354    HChar** fn_ptr;
355    Int i;
356 
357    // Nb: It's a linear search through the list, because we're comparing
358    // strings rather than pointers to strings.
359    // Nb: This gets called a lot.  It was an OSet, but they're quite slow to
360    // iterate through so it wasn't a good choice.
361    for (i = 0; i < VG_(sizeXA)(fns); i++) {
362       fn_ptr = VG_(indexXA)(fns, i);
363       if (VG_STREQ(fnname, *fn_ptr))
364          return True;
365    }
366    return False;
367 }
368 
369 
370 //------------------------------------------------------------//
371 //--- Command line args                                    ---//
372 //------------------------------------------------------------//
373 
374 #define MAX_DEPTH       200
375 
376 typedef enum { TimeI, TimeMS, TimeB } TimeUnit;
377 
TimeUnit_to_string(TimeUnit time_unit)378 static const HChar* TimeUnit_to_string(TimeUnit time_unit)
379 {
380    switch (time_unit) {
381    case TimeI:  return "i";
382    case TimeMS: return "ms";
383    case TimeB:  return "B";
384    default:     tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit");
385    }
386 }
387 
388 static Bool   clo_heap            = True;
389    // clo_heap_admin is deliberately a word-sized type.  At one point it was
390    // a UInt, but this caused problems on 64-bit machines when it was
391    // multiplied by a small negative number and then promoted to a
392    // word-sized type -- it ended up with a value of 4.2 billion.  Sigh.
393 static SSizeT clo_heap_admin      = 8;
394 static Bool   clo_pages_as_heap   = False;
395 static Bool   clo_stacks          = False;
396 static Int    clo_depth           = 30;
397 static double clo_threshold       = 1.0;  // percentage
398 static double clo_peak_inaccuracy = 1.0;  // percentage
399 static Int    clo_time_unit       = TimeI;
400 static Int    clo_detailed_freq   = 10;
401 static Int    clo_max_snapshots   = 100;
402 static const HChar* clo_massif_out_file = "massif.out.%p";
403 
404 static XArray* args_for_massif;
405 
ms_process_cmd_line_option(const HChar * arg)406 static Bool ms_process_cmd_line_option(const HChar* arg)
407 {
408    const HChar* tmp_str;
409 
410    // Remember the arg for later use.
411    VG_(addToXA)(args_for_massif, &arg);
412 
413         if VG_BOOL_CLO(arg, "--heap",           clo_heap)   {}
414    else if VG_BINT_CLO(arg, "--heap-admin",     clo_heap_admin, 0, 1024) {}
415 
416    else if VG_BOOL_CLO(arg, "--stacks",         clo_stacks) {}
417 
418    else if VG_BOOL_CLO(arg, "--pages-as-heap",  clo_pages_as_heap) {}
419 
420    else if VG_BINT_CLO(arg, "--depth",          clo_depth, 1, MAX_DEPTH) {}
421 
422    else if VG_STR_CLO(arg, "--alloc-fn",        tmp_str) {
423       VG_(addToXA)(alloc_fns, &tmp_str);
424    }
425    else if VG_STR_CLO(arg, "--ignore-fn",       tmp_str) {
426       VG_(addToXA)(ignore_fns, &tmp_str);
427    }
428 
429    else if VG_DBL_CLO(arg, "--threshold",  clo_threshold) {
430       if (clo_threshold < 0 || clo_threshold > 100) {
431          VG_(fmsg_bad_option)(arg,
432             "--threshold must be between 0.0 and 100.0\n");
433       }
434    }
435 
436    else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {}
437 
438    else if VG_XACT_CLO(arg, "--time-unit=i",    clo_time_unit, TimeI)  {}
439    else if VG_XACT_CLO(arg, "--time-unit=ms",   clo_time_unit, TimeMS) {}
440    else if VG_XACT_CLO(arg, "--time-unit=B",    clo_time_unit, TimeB)  {}
441 
442    else if VG_BINT_CLO(arg, "--detailed-freq",  clo_detailed_freq, 1, 1000000) {}
443 
444    else if VG_BINT_CLO(arg, "--max-snapshots",  clo_max_snapshots, 10, 1000) {}
445 
446    else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {}
447 
448    else
449       return VG_(replacement_malloc_process_cmd_line_option)(arg);
450 
451    return True;
452 }
453 
ms_print_usage(void)454 static void ms_print_usage(void)
455 {
456    VG_(printf)(
457 "    --heap=no|yes             profile heap blocks [yes]\n"
458 "    --heap-admin=<size>       average admin bytes per heap block;\n"
459 "                               ignored if --heap=no [8]\n"
460 "    --stacks=no|yes           profile stack(s) [no]\n"
461 "    --pages-as-heap=no|yes    profile memory at the page level [no]\n"
462 "    --depth=<number>          depth of contexts [30]\n"
463 "    --alloc-fn=<name>         specify <name> as an alloc function [empty]\n"
464 "    --ignore-fn=<name>        ignore heap allocations within <name> [empty]\n"
465 "    --threshold=<m.n>         significance threshold, as a percentage [1.0]\n"
466 "    --peak-inaccuracy=<m.n>   maximum peak inaccuracy, as a percentage [1.0]\n"
467 "    --time-unit=i|ms|B        time unit: instructions executed, milliseconds\n"
468 "                              or heap bytes alloc'd/dealloc'd [i]\n"
469 "    --detailed-freq=<N>       every Nth snapshot should be detailed [10]\n"
470 "    --max-snapshots=<N>       maximum number of snapshots recorded [100]\n"
471 "    --massif-out-file=<file>  output file name [massif.out.%%p]\n"
472    );
473 }
474 
ms_print_debug_usage(void)475 static void ms_print_debug_usage(void)
476 {
477    VG_(printf)(
478 "    (none)\n"
479    );
480 }
481 
482 
483 //------------------------------------------------------------//
484 //--- XPts, XTrees and XCons                               ---//
485 //------------------------------------------------------------//
486 
487 // An XPt represents an "execution point", ie. a code address.  Each XPt is
488 // part of a tree of XPts (an "execution tree", or "XTree").  The details of
489 // the heap are represented by a single XTree.
490 //
491 // The root of the tree is 'alloc_xpt', which represents all allocation
492 // functions, eg:
493 // - malloc/calloc/realloc/memalign/new/new[];
494 // - user-specified allocation functions (using --alloc-fn);
495 // - custom allocation (MALLOCLIKE) points
496 // It's a bit of a fake XPt (ie. its 'ip' is zero), and is only used because
497 // it makes the code simpler.
498 //
499 // Any child of 'alloc_xpt' is called a "top-XPt".  The XPts at the bottom
500 // of an XTree (leaf nodes) are "bottom-XPTs".
501 //
502 // Each path from a top-XPt to a bottom-XPt through an XTree gives an
503 // execution context ("XCon"), ie. a stack trace.  (And sub-paths represent
504 // stack sub-traces.)  The number of XCons in an XTree is equal to the
505 // number of bottom-XPTs in that XTree.
506 //
507 //      alloc_xpt       XTrees are bi-directional.
508 //        | ^
509 //        v |
510 //     > parent <       Example: if child1() calls parent() and child2()
511 //    /    |     \      also calls parent(), and parent() calls malloc(),
512 //   |    / \     |     the XTree will look like this.
513 //   |   v   v    |
514 //  child1   child2
515 //
516 // (Note that malformed stack traces can lead to difficulties.  See the
517 // comment at the bottom of get_XCon.)
518 //
519 // XTrees and XPts are mirrored by SXTrees and SXPts, where the 'S' is short
520 // for "saved".  When the XTree is duplicated for a snapshot, we duplicate
521 // it as an SXTree, which is similar but omits some things it does not need,
522 // and aggregates up insignificant nodes.  This is important as an SXTree is
523 // typically much smaller than an XTree.
524 
525 // XXX: make XPt and SXPt extensible arrays, to avoid having to do two
526 // allocations per Pt.
527 
528 typedef struct _XPt XPt;
529 struct _XPt {
530    Addr  ip;              // code address
531 
532    // Bottom-XPts: space for the precise context.
533    // Other XPts:  space of all the descendent bottom-XPts.
534    // Nb: this value goes up and down as the program executes.
535    SizeT szB;
536 
537    XPt*  parent;           // pointer to parent XPt
538 
539    // Children.
540    // n_children and max_children are 32-bit integers.  16-bit integers
541    // are too small -- a very big program might have more than 65536
542    // allocation points (ie. top-XPts) -- Konqueror starting up has 1800.
543    UInt  n_children;       // number of children
544    UInt  max_children;     // capacity of children array
545    XPt** children;         // pointers to children XPts
546 };
547 
548 typedef
549    enum {
550       SigSXPt,
551       InsigSXPt
552    }
553    SXPtTag;
554 
555 typedef struct _SXPt SXPt;
556 struct _SXPt {
557    SXPtTag tag;
558    SizeT szB;              // memory size for the node, be it Sig or Insig
559    union {
560       // An SXPt representing a single significant code location.  Much like
561       // an XPt, minus the fields that aren't necessary.
562       struct {
563          Addr   ip;
564          UInt   n_children;
565          SXPt** children;
566       }
567       Sig;
568 
569       // An SXPt representing one or more code locations, all below the
570       // significance threshold.
571       struct {
572          Int   n_xpts;     // number of aggregated XPts
573       }
574       Insig;
575    };
576 };
577 
578 // Fake XPt representing all allocation functions like malloc().  Acts as
579 // parent node to all top-XPts.
580 static XPt* alloc_xpt;
581 
new_XPt(Addr ip,XPt * parent)582 static XPt* new_XPt(Addr ip, XPt* parent)
583 {
584    // XPts are never freed, so we can use VG_(perm_malloc) to allocate them.
585    // Note that we cannot use VG_(perm_malloc) for the 'children' array, because
586    // that needs to be resizable.
587    XPt* xpt    = VG_(perm_malloc)(sizeof(XPt), vg_alignof(XPt));
588    xpt->ip     = ip;
589    xpt->szB    = 0;
590    xpt->parent = parent;
591 
592    // We don't initially allocate any space for children.  We let that
593    // happen on demand.  Many XPts (ie. all the bottom-XPts) don't have any
594    // children anyway.
595    xpt->n_children   = 0;
596    xpt->max_children = 0;
597    xpt->children     = NULL;
598 
599    // Update statistics
600    n_xpts++;
601 
602    return xpt;
603 }
604 
add_child_xpt(XPt * parent,XPt * child)605 static void add_child_xpt(XPt* parent, XPt* child)
606 {
607    // Expand 'children' if necessary.
608    tl_assert(parent->n_children <= parent->max_children);
609    if (parent->n_children == parent->max_children) {
610       if (0 == parent->max_children) {
611          parent->max_children = 4;
612          parent->children = VG_(malloc)( "ms.main.acx.1",
613                                          parent->max_children * sizeof(XPt*) );
614          n_xpt_init_expansions++;
615       } else {
616          parent->max_children *= 2;    // Double size
617          parent->children = VG_(realloc)( "ms.main.acx.2",
618                                           parent->children,
619                                           parent->max_children * sizeof(XPt*) );
620          n_xpt_later_expansions++;
621       }
622    }
623 
624    // Insert new child XPt in parent's children list.
625    parent->children[ parent->n_children++ ] = child;
626 }
627 
628 // Reverse comparison for a reverse sort -- biggest to smallest.
SXPt_revcmp_szB(const void * n1,const void * n2)629 static Int SXPt_revcmp_szB(const void* n1, const void* n2)
630 {
631    const SXPt* sxpt1 = *(const SXPt *const *)n1;
632    const SXPt* sxpt2 = *(const SXPt *const *)n2;
633    return ( sxpt1->szB < sxpt2->szB ?  1
634           : sxpt1->szB > sxpt2->szB ? -1
635           :                            0);
636 }
637 
638 //------------------------------------------------------------//
639 //--- XTree Operations                                     ---//
640 //------------------------------------------------------------//
641 
642 // Duplicates an XTree as an SXTree.
dup_XTree(XPt * xpt,SizeT total_szB)643 static SXPt* dup_XTree(XPt* xpt, SizeT total_szB)
644 {
645    Int  i, n_sig_children, n_insig_children, n_child_sxpts;
646    SizeT sig_child_threshold_szB;
647    SXPt* sxpt;
648 
649    // Number of XPt children  Action for SXPT
650    // ------------------      ---------------
651    // 0 sig, 0 insig          alloc 0 children
652    // N sig, 0 insig          alloc N children, dup all
653    // N sig, M insig          alloc N+1, dup first N, aggregate remaining M
654    // 0 sig, M insig          alloc 1, aggregate M
655 
656    // Work out how big a child must be to be significant.  If the current
657    // total_szB is zero, then we set it to 1, which means everything will be
658    // judged insignificant -- this is sensible, as there's no point showing
659    // any detail for this case.  Unless they used --threshold=0, in which
660    // case we show them everything because that's what they asked for.
661    //
662    // Nb: We do this once now, rather than once per child, because if we do
663    // that the cost of all the divisions adds up to something significant.
664    if (0 == total_szB && 0 != clo_threshold) {
665       sig_child_threshold_szB = 1;
666    } else {
667       sig_child_threshold_szB = (SizeT)((total_szB * clo_threshold) / 100);
668    }
669 
670    // How many children are significant?  And do we need an aggregate SXPt?
671    n_sig_children = 0;
672    for (i = 0; i < xpt->n_children; i++) {
673       if (xpt->children[i]->szB >= sig_child_threshold_szB) {
674          n_sig_children++;
675       }
676    }
677    n_insig_children = xpt->n_children - n_sig_children;
678    n_child_sxpts = n_sig_children + ( n_insig_children > 0 ? 1 : 0 );
679 
680    // Duplicate the XPt.
681    sxpt                 = VG_(malloc)("ms.main.dX.1", sizeof(SXPt));
682    n_sxpt_allocs++;
683    sxpt->tag            = SigSXPt;
684    sxpt->szB            = xpt->szB;
685    sxpt->Sig.ip         = xpt->ip;
686    sxpt->Sig.n_children = n_child_sxpts;
687 
688    // Create the SXPt's children.
689    if (n_child_sxpts > 0) {
690       Int j;
691       SizeT sig_children_szB = 0, insig_children_szB = 0;
692       sxpt->Sig.children = VG_(malloc)("ms.main.dX.2",
693                                        n_child_sxpts * sizeof(SXPt*));
694 
695       // Duplicate the significant children.  (Nb: sig_children_szB +
696       // insig_children_szB doesn't necessarily equal xpt->szB.)
697       j = 0;
698       for (i = 0; i < xpt->n_children; i++) {
699          if (xpt->children[i]->szB >= sig_child_threshold_szB) {
700             sxpt->Sig.children[j++] = dup_XTree(xpt->children[i], total_szB);
701             sig_children_szB   += xpt->children[i]->szB;
702          } else {
703             insig_children_szB += xpt->children[i]->szB;
704          }
705       }
706 
707       // Create the SXPt for the insignificant children, if any, and put it
708       // in the last child entry.
709       if (n_insig_children > 0) {
710          // Nb: We 'n_sxpt_allocs' here because creating an Insig SXPt
711          // doesn't involve a call to dup_XTree().
712          SXPt* insig_sxpt = VG_(malloc)("ms.main.dX.3", sizeof(SXPt));
713          n_sxpt_allocs++;
714          insig_sxpt->tag = InsigSXPt;
715          insig_sxpt->szB = insig_children_szB;
716          insig_sxpt->Insig.n_xpts = n_insig_children;
717          sxpt->Sig.children[n_sig_children] = insig_sxpt;
718       }
719    } else {
720       sxpt->Sig.children = NULL;
721    }
722 
723    return sxpt;
724 }
725 
free_SXTree(SXPt * sxpt)726 static void free_SXTree(SXPt* sxpt)
727 {
728    Int  i;
729    tl_assert(sxpt != NULL);
730 
731    switch (sxpt->tag) {
732     case SigSXPt:
733       // Free all children SXPts, then the children array.
734       for (i = 0; i < sxpt->Sig.n_children; i++) {
735          free_SXTree(sxpt->Sig.children[i]);
736          sxpt->Sig.children[i] = NULL;
737       }
738       VG_(free)(sxpt->Sig.children);  sxpt->Sig.children = NULL;
739       break;
740 
741     case InsigSXPt:
742       break;
743 
744     default: tl_assert2(0, "free_SXTree: unknown SXPt tag");
745    }
746 
747    // Free the SXPt itself.
748    VG_(free)(sxpt);     sxpt = NULL;
749    n_sxpt_frees++;
750 }
751 
752 // Sanity checking:  we periodically check the heap XTree with
753 // ms_expensive_sanity_check.
sanity_check_XTree(XPt * xpt,XPt * parent)754 static void sanity_check_XTree(XPt* xpt, XPt* parent)
755 {
756    tl_assert(xpt != NULL);
757 
758    // Check back-pointer.
759    tl_assert2(xpt->parent == parent,
760       "xpt->parent = %p, parent = %p\n", xpt->parent, parent);
761 
762    // Check children counts look sane.
763    tl_assert(xpt->n_children <= xpt->max_children);
764 
765    // Unfortunately, xpt's size is not necessarily equal to the sum of xpt's
766    // children's sizes.  See comment at the bottom of get_XCon.
767 }
768 
769 // Sanity checking:  we check SXTrees (which are in snapshots) after
770 // snapshots are created, before they are deleted, and before they are
771 // printed.
sanity_check_SXTree(SXPt * sxpt)772 static void sanity_check_SXTree(SXPt* sxpt)
773 {
774    Int i;
775 
776    tl_assert(sxpt != NULL);
777 
778    // Check the sum of any children szBs equals the SXPt's szB.  Check the
779    // children at the same time.
780    switch (sxpt->tag) {
781     case SigSXPt: {
782       if (sxpt->Sig.n_children > 0) {
783          for (i = 0; i < sxpt->Sig.n_children; i++) {
784             sanity_check_SXTree(sxpt->Sig.children[i]);
785          }
786       }
787       break;
788     }
789     case InsigSXPt:
790       break;         // do nothing
791 
792     default: tl_assert2(0, "sanity_check_SXTree: unknown SXPt tag");
793    }
794 }
795 
796 
797 //------------------------------------------------------------//
798 //--- XCon Operations                                      ---//
799 //------------------------------------------------------------//
800 
801 // This is the limit on the number of removed alloc-fns that can be in a
802 // single XCon.
803 #define MAX_OVERESTIMATE   50
804 #define MAX_IPS            (MAX_DEPTH + MAX_OVERESTIMATE)
805 
806 // Determine if the given IP belongs to a function that should be ignored.
fn_should_be_ignored(Addr ip)807 static Bool fn_should_be_ignored(Addr ip)
808 {
809    const HChar *buf;
810    return
811       ( VG_(get_fnname)(ip, &buf) && is_member_fn(ignore_fns, buf)
812       ? True : False );
813 }
814 
815 // Get the stack trace for an XCon, filtering out uninteresting entries:
816 // alloc-fns and entries above alloc-fns, and entries below main-or-below-main.
817 //   Eg:       alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c
818 //   becomes:  a / b / main
819 // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked
820 // as an alloc-fn.  This is ok.
821 static
get_IPs(ThreadId tid,Bool exclude_first_entry,Addr ips[])822 Int get_IPs( ThreadId tid, Bool exclude_first_entry, Addr ips[])
823 {
824    Int n_ips, i, n_alloc_fns_removed;
825    Int overestimate;
826    Bool redo;
827 
828    // We ask for a few more IPs than clo_depth suggests we need.  Then we
829    // remove every entry that is an alloc-fn.  Depending on the
830    // circumstances, we may need to redo it all, asking for more IPs.
831    // Details:
832    // - If the original stack trace is smaller than asked-for, redo=False
833    // - Else if after filtering we have >= clo_depth IPs,      redo=False
834    // - Else redo=True
835    // In other words, to redo, we'd have to get a stack trace as big as we
836    // asked for and remove more than 'overestimate' alloc-fns.
837 
838    // Main loop.
839    redo = True;      // Assume this to begin with.
840    for (overestimate = 3; redo; overestimate += 6) {
841       // This should never happen -- would require MAX_OVERESTIMATE
842       // alloc-fns to be removed from the stack trace.
843       if (overestimate > MAX_OVERESTIMATE)
844          VG_(tool_panic)("get_IPs: ips[] too small, inc. MAX_OVERESTIMATE?");
845 
846       // Ask for more IPs than clo_depth suggests we need.
847       n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate,
848                                    NULL/*array to dump SP values in*/,
849                                    NULL/*array to dump FP values in*/,
850                                    0/*first_ip_delta*/ );
851       tl_assert(n_ips > 0);
852 
853       // If the original stack trace is smaller than asked-for, redo=False.
854       if (n_ips < clo_depth + overestimate) { redo = False; }
855 
856       // Filter out alloc fns.  If requested, we automatically remove the
857       // first entry (which presumably will be something like malloc or
858       // __builtin_new that we're sure to filter out) without looking at it,
859       // because VG_(get_fnname) is expensive.
860       n_alloc_fns_removed = ( exclude_first_entry ? 1 : 0 );
861       for (i = n_alloc_fns_removed; i < n_ips; i++) {
862          const HChar *buf;
863          if (VG_(get_fnname)(ips[i], &buf)) {
864             if (is_member_fn(alloc_fns, buf)) {
865                n_alloc_fns_removed++;
866             } else {
867                break;
868             }
869          }
870       }
871       // Remove the alloc fns by shuffling the rest down over them.
872       n_ips -= n_alloc_fns_removed;
873       for (i = 0; i < n_ips; i++) {
874          ips[i] = ips[i + n_alloc_fns_removed];
875       }
876 
877       // If after filtering we have >= clo_depth IPs, redo=False
878       if (n_ips >= clo_depth) {
879          redo = False;
880          n_ips = clo_depth;      // Ignore any IPs below --depth.
881       }
882 
883       if (redo) {
884          n_XCon_redos++;
885       }
886    }
887    return n_ips;
888 }
889 
890 // Gets an XCon and puts it in the tree.  Returns the XCon's bottom-XPt.
891 // Unless the allocation should be ignored, in which case we return NULL.
get_XCon(ThreadId tid,Bool exclude_first_entry)892 static XPt* get_XCon( ThreadId tid, Bool exclude_first_entry )
893 {
894    static Addr ips[MAX_IPS];
895    Int i;
896    XPt* xpt = alloc_xpt;
897 
898    // After this call, the IPs we want are in ips[0]..ips[n_ips-1].
899    Int n_ips = get_IPs(tid, exclude_first_entry, ips);
900 
901    // Should we ignore this allocation?  (Nb: n_ips can be zero, eg. if
902    // 'main' is marked as an alloc-fn.)
903    if (n_ips > 0 && fn_should_be_ignored(ips[0])) {
904       return NULL;
905    }
906 
907    // Now do the search/insertion of the XCon.
908    for (i = 0; i < n_ips; i++) {
909       Addr ip = ips[i];
910       Int ch;
911       // Look for IP in xpt's children.
912       // Linear search, ugh -- about 10% of time for konqueror startup tried
913       // caching last result, only hit about 4% for konqueror.
914       // Nb:  this search hits about 98% of the time for konqueror
915       for (ch = 0; True; ch++) {
916          if (ch == xpt->n_children) {
917             // IP not found in the children.
918             // Create and add new child XPt, then stop.
919             XPt* new_child_xpt = new_XPt(ip, xpt);
920             add_child_xpt(xpt, new_child_xpt);
921             xpt = new_child_xpt;
922             break;
923 
924          } else if (ip == xpt->children[ch]->ip) {
925             // Found the IP in the children, stop.
926             xpt = xpt->children[ch];
927             break;
928          }
929       }
930    }
931 
932    // [Note: several comments refer to this comment.  Do not delete it
933    // without updating them.]
934    //
935    // A complication... If all stack traces were well-formed, then the
936    // returned xpt would always be a bottom-XPt.  As a consequence, an XPt's
937    // size would always be equal to the sum of its children's sizes, which
938    // is an excellent sanity check.
939    //
940    // Unfortunately, stack traces occasionally are malformed, ie. truncated.
941    // This allows a stack trace to be a sub-trace of another, eg. a/b/c is a
942    // sub-trace of a/b/c/d.  So we can't assume this xpt is a bottom-XPt;
943    // nor can we do sanity check an XPt's size against its children's sizes.
944    // This is annoying, but must be dealt with.  (Older versions of Massif
945    // had this assertion in, and it was reported to fail by real users a
946    // couple of times.)  Even more annoyingly, I can't come up with a simple
947    // test case that exhibit such a malformed stack trace, so I can't
948    // regression test it.  Sigh.
949    //
950    // However, we can print a warning, so that if it happens (unexpectedly)
951    // in existing regression tests we'll know.  Also, it warns users that
952    // the output snapshots may not add up the way they might expect.
953    //
954    //tl_assert(0 == xpt->n_children); // Must be bottom-XPt
955    if (0 != xpt->n_children) {
956       static Int n_moans = 0;
957       if (n_moans < 3) {
958          VG_(umsg)(
959             "Warning: Malformed stack trace detected.  In Massif's output,\n");
960          VG_(umsg)(
961             "         the size of an entry's child entries may not sum up\n");
962          VG_(umsg)(
963             "         to the entry's size as they normally do.\n");
964          n_moans++;
965          if (3 == n_moans)
966             VG_(umsg)(
967             "         (And Massif now won't warn about this again.)\n");
968       }
969    }
970    return xpt;
971 }
972 
973 // Update 'szB' of every XPt in the XCon, by percolating upwards.
update_XCon(XPt * xpt,SSizeT space_delta)974 static void update_XCon(XPt* xpt, SSizeT space_delta)
975 {
976    tl_assert(clo_heap);
977    tl_assert(NULL != xpt);
978 
979    if (0 == space_delta)
980       return;
981 
982    while (xpt != alloc_xpt) {
983       if (space_delta < 0) tl_assert(xpt->szB >= -space_delta);
984       xpt->szB += space_delta;
985       xpt = xpt->parent;
986    }
987    if (space_delta < 0) tl_assert(alloc_xpt->szB >= -space_delta);
988    alloc_xpt->szB += space_delta;
989 }
990 
991 
992 //------------------------------------------------------------//
993 //--- Snapshots                                            ---//
994 //------------------------------------------------------------//
995 
996 // Snapshots are done in a way so that we always have a reasonable number of
997 // them.  We start by taking them quickly.  Once we hit our limit, we cull
998 // some (eg. half), and start taking them more slowly.  Once we hit the
999 // limit again, we again cull and then take them even more slowly, and so
1000 // on.
1001 
1002 // Time is measured either in i or ms or bytes, depending on the --time-unit
1003 // option.  It's a Long because it can exceed 32-bits reasonably easily, and
1004 // because we need to allow negative values to represent unset times.
1005 typedef Long Time;
1006 
1007 #define UNUSED_SNAPSHOT_TIME  -333  // A conspicuous negative number.
1008 
1009 typedef
1010    enum {
1011       Normal = 77,
1012       Peak,
1013       Unused
1014    }
1015    SnapshotKind;
1016 
1017 typedef
1018    struct {
1019       SnapshotKind kind;
1020       Time  time;
1021       SizeT heap_szB;
1022       SizeT heap_extra_szB;// Heap slop + admin bytes.
1023       SizeT stacks_szB;
1024       SXPt* alloc_sxpt;    // Heap XTree root, if a detailed snapshot,
1025    }                       // otherwise NULL.
1026    Snapshot;
1027 
1028 static UInt      next_snapshot_i = 0;  // Index of where next snapshot will go.
1029 static Snapshot* snapshots;            // Array of snapshots.
1030 
is_snapshot_in_use(Snapshot * snapshot)1031 static Bool is_snapshot_in_use(Snapshot* snapshot)
1032 {
1033    if (Unused == snapshot->kind) {
1034       // If snapshot is unused, check all the fields are unset.
1035       tl_assert(snapshot->time           == UNUSED_SNAPSHOT_TIME);
1036       tl_assert(snapshot->heap_extra_szB == 0);
1037       tl_assert(snapshot->heap_szB       == 0);
1038       tl_assert(snapshot->stacks_szB     == 0);
1039       tl_assert(snapshot->alloc_sxpt     == NULL);
1040       return False;
1041    } else {
1042       tl_assert(snapshot->time           != UNUSED_SNAPSHOT_TIME);
1043       return True;
1044    }
1045 }
1046 
is_detailed_snapshot(Snapshot * snapshot)1047 static Bool is_detailed_snapshot(Snapshot* snapshot)
1048 {
1049    return (snapshot->alloc_sxpt ? True : False);
1050 }
1051 
is_uncullable_snapshot(Snapshot * snapshot)1052 static Bool is_uncullable_snapshot(Snapshot* snapshot)
1053 {
1054    return &snapshots[0] == snapshot                   // First snapshot
1055        || &snapshots[next_snapshot_i-1] == snapshot   // Last snapshot
1056        || snapshot->kind == Peak;                     // Peak snapshot
1057 }
1058 
sanity_check_snapshot(Snapshot * snapshot)1059 static void sanity_check_snapshot(Snapshot* snapshot)
1060 {
1061    if (snapshot->alloc_sxpt) {
1062       sanity_check_SXTree(snapshot->alloc_sxpt);
1063    }
1064 }
1065 
1066 // All the used entries should look used, all the unused ones should be clear.
sanity_check_snapshots_array(void)1067 static void sanity_check_snapshots_array(void)
1068 {
1069    Int i;
1070    for (i = 0; i < next_snapshot_i; i++) {
1071       tl_assert( is_snapshot_in_use( & snapshots[i] ));
1072    }
1073    for (    ; i < clo_max_snapshots; i++) {
1074       tl_assert(!is_snapshot_in_use( & snapshots[i] ));
1075    }
1076 }
1077 
1078 // This zeroes all the fields in the snapshot, but does not free the heap
1079 // XTree if present.  It also does a sanity check unless asked not to;  we
1080 // can't sanity check at startup when clearing the initial snapshots because
1081 // they're full of junk.
clear_snapshot(Snapshot * snapshot,Bool do_sanity_check)1082 static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check)
1083 {
1084    if (do_sanity_check) sanity_check_snapshot(snapshot);
1085    snapshot->kind           = Unused;
1086    snapshot->time           = UNUSED_SNAPSHOT_TIME;
1087    snapshot->heap_extra_szB = 0;
1088    snapshot->heap_szB       = 0;
1089    snapshot->stacks_szB     = 0;
1090    snapshot->alloc_sxpt     = NULL;
1091 }
1092 
1093 // This zeroes all the fields in the snapshot, and frees the heap XTree if
1094 // present.
delete_snapshot(Snapshot * snapshot)1095 static void delete_snapshot(Snapshot* snapshot)
1096 {
1097    // Nb: if there's an XTree, we free it after calling clear_snapshot,
1098    // because clear_snapshot does a sanity check which includes checking the
1099    // XTree.
1100    SXPt* tmp_sxpt = snapshot->alloc_sxpt;
1101    clear_snapshot(snapshot, /*do_sanity_check*/True);
1102    if (tmp_sxpt) {
1103       free_SXTree(tmp_sxpt);
1104    }
1105 }
1106 
VERB_snapshot(Int verbosity,const HChar * prefix,Int i)1107 static void VERB_snapshot(Int verbosity, const HChar* prefix, Int i)
1108 {
1109    Snapshot* snapshot = &snapshots[i];
1110    const HChar* suffix;
1111    switch (snapshot->kind) {
1112    case Peak:   suffix = "p";                                            break;
1113    case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break;
1114    case Unused: suffix = "u";                                            break;
1115    default:
1116       tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind);
1117    }
1118    VERB(verbosity, "%s S%s%3d (t:%lld, hp:%lu, ex:%lu, st:%lu)\n",
1119       prefix, suffix, i,
1120       snapshot->time,
1121       snapshot->heap_szB,
1122       snapshot->heap_extra_szB,
1123       snapshot->stacks_szB
1124    );
1125 }
1126 
1127 // Cull half the snapshots;  we choose those that represent the smallest
1128 // time-spans, because that gives us the most even distribution of snapshots
1129 // over time.  (It's possible to lose interesting spikes, however.)
1130 //
1131 // Algorithm for N snapshots:  We find the snapshot representing the smallest
1132 // timeframe, and remove it.  We repeat this until (N/2) snapshots are gone.
1133 // We have to do this one snapshot at a time, rather than finding the (N/2)
1134 // smallest snapshots in one hit, because when a snapshot is removed, its
1135 // neighbours immediately cover greater timespans.  So it's O(N^2), but N is
1136 // small, and it's not done very often.
1137 //
1138 // Once we're done, we return the new smallest interval between snapshots.
1139 // That becomes our minimum time interval.
cull_snapshots(void)1140 static UInt cull_snapshots(void)
1141 {
1142    Int  i, jp, j, jn, min_timespan_i;
1143    Int  n_deleted = 0;
1144    Time min_timespan;
1145 
1146    n_cullings++;
1147 
1148    // Sets j to the index of the first not-yet-removed snapshot at or after i
1149    #define FIND_SNAPSHOT(i, j) \
1150       for (j = i; \
1151            j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \
1152            j++) { }
1153 
1154    VERB(2, "Culling...\n");
1155 
1156    // First we remove enough snapshots by clearing them in-place.  Once
1157    // that's done, we can slide the remaining ones down.
1158    for (i = 0; i < clo_max_snapshots/2; i++) {
1159       // Find the snapshot representing the smallest timespan.  The timespan
1160       // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
1161       // snapshot A and B.  We don't consider the first and last snapshots for
1162       // removal.
1163       Snapshot* min_snapshot;
1164       Int min_j;
1165 
1166       // Initial triple: (prev, curr, next) == (jp, j, jn)
1167       // Initial min_timespan is the first one.
1168       jp = 0;
1169       FIND_SNAPSHOT(1,   j);
1170       FIND_SNAPSHOT(j+1, jn);
1171       min_timespan = 0x7fffffffffffffffLL;
1172       min_j        = -1;
1173       while (jn < clo_max_snapshots) {
1174          Time timespan = snapshots[jn].time - snapshots[jp].time;
1175          tl_assert(timespan >= 0);
1176          // Nb: We never cull the peak snapshot.
1177          if (Peak != snapshots[j].kind && timespan < min_timespan) {
1178             min_timespan = timespan;
1179             min_j        = j;
1180          }
1181          // Move on to next triple
1182          jp = j;
1183          j  = jn;
1184          FIND_SNAPSHOT(jn+1, jn);
1185       }
1186       // We've found the least important snapshot, now delete it.  First
1187       // print it if necessary.
1188       tl_assert(-1 != min_j);    // Check we found a minimum.
1189       min_snapshot = & snapshots[ min_j ];
1190       if (VG_(clo_verbosity) > 1) {
1191          HChar buf[64];   // large enough
1192          VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan);
1193          VERB_snapshot(2, buf, min_j);
1194       }
1195       delete_snapshot(min_snapshot);
1196       n_deleted++;
1197    }
1198 
1199    // Slide down the remaining snapshots over the removed ones.  First set i
1200    // to point to the first empty slot, and j to the first full slot after
1201    // i.  Then slide everything down.
1202    for (i = 0;  is_snapshot_in_use( &snapshots[i] ); i++) { }
1203    for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { }
1204    for (  ; j < clo_max_snapshots; j++) {
1205       if (is_snapshot_in_use( &snapshots[j] )) {
1206          snapshots[i++] = snapshots[j];
1207          clear_snapshot(&snapshots[j], /*do_sanity_check*/True);
1208       }
1209    }
1210    next_snapshot_i = i;
1211 
1212    // Check snapshots array looks ok after changes.
1213    sanity_check_snapshots_array();
1214 
1215    // Find the minimum timespan remaining;  that will be our new minimum
1216    // time interval.  Note that above we were finding timespans by measuring
1217    // two intervals around a snapshot that was under consideration for
1218    // deletion.  Here we only measure single intervals because all the
1219    // deletions have occurred.
1220    //
1221    // But we have to be careful -- some snapshots (eg. snapshot 0, and the
1222    // peak snapshot) are uncullable.  If two uncullable snapshots end up
1223    // next to each other, they'll never be culled (assuming the peak doesn't
1224    // change), and the time gap between them will not change.  However, the
1225    // time between the remaining cullable snapshots will grow ever larger.
1226    // This means that the min_timespan found will always be that between the
1227    // two uncullable snapshots, and it will be much smaller than it should
1228    // be.  To avoid this problem, when computing the minimum timespan, we
1229    // ignore any timespans between two uncullable snapshots.
1230    tl_assert(next_snapshot_i > 1);
1231    min_timespan = 0x7fffffffffffffffLL;
1232    min_timespan_i = -1;
1233    for (i = 1; i < next_snapshot_i; i++) {
1234       if (is_uncullable_snapshot(&snapshots[i]) &&
1235           is_uncullable_snapshot(&snapshots[i-1]))
1236       {
1237          VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i);
1238       } else {
1239          Time timespan = snapshots[i].time - snapshots[i-1].time;
1240          tl_assert(timespan >= 0);
1241          if (timespan < min_timespan) {
1242             min_timespan = timespan;
1243             min_timespan_i = i;
1244          }
1245       }
1246    }
1247    tl_assert(-1 != min_timespan_i);    // Check we found a minimum.
1248 
1249    // Print remaining snapshots, if necessary.
1250    if (VG_(clo_verbosity) > 1) {
1251       VERB(2, "Finished culling (%3d of %3d deleted)\n",
1252          n_deleted, clo_max_snapshots);
1253       for (i = 0; i < next_snapshot_i; i++) {
1254          VERB_snapshot(2, "  post-cull", i);
1255       }
1256       VERB(2, "New time interval = %lld (between snapshots %d and %d)\n",
1257          min_timespan, min_timespan_i-1, min_timespan_i);
1258    }
1259 
1260    return min_timespan;
1261 }
1262 
get_time(void)1263 static Time get_time(void)
1264 {
1265    // Get current time, in whatever time unit we're using.
1266    if (clo_time_unit == TimeI) {
1267       return guest_instrs_executed;
1268    } else if (clo_time_unit == TimeMS) {
1269       // Some stuff happens between the millisecond timer being initialised
1270       // to zero and us taking our first snapshot.  We determine that time
1271       // gap so we can subtract it from all subsequent times so that our
1272       // first snapshot is considered to be at t = 0ms.  Unfortunately, a
1273       // bunch of symbols get read after the first snapshot is taken but
1274       // before the second one (which is triggered by the first allocation),
1275       // so when the time-unit is 'ms' we always have a big gap between the
1276       // first two snapshots.  But at least users won't have to wonder why
1277       // the first snapshot isn't at t=0.
1278       static Bool is_first_get_time = True;
1279       static Time start_time_ms;
1280       if (is_first_get_time) {
1281          start_time_ms = VG_(read_millisecond_timer)();
1282          is_first_get_time = False;
1283          return 0;
1284       } else {
1285          return VG_(read_millisecond_timer)() - start_time_ms;
1286       }
1287    } else if (clo_time_unit == TimeB) {
1288       return total_allocs_deallocs_szB;
1289    } else {
1290       tl_assert2(0, "bad --time-unit value");
1291    }
1292 }
1293 
1294 // Take a snapshot, and only that -- decisions on whether to take a
1295 // snapshot, or what kind of snapshot, are made elsewhere.
1296 // Nb: we call the arg "my_time" because "time" shadows a global declaration
1297 // in /usr/include/time.h on Darwin.
1298 static void
take_snapshot(Snapshot * snapshot,SnapshotKind kind,Time my_time,Bool is_detailed)1299 take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time,
1300               Bool is_detailed)
1301 {
1302    tl_assert(!is_snapshot_in_use(snapshot));
1303    if (!clo_pages_as_heap) {
1304       tl_assert(have_started_executing_code);
1305    }
1306 
1307    // Heap and heap admin.
1308    if (clo_heap) {
1309       snapshot->heap_szB = heap_szB;
1310       if (is_detailed) {
1311          SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
1312          snapshot->alloc_sxpt = dup_XTree(alloc_xpt, total_szB);
1313          tl_assert(           alloc_xpt->szB == heap_szB);
1314          tl_assert(snapshot->alloc_sxpt->szB == heap_szB);
1315       }
1316       snapshot->heap_extra_szB = heap_extra_szB;
1317    }
1318 
1319    // Stack(s).
1320    if (clo_stacks) {
1321       snapshot->stacks_szB = stacks_szB;
1322    }
1323 
1324    // Rest of snapshot.
1325    snapshot->kind = kind;
1326    snapshot->time = my_time;
1327    sanity_check_snapshot(snapshot);
1328 
1329    // Update stats.
1330    if (Peak == kind) n_peak_snapshots++;
1331    if (is_detailed)  n_detailed_snapshots++;
1332    n_real_snapshots++;
1333 }
1334 
1335 
1336 // Take a snapshot, if it's time, or if we've hit a peak.
1337 static void
maybe_take_snapshot(SnapshotKind kind,const HChar * what)1338 maybe_take_snapshot(SnapshotKind kind, const HChar* what)
1339 {
1340    // 'min_time_interval' is the minimum time interval between snapshots.
1341    // If we try to take a snapshot and less than this much time has passed,
1342    // we don't take it.  It gets larger as the program runs longer.  It's
1343    // initialised to zero so that we begin by taking snapshots as quickly as
1344    // possible.
1345    static Time min_time_interval = 0;
1346    // Zero allows startup snapshot.
1347    static Time earliest_possible_time_of_next_snapshot = 0;
1348    static Int  n_snapshots_since_last_detailed         = 0;
1349    static Int  n_skipped_snapshots_since_last_snapshot = 0;
1350 
1351    Snapshot* snapshot;
1352    Bool      is_detailed;
1353    // Nb: we call this variable "my_time" because "time" shadows a global
1354    // declaration in /usr/include/time.h on Darwin.
1355    Time      my_time = get_time();
1356 
1357    switch (kind) {
1358     case Normal:
1359       // Only do a snapshot if it's time.
1360       if (my_time < earliest_possible_time_of_next_snapshot) {
1361          n_skipped_snapshots++;
1362          n_skipped_snapshots_since_last_snapshot++;
1363          return;
1364       }
1365       is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed);
1366       break;
1367 
1368     case Peak: {
1369       // Because we're about to do a deallocation, we're coming down from a
1370       // local peak.  If it is (a) actually a global peak, and (b) a certain
1371       // amount bigger than the previous peak, then we take a peak snapshot.
1372       // By not taking a snapshot for every peak, we save a lot of effort --
1373       // because many peaks remain peak only for a short time.
1374       SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
1375       SizeT excess_szB_for_new_peak =
1376          (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100);
1377       if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) {
1378          return;
1379       }
1380       is_detailed = True;
1381       break;
1382     }
1383 
1384     default:
1385       tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind");
1386    }
1387 
1388    // Take the snapshot.
1389    snapshot = & snapshots[next_snapshot_i];
1390    take_snapshot(snapshot, kind, my_time, is_detailed);
1391 
1392    // Record if it was detailed.
1393    if (is_detailed) {
1394       n_snapshots_since_last_detailed = 0;
1395    } else {
1396       n_snapshots_since_last_detailed++;
1397    }
1398 
1399    // Update peak data, if it's a Peak snapshot.
1400    if (Peak == kind) {
1401       Int i, number_of_peaks_snapshots_found = 0;
1402 
1403       // Sanity check the size, then update our recorded peak.
1404       SizeT snapshot_total_szB =
1405          snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
1406       tl_assert2(snapshot_total_szB > peak_snapshot_total_szB,
1407          "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB);
1408       peak_snapshot_total_szB = snapshot_total_szB;
1409 
1410       // Find the old peak snapshot, if it exists, and mark it as normal.
1411       for (i = 0; i < next_snapshot_i; i++) {
1412          if (Peak == snapshots[i].kind) {
1413             snapshots[i].kind = Normal;
1414             number_of_peaks_snapshots_found++;
1415          }
1416       }
1417       tl_assert(number_of_peaks_snapshots_found <= 1);
1418    }
1419 
1420    // Finish up verbosity and stats stuff.
1421    if (n_skipped_snapshots_since_last_snapshot > 0) {
1422       VERB(2, "  (skipped %d snapshot%s)\n",
1423          n_skipped_snapshots_since_last_snapshot,
1424          ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") );
1425    }
1426    VERB_snapshot(2, what, next_snapshot_i);
1427    n_skipped_snapshots_since_last_snapshot = 0;
1428 
1429    // Cull the entries, if our snapshot table is full.
1430    next_snapshot_i++;
1431    if (clo_max_snapshots == next_snapshot_i) {
1432       min_time_interval = cull_snapshots();
1433    }
1434 
1435    // Work out the earliest time when the next snapshot can happen.
1436    earliest_possible_time_of_next_snapshot = my_time + min_time_interval;
1437 }
1438 
1439 
1440 //------------------------------------------------------------//
1441 //--- Sanity checking                                      ---//
1442 //------------------------------------------------------------//
1443 
ms_cheap_sanity_check(void)1444 static Bool ms_cheap_sanity_check ( void )
1445 {
1446    return True;   // Nothing useful we can cheaply check.
1447 }
1448 
ms_expensive_sanity_check(void)1449 static Bool ms_expensive_sanity_check ( void )
1450 {
1451    sanity_check_XTree(alloc_xpt, /*parent*/NULL);
1452    sanity_check_snapshots_array();
1453    return True;
1454 }
1455 
1456 
1457 //------------------------------------------------------------//
1458 //--- Heap management                                      ---//
1459 //------------------------------------------------------------//
1460 
1461 // Metadata for heap blocks.  Each one contains a pointer to a bottom-XPt,
1462 // which is a foothold into the XCon at which it was allocated.  From
1463 // HP_Chunks, XPt 'space' fields are incremented (at allocation) and
1464 // decremented (at deallocation).
1465 //
1466 // Nb: first two fields must match core's VgHashNode.
1467 typedef
1468    struct _HP_Chunk {
1469       struct _HP_Chunk* next;
1470       Addr              data;       // Ptr to actual block
1471       SizeT             req_szB;    // Size requested
1472       SizeT             slop_szB;   // Extra bytes given above those requested
1473       XPt*              where;      // Where allocated; bottom-XPt
1474    }
1475    HP_Chunk;
1476 
1477 static VgHashTable *malloc_list  = NULL;   // HP_Chunks
1478 
update_alloc_stats(SSizeT szB_delta)1479 static void update_alloc_stats(SSizeT szB_delta)
1480 {
1481    // Update total_allocs_deallocs_szB.
1482    if (szB_delta < 0) szB_delta = -szB_delta;
1483    total_allocs_deallocs_szB += szB_delta;
1484 }
1485 
update_heap_stats(SSizeT heap_szB_delta,Int heap_extra_szB_delta)1486 static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta)
1487 {
1488    if (heap_szB_delta < 0)
1489       tl_assert(heap_szB >= -heap_szB_delta);
1490    if (heap_extra_szB_delta < 0)
1491       tl_assert(heap_extra_szB >= -heap_extra_szB_delta);
1492 
1493    heap_extra_szB += heap_extra_szB_delta;
1494    heap_szB       += heap_szB_delta;
1495 
1496    update_alloc_stats(heap_szB_delta + heap_extra_szB_delta);
1497 }
1498 
1499 static
record_block(ThreadId tid,void * p,SizeT req_szB,SizeT slop_szB,Bool exclude_first_entry,Bool maybe_snapshot)1500 void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB,
1501                     Bool exclude_first_entry, Bool maybe_snapshot )
1502 {
1503    // Make new HP_Chunk node, add to malloc_list
1504    HP_Chunk* hc = VG_(malloc)("ms.main.rb.1", sizeof(HP_Chunk));
1505    hc->req_szB  = req_szB;
1506    hc->slop_szB = slop_szB;
1507    hc->data     = (Addr)p;
1508    hc->where    = NULL;
1509    VG_(HT_add_node)(malloc_list, hc);
1510 
1511    if (clo_heap) {
1512       VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB);
1513 
1514       hc->where = get_XCon( tid, exclude_first_entry );
1515 
1516       if (hc->where) {
1517          // Update statistics.
1518          n_heap_allocs++;
1519 
1520          // Update heap stats.
1521          update_heap_stats(req_szB, clo_heap_admin + slop_szB);
1522 
1523          // Update XTree.
1524          update_XCon(hc->where, req_szB);
1525 
1526          // Maybe take a snapshot.
1527          if (maybe_snapshot) {
1528             maybe_take_snapshot(Normal, "  alloc");
1529          }
1530 
1531       } else {
1532          // Ignored allocation.
1533          n_ignored_heap_allocs++;
1534 
1535          VERB(3, "(ignored)\n");
1536       }
1537 
1538       VERB(3, ">>>\n");
1539    }
1540 
1541    return p;
1542 }
1543 
1544 static __inline__
alloc_and_record_block(ThreadId tid,SizeT req_szB,SizeT req_alignB,Bool is_zeroed)1545 void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB,
1546                                Bool is_zeroed )
1547 {
1548    SizeT actual_szB, slop_szB;
1549    void* p;
1550 
1551    if ((SSizeT)req_szB < 0) return NULL;
1552 
1553    // Allocate and zero if necessary.
1554    p = VG_(cli_malloc)( req_alignB, req_szB );
1555    if (!p) {
1556       return NULL;
1557    }
1558    if (is_zeroed) VG_(memset)(p, 0, req_szB);
1559    actual_szB = VG_(cli_malloc_usable_size)(p);
1560    tl_assert(actual_szB >= req_szB);
1561    slop_szB = actual_szB - req_szB;
1562 
1563    // Record block.
1564    record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True,
1565                 /*maybe_snapshot*/True);
1566 
1567    return p;
1568 }
1569 
1570 static __inline__
unrecord_block(void * p,Bool maybe_snapshot)1571 void unrecord_block ( void* p, Bool maybe_snapshot )
1572 {
1573    // Remove HP_Chunk from malloc_list
1574    HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p);
1575    if (NULL == hc) {
1576       return;   // must have been a bogus free()
1577    }
1578 
1579    if (clo_heap) {
1580       VERB(3, "<<< unrecord_block\n");
1581 
1582       if (hc->where) {
1583          // Update statistics.
1584          n_heap_frees++;
1585 
1586          // Maybe take a peak snapshot, since it's a deallocation.
1587          if (maybe_snapshot) {
1588             maybe_take_snapshot(Peak, "de-PEAK");
1589          }
1590 
1591          // Update heap stats.
1592          update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB);
1593 
1594          // Update XTree.
1595          update_XCon(hc->where, -hc->req_szB);
1596 
1597          // Maybe take a snapshot.
1598          if (maybe_snapshot) {
1599             maybe_take_snapshot(Normal, "dealloc");
1600          }
1601 
1602       } else {
1603          n_ignored_heap_frees++;
1604 
1605          VERB(3, "(ignored)\n");
1606       }
1607 
1608       VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB);
1609    }
1610 
1611    // Actually free the chunk, and the heap block (if necessary)
1612    VG_(free)( hc );  hc = NULL;
1613 }
1614 
1615 // Nb: --ignore-fn is tricky for realloc.  If the block's original alloc was
1616 // ignored, but the realloc is not requested to be ignored, and we are
1617 // shrinking the block, then we have to ignore the realloc -- otherwise we
1618 // could end up with negative heap sizes.  This isn't a danger if we are
1619 // growing such a block, but for consistency (it also simplifies things) we
1620 // ignore such reallocs as well.
1621 static __inline__
realloc_block(ThreadId tid,void * p_old,SizeT new_req_szB)1622 void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB )
1623 {
1624    HP_Chunk* hc;
1625    void*     p_new;
1626    SizeT     old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB;
1627    XPt      *old_where, *new_where;
1628    Bool      is_ignored = False;
1629 
1630    // Remove the old block
1631    hc = VG_(HT_remove)(malloc_list, (UWord)p_old);
1632    if (hc == NULL) {
1633       return NULL;   // must have been a bogus realloc()
1634    }
1635 
1636    old_req_szB  = hc->req_szB;
1637    old_slop_szB = hc->slop_szB;
1638 
1639    tl_assert(!clo_pages_as_heap);  // Shouldn't be here if --pages-as-heap=yes.
1640    if (clo_heap) {
1641       VERB(3, "<<< realloc_block (%lu)\n", new_req_szB);
1642 
1643       if (hc->where) {
1644          // Update statistics.
1645          n_heap_reallocs++;
1646 
1647          // Maybe take a peak snapshot, if it's (effectively) a deallocation.
1648          if (new_req_szB < old_req_szB) {
1649             maybe_take_snapshot(Peak, "re-PEAK");
1650          }
1651       } else {
1652          // The original malloc was ignored, so we have to ignore the
1653          // realloc as well.
1654          is_ignored = True;
1655       }
1656    }
1657 
1658    // Actually do the allocation, if necessary.
1659    if (new_req_szB <= old_req_szB + old_slop_szB) {
1660       // New size is smaller or same;  block not moved.
1661       p_new = p_old;
1662       new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB);
1663 
1664    } else {
1665       // New size is bigger;  make new block, copy shared contents, free old.
1666       p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB);
1667       if (!p_new) {
1668          // Nb: if realloc fails, NULL is returned but the old block is not
1669          // touched.  What an awful function.
1670          return NULL;
1671       }
1672       VG_(memcpy)(p_new, p_old, old_req_szB + old_slop_szB);
1673       VG_(cli_free)(p_old);
1674       new_actual_szB = VG_(cli_malloc_usable_size)(p_new);
1675       tl_assert(new_actual_szB >= new_req_szB);
1676       new_slop_szB = new_actual_szB - new_req_szB;
1677    }
1678 
1679    if (p_new) {
1680       // Update HP_Chunk.
1681       hc->data     = (Addr)p_new;
1682       hc->req_szB  = new_req_szB;
1683       hc->slop_szB = new_slop_szB;
1684       old_where    = hc->where;
1685       hc->where    = NULL;
1686 
1687       // Update XTree.
1688       if (clo_heap) {
1689          new_where = get_XCon( tid, /*exclude_first_entry*/True);
1690          if (!is_ignored && new_where) {
1691             hc->where = new_where;
1692             update_XCon(old_where, -old_req_szB);
1693             update_XCon(new_where,  new_req_szB);
1694          } else {
1695             // The realloc itself is ignored.
1696             is_ignored = True;
1697 
1698             // Update statistics.
1699             n_ignored_heap_reallocs++;
1700          }
1701       }
1702    }
1703 
1704    // Now insert the new hc (with a possibly new 'data' field) into
1705    // malloc_list.  If this realloc() did not increase the memory size, we
1706    // will have removed and then re-added hc unnecessarily.  But that's ok
1707    // because shrinking a block with realloc() is (presumably) much rarer
1708    // than growing it, and this way simplifies the growing case.
1709    VG_(HT_add_node)(malloc_list, hc);
1710 
1711    if (clo_heap) {
1712       if (!is_ignored) {
1713          // Update heap stats.
1714          update_heap_stats(new_req_szB - old_req_szB,
1715                           new_slop_szB - old_slop_szB);
1716 
1717          // Maybe take a snapshot.
1718          maybe_take_snapshot(Normal, "realloc");
1719       } else {
1720 
1721          VERB(3, "(ignored)\n");
1722       }
1723 
1724       VERB(3, ">>> (%ld, %ld)\n",
1725            (SSizeT)(new_req_szB - old_req_szB),
1726            (SSizeT)(new_slop_szB - old_slop_szB));
1727    }
1728 
1729    return p_new;
1730 }
1731 
1732 
1733 //------------------------------------------------------------//
1734 //--- malloc() et al replacement wrappers                  ---//
1735 //------------------------------------------------------------//
1736 
ms_malloc(ThreadId tid,SizeT szB)1737 static void* ms_malloc ( ThreadId tid, SizeT szB )
1738 {
1739    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1740 }
1741 
ms___builtin_new(ThreadId tid,SizeT szB)1742 static void* ms___builtin_new ( ThreadId tid, SizeT szB )
1743 {
1744    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1745 }
1746 
ms___builtin_vec_new(ThreadId tid,SizeT szB)1747 static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB )
1748 {
1749    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1750 }
1751 
ms_calloc(ThreadId tid,SizeT m,SizeT szB)1752 static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB )
1753 {
1754    return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True );
1755 }
1756 
ms_memalign(ThreadId tid,SizeT alignB,SizeT szB)1757 static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB )
1758 {
1759    return alloc_and_record_block( tid, szB, alignB, False );
1760 }
1761 
ms_free(ThreadId tid,void * p)1762 static void ms_free ( ThreadId tid __attribute__((unused)), void* p )
1763 {
1764    unrecord_block(p, /*maybe_snapshot*/True);
1765    VG_(cli_free)(p);
1766 }
1767 
ms___builtin_delete(ThreadId tid,void * p)1768 static void ms___builtin_delete ( ThreadId tid, void* p )
1769 {
1770    unrecord_block(p, /*maybe_snapshot*/True);
1771    VG_(cli_free)(p);
1772 }
1773 
ms___builtin_vec_delete(ThreadId tid,void * p)1774 static void ms___builtin_vec_delete ( ThreadId tid, void* p )
1775 {
1776    unrecord_block(p, /*maybe_snapshot*/True);
1777    VG_(cli_free)(p);
1778 }
1779 
ms_realloc(ThreadId tid,void * p_old,SizeT new_szB)1780 static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB )
1781 {
1782    return realloc_block(tid, p_old, new_szB);
1783 }
1784 
ms_malloc_usable_size(ThreadId tid,void * p)1785 static SizeT ms_malloc_usable_size ( ThreadId tid, void* p )
1786 {
1787    HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p );
1788 
1789    return ( hc ? hc->req_szB + hc->slop_szB : 0 );
1790 }
1791 
1792 //------------------------------------------------------------//
1793 //--- Page handling                                        ---//
1794 //------------------------------------------------------------//
1795 
1796 static
ms_record_page_mem(Addr a,SizeT len)1797 void ms_record_page_mem ( Addr a, SizeT len )
1798 {
1799    ThreadId tid = VG_(get_running_tid)();
1800    Addr end;
1801    tl_assert(VG_IS_PAGE_ALIGNED(len));
1802    tl_assert(len >= VKI_PAGE_SIZE);
1803    // Record the first N-1 pages as blocks, but don't do any snapshots.
1804    for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1805       record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1806                     /*exclude_first_entry*/False, /*maybe_snapshot*/False );
1807    }
1808    // Record the last page as a block, and maybe do a snapshot afterwards.
1809    record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1810                  /*exclude_first_entry*/False, /*maybe_snapshot*/True );
1811 }
1812 
1813 static
ms_unrecord_page_mem(Addr a,SizeT len)1814 void ms_unrecord_page_mem( Addr a, SizeT len )
1815 {
1816    Addr end;
1817    tl_assert(VG_IS_PAGE_ALIGNED(len));
1818    tl_assert(len >= VKI_PAGE_SIZE);
1819    for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1820       unrecord_block((void*)a, /*maybe_snapshot*/False);
1821    }
1822    unrecord_block((void*)a, /*maybe_snapshot*/True);
1823 }
1824 
1825 //------------------------------------------------------------//
1826 
1827 static
ms_new_mem_mmap(Addr a,SizeT len,Bool rr,Bool ww,Bool xx,ULong di_handle)1828 void ms_new_mem_mmap ( Addr a, SizeT len,
1829                        Bool rr, Bool ww, Bool xx, ULong di_handle )
1830 {
1831    tl_assert(VG_IS_PAGE_ALIGNED(len));
1832    ms_record_page_mem(a, len);
1833 }
1834 
1835 static
ms_new_mem_startup(Addr a,SizeT len,Bool rr,Bool ww,Bool xx,ULong di_handle)1836 void ms_new_mem_startup( Addr a, SizeT len,
1837                          Bool rr, Bool ww, Bool xx, ULong di_handle )
1838 {
1839    // startup maps are always be page-sized, except the trampoline page is
1840    // marked by the core as only being the size of the trampoline itself,
1841    // which is something like 57 bytes.  Round it up to page size.
1842    len = VG_PGROUNDUP(len);
1843    ms_record_page_mem(a, len);
1844 }
1845 
1846 static
ms_new_mem_brk(Addr a,SizeT len,ThreadId tid)1847 void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid )
1848 {
1849    // brk limit is not necessarily aligned on a page boundary.
1850    // If new memory being brk-ed implies to allocate a new page,
1851    // then call ms_record_page_mem with page aligned parameters
1852    // otherwise just ignore.
1853    Addr old_bottom_page = VG_PGROUNDDN(a - 1);
1854    Addr new_top_page = VG_PGROUNDDN(a + len - 1);
1855    if (old_bottom_page != new_top_page)
1856       ms_record_page_mem(VG_PGROUNDDN(a),
1857                          (new_top_page - old_bottom_page));
1858 }
1859 
1860 static
ms_copy_mem_remap(Addr from,Addr to,SizeT len)1861 void ms_copy_mem_remap( Addr from, Addr to, SizeT len)
1862 {
1863    tl_assert(VG_IS_PAGE_ALIGNED(len));
1864    ms_unrecord_page_mem(from, len);
1865    ms_record_page_mem(to, len);
1866 }
1867 
1868 static
ms_die_mem_munmap(Addr a,SizeT len)1869 void ms_die_mem_munmap( Addr a, SizeT len )
1870 {
1871    tl_assert(VG_IS_PAGE_ALIGNED(len));
1872    ms_unrecord_page_mem(a, len);
1873 }
1874 
1875 static
ms_die_mem_brk(Addr a,SizeT len)1876 void ms_die_mem_brk( Addr a, SizeT len )
1877 {
1878    // Call ms_unrecord_page_mem only if one or more pages are de-allocated.
1879    // See ms_new_mem_brk for more details.
1880    Addr new_bottom_page = VG_PGROUNDDN(a - 1);
1881    Addr old_top_page = VG_PGROUNDDN(a + len - 1);
1882    if (old_top_page != new_bottom_page)
1883       ms_unrecord_page_mem(VG_PGROUNDDN(a),
1884                            (old_top_page - new_bottom_page));
1885 
1886 }
1887 
1888 //------------------------------------------------------------//
1889 //--- Stacks                                               ---//
1890 //------------------------------------------------------------//
1891 
1892 // We really want the inlining to occur...
1893 #define INLINE    inline __attribute__((always_inline))
1894 
update_stack_stats(SSizeT stack_szB_delta)1895 static void update_stack_stats(SSizeT stack_szB_delta)
1896 {
1897    if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta);
1898    stacks_szB += stack_szB_delta;
1899 
1900    update_alloc_stats(stack_szB_delta);
1901 }
1902 
new_mem_stack_2(SizeT len,const HChar * what)1903 static INLINE void new_mem_stack_2(SizeT len, const HChar* what)
1904 {
1905    if (have_started_executing_code) {
1906       VERB(3, "<<< new_mem_stack (%lu)\n", len);
1907       n_stack_allocs++;
1908       update_stack_stats(len);
1909       maybe_take_snapshot(Normal, what);
1910       VERB(3, ">>>\n");
1911    }
1912 }
1913 
die_mem_stack_2(SizeT len,const HChar * what)1914 static INLINE void die_mem_stack_2(SizeT len, const HChar* what)
1915 {
1916    if (have_started_executing_code) {
1917       VERB(3, "<<< die_mem_stack (-%lu)\n", len);
1918       n_stack_frees++;
1919       maybe_take_snapshot(Peak,   "stkPEAK");
1920       update_stack_stats(-len);
1921       maybe_take_snapshot(Normal, what);
1922       VERB(3, ">>>\n");
1923    }
1924 }
1925 
new_mem_stack(Addr a,SizeT len)1926 static void new_mem_stack(Addr a, SizeT len)
1927 {
1928    new_mem_stack_2(len, "stk-new");
1929 }
1930 
die_mem_stack(Addr a,SizeT len)1931 static void die_mem_stack(Addr a, SizeT len)
1932 {
1933    die_mem_stack_2(len, "stk-die");
1934 }
1935 
new_mem_stack_signal(Addr a,SizeT len,ThreadId tid)1936 static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid)
1937 {
1938    new_mem_stack_2(len, "sig-new");
1939 }
1940 
die_mem_stack_signal(Addr a,SizeT len)1941 static void die_mem_stack_signal(Addr a, SizeT len)
1942 {
1943    die_mem_stack_2(len, "sig-die");
1944 }
1945 
1946 
1947 //------------------------------------------------------------//
1948 //--- Client Requests                                      ---//
1949 //------------------------------------------------------------//
1950 
print_monitor_help(void)1951 static void print_monitor_help ( void )
1952 {
1953    VG_(gdb_printf) ("\n");
1954    VG_(gdb_printf) ("massif monitor commands:\n");
1955    VG_(gdb_printf) ("  snapshot [<filename>]\n");
1956    VG_(gdb_printf) ("  detailed_snapshot [<filename>]\n");
1957    VG_(gdb_printf) ("      takes a snapshot (or a detailed snapshot)\n");
1958    VG_(gdb_printf) ("      and saves it in <filename>\n");
1959    VG_(gdb_printf) ("             default <filename> is massif.vgdb.out\n");
1960    VG_(gdb_printf) ("  all_snapshots [<filename>]\n");
1961    VG_(gdb_printf) ("      saves all snapshot(s) taken so far in <filename>\n");
1962    VG_(gdb_printf) ("             default <filename> is massif.vgdb.out\n");
1963    VG_(gdb_printf) ("\n");
1964 }
1965 
1966 
1967 /* Forward declaration.
1968    return True if request recognised, False otherwise */
1969 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req);
ms_handle_client_request(ThreadId tid,UWord * argv,UWord * ret)1970 static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret )
1971 {
1972    switch (argv[0]) {
1973    case VG_USERREQ__MALLOCLIKE_BLOCK: {
1974       void* p   = (void*)argv[1];
1975       SizeT szB =        argv[2];
1976       record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False,
1977                     /*maybe_snapshot*/True );
1978       *ret = 0;
1979       return True;
1980    }
1981    case VG_USERREQ__RESIZEINPLACE_BLOCK: {
1982       void* p        = (void*)argv[1];
1983       SizeT newSizeB =       argv[3];
1984 
1985       unrecord_block(p, /*maybe_snapshot*/True);
1986       record_block(tid, p, newSizeB, /*slop_szB*/0,
1987                    /*exclude_first_entry*/False, /*maybe_snapshot*/True);
1988       return True;
1989    }
1990    case VG_USERREQ__FREELIKE_BLOCK: {
1991       void* p = (void*)argv[1];
1992       unrecord_block(p, /*maybe_snapshot*/True);
1993       *ret = 0;
1994       return True;
1995    }
1996    case VG_USERREQ__GDB_MONITOR_COMMAND: {
1997      Bool handled = handle_gdb_monitor_command (tid, (HChar*)argv[1]);
1998      if (handled)
1999        *ret = 1;
2000      else
2001        *ret = 0;
2002      return handled;
2003    }
2004 
2005    default:
2006       *ret = 0;
2007       return False;
2008    }
2009 }
2010 
2011 //------------------------------------------------------------//
2012 //--- Instrumentation                                      ---//
2013 //------------------------------------------------------------//
2014 
add_counter_update(IRSB * sbOut,Int n)2015 static void add_counter_update(IRSB* sbOut, Int n)
2016 {
2017    #if defined(VG_BIGENDIAN)
2018    # define END Iend_BE
2019    #elif defined(VG_LITTLEENDIAN)
2020    # define END Iend_LE
2021    #else
2022    # error "Unknown endianness"
2023    #endif
2024    // Add code to increment 'guest_instrs_executed' by 'n', like this:
2025    //   WrTmp(t1, Load64(&guest_instrs_executed))
2026    //   WrTmp(t2, Add64(RdTmp(t1), Const(n)))
2027    //   Store(&guest_instrs_executed, t2)
2028    IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64);
2029    IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64);
2030    IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed );
2031 
2032    IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr));
2033    IRStmt* st2 =
2034       IRStmt_WrTmp(t2,
2035                    IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1),
2036                                            IRExpr_Const(IRConst_U64(n))));
2037    IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2));
2038 
2039    addStmtToIRSB( sbOut, st1 );
2040    addStmtToIRSB( sbOut, st2 );
2041    addStmtToIRSB( sbOut, st3 );
2042 }
2043 
ms_instrument2(IRSB * sbIn)2044 static IRSB* ms_instrument2( IRSB* sbIn )
2045 {
2046    Int   i, n = 0;
2047    IRSB* sbOut;
2048 
2049    // We increment the instruction count in two places:
2050    // - just before any Ist_Exit statements;
2051    // - just before the IRSB's end.
2052    // In the former case, we zero 'n' and then continue instrumenting.
2053 
2054    sbOut = deepCopyIRSBExceptStmts(sbIn);
2055 
2056    for (i = 0; i < sbIn->stmts_used; i++) {
2057       IRStmt* st = sbIn->stmts[i];
2058 
2059       if (!st || st->tag == Ist_NoOp) continue;
2060 
2061       if (st->tag == Ist_IMark) {
2062          n++;
2063       } else if (st->tag == Ist_Exit) {
2064          if (n > 0) {
2065             // Add an increment before the Exit statement, then reset 'n'.
2066             add_counter_update(sbOut, n);
2067             n = 0;
2068          }
2069       }
2070       addStmtToIRSB( sbOut, st );
2071    }
2072 
2073    if (n > 0) {
2074       // Add an increment before the SB end.
2075       add_counter_update(sbOut, n);
2076    }
2077    return sbOut;
2078 }
2079 
2080 static
ms_instrument(VgCallbackClosure * closure,IRSB * sbIn,const VexGuestLayout * layout,const VexGuestExtents * vge,const VexArchInfo * archinfo_host,IRType gWordTy,IRType hWordTy)2081 IRSB* ms_instrument ( VgCallbackClosure* closure,
2082                       IRSB* sbIn,
2083                       const VexGuestLayout* layout,
2084                       const VexGuestExtents* vge,
2085                       const VexArchInfo* archinfo_host,
2086                       IRType gWordTy, IRType hWordTy )
2087 {
2088    if (! have_started_executing_code) {
2089       // Do an initial sample to guarantee that we have at least one.
2090       // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure
2091       // 'maybe_take_snapshot's internal static variables are initialised.
2092       have_started_executing_code = True;
2093       maybe_take_snapshot(Normal, "startup");
2094    }
2095 
2096    if      (clo_time_unit == TimeI)  { return ms_instrument2(sbIn); }
2097    else if (clo_time_unit == TimeMS) { return sbIn; }
2098    else if (clo_time_unit == TimeB)  { return sbIn; }
2099    else                              { tl_assert2(0, "bad --time-unit value"); }
2100 }
2101 
2102 
2103 //------------------------------------------------------------//
2104 //--- Writing snapshots                                    ---//
2105 //------------------------------------------------------------//
2106 
2107 #define FP(format, args...) ({ VG_(fprintf)(fp, format, ##args); })
2108 
pp_snapshot_SXPt(VgFile * fp,SXPt * sxpt,Int depth,HChar * depth_str,Int depth_str_len,SizeT snapshot_heap_szB,SizeT snapshot_total_szB)2109 static void pp_snapshot_SXPt(VgFile *fp, SXPt* sxpt, Int depth,
2110                              HChar* depth_str, Int depth_str_len,
2111                              SizeT snapshot_heap_szB, SizeT snapshot_total_szB)
2112 {
2113    Int   i, j, n_insig_children_sxpts;
2114    SXPt* child = NULL;
2115 
2116    // Used for printing function names.  Is made static to keep it out
2117    // of the stack frame -- this function is recursive.  Obviously this
2118    // now means its contents are trashed across the recursive call.
2119    const HChar* ip_desc;
2120 
2121    switch (sxpt->tag) {
2122     case SigSXPt:
2123       // Print the SXPt itself.
2124       if (0 == depth) {
2125          if (clo_heap) {
2126             ip_desc =
2127                ( clo_pages_as_heap
2128                ? "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc."
2129                : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc."
2130                );
2131          } else {
2132             // XXX: --alloc-fns?
2133 
2134             // Nick thinks this case cannot happen. ip_desc would be
2135             // conceptually uninitialised here. Therefore:
2136             tl_assert2(0, "pp_snapshot_SXPt: unexpected");
2137          }
2138       } else {
2139          // If it's main-or-below-main, we (if appropriate) ignore everything
2140          // below it by pretending it has no children.
2141          if ( ! VG_(clo_show_below_main) ) {
2142             Vg_FnNameKind kind = VG_(get_fnname_kind_from_IP)(sxpt->Sig.ip);
2143             if (Vg_FnNameMain == kind || Vg_FnNameBelowMain == kind) {
2144                sxpt->Sig.n_children = 0;
2145             }
2146          }
2147 
2148          // We need the -1 to get the line number right, But I'm not sure why.
2149          ip_desc = VG_(describe_IP)(sxpt->Sig.ip-1, NULL);
2150       }
2151 
2152       // Do the non-ip_desc part first...
2153       FP("%sn%u: %lu ", depth_str, sxpt->Sig.n_children, sxpt->szB);
2154 
2155       // For ip_descs beginning with "0xABCD...:" addresses, we first
2156       // measure the length of the "0xabcd: " address at the start of the
2157       // ip_desc.
2158       j = 0;
2159       if ('0' == ip_desc[0] && 'x' == ip_desc[1]) {
2160          j = 2;
2161          while (True) {
2162             if (ip_desc[j]) {
2163                if (':' == ip_desc[j]) break;
2164                j++;
2165             } else {
2166                tl_assert2(0, "ip_desc has unexpected form: %s\n", ip_desc);
2167             }
2168          }
2169       }
2170       // It used to be that ip_desc was truncated at the end.
2171       // But there does not seem to be a good reason for that. Besides,
2172       // the string was truncated at the right, which is less than ideal.
2173       // Truncation at the beginning of the string would have been preferable.
2174       // Think several nested namespaces in C++....
2175       // Anyhow, we spit out the full-length string now.
2176       FP("%s\n", ip_desc);
2177 
2178       // Indent.
2179       tl_assert(depth+1 < depth_str_len-1);    // -1 for end NUL char
2180       depth_str[depth+0] = ' ';
2181       depth_str[depth+1] = '\0';
2182 
2183       // Sort SXPt's children by szB (reverse order:  biggest to smallest).
2184       // Nb: we sort them here, rather than earlier (eg. in dup_XTree), for
2185       // two reasons.  First, if we do it during dup_XTree, it can get
2186       // expensive (eg. 15% of execution time for konqueror
2187       // startup/shutdown).  Second, this way we get the Insig SXPt (if one
2188       // is present) in its sorted position, not at the end.
2189       VG_(ssort)(sxpt->Sig.children, sxpt->Sig.n_children, sizeof(SXPt*),
2190                  SXPt_revcmp_szB);
2191 
2192       // Print the SXPt's children.  They should already be in sorted order.
2193       n_insig_children_sxpts = 0;
2194       for (i = 0; i < sxpt->Sig.n_children; i++) {
2195          child = sxpt->Sig.children[i];
2196 
2197          if (InsigSXPt == child->tag)
2198             n_insig_children_sxpts++;
2199 
2200          // Ok, print the child.  NB: contents of ip_desc will be
2201          // trashed by this recursive call.  Doesn't matter currently,
2202          // but worth noting.
2203          pp_snapshot_SXPt(fp, child, depth+1, depth_str, depth_str_len,
2204             snapshot_heap_szB, snapshot_total_szB);
2205       }
2206 
2207       // Unindent.
2208       depth_str[depth+0] = '\0';
2209       depth_str[depth+1] = '\0';
2210 
2211       // There should be 0 or 1 Insig children SXPts.
2212       tl_assert(n_insig_children_sxpts <= 1);
2213       break;
2214 
2215     case InsigSXPt: {
2216       const HChar* s = ( 1 == sxpt->Insig.n_xpts ? "," : "s, all" );
2217       FP("%sn0: %lu in %d place%s below massif's threshold (%.2f%%)\n",
2218          depth_str, sxpt->szB, sxpt->Insig.n_xpts, s, clo_threshold);
2219       break;
2220     }
2221 
2222     default:
2223       tl_assert2(0, "pp_snapshot_SXPt: unrecognised SXPt tag");
2224    }
2225 }
2226 
pp_snapshot(VgFile * fp,Snapshot * snapshot,Int snapshot_n)2227 static void pp_snapshot(VgFile *fp, Snapshot* snapshot, Int snapshot_n)
2228 {
2229    sanity_check_snapshot(snapshot);
2230 
2231    FP("#-----------\n");
2232    FP("snapshot=%d\n", snapshot_n);
2233    FP("#-----------\n");
2234    FP("time=%lld\n",            snapshot->time);
2235    FP("mem_heap_B=%lu\n",       snapshot->heap_szB);
2236    FP("mem_heap_extra_B=%lu\n", snapshot->heap_extra_szB);
2237    FP("mem_stacks_B=%lu\n",     snapshot->stacks_szB);
2238 
2239    if (is_detailed_snapshot(snapshot)) {
2240       // Detailed snapshot -- print heap tree.
2241       Int   depth_str_len = clo_depth + 3;
2242       HChar* depth_str = VG_(malloc)("ms.main.pps.1",
2243                                      sizeof(HChar) * depth_str_len);
2244       SizeT snapshot_total_szB =
2245          snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
2246       depth_str[0] = '\0';   // Initialise depth_str to "".
2247 
2248       FP("heap_tree=%s\n", ( Peak == snapshot->kind ? "peak" : "detailed" ));
2249       pp_snapshot_SXPt(fp, snapshot->alloc_sxpt, 0, depth_str,
2250                        depth_str_len, snapshot->heap_szB,
2251                        snapshot_total_szB);
2252 
2253       VG_(free)(depth_str);
2254 
2255    } else {
2256       FP("heap_tree=empty\n");
2257    }
2258 }
2259 
write_snapshots_to_file(const HChar * massif_out_file,Snapshot snapshots_array[],Int nr_elements)2260 static void write_snapshots_to_file(const HChar* massif_out_file,
2261                                     Snapshot snapshots_array[],
2262                                     Int nr_elements)
2263 {
2264    Int i;
2265    VgFile *fp;
2266 
2267    fp = VG_(fopen)(massif_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY,
2268                                     VKI_S_IRUSR|VKI_S_IWUSR);
2269    if (fp == NULL) {
2270       // If the file can't be opened for whatever reason (conflict
2271       // between multiple cachegrinded processes?), give up now.
2272       VG_(umsg)("error: can't open output file '%s'\n", massif_out_file );
2273       VG_(umsg)("       ... so profiling results will be missing.\n");
2274       return;
2275    }
2276 
2277    // Print massif-specific options that were used.
2278    // XXX: is it worth having a "desc:" line?  Could just call it "options:"
2279    // -- this file format isn't as generic as Cachegrind's, so the
2280    // implied genericity of "desc:" is bogus.
2281    FP("desc:");
2282    for (i = 0; i < VG_(sizeXA)(args_for_massif); i++) {
2283       HChar* arg = *(HChar**)VG_(indexXA)(args_for_massif, i);
2284       FP(" %s", arg);
2285    }
2286    if (0 == i) FP(" (none)");
2287    FP("\n");
2288 
2289    // Print "cmd:" line.
2290    FP("cmd: ");
2291    FP("%s", VG_(args_the_exename));
2292    for (i = 0; i < VG_(sizeXA)( VG_(args_for_client) ); i++) {
2293       HChar* arg = * (HChar**) VG_(indexXA)( VG_(args_for_client), i );
2294       FP(" %s", arg);
2295    }
2296    FP("\n");
2297 
2298    FP("time_unit: %s\n", TimeUnit_to_string(clo_time_unit));
2299 
2300    for (i = 0; i < nr_elements; i++) {
2301       Snapshot* snapshot = & snapshots_array[i];
2302       pp_snapshot(fp, snapshot, i);     // Detailed snapshot!
2303    }
2304    VG_(fclose) (fp);
2305 }
2306 
write_snapshots_array_to_file(void)2307 static void write_snapshots_array_to_file(void)
2308 {
2309    // Setup output filename.  Nb: it's important to do this now, ie. as late
2310    // as possible.  If we do it at start-up and the program forks and the
2311    // output file format string contains a %p (pid) specifier, both the
2312    // parent and child will incorrectly write to the same file;  this
2313    // happened in 3.3.0.
2314    HChar* massif_out_file =
2315       VG_(expand_file_name)("--massif-out-file", clo_massif_out_file);
2316    write_snapshots_to_file (massif_out_file, snapshots, next_snapshot_i);
2317    VG_(free)(massif_out_file);
2318 }
2319 
handle_snapshot_monitor_command(const HChar * filename,Bool detailed)2320 static void handle_snapshot_monitor_command (const HChar *filename,
2321                                              Bool detailed)
2322 {
2323    Snapshot snapshot;
2324 
2325    if (!clo_pages_as_heap && !have_started_executing_code) {
2326       // See comments of variable have_started_executing_code.
2327       VG_(gdb_printf)
2328          ("error: cannot take snapshot before execution has started\n");
2329       return;
2330    }
2331 
2332    clear_snapshot(&snapshot, /* do_sanity_check */ False);
2333    take_snapshot(&snapshot, Normal, get_time(), detailed);
2334    write_snapshots_to_file ((filename == NULL) ?
2335                             "massif.vgdb.out" : filename,
2336                             &snapshot,
2337                             1);
2338    delete_snapshot(&snapshot);
2339 }
2340 
handle_all_snapshots_monitor_command(const HChar * filename)2341 static void handle_all_snapshots_monitor_command (const HChar *filename)
2342 {
2343    if (!clo_pages_as_heap && !have_started_executing_code) {
2344       // See comments of variable have_started_executing_code.
2345       VG_(gdb_printf)
2346          ("error: cannot take snapshot before execution has started\n");
2347       return;
2348    }
2349 
2350    write_snapshots_to_file ((filename == NULL) ?
2351                             "massif.vgdb.out" : filename,
2352                             snapshots, next_snapshot_i);
2353 }
2354 
handle_gdb_monitor_command(ThreadId tid,HChar * req)2355 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req)
2356 {
2357    HChar* wcmd;
2358    HChar s[VG_(strlen(req)) + 1]; /* copy for strtok_r */
2359    HChar *ssaveptr;
2360 
2361    VG_(strcpy) (s, req);
2362 
2363    wcmd = VG_(strtok_r) (s, " ", &ssaveptr);
2364    switch (VG_(keyword_id) ("help snapshot detailed_snapshot all_snapshots",
2365                             wcmd, kwd_report_duplicated_matches)) {
2366    case -2: /* multiple matches */
2367       return True;
2368    case -1: /* not found */
2369       return False;
2370    case  0: /* help */
2371       print_monitor_help();
2372       return True;
2373    case  1: { /* snapshot */
2374       HChar* filename;
2375       filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
2376       handle_snapshot_monitor_command (filename, False /* detailed */);
2377       return True;
2378    }
2379    case  2: { /* detailed_snapshot */
2380       HChar* filename;
2381       filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
2382       handle_snapshot_monitor_command (filename, True /* detailed */);
2383       return True;
2384    }
2385    case  3: { /* all_snapshots */
2386       HChar* filename;
2387       filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
2388       handle_all_snapshots_monitor_command (filename);
2389       return True;
2390    }
2391    default:
2392       tl_assert(0);
2393       return False;
2394    }
2395 }
2396 
ms_print_stats(void)2397 static void ms_print_stats (void)
2398 {
2399 #define STATS(format, args...) \
2400       VG_(dmsg)("Massif: " format, ##args)
2401 
2402    STATS("heap allocs:           %u\n", n_heap_allocs);
2403    STATS("heap reallocs:         %u\n", n_heap_reallocs);
2404    STATS("heap frees:            %u\n", n_heap_frees);
2405    STATS("ignored heap allocs:   %u\n", n_ignored_heap_allocs);
2406    STATS("ignored heap frees:    %u\n", n_ignored_heap_frees);
2407    STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs);
2408    STATS("stack allocs:          %u\n", n_stack_allocs);
2409    STATS("stack frees:           %u\n", n_stack_frees);
2410    STATS("XPts:                  %u\n", n_xpts);
2411    STATS("top-XPts:              %u (%u%%)\n",
2412       alloc_xpt->n_children,
2413       ( n_xpts ? alloc_xpt->n_children * 100 / n_xpts : 0));
2414    STATS("XPt init expansions:   %u\n", n_xpt_init_expansions);
2415    STATS("XPt later expansions:  %u\n", n_xpt_later_expansions);
2416    STATS("SXPt allocs:           %u\n", n_sxpt_allocs);
2417    STATS("SXPt frees:            %u\n", n_sxpt_frees);
2418    STATS("skipped snapshots:     %u\n", n_skipped_snapshots);
2419    STATS("real snapshots:        %u\n", n_real_snapshots);
2420    STATS("detailed snapshots:    %u\n", n_detailed_snapshots);
2421    STATS("peak snapshots:        %u\n", n_peak_snapshots);
2422    STATS("cullings:              %u\n", n_cullings);
2423    STATS("XCon redos:            %u\n", n_XCon_redos);
2424 #undef STATS
2425 }
2426 
2427 //------------------------------------------------------------//
2428 //--- Finalisation                                         ---//
2429 //------------------------------------------------------------//
2430 
ms_fini(Int exit_status)2431 static void ms_fini(Int exit_status)
2432 {
2433    // Output.
2434    write_snapshots_array_to_file();
2435 
2436    // Stats
2437    tl_assert(n_xpts > 0);  // always have alloc_xpt
2438 
2439    if (VG_(clo_stats))
2440       ms_print_stats();
2441 }
2442 
2443 
2444 //------------------------------------------------------------//
2445 //--- Initialisation                                       ---//
2446 //------------------------------------------------------------//
2447 
ms_post_clo_init(void)2448 static void ms_post_clo_init(void)
2449 {
2450    Int i;
2451    HChar* LD_PRELOAD_val;
2452    HChar* s;
2453    HChar* s2;
2454 
2455    // Check options.
2456    if (clo_pages_as_heap) {
2457       if (clo_stacks) {
2458          VG_(fmsg_bad_option)("--pages-as-heap=yes",
2459             "Cannot be used together with --stacks=yes");
2460       }
2461    }
2462    if (!clo_heap) {
2463       clo_pages_as_heap = False;
2464    }
2465 
2466    // If --pages-as-heap=yes we don't want malloc replacement to occur.  So we
2467    // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or
2468    // platform-equivalent).  We replace it entirely with spaces because then
2469    // the linker doesn't complain (it does complain if we just change the name
2470    // to a bogus file).  This is a bit of a hack, but LD_PRELOAD is setup well
2471    // before tool initialisation, so this seems the best way to do it.
2472    if (clo_pages_as_heap) {
2473       clo_heap_admin = 0;     // No heap admin on pages.
2474 
2475       LD_PRELOAD_val = VG_(getenv)( VG_(LD_PRELOAD_var_name) );
2476       tl_assert(LD_PRELOAD_val);
2477 
2478       // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity.
2479       s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core");
2480       tl_assert(s2);
2481 
2482       // Now find the vgpreload_massif-$PLATFORM entry.
2483       s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif");
2484       tl_assert(s2);
2485 
2486       // Blank out everything to the previous ':', which must be there because
2487       // of the preceding vgpreload_core-$PLATFORM entry.
2488       for (s = s2; *s != ':'; s--) {
2489          *s = ' ';
2490       }
2491 
2492       // Blank out everything to the end of the entry, which will be '\0' if
2493       // LD_PRELOAD was empty before Valgrind started, or ':' otherwise.
2494       for (s = s2; *s != ':' && *s != '\0'; s++) {
2495          *s = ' ';
2496       }
2497    }
2498 
2499    // Print alloc-fns and ignore-fns, if necessary.
2500    if (VG_(clo_verbosity) > 1) {
2501       VERB(1, "alloc-fns:\n");
2502       for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) {
2503          HChar** fn_ptr = VG_(indexXA)(alloc_fns, i);
2504          VERB(1, "  %s\n", *fn_ptr);
2505       }
2506 
2507       VERB(1, "ignore-fns:\n");
2508       if (0 == VG_(sizeXA)(ignore_fns)) {
2509          VERB(1, "  <empty>\n");
2510       }
2511       for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) {
2512          HChar** fn_ptr = VG_(indexXA)(ignore_fns, i);
2513          VERB(1, "  %d: %s\n", i, *fn_ptr);
2514       }
2515    }
2516 
2517    // Events to track.
2518    if (clo_stacks) {
2519       VG_(track_new_mem_stack)        ( new_mem_stack        );
2520       VG_(track_die_mem_stack)        ( die_mem_stack        );
2521       VG_(track_new_mem_stack_signal) ( new_mem_stack_signal );
2522       VG_(track_die_mem_stack_signal) ( die_mem_stack_signal );
2523    }
2524 
2525    if (clo_pages_as_heap) {
2526       VG_(track_new_mem_startup) ( ms_new_mem_startup );
2527       VG_(track_new_mem_brk)     ( ms_new_mem_brk     );
2528       VG_(track_new_mem_mmap)    ( ms_new_mem_mmap    );
2529 
2530       VG_(track_copy_mem_remap)  ( ms_copy_mem_remap  );
2531 
2532       VG_(track_die_mem_brk)     ( ms_die_mem_brk     );
2533       VG_(track_die_mem_munmap)  ( ms_die_mem_munmap  );
2534    }
2535 
2536    // Initialise snapshot array, and sanity-check it.
2537    snapshots = VG_(malloc)("ms.main.mpoci.1",
2538                            sizeof(Snapshot) * clo_max_snapshots);
2539    // We don't want to do snapshot sanity checks here, because they're
2540    // currently uninitialised.
2541    for (i = 0; i < clo_max_snapshots; i++) {
2542       clear_snapshot( & snapshots[i], /*do_sanity_check*/False );
2543    }
2544    sanity_check_snapshots_array();
2545 }
2546 
ms_pre_clo_init(void)2547 static void ms_pre_clo_init(void)
2548 {
2549    VG_(details_name)            ("Massif");
2550    VG_(details_version)         (NULL);
2551    VG_(details_description)     ("a heap profiler");
2552    VG_(details_copyright_author)(
2553       "Copyright (C) 2003-2015, and GNU GPL'd, by Nicholas Nethercote");
2554    VG_(details_bug_reports_to)  (VG_BUGS_TO);
2555 
2556    VG_(details_avg_translation_sizeB) ( 330 );
2557 
2558    VG_(clo_vex_control).iropt_register_updates_default
2559       = VG_(clo_px_file_backed)
2560       = VexRegUpdSpAtMemAccess; // overridable by the user.
2561 
2562    // Basic functions.
2563    VG_(basic_tool_funcs)          (ms_post_clo_init,
2564                                    ms_instrument,
2565                                    ms_fini);
2566 
2567    // Needs.
2568    VG_(needs_libc_freeres)();
2569    VG_(needs_command_line_options)(ms_process_cmd_line_option,
2570                                    ms_print_usage,
2571                                    ms_print_debug_usage);
2572    VG_(needs_client_requests)     (ms_handle_client_request);
2573    VG_(needs_sanity_checks)       (ms_cheap_sanity_check,
2574                                    ms_expensive_sanity_check);
2575    VG_(needs_print_stats)         (ms_print_stats);
2576    VG_(needs_malloc_replacement)  (ms_malloc,
2577                                    ms___builtin_new,
2578                                    ms___builtin_vec_new,
2579                                    ms_memalign,
2580                                    ms_calloc,
2581                                    ms_free,
2582                                    ms___builtin_delete,
2583                                    ms___builtin_vec_delete,
2584                                    ms_realloc,
2585                                    ms_malloc_usable_size,
2586                                    0 );
2587 
2588    // HP_Chunks.
2589    malloc_list = VG_(HT_construct)( "Massif's malloc list" );
2590 
2591    // Dummy node at top of the context structure.
2592    alloc_xpt = new_XPt(/*ip*/0, /*parent*/NULL);
2593 
2594    // Initialise alloc_fns and ignore_fns.
2595    init_alloc_fns();
2596    init_ignore_fns();
2597 
2598    // Initialise args_for_massif.
2599    args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1",
2600                                 VG_(free), sizeof(HChar*));
2601 }
2602 
2603 VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init)
2604 
2605 //--------------------------------------------------------------------//
2606 //--- end                                                          ---//
2607 //--------------------------------------------------------------------//
2608