1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/snapshot/serialize.h"
6
7 #include "src/accessors.h"
8 #include "src/api.h"
9 #include "src/base/platform/platform.h"
10 #include "src/bootstrapper.h"
11 #include "src/code-stubs.h"
12 #include "src/deoptimizer.h"
13 #include "src/execution.h"
14 #include "src/global-handles.h"
15 #include "src/ic/ic.h"
16 #include "src/ic/stub-cache.h"
17 #include "src/objects.h"
18 #include "src/parsing/parser.h"
19 #include "src/profiler/cpu-profiler.h"
20 #include "src/runtime/runtime.h"
21 #include "src/snapshot/natives.h"
22 #include "src/snapshot/snapshot.h"
23 #include "src/snapshot/snapshot-source-sink.h"
24 #include "src/v8.h"
25 #include "src/v8threads.h"
26 #include "src/version.h"
27
28 namespace v8 {
29 namespace internal {
30
31
32 // -----------------------------------------------------------------------------
33 // Coding of external references.
34
35
instance(Isolate * isolate)36 ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
37 ExternalReferenceTable* external_reference_table =
38 isolate->external_reference_table();
39 if (external_reference_table == NULL) {
40 external_reference_table = new ExternalReferenceTable(isolate);
41 isolate->set_external_reference_table(external_reference_table);
42 }
43 return external_reference_table;
44 }
45
46
ExternalReferenceTable(Isolate * isolate)47 ExternalReferenceTable::ExternalReferenceTable(Isolate* isolate) {
48 // Miscellaneous
49 Add(ExternalReference::roots_array_start(isolate).address(),
50 "Heap::roots_array_start()");
51 Add(ExternalReference::address_of_stack_limit(isolate).address(),
52 "StackGuard::address_of_jslimit()");
53 Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
54 "StackGuard::address_of_real_jslimit()");
55 Add(ExternalReference::new_space_start(isolate).address(),
56 "Heap::NewSpaceStart()");
57 Add(ExternalReference::new_space_mask(isolate).address(),
58 "Heap::NewSpaceMask()");
59 Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
60 "Heap::NewSpaceAllocationLimitAddress()");
61 Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
62 "Heap::NewSpaceAllocationTopAddress()");
63 Add(ExternalReference::mod_two_doubles_operation(isolate).address(),
64 "mod_two_doubles");
65 // Keyed lookup cache.
66 Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
67 "KeyedLookupCache::keys()");
68 Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
69 "KeyedLookupCache::field_offsets()");
70 Add(ExternalReference::handle_scope_next_address(isolate).address(),
71 "HandleScope::next");
72 Add(ExternalReference::handle_scope_limit_address(isolate).address(),
73 "HandleScope::limit");
74 Add(ExternalReference::handle_scope_level_address(isolate).address(),
75 "HandleScope::level");
76 Add(ExternalReference::new_deoptimizer_function(isolate).address(),
77 "Deoptimizer::New()");
78 Add(ExternalReference::compute_output_frames_function(isolate).address(),
79 "Deoptimizer::ComputeOutputFrames()");
80 Add(ExternalReference::address_of_min_int().address(),
81 "LDoubleConstant::min_int");
82 Add(ExternalReference::address_of_one_half().address(),
83 "LDoubleConstant::one_half");
84 Add(ExternalReference::isolate_address(isolate).address(), "isolate");
85 Add(ExternalReference::address_of_negative_infinity().address(),
86 "LDoubleConstant::negative_infinity");
87 Add(ExternalReference::power_double_double_function(isolate).address(),
88 "power_double_double_function");
89 Add(ExternalReference::power_double_int_function(isolate).address(),
90 "power_double_int_function");
91 Add(ExternalReference::math_log_double_function(isolate).address(),
92 "std::log");
93 Add(ExternalReference::store_buffer_top(isolate).address(),
94 "store_buffer_top");
95 Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan");
96 Add(ExternalReference::get_date_field_function(isolate).address(),
97 "JSDate::GetField");
98 Add(ExternalReference::date_cache_stamp(isolate).address(),
99 "date_cache_stamp");
100 Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
101 "address_of_pending_message_obj");
102 Add(ExternalReference::get_make_code_young_function(isolate).address(),
103 "Code::MakeCodeYoung");
104 Add(ExternalReference::cpu_features().address(), "cpu_features");
105 Add(ExternalReference::old_space_allocation_top_address(isolate).address(),
106 "Heap::OldSpaceAllocationTopAddress");
107 Add(ExternalReference::old_space_allocation_limit_address(isolate).address(),
108 "Heap::OldSpaceAllocationLimitAddress");
109 Add(ExternalReference::allocation_sites_list_address(isolate).address(),
110 "Heap::allocation_sites_list_address()");
111 Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias");
112 Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
113 "Code::MarkCodeAsExecuted");
114 Add(ExternalReference::is_profiling_address(isolate).address(),
115 "CpuProfiler::is_profiling");
116 Add(ExternalReference::scheduled_exception_address(isolate).address(),
117 "Isolate::scheduled_exception");
118 Add(ExternalReference::invoke_function_callback(isolate).address(),
119 "InvokeFunctionCallback");
120 Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(),
121 "InvokeAccessorGetterCallback");
122 Add(ExternalReference::log_enter_external_function(isolate).address(),
123 "Logger::EnterExternal");
124 Add(ExternalReference::log_leave_external_function(isolate).address(),
125 "Logger::LeaveExternal");
126 Add(ExternalReference::address_of_minus_one_half().address(),
127 "double_constants.minus_one_half");
128 Add(ExternalReference::stress_deopt_count(isolate).address(),
129 "Isolate::stress_deopt_count_address()");
130 Add(ExternalReference::virtual_handler_register(isolate).address(),
131 "Isolate::virtual_handler_register()");
132 Add(ExternalReference::virtual_slot_register(isolate).address(),
133 "Isolate::virtual_slot_register()");
134 Add(ExternalReference::runtime_function_table_address(isolate).address(),
135 "Runtime::runtime_function_table_address()");
136
137 // Debug addresses
138 Add(ExternalReference::debug_after_break_target_address(isolate).address(),
139 "Debug::after_break_target_address()");
140 Add(ExternalReference::debug_is_active_address(isolate).address(),
141 "Debug::is_active_address()");
142 Add(ExternalReference::debug_step_in_enabled_address(isolate).address(),
143 "Debug::step_in_enabled_address()");
144
145 #ifndef V8_INTERPRETED_REGEXP
146 Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
147 "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
148 Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
149 "RegExpMacroAssembler*::CheckStackGuardState()");
150 Add(ExternalReference::re_grow_stack(isolate).address(),
151 "NativeRegExpMacroAssembler::GrowStack()");
152 Add(ExternalReference::re_word_character_map().address(),
153 "NativeRegExpMacroAssembler::word_character_map");
154 Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
155 "RegExpStack::limit_address()");
156 Add(ExternalReference::address_of_regexp_stack_memory_address(isolate)
157 .address(),
158 "RegExpStack::memory_address()");
159 Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
160 "RegExpStack::memory_size()");
161 Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
162 "OffsetsVector::static_offsets_vector");
163 #endif // V8_INTERPRETED_REGEXP
164
165 // The following populates all of the different type of external references
166 // into the ExternalReferenceTable.
167 //
168 // NOTE: This function was originally 100k of code. It has since been
169 // rewritten to be mostly table driven, as the callback macro style tends to
170 // very easily cause code bloat. Please be careful in the future when adding
171 // new references.
172
173 struct RefTableEntry {
174 uint16_t id;
175 const char* name;
176 };
177
178 static const RefTableEntry c_builtins[] = {
179 #define DEF_ENTRY_C(name, ignored) \
180 { Builtins::c_##name, "Builtins::" #name } \
181 ,
182 BUILTIN_LIST_C(DEF_ENTRY_C)
183 #undef DEF_ENTRY_C
184 };
185
186 for (unsigned i = 0; i < arraysize(c_builtins); ++i) {
187 ExternalReference ref(static_cast<Builtins::CFunctionId>(c_builtins[i].id),
188 isolate);
189 Add(ref.address(), c_builtins[i].name);
190 }
191
192 static const RefTableEntry builtins[] = {
193 #define DEF_ENTRY_C(name, ignored) \
194 { Builtins::k##name, "Builtins::" #name } \
195 ,
196 #define DEF_ENTRY_A(name, i1, i2, i3) \
197 { Builtins::k##name, "Builtins::" #name } \
198 ,
199 BUILTIN_LIST_C(DEF_ENTRY_C) BUILTIN_LIST_A(DEF_ENTRY_A)
200 BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
201 #undef DEF_ENTRY_C
202 #undef DEF_ENTRY_A
203 };
204
205 for (unsigned i = 0; i < arraysize(builtins); ++i) {
206 ExternalReference ref(static_cast<Builtins::Name>(builtins[i].id), isolate);
207 Add(ref.address(), builtins[i].name);
208 }
209
210 static const RefTableEntry runtime_functions[] = {
211 #define RUNTIME_ENTRY(name, i1, i2) \
212 { Runtime::k##name, "Runtime::" #name } \
213 ,
214 FOR_EACH_INTRINSIC(RUNTIME_ENTRY)
215 #undef RUNTIME_ENTRY
216 };
217
218 for (unsigned i = 0; i < arraysize(runtime_functions); ++i) {
219 ExternalReference ref(
220 static_cast<Runtime::FunctionId>(runtime_functions[i].id), isolate);
221 Add(ref.address(), runtime_functions[i].name);
222 }
223
224 // Stat counters
225 struct StatsRefTableEntry {
226 StatsCounter* (Counters::*counter)();
227 const char* name;
228 };
229
230 static const StatsRefTableEntry stats_ref_table[] = {
231 #define COUNTER_ENTRY(name, caption) \
232 { &Counters::name, "Counters::" #name } \
233 ,
234 STATS_COUNTER_LIST_1(COUNTER_ENTRY) STATS_COUNTER_LIST_2(COUNTER_ENTRY)
235 #undef COUNTER_ENTRY
236 };
237
238 Counters* counters = isolate->counters();
239 for (unsigned i = 0; i < arraysize(stats_ref_table); ++i) {
240 // To make sure the indices are not dependent on whether counters are
241 // enabled, use a dummy address as filler.
242 Address address = NotAvailable();
243 StatsCounter* counter = (counters->*(stats_ref_table[i].counter))();
244 if (counter->Enabled()) {
245 address = reinterpret_cast<Address>(counter->GetInternalPointer());
246 }
247 Add(address, stats_ref_table[i].name);
248 }
249
250 // Top addresses
251 static const char* address_names[] = {
252 #define BUILD_NAME_LITERAL(Name, name) "Isolate::" #name "_address",
253 FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) NULL
254 #undef BUILD_NAME_LITERAL
255 };
256
257 for (int i = 0; i < Isolate::kIsolateAddressCount; ++i) {
258 Add(isolate->get_address_from_id(static_cast<Isolate::AddressId>(i)),
259 address_names[i]);
260 }
261
262 // Accessors
263 struct AccessorRefTable {
264 Address address;
265 const char* name;
266 };
267
268 static const AccessorRefTable accessors[] = {
269 #define ACCESSOR_INFO_DECLARATION(name) \
270 { FUNCTION_ADDR(&Accessors::name##Getter), "Accessors::" #name "Getter" } \
271 , {FUNCTION_ADDR(&Accessors::name##Setter), "Accessors::" #name "Setter"},
272 ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION)
273 #undef ACCESSOR_INFO_DECLARATION
274 };
275
276 for (unsigned i = 0; i < arraysize(accessors); ++i) {
277 Add(accessors[i].address, accessors[i].name);
278 }
279
280 StubCache* stub_cache = isolate->stub_cache();
281
282 // Stub cache tables
283 Add(stub_cache->key_reference(StubCache::kPrimary).address(),
284 "StubCache::primary_->key");
285 Add(stub_cache->value_reference(StubCache::kPrimary).address(),
286 "StubCache::primary_->value");
287 Add(stub_cache->map_reference(StubCache::kPrimary).address(),
288 "StubCache::primary_->map");
289 Add(stub_cache->key_reference(StubCache::kSecondary).address(),
290 "StubCache::secondary_->key");
291 Add(stub_cache->value_reference(StubCache::kSecondary).address(),
292 "StubCache::secondary_->value");
293 Add(stub_cache->map_reference(StubCache::kSecondary).address(),
294 "StubCache::secondary_->map");
295
296 // Runtime entries
297 Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
298 "HandleScope::DeleteExtensions");
299 Add(ExternalReference::incremental_marking_record_write_function(isolate)
300 .address(),
301 "IncrementalMarking::RecordWrite");
302 Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
303 "StoreBuffer::StoreBufferOverflow");
304
305 // Add a small set of deopt entry addresses to encoder without generating the
306 // deopt table code, which isn't possible at deserialization time.
307 HandleScope scope(isolate);
308 for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
309 Address address = Deoptimizer::GetDeoptimizationEntry(
310 isolate,
311 entry,
312 Deoptimizer::LAZY,
313 Deoptimizer::CALCULATE_ENTRY_ADDRESS);
314 Add(address, "lazy_deopt");
315 }
316 }
317
318
ExternalReferenceEncoder(Isolate * isolate)319 ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) {
320 map_ = isolate->external_reference_map();
321 if (map_ != NULL) return;
322 map_ = new HashMap(HashMap::PointersMatch);
323 ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate);
324 for (int i = 0; i < table->size(); ++i) {
325 Address addr = table->address(i);
326 if (addr == ExternalReferenceTable::NotAvailable()) continue;
327 // We expect no duplicate external references entries in the table.
328 DCHECK_NULL(map_->Lookup(addr, Hash(addr)));
329 map_->LookupOrInsert(addr, Hash(addr))->value = reinterpret_cast<void*>(i);
330 }
331 isolate->set_external_reference_map(map_);
332 }
333
334
Encode(Address address) const335 uint32_t ExternalReferenceEncoder::Encode(Address address) const {
336 DCHECK_NOT_NULL(address);
337 HashMap::Entry* entry =
338 const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
339 DCHECK_NOT_NULL(entry);
340 return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
341 }
342
343
NameOfAddress(Isolate * isolate,Address address) const344 const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate,
345 Address address) const {
346 HashMap::Entry* entry =
347 const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
348 if (entry == NULL) return "<unknown>";
349 uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
350 return ExternalReferenceTable::instance(isolate)->name(i);
351 }
352
353
354 class CodeAddressMap: public CodeEventLogger {
355 public:
CodeAddressMap(Isolate * isolate)356 explicit CodeAddressMap(Isolate* isolate)
357 : isolate_(isolate) {
358 isolate->logger()->addCodeEventListener(this);
359 }
360
~CodeAddressMap()361 ~CodeAddressMap() override {
362 isolate_->logger()->removeCodeEventListener(this);
363 }
364
CodeMoveEvent(Address from,Address to)365 void CodeMoveEvent(Address from, Address to) override {
366 address_to_name_map_.Move(from, to);
367 }
368
CodeDisableOptEvent(Code * code,SharedFunctionInfo * shared)369 void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) override {}
370
CodeDeleteEvent(Address from)371 void CodeDeleteEvent(Address from) override {
372 address_to_name_map_.Remove(from);
373 }
374
Lookup(Address address)375 const char* Lookup(Address address) {
376 return address_to_name_map_.Lookup(address);
377 }
378
379 private:
380 class NameMap {
381 public:
NameMap()382 NameMap() : impl_(HashMap::PointersMatch) {}
383
~NameMap()384 ~NameMap() {
385 for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
386 DeleteArray(static_cast<const char*>(p->value));
387 }
388 }
389
Insert(Address code_address,const char * name,int name_size)390 void Insert(Address code_address, const char* name, int name_size) {
391 HashMap::Entry* entry = FindOrCreateEntry(code_address);
392 if (entry->value == NULL) {
393 entry->value = CopyName(name, name_size);
394 }
395 }
396
Lookup(Address code_address)397 const char* Lookup(Address code_address) {
398 HashMap::Entry* entry = FindEntry(code_address);
399 return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
400 }
401
Remove(Address code_address)402 void Remove(Address code_address) {
403 HashMap::Entry* entry = FindEntry(code_address);
404 if (entry != NULL) {
405 DeleteArray(static_cast<char*>(entry->value));
406 RemoveEntry(entry);
407 }
408 }
409
Move(Address from,Address to)410 void Move(Address from, Address to) {
411 if (from == to) return;
412 HashMap::Entry* from_entry = FindEntry(from);
413 DCHECK(from_entry != NULL);
414 void* value = from_entry->value;
415 RemoveEntry(from_entry);
416 HashMap::Entry* to_entry = FindOrCreateEntry(to);
417 DCHECK(to_entry->value == NULL);
418 to_entry->value = value;
419 }
420
421 private:
CopyName(const char * name,int name_size)422 static char* CopyName(const char* name, int name_size) {
423 char* result = NewArray<char>(name_size + 1);
424 for (int i = 0; i < name_size; ++i) {
425 char c = name[i];
426 if (c == '\0') c = ' ';
427 result[i] = c;
428 }
429 result[name_size] = '\0';
430 return result;
431 }
432
FindOrCreateEntry(Address code_address)433 HashMap::Entry* FindOrCreateEntry(Address code_address) {
434 return impl_.LookupOrInsert(code_address,
435 ComputePointerHash(code_address));
436 }
437
FindEntry(Address code_address)438 HashMap::Entry* FindEntry(Address code_address) {
439 return impl_.Lookup(code_address, ComputePointerHash(code_address));
440 }
441
RemoveEntry(HashMap::Entry * entry)442 void RemoveEntry(HashMap::Entry* entry) {
443 impl_.Remove(entry->key, entry->hash);
444 }
445
446 HashMap impl_;
447
448 DISALLOW_COPY_AND_ASSIGN(NameMap);
449 };
450
LogRecordedBuffer(Code * code,SharedFunctionInfo *,const char * name,int length)451 void LogRecordedBuffer(Code* code, SharedFunctionInfo*, const char* name,
452 int length) override {
453 address_to_name_map_.Insert(code->address(), name, length);
454 }
455
456 NameMap address_to_name_map_;
457 Isolate* isolate_;
458 };
459
460
DecodeReservation(Vector<const SerializedData::Reservation> res)461 void Deserializer::DecodeReservation(
462 Vector<const SerializedData::Reservation> res) {
463 DCHECK_EQ(0, reservations_[NEW_SPACE].length());
464 STATIC_ASSERT(NEW_SPACE == 0);
465 int current_space = NEW_SPACE;
466 for (auto& r : res) {
467 reservations_[current_space].Add({r.chunk_size(), NULL, NULL});
468 if (r.is_last()) current_space++;
469 }
470 DCHECK_EQ(kNumberOfSpaces, current_space);
471 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0;
472 }
473
474
FlushICacheForNewIsolate()475 void Deserializer::FlushICacheForNewIsolate() {
476 DCHECK(!deserializing_user_code_);
477 // The entire isolate is newly deserialized. Simply flush all code pages.
478 PageIterator it(isolate_->heap()->code_space());
479 while (it.has_next()) {
480 Page* p = it.next();
481 Assembler::FlushICache(isolate_, p->area_start(),
482 p->area_end() - p->area_start());
483 }
484 }
485
486
FlushICacheForNewCodeObjects()487 void Deserializer::FlushICacheForNewCodeObjects() {
488 DCHECK(deserializing_user_code_);
489 for (Code* code : new_code_objects_) {
490 Assembler::FlushICache(isolate_, code->instruction_start(),
491 code->instruction_size());
492 }
493 }
494
495
ReserveSpace()496 bool Deserializer::ReserveSpace() {
497 #ifdef DEBUG
498 for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) {
499 CHECK(reservations_[i].length() > 0);
500 }
501 #endif // DEBUG
502 if (!isolate_->heap()->ReserveSpace(reservations_)) return false;
503 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
504 high_water_[i] = reservations_[i][0].start;
505 }
506 return true;
507 }
508
509
Initialize(Isolate * isolate)510 void Deserializer::Initialize(Isolate* isolate) {
511 DCHECK_NULL(isolate_);
512 DCHECK_NOT_NULL(isolate);
513 isolate_ = isolate;
514 DCHECK_NULL(external_reference_table_);
515 external_reference_table_ = ExternalReferenceTable::instance(isolate);
516 CHECK_EQ(magic_number_,
517 SerializedData::ComputeMagicNumber(external_reference_table_));
518 }
519
520
Deserialize(Isolate * isolate)521 void Deserializer::Deserialize(Isolate* isolate) {
522 Initialize(isolate);
523 if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context");
524 // No active threads.
525 DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse());
526 // No active handles.
527 DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty());
528
529 {
530 DisallowHeapAllocation no_gc;
531 isolate_->heap()->IterateSmiRoots(this);
532 isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
533 isolate_->heap()->RepairFreeListsAfterDeserialization();
534 isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
535 DeserializeDeferredObjects();
536 FlushICacheForNewIsolate();
537 }
538
539 isolate_->heap()->set_native_contexts_list(
540 isolate_->heap()->undefined_value());
541 // The allocation site list is build during root iteration, but if no sites
542 // were encountered then it needs to be initialized to undefined.
543 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
544 isolate_->heap()->set_allocation_sites_list(
545 isolate_->heap()->undefined_value());
546 }
547
548 // Update data pointers to the external strings containing natives sources.
549 Natives::UpdateSourceCache(isolate_->heap());
550 ExtraNatives::UpdateSourceCache(isolate_->heap());
551
552 // Issue code events for newly deserialized code objects.
553 LOG_CODE_EVENT(isolate_, LogCodeObjects());
554 LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
555 }
556
557
DeserializePartial(Isolate * isolate,Handle<JSGlobalProxy> global_proxy)558 MaybeHandle<Object> Deserializer::DeserializePartial(
559 Isolate* isolate, Handle<JSGlobalProxy> global_proxy) {
560 Initialize(isolate);
561 if (!ReserveSpace()) {
562 V8::FatalProcessOutOfMemory("deserialize context");
563 return MaybeHandle<Object>();
564 }
565
566 Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1);
567 attached_objects[kGlobalProxyReference] = global_proxy;
568 SetAttachedObjects(attached_objects);
569
570 DisallowHeapAllocation no_gc;
571 // Keep track of the code space start and end pointers in case new
572 // code objects were unserialized
573 OldSpace* code_space = isolate_->heap()->code_space();
574 Address start_address = code_space->top();
575 Object* root;
576 VisitPointer(&root);
577 DeserializeDeferredObjects();
578
579 // There's no code deserialized here. If this assert fires then that's
580 // changed and logging should be added to notify the profiler et al of the
581 // new code, which also has to be flushed from instruction cache.
582 CHECK_EQ(start_address, code_space->top());
583 return Handle<Object>(root, isolate);
584 }
585
586
DeserializeCode(Isolate * isolate)587 MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode(
588 Isolate* isolate) {
589 Initialize(isolate);
590 if (!ReserveSpace()) {
591 return Handle<SharedFunctionInfo>();
592 } else {
593 deserializing_user_code_ = true;
594 HandleScope scope(isolate);
595 Handle<SharedFunctionInfo> result;
596 {
597 DisallowHeapAllocation no_gc;
598 Object* root;
599 VisitPointer(&root);
600 DeserializeDeferredObjects();
601 FlushICacheForNewCodeObjects();
602 result = Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root));
603 }
604 CommitPostProcessedObjects(isolate);
605 return scope.CloseAndEscape(result);
606 }
607 }
608
609
~Deserializer()610 Deserializer::~Deserializer() {
611 // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
612 // DCHECK(source_.AtEOF());
613 attached_objects_.Dispose();
614 }
615
616
617 // This is called on the roots. It is the driver of the deserialization
618 // process. It is also called on the body of each function.
VisitPointers(Object ** start,Object ** end)619 void Deserializer::VisitPointers(Object** start, Object** end) {
620 // The space must be new space. Any other space would cause ReadChunk to try
621 // to update the remembered using NULL as the address.
622 ReadData(start, end, NEW_SPACE, NULL);
623 }
624
625
DeserializeDeferredObjects()626 void Deserializer::DeserializeDeferredObjects() {
627 for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) {
628 switch (code) {
629 case kAlignmentPrefix:
630 case kAlignmentPrefix + 1:
631 case kAlignmentPrefix + 2:
632 SetAlignment(code);
633 break;
634 default: {
635 int space = code & kSpaceMask;
636 DCHECK(space <= kNumberOfSpaces);
637 DCHECK(code - space == kNewObject);
638 HeapObject* object = GetBackReferencedObject(space);
639 int size = source_.GetInt() << kPointerSizeLog2;
640 Address obj_address = object->address();
641 Object** start = reinterpret_cast<Object**>(obj_address + kPointerSize);
642 Object** end = reinterpret_cast<Object**>(obj_address + size);
643 bool filled = ReadData(start, end, space, obj_address);
644 CHECK(filled);
645 DCHECK(CanBeDeferred(object));
646 PostProcessNewObject(object, space);
647 }
648 }
649 }
650 }
651
652
653 // Used to insert a deserialized internalized string into the string table.
654 class StringTableInsertionKey : public HashTableKey {
655 public:
StringTableInsertionKey(String * string)656 explicit StringTableInsertionKey(String* string)
657 : string_(string), hash_(HashForObject(string)) {
658 DCHECK(string->IsInternalizedString());
659 }
660
IsMatch(Object * string)661 bool IsMatch(Object* string) override {
662 // We know that all entries in a hash table had their hash keys created.
663 // Use that knowledge to have fast failure.
664 if (hash_ != HashForObject(string)) return false;
665 // We want to compare the content of two internalized strings here.
666 return string_->SlowEquals(String::cast(string));
667 }
668
Hash()669 uint32_t Hash() override { return hash_; }
670
HashForObject(Object * key)671 uint32_t HashForObject(Object* key) override {
672 return String::cast(key)->Hash();
673 }
674
AsHandle(Isolate * isolate)675 MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override {
676 return handle(string_, isolate);
677 }
678
679 private:
680 String* string_;
681 uint32_t hash_;
682 DisallowHeapAllocation no_gc;
683 };
684
685
PostProcessNewObject(HeapObject * obj,int space)686 HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) {
687 if (deserializing_user_code()) {
688 if (obj->IsString()) {
689 String* string = String::cast(obj);
690 // Uninitialize hash field as the hash seed may have changed.
691 string->set_hash_field(String::kEmptyHashField);
692 if (string->IsInternalizedString()) {
693 // Canonicalize the internalized string. If it already exists in the
694 // string table, set it to forward to the existing one.
695 StringTableInsertionKey key(string);
696 String* canonical = StringTable::LookupKeyIfExists(isolate_, &key);
697 if (canonical == NULL) {
698 new_internalized_strings_.Add(handle(string));
699 return string;
700 } else {
701 string->SetForwardedInternalizedString(canonical);
702 return canonical;
703 }
704 }
705 } else if (obj->IsScript()) {
706 new_scripts_.Add(handle(Script::cast(obj)));
707 } else {
708 DCHECK(CanBeDeferred(obj));
709 }
710 }
711 if (obj->IsAllocationSite()) {
712 DCHECK(obj->IsAllocationSite());
713 // Allocation sites are present in the snapshot, and must be linked into
714 // a list at deserialization time.
715 AllocationSite* site = AllocationSite::cast(obj);
716 // TODO(mvstanton): consider treating the heap()->allocation_sites_list()
717 // as a (weak) root. If this root is relocated correctly, this becomes
718 // unnecessary.
719 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
720 site->set_weak_next(isolate_->heap()->undefined_value());
721 } else {
722 site->set_weak_next(isolate_->heap()->allocation_sites_list());
723 }
724 isolate_->heap()->set_allocation_sites_list(site);
725 } else if (obj->IsCode()) {
726 // We flush all code pages after deserializing the startup snapshot. In that
727 // case, we only need to remember code objects in the large object space.
728 // When deserializing user code, remember each individual code object.
729 if (deserializing_user_code() || space == LO_SPACE) {
730 new_code_objects_.Add(Code::cast(obj));
731 }
732 }
733 // Check alignment.
734 DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(), obj->RequiredAlignment()));
735 return obj;
736 }
737
738
CommitPostProcessedObjects(Isolate * isolate)739 void Deserializer::CommitPostProcessedObjects(Isolate* isolate) {
740 StringTable::EnsureCapacityForDeserialization(
741 isolate, new_internalized_strings_.length());
742 for (Handle<String> string : new_internalized_strings_) {
743 StringTableInsertionKey key(*string);
744 DCHECK_NULL(StringTable::LookupKeyIfExists(isolate, &key));
745 StringTable::LookupKey(isolate, &key);
746 }
747
748 Heap* heap = isolate->heap();
749 Factory* factory = isolate->factory();
750 for (Handle<Script> script : new_scripts_) {
751 // Assign a new script id to avoid collision.
752 script->set_id(isolate_->heap()->NextScriptId());
753 // Add script to list.
754 Handle<Object> list = WeakFixedArray::Add(factory->script_list(), script);
755 heap->SetRootScriptList(*list);
756 }
757 }
758
759
GetBackReferencedObject(int space)760 HeapObject* Deserializer::GetBackReferencedObject(int space) {
761 HeapObject* obj;
762 BackReference back_reference(source_.GetInt());
763 if (space == LO_SPACE) {
764 CHECK(back_reference.chunk_index() == 0);
765 uint32_t index = back_reference.large_object_index();
766 obj = deserialized_large_objects_[index];
767 } else {
768 DCHECK(space < kNumberOfPreallocatedSpaces);
769 uint32_t chunk_index = back_reference.chunk_index();
770 DCHECK_LE(chunk_index, current_chunk_[space]);
771 uint32_t chunk_offset = back_reference.chunk_offset();
772 Address address = reservations_[space][chunk_index].start + chunk_offset;
773 if (next_alignment_ != kWordAligned) {
774 int padding = Heap::GetFillToAlign(address, next_alignment_);
775 next_alignment_ = kWordAligned;
776 DCHECK(padding == 0 || HeapObject::FromAddress(address)->IsFiller());
777 address += padding;
778 }
779 obj = HeapObject::FromAddress(address);
780 }
781 if (deserializing_user_code() && obj->IsInternalizedString()) {
782 obj = String::cast(obj)->GetForwardedInternalizedString();
783 }
784 hot_objects_.Add(obj);
785 return obj;
786 }
787
788
789 // This routine writes the new object into the pointer provided and then
790 // returns true if the new object was in young space and false otherwise.
791 // The reason for this strange interface is that otherwise the object is
792 // written very late, which means the FreeSpace map is not set up by the
793 // time we need to use it to mark the space at the end of a page free.
ReadObject(int space_number,Object ** write_back)794 void Deserializer::ReadObject(int space_number, Object** write_back) {
795 Address address;
796 HeapObject* obj;
797 int size = source_.GetInt() << kObjectAlignmentBits;
798
799 if (next_alignment_ != kWordAligned) {
800 int reserved = size + Heap::GetMaximumFillToAlign(next_alignment_);
801 address = Allocate(space_number, reserved);
802 obj = HeapObject::FromAddress(address);
803 // If one of the following assertions fails, then we are deserializing an
804 // aligned object when the filler maps have not been deserialized yet.
805 // We require filler maps as padding to align the object.
806 Heap* heap = isolate_->heap();
807 DCHECK(heap->free_space_map()->IsMap());
808 DCHECK(heap->one_pointer_filler_map()->IsMap());
809 DCHECK(heap->two_pointer_filler_map()->IsMap());
810 obj = heap->AlignWithFiller(obj, size, reserved, next_alignment_);
811 address = obj->address();
812 next_alignment_ = kWordAligned;
813 } else {
814 address = Allocate(space_number, size);
815 obj = HeapObject::FromAddress(address);
816 }
817
818 isolate_->heap()->OnAllocationEvent(obj, size);
819 Object** current = reinterpret_cast<Object**>(address);
820 Object** limit = current + (size >> kPointerSizeLog2);
821 if (FLAG_log_snapshot_positions) {
822 LOG(isolate_, SnapshotPositionEvent(address, source_.position()));
823 }
824
825 if (ReadData(current, limit, space_number, address)) {
826 // Only post process if object content has not been deferred.
827 obj = PostProcessNewObject(obj, space_number);
828 }
829
830 Object* write_back_obj = obj;
831 UnalignedCopy(write_back, &write_back_obj);
832 #ifdef DEBUG
833 if (obj->IsCode()) {
834 DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE);
835 } else {
836 DCHECK(space_number != CODE_SPACE);
837 }
838 #endif // DEBUG
839 }
840
841
842 // We know the space requirements before deserialization and can
843 // pre-allocate that reserved space. During deserialization, all we need
844 // to do is to bump up the pointer for each space in the reserved
845 // space. This is also used for fixing back references.
846 // We may have to split up the pre-allocation into several chunks
847 // because it would not fit onto a single page. We do not have to keep
848 // track of when to move to the next chunk. An opcode will signal this.
849 // Since multiple large objects cannot be folded into one large object
850 // space allocation, we have to do an actual allocation when deserializing
851 // each large object. Instead of tracking offset for back references, we
852 // reference large objects by index.
Allocate(int space_index,int size)853 Address Deserializer::Allocate(int space_index, int size) {
854 if (space_index == LO_SPACE) {
855 AlwaysAllocateScope scope(isolate_);
856 LargeObjectSpace* lo_space = isolate_->heap()->lo_space();
857 Executability exec = static_cast<Executability>(source_.Get());
858 AllocationResult result = lo_space->AllocateRaw(size, exec);
859 HeapObject* obj = HeapObject::cast(result.ToObjectChecked());
860 deserialized_large_objects_.Add(obj);
861 return obj->address();
862 } else {
863 DCHECK(space_index < kNumberOfPreallocatedSpaces);
864 Address address = high_water_[space_index];
865 DCHECK_NOT_NULL(address);
866 high_water_[space_index] += size;
867 #ifdef DEBUG
868 // Assert that the current reserved chunk is still big enough.
869 const Heap::Reservation& reservation = reservations_[space_index];
870 int chunk_index = current_chunk_[space_index];
871 CHECK_LE(high_water_[space_index], reservation[chunk_index].end);
872 #endif
873 return address;
874 }
875 }
876
877
CopyInNativesSource(Vector<const char> source_vector,Object ** current)878 Object** Deserializer::CopyInNativesSource(Vector<const char> source_vector,
879 Object** current) {
880 DCHECK(!isolate_->heap()->deserialization_complete());
881 NativesExternalStringResource* resource = new NativesExternalStringResource(
882 source_vector.start(), source_vector.length());
883 Object* resource_obj = reinterpret_cast<Object*>(resource);
884 UnalignedCopy(current++, &resource_obj);
885 return current;
886 }
887
888
ReadData(Object ** current,Object ** limit,int source_space,Address current_object_address)889 bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
890 Address current_object_address) {
891 Isolate* const isolate = isolate_;
892 // Write barrier support costs around 1% in startup time. In fact there
893 // are no new space objects in current boot snapshots, so it's not needed,
894 // but that may change.
895 bool write_barrier_needed =
896 (current_object_address != NULL && source_space != NEW_SPACE &&
897 source_space != CODE_SPACE);
898 while (current < limit) {
899 byte data = source_.Get();
900 switch (data) {
901 #define CASE_STATEMENT(where, how, within, space_number) \
902 case where + how + within + space_number: \
903 STATIC_ASSERT((where & ~kWhereMask) == 0); \
904 STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \
905 STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \
906 STATIC_ASSERT((space_number & ~kSpaceMask) == 0);
907
908 #define CASE_BODY(where, how, within, space_number_if_any) \
909 { \
910 bool emit_write_barrier = false; \
911 bool current_was_incremented = false; \
912 int space_number = space_number_if_any == kAnyOldSpace \
913 ? (data & kSpaceMask) \
914 : space_number_if_any; \
915 if (where == kNewObject && how == kPlain && within == kStartOfObject) { \
916 ReadObject(space_number, current); \
917 emit_write_barrier = (space_number == NEW_SPACE); \
918 } else { \
919 Object* new_object = NULL; /* May not be a real Object pointer. */ \
920 if (where == kNewObject) { \
921 ReadObject(space_number, &new_object); \
922 } else if (where == kBackref) { \
923 emit_write_barrier = (space_number == NEW_SPACE); \
924 new_object = GetBackReferencedObject(data & kSpaceMask); \
925 } else if (where == kBackrefWithSkip) { \
926 int skip = source_.GetInt(); \
927 current = reinterpret_cast<Object**>( \
928 reinterpret_cast<Address>(current) + skip); \
929 emit_write_barrier = (space_number == NEW_SPACE); \
930 new_object = GetBackReferencedObject(data & kSpaceMask); \
931 } else if (where == kRootArray) { \
932 int id = source_.GetInt(); \
933 Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); \
934 new_object = isolate->heap()->root(root_index); \
935 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
936 } else if (where == kPartialSnapshotCache) { \
937 int cache_index = source_.GetInt(); \
938 new_object = isolate->partial_snapshot_cache()->at(cache_index); \
939 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
940 } else if (where == kExternalReference) { \
941 int skip = source_.GetInt(); \
942 current = reinterpret_cast<Object**>( \
943 reinterpret_cast<Address>(current) + skip); \
944 int reference_id = source_.GetInt(); \
945 Address address = external_reference_table_->address(reference_id); \
946 new_object = reinterpret_cast<Object*>(address); \
947 } else if (where == kAttachedReference) { \
948 int index = source_.GetInt(); \
949 DCHECK(deserializing_user_code() || index == kGlobalProxyReference); \
950 new_object = *attached_objects_[index]; \
951 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
952 } else { \
953 DCHECK(where == kBuiltin); \
954 DCHECK(deserializing_user_code()); \
955 int builtin_id = source_.GetInt(); \
956 DCHECK_LE(0, builtin_id); \
957 DCHECK_LT(builtin_id, Builtins::builtin_count); \
958 Builtins::Name name = static_cast<Builtins::Name>(builtin_id); \
959 new_object = isolate->builtins()->builtin(name); \
960 emit_write_barrier = false; \
961 } \
962 if (within == kInnerPointer) { \
963 if (space_number != CODE_SPACE || new_object->IsCode()) { \
964 Code* new_code_object = reinterpret_cast<Code*>(new_object); \
965 new_object = \
966 reinterpret_cast<Object*>(new_code_object->instruction_start()); \
967 } else { \
968 DCHECK(space_number == CODE_SPACE); \
969 Cell* cell = Cell::cast(new_object); \
970 new_object = reinterpret_cast<Object*>(cell->ValueAddress()); \
971 } \
972 } \
973 if (how == kFromCode) { \
974 Address location_of_branch_data = reinterpret_cast<Address>(current); \
975 Assembler::deserialization_set_special_target_at( \
976 isolate, location_of_branch_data, \
977 Code::cast(HeapObject::FromAddress(current_object_address)), \
978 reinterpret_cast<Address>(new_object)); \
979 location_of_branch_data += Assembler::kSpecialTargetSize; \
980 current = reinterpret_cast<Object**>(location_of_branch_data); \
981 current_was_incremented = true; \
982 } else { \
983 UnalignedCopy(current, &new_object); \
984 } \
985 } \
986 if (emit_write_barrier && write_barrier_needed) { \
987 Address current_address = reinterpret_cast<Address>(current); \
988 isolate->heap()->RecordWrite( \
989 current_object_address, \
990 static_cast<int>(current_address - current_object_address)); \
991 } \
992 if (!current_was_incremented) { \
993 current++; \
994 } \
995 break; \
996 }
997
998 // This generates a case and a body for the new space (which has to do extra
999 // write barrier handling) and handles the other spaces with fall-through cases
1000 // and one body.
1001 #define ALL_SPACES(where, how, within) \
1002 CASE_STATEMENT(where, how, within, NEW_SPACE) \
1003 CASE_BODY(where, how, within, NEW_SPACE) \
1004 CASE_STATEMENT(where, how, within, OLD_SPACE) \
1005 CASE_STATEMENT(where, how, within, CODE_SPACE) \
1006 CASE_STATEMENT(where, how, within, MAP_SPACE) \
1007 CASE_STATEMENT(where, how, within, LO_SPACE) \
1008 CASE_BODY(where, how, within, kAnyOldSpace)
1009
1010 #define FOUR_CASES(byte_code) \
1011 case byte_code: \
1012 case byte_code + 1: \
1013 case byte_code + 2: \
1014 case byte_code + 3:
1015
1016 #define SIXTEEN_CASES(byte_code) \
1017 FOUR_CASES(byte_code) \
1018 FOUR_CASES(byte_code + 4) \
1019 FOUR_CASES(byte_code + 8) \
1020 FOUR_CASES(byte_code + 12)
1021
1022 #define SINGLE_CASE(where, how, within, space) \
1023 CASE_STATEMENT(where, how, within, space) \
1024 CASE_BODY(where, how, within, space)
1025
1026 // Deserialize a new object and write a pointer to it to the current
1027 // object.
1028 ALL_SPACES(kNewObject, kPlain, kStartOfObject)
1029 // Support for direct instruction pointers in functions. It's an inner
1030 // pointer because it points at the entry point, not at the start of the
1031 // code object.
1032 SINGLE_CASE(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
1033 // Deserialize a new code object and write a pointer to its first
1034 // instruction to the current code object.
1035 ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
1036 // Find a recently deserialized object using its offset from the current
1037 // allocation point and write a pointer to it to the current object.
1038 ALL_SPACES(kBackref, kPlain, kStartOfObject)
1039 ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
1040 #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
1041 defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL
1042 // Deserialize a new object from pointer found in code and write
1043 // a pointer to it to the current object. Required only for MIPS, PPC or
1044 // ARM with embedded constant pool, and omitted on the other architectures
1045 // because it is fully unrolled and would cause bloat.
1046 ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
1047 // Find a recently deserialized code object using its offset from the
1048 // current allocation point and write a pointer to it to the current
1049 // object. Required only for MIPS, PPC or ARM with embedded constant pool.
1050 ALL_SPACES(kBackref, kFromCode, kStartOfObject)
1051 ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
1052 #endif
1053 // Find a recently deserialized code object using its offset from the
1054 // current allocation point and write a pointer to its first instruction
1055 // to the current code object or the instruction pointer in a function
1056 // object.
1057 ALL_SPACES(kBackref, kFromCode, kInnerPointer)
1058 ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
1059 ALL_SPACES(kBackref, kPlain, kInnerPointer)
1060 ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
1061 // Find an object in the roots array and write a pointer to it to the
1062 // current object.
1063 SINGLE_CASE(kRootArray, kPlain, kStartOfObject, 0)
1064 #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
1065 defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL
1066 // Find an object in the roots array and write a pointer to it to in code.
1067 SINGLE_CASE(kRootArray, kFromCode, kStartOfObject, 0)
1068 #endif
1069 // Find an object in the partial snapshots cache and write a pointer to it
1070 // to the current object.
1071 SINGLE_CASE(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
1072 // Find an code entry in the partial snapshots cache and
1073 // write a pointer to it to the current object.
1074 SINGLE_CASE(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
1075 // Find an external reference and write a pointer to it to the current
1076 // object.
1077 SINGLE_CASE(kExternalReference, kPlain, kStartOfObject, 0)
1078 // Find an external reference and write a pointer to it in the current
1079 // code object.
1080 SINGLE_CASE(kExternalReference, kFromCode, kStartOfObject, 0)
1081 // Find an object in the attached references and write a pointer to it to
1082 // the current object.
1083 SINGLE_CASE(kAttachedReference, kPlain, kStartOfObject, 0)
1084 SINGLE_CASE(kAttachedReference, kPlain, kInnerPointer, 0)
1085 SINGLE_CASE(kAttachedReference, kFromCode, kInnerPointer, 0)
1086 // Find a builtin and write a pointer to it to the current object.
1087 SINGLE_CASE(kBuiltin, kPlain, kStartOfObject, 0)
1088 SINGLE_CASE(kBuiltin, kPlain, kInnerPointer, 0)
1089 SINGLE_CASE(kBuiltin, kFromCode, kInnerPointer, 0)
1090
1091 #undef CASE_STATEMENT
1092 #undef CASE_BODY
1093 #undef ALL_SPACES
1094
1095 case kSkip: {
1096 int size = source_.GetInt();
1097 current = reinterpret_cast<Object**>(
1098 reinterpret_cast<intptr_t>(current) + size);
1099 break;
1100 }
1101
1102 case kInternalReferenceEncoded:
1103 case kInternalReference: {
1104 // Internal reference address is not encoded via skip, but by offset
1105 // from code entry.
1106 int pc_offset = source_.GetInt();
1107 int target_offset = source_.GetInt();
1108 Code* code =
1109 Code::cast(HeapObject::FromAddress(current_object_address));
1110 DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size());
1111 DCHECK(0 <= target_offset && target_offset <= code->instruction_size());
1112 Address pc = code->entry() + pc_offset;
1113 Address target = code->entry() + target_offset;
1114 Assembler::deserialization_set_target_internal_reference_at(
1115 isolate, pc, target, data == kInternalReference
1116 ? RelocInfo::INTERNAL_REFERENCE
1117 : RelocInfo::INTERNAL_REFERENCE_ENCODED);
1118 break;
1119 }
1120
1121 case kNop:
1122 break;
1123
1124 case kNextChunk: {
1125 int space = source_.Get();
1126 DCHECK(space < kNumberOfPreallocatedSpaces);
1127 int chunk_index = current_chunk_[space];
1128 const Heap::Reservation& reservation = reservations_[space];
1129 // Make sure the current chunk is indeed exhausted.
1130 CHECK_EQ(reservation[chunk_index].end, high_water_[space]);
1131 // Move to next reserved chunk.
1132 chunk_index = ++current_chunk_[space];
1133 CHECK_LT(chunk_index, reservation.length());
1134 high_water_[space] = reservation[chunk_index].start;
1135 break;
1136 }
1137
1138 case kDeferred: {
1139 // Deferred can only occur right after the heap object header.
1140 DCHECK(current == reinterpret_cast<Object**>(current_object_address +
1141 kPointerSize));
1142 HeapObject* obj = HeapObject::FromAddress(current_object_address);
1143 // If the deferred object is a map, its instance type may be used
1144 // during deserialization. Initialize it with a temporary value.
1145 if (obj->IsMap()) Map::cast(obj)->set_instance_type(FILLER_TYPE);
1146 current = limit;
1147 return false;
1148 }
1149
1150 case kSynchronize:
1151 // If we get here then that indicates that you have a mismatch between
1152 // the number of GC roots when serializing and deserializing.
1153 CHECK(false);
1154 break;
1155
1156 case kNativesStringResource:
1157 current = CopyInNativesSource(Natives::GetScriptSource(source_.Get()),
1158 current);
1159 break;
1160
1161 case kExtraNativesStringResource:
1162 current = CopyInNativesSource(
1163 ExtraNatives::GetScriptSource(source_.Get()), current);
1164 break;
1165
1166 // Deserialize raw data of variable length.
1167 case kVariableRawData: {
1168 int size_in_bytes = source_.GetInt();
1169 byte* raw_data_out = reinterpret_cast<byte*>(current);
1170 source_.CopyRaw(raw_data_out, size_in_bytes);
1171 break;
1172 }
1173
1174 case kVariableRepeat: {
1175 int repeats = source_.GetInt();
1176 Object* object = current[-1];
1177 DCHECK(!isolate->heap()->InNewSpace(object));
1178 for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
1179 break;
1180 }
1181
1182 case kAlignmentPrefix:
1183 case kAlignmentPrefix + 1:
1184 case kAlignmentPrefix + 2:
1185 SetAlignment(data);
1186 break;
1187
1188 STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots);
1189 STATIC_ASSERT(kNumberOfRootArrayConstants == 32);
1190 SIXTEEN_CASES(kRootArrayConstantsWithSkip)
1191 SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) {
1192 int skip = source_.GetInt();
1193 current = reinterpret_cast<Object**>(
1194 reinterpret_cast<intptr_t>(current) + skip);
1195 // Fall through.
1196 }
1197
1198 SIXTEEN_CASES(kRootArrayConstants)
1199 SIXTEEN_CASES(kRootArrayConstants + 16) {
1200 int id = data & kRootArrayConstantsMask;
1201 Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id);
1202 Object* object = isolate->heap()->root(root_index);
1203 DCHECK(!isolate->heap()->InNewSpace(object));
1204 UnalignedCopy(current++, &object);
1205 break;
1206 }
1207
1208 STATIC_ASSERT(kNumberOfHotObjects == 8);
1209 FOUR_CASES(kHotObjectWithSkip)
1210 FOUR_CASES(kHotObjectWithSkip + 4) {
1211 int skip = source_.GetInt();
1212 current = reinterpret_cast<Object**>(
1213 reinterpret_cast<Address>(current) + skip);
1214 // Fall through.
1215 }
1216
1217 FOUR_CASES(kHotObject)
1218 FOUR_CASES(kHotObject + 4) {
1219 int index = data & kHotObjectMask;
1220 Object* hot_object = hot_objects_.Get(index);
1221 UnalignedCopy(current, &hot_object);
1222 if (write_barrier_needed && isolate->heap()->InNewSpace(hot_object)) {
1223 Address current_address = reinterpret_cast<Address>(current);
1224 isolate->heap()->RecordWrite(
1225 current_object_address,
1226 static_cast<int>(current_address - current_object_address));
1227 }
1228 current++;
1229 break;
1230 }
1231
1232 // Deserialize raw data of fixed length from 1 to 32 words.
1233 STATIC_ASSERT(kNumberOfFixedRawData == 32);
1234 SIXTEEN_CASES(kFixedRawData)
1235 SIXTEEN_CASES(kFixedRawData + 16) {
1236 byte* raw_data_out = reinterpret_cast<byte*>(current);
1237 int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2;
1238 source_.CopyRaw(raw_data_out, size_in_bytes);
1239 current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes);
1240 break;
1241 }
1242
1243 STATIC_ASSERT(kNumberOfFixedRepeat == 16);
1244 SIXTEEN_CASES(kFixedRepeat) {
1245 int repeats = data - kFixedRepeatStart;
1246 Object* object;
1247 UnalignedCopy(&object, current - 1);
1248 DCHECK(!isolate->heap()->InNewSpace(object));
1249 for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
1250 break;
1251 }
1252
1253 #undef SIXTEEN_CASES
1254 #undef FOUR_CASES
1255 #undef SINGLE_CASE
1256
1257 default:
1258 CHECK(false);
1259 }
1260 }
1261 CHECK_EQ(limit, current);
1262 return true;
1263 }
1264
1265
Serializer(Isolate * isolate,SnapshotByteSink * sink)1266 Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
1267 : isolate_(isolate),
1268 sink_(sink),
1269 external_reference_encoder_(isolate),
1270 root_index_map_(isolate),
1271 recursion_depth_(0),
1272 code_address_map_(NULL),
1273 large_objects_total_size_(0),
1274 seen_large_objects_index_(0) {
1275 // The serializer is meant to be used only to generate initial heap images
1276 // from a context in which there is only one isolate.
1277 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
1278 pending_chunk_[i] = 0;
1279 max_chunk_size_[i] = static_cast<uint32_t>(
1280 MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i)));
1281 }
1282
1283 #ifdef OBJECT_PRINT
1284 if (FLAG_serialization_statistics) {
1285 instance_type_count_ = NewArray<int>(kInstanceTypes);
1286 instance_type_size_ = NewArray<size_t>(kInstanceTypes);
1287 for (int i = 0; i < kInstanceTypes; i++) {
1288 instance_type_count_[i] = 0;
1289 instance_type_size_[i] = 0;
1290 }
1291 } else {
1292 instance_type_count_ = NULL;
1293 instance_type_size_ = NULL;
1294 }
1295 #endif // OBJECT_PRINT
1296 }
1297
1298
~Serializer()1299 Serializer::~Serializer() {
1300 if (code_address_map_ != NULL) delete code_address_map_;
1301 #ifdef OBJECT_PRINT
1302 if (instance_type_count_ != NULL) {
1303 DeleteArray(instance_type_count_);
1304 DeleteArray(instance_type_size_);
1305 }
1306 #endif // OBJECT_PRINT
1307 }
1308
1309
1310 #ifdef OBJECT_PRINT
CountInstanceType(Map * map,int size)1311 void Serializer::CountInstanceType(Map* map, int size) {
1312 int instance_type = map->instance_type();
1313 instance_type_count_[instance_type]++;
1314 instance_type_size_[instance_type] += size;
1315 }
1316 #endif // OBJECT_PRINT
1317
1318
OutputStatistics(const char * name)1319 void Serializer::OutputStatistics(const char* name) {
1320 if (!FLAG_serialization_statistics) return;
1321 PrintF("%s:\n", name);
1322 PrintF(" Spaces (bytes):\n");
1323 for (int space = 0; space < kNumberOfSpaces; space++) {
1324 PrintF("%16s", AllocationSpaceName(static_cast<AllocationSpace>(space)));
1325 }
1326 PrintF("\n");
1327 for (int space = 0; space < kNumberOfPreallocatedSpaces; space++) {
1328 size_t s = pending_chunk_[space];
1329 for (uint32_t chunk_size : completed_chunks_[space]) s += chunk_size;
1330 PrintF("%16" V8_PTR_PREFIX "d", s);
1331 }
1332 PrintF("%16d\n", large_objects_total_size_);
1333 #ifdef OBJECT_PRINT
1334 PrintF(" Instance types (count and bytes):\n");
1335 #define PRINT_INSTANCE_TYPE(Name) \
1336 if (instance_type_count_[Name]) { \
1337 PrintF("%10d %10" V8_PTR_PREFIX "d %s\n", instance_type_count_[Name], \
1338 instance_type_size_[Name], #Name); \
1339 }
1340 INSTANCE_TYPE_LIST(PRINT_INSTANCE_TYPE)
1341 #undef PRINT_INSTANCE_TYPE
1342 PrintF("\n");
1343 #endif // OBJECT_PRINT
1344 }
1345
1346
1347 class Serializer::ObjectSerializer : public ObjectVisitor {
1348 public:
ObjectSerializer(Serializer * serializer,Object * o,SnapshotByteSink * sink,HowToCode how_to_code,WhereToPoint where_to_point)1349 ObjectSerializer(Serializer* serializer, Object* o, SnapshotByteSink* sink,
1350 HowToCode how_to_code, WhereToPoint where_to_point)
1351 : serializer_(serializer),
1352 object_(HeapObject::cast(o)),
1353 sink_(sink),
1354 reference_representation_(how_to_code + where_to_point),
1355 bytes_processed_so_far_(0),
1356 is_code_object_(o->IsCode()),
1357 code_has_been_output_(false) {}
1358 void Serialize();
1359 void SerializeDeferred();
1360 void VisitPointers(Object** start, Object** end) override;
1361 void VisitEmbeddedPointer(RelocInfo* target) override;
1362 void VisitExternalReference(Address* p) override;
1363 void VisitExternalReference(RelocInfo* rinfo) override;
1364 void VisitInternalReference(RelocInfo* rinfo) override;
1365 void VisitCodeTarget(RelocInfo* target) override;
1366 void VisitCodeEntry(Address entry_address) override;
1367 void VisitCell(RelocInfo* rinfo) override;
1368 void VisitRuntimeEntry(RelocInfo* reloc) override;
1369 // Used for seralizing the external strings that hold the natives source.
1370 void VisitExternalOneByteString(
1371 v8::String::ExternalOneByteStringResource** resource) override;
1372 // We can't serialize a heap with external two byte strings.
VisitExternalTwoByteString(v8::String::ExternalStringResource ** resource)1373 void VisitExternalTwoByteString(
1374 v8::String::ExternalStringResource** resource) override {
1375 UNREACHABLE();
1376 }
1377
1378 private:
1379 void SerializePrologue(AllocationSpace space, int size, Map* map);
1380
1381 bool SerializeExternalNativeSourceString(
1382 int builtin_count,
1383 v8::String::ExternalOneByteStringResource** resource_pointer,
1384 FixedArray* source_cache, int resource_index);
1385
1386 enum ReturnSkip { kCanReturnSkipInsteadOfSkipping, kIgnoringReturn };
1387 // This function outputs or skips the raw data between the last pointer and
1388 // up to the current position. It optionally can just return the number of
1389 // bytes to skip instead of performing a skip instruction, in case the skip
1390 // can be merged into the next instruction.
1391 int OutputRawData(Address up_to, ReturnSkip return_skip = kIgnoringReturn);
1392 // External strings are serialized in a way to resemble sequential strings.
1393 void SerializeExternalString();
1394
1395 Address PrepareCode();
1396
1397 Serializer* serializer_;
1398 HeapObject* object_;
1399 SnapshotByteSink* sink_;
1400 int reference_representation_;
1401 int bytes_processed_so_far_;
1402 bool is_code_object_;
1403 bool code_has_been_output_;
1404 };
1405
1406
SerializeDeferredObjects()1407 void Serializer::SerializeDeferredObjects() {
1408 while (deferred_objects_.length() > 0) {
1409 HeapObject* obj = deferred_objects_.RemoveLast();
1410 ObjectSerializer obj_serializer(this, obj, sink_, kPlain, kStartOfObject);
1411 obj_serializer.SerializeDeferred();
1412 }
1413 sink_->Put(kSynchronize, "Finished with deferred objects");
1414 }
1415
1416
SerializeStrongReferences()1417 void StartupSerializer::SerializeStrongReferences() {
1418 Isolate* isolate = this->isolate();
1419 // No active threads.
1420 CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse());
1421 // No active or weak handles.
1422 CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
1423 CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
1424 CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
1425 // We don't support serializing installed extensions.
1426 CHECK(!isolate->has_installed_extensions());
1427 isolate->heap()->IterateSmiRoots(this);
1428 isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
1429 }
1430
1431
VisitPointers(Object ** start,Object ** end)1432 void StartupSerializer::VisitPointers(Object** start, Object** end) {
1433 for (Object** current = start; current < end; current++) {
1434 if (start == isolate()->heap()->roots_array_start()) {
1435 root_index_wave_front_ =
1436 Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
1437 }
1438 if (ShouldBeSkipped(current)) {
1439 sink_->Put(kSkip, "Skip");
1440 sink_->PutInt(kPointerSize, "SkipOneWord");
1441 } else if ((*current)->IsSmi()) {
1442 sink_->Put(kOnePointerRawData, "Smi");
1443 for (int i = 0; i < kPointerSize; i++) {
1444 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1445 }
1446 } else {
1447 SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
1448 }
1449 }
1450 }
1451
1452
Serialize(Object ** o)1453 void PartialSerializer::Serialize(Object** o) {
1454 if ((*o)->IsContext()) {
1455 Context* context = Context::cast(*o);
1456 global_object_ = context->global_object();
1457 back_reference_map()->AddGlobalProxy(context->global_proxy());
1458 // The bootstrap snapshot has a code-stub context. When serializing the
1459 // partial snapshot, it is chained into the weak context list on the isolate
1460 // and it's next context pointer may point to the code-stub context. Clear
1461 // it before serializing, it will get re-added to the context list
1462 // explicitly when it's loaded.
1463 if (context->IsNativeContext()) {
1464 context->set(Context::NEXT_CONTEXT_LINK,
1465 isolate_->heap()->undefined_value());
1466 DCHECK(!context->global_object()->IsUndefined());
1467 }
1468 }
1469 VisitPointer(o);
1470 SerializeDeferredObjects();
1471 Pad();
1472 }
1473
1474
ShouldBeSkipped(Object ** current)1475 bool Serializer::ShouldBeSkipped(Object** current) {
1476 Object** roots = isolate()->heap()->roots_array_start();
1477 return current == &roots[Heap::kStoreBufferTopRootIndex]
1478 || current == &roots[Heap::kStackLimitRootIndex]
1479 || current == &roots[Heap::kRealStackLimitRootIndex];
1480 }
1481
1482
VisitPointers(Object ** start,Object ** end)1483 void Serializer::VisitPointers(Object** start, Object** end) {
1484 for (Object** current = start; current < end; current++) {
1485 if ((*current)->IsSmi()) {
1486 sink_->Put(kOnePointerRawData, "Smi");
1487 for (int i = 0; i < kPointerSize; i++) {
1488 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1489 }
1490 } else {
1491 SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
1492 }
1493 }
1494 }
1495
1496
EncodeReservations(List<SerializedData::Reservation> * out) const1497 void Serializer::EncodeReservations(
1498 List<SerializedData::Reservation>* out) const {
1499 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
1500 for (int j = 0; j < completed_chunks_[i].length(); j++) {
1501 out->Add(SerializedData::Reservation(completed_chunks_[i][j]));
1502 }
1503
1504 if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) {
1505 out->Add(SerializedData::Reservation(pending_chunk_[i]));
1506 }
1507 out->last().mark_as_last();
1508 }
1509
1510 out->Add(SerializedData::Reservation(large_objects_total_size_));
1511 out->last().mark_as_last();
1512 }
1513
1514
1515 // This ensures that the partial snapshot cache keeps things alive during GC and
1516 // tracks their movement. When it is called during serialization of the startup
1517 // snapshot nothing happens. When the partial (context) snapshot is created,
1518 // this array is populated with the pointers that the partial snapshot will
1519 // need. As that happens we emit serialized objects to the startup snapshot
1520 // that correspond to the elements of this cache array. On deserialization we
1521 // therefore need to visit the cache array. This fills it up with pointers to
1522 // deserialized objects.
Iterate(Isolate * isolate,ObjectVisitor * visitor)1523 void SerializerDeserializer::Iterate(Isolate* isolate,
1524 ObjectVisitor* visitor) {
1525 if (isolate->serializer_enabled()) return;
1526 List<Object*>* cache = isolate->partial_snapshot_cache();
1527 for (int i = 0;; ++i) {
1528 // Extend the array ready to get a value when deserializing.
1529 if (cache->length() <= i) cache->Add(Smi::FromInt(0));
1530 visitor->VisitPointer(&cache->at(i));
1531 // Sentinel is the undefined object, which is a root so it will not normally
1532 // be found in the cache.
1533 if (cache->at(i)->IsUndefined()) break;
1534 }
1535 }
1536
1537
CanBeDeferred(HeapObject * o)1538 bool SerializerDeserializer::CanBeDeferred(HeapObject* o) {
1539 return !o->IsString() && !o->IsScript();
1540 }
1541
1542
PartialSnapshotCacheIndex(HeapObject * heap_object)1543 int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
1544 Isolate* isolate = this->isolate();
1545 List<Object*>* cache = isolate->partial_snapshot_cache();
1546 int new_index = cache->length();
1547
1548 int index = partial_cache_index_map_.LookupOrInsert(heap_object, new_index);
1549 if (index == PartialCacheIndexMap::kInvalidIndex) {
1550 // We didn't find the object in the cache. So we add it to the cache and
1551 // then visit the pointer so that it becomes part of the startup snapshot
1552 // and we can refer to it from the partial snapshot.
1553 cache->Add(heap_object);
1554 startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
1555 // We don't recurse from the startup snapshot generator into the partial
1556 // snapshot generator.
1557 return new_index;
1558 }
1559 return index;
1560 }
1561
1562
ShouldBeInThePartialSnapshotCache(HeapObject * o)1563 bool PartialSerializer::ShouldBeInThePartialSnapshotCache(HeapObject* o) {
1564 // Scripts should be referred only through shared function infos. We can't
1565 // allow them to be part of the partial snapshot because they contain a
1566 // unique ID, and deserializing several partial snapshots containing script
1567 // would cause dupes.
1568 DCHECK(!o->IsScript());
1569 return o->IsName() || o->IsSharedFunctionInfo() || o->IsHeapNumber() ||
1570 o->IsCode() || o->IsScopeInfo() || o->IsExecutableAccessorInfo() ||
1571 o->map() ==
1572 startup_serializer_->isolate()->heap()->fixed_cow_array_map();
1573 }
1574
1575
1576 #ifdef DEBUG
BackReferenceIsAlreadyAllocated(BackReference reference)1577 bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) {
1578 DCHECK(reference.is_valid());
1579 DCHECK(!reference.is_source());
1580 DCHECK(!reference.is_global_proxy());
1581 AllocationSpace space = reference.space();
1582 int chunk_index = reference.chunk_index();
1583 if (space == LO_SPACE) {
1584 return chunk_index == 0 &&
1585 reference.large_object_index() < seen_large_objects_index_;
1586 } else if (chunk_index == completed_chunks_[space].length()) {
1587 return reference.chunk_offset() < pending_chunk_[space];
1588 } else {
1589 return chunk_index < completed_chunks_[space].length() &&
1590 reference.chunk_offset() < completed_chunks_[space][chunk_index];
1591 }
1592 }
1593 #endif // DEBUG
1594
1595
SerializeKnownObject(HeapObject * obj,HowToCode how_to_code,WhereToPoint where_to_point,int skip)1596 bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
1597 WhereToPoint where_to_point, int skip) {
1598 if (how_to_code == kPlain && where_to_point == kStartOfObject) {
1599 // Encode a reference to a hot object by its index in the working set.
1600 int index = hot_objects_.Find(obj);
1601 if (index != HotObjectsList::kNotFound) {
1602 DCHECK(index >= 0 && index < kNumberOfHotObjects);
1603 if (FLAG_trace_serializer) {
1604 PrintF(" Encoding hot object %d:", index);
1605 obj->ShortPrint();
1606 PrintF("\n");
1607 }
1608 if (skip != 0) {
1609 sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip");
1610 sink_->PutInt(skip, "HotObjectSkipDistance");
1611 } else {
1612 sink_->Put(kHotObject + index, "HotObject");
1613 }
1614 return true;
1615 }
1616 }
1617 BackReference back_reference = back_reference_map_.Lookup(obj);
1618 if (back_reference.is_valid()) {
1619 // Encode the location of an already deserialized object in order to write
1620 // its location into a later object. We can encode the location as an
1621 // offset fromthe start of the deserialized objects or as an offset
1622 // backwards from thecurrent allocation pointer.
1623 if (back_reference.is_source()) {
1624 FlushSkip(skip);
1625 if (FLAG_trace_serializer) PrintF(" Encoding source object\n");
1626 DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
1627 sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source");
1628 sink_->PutInt(kSourceObjectReference, "kSourceObjectReference");
1629 } else if (back_reference.is_global_proxy()) {
1630 FlushSkip(skip);
1631 if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n");
1632 DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
1633 sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy");
1634 sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference");
1635 } else {
1636 if (FLAG_trace_serializer) {
1637 PrintF(" Encoding back reference to: ");
1638 obj->ShortPrint();
1639 PrintF("\n");
1640 }
1641
1642 PutAlignmentPrefix(obj);
1643 AllocationSpace space = back_reference.space();
1644 if (skip == 0) {
1645 sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef");
1646 } else {
1647 sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
1648 "BackRefWithSkip");
1649 sink_->PutInt(skip, "BackRefSkipDistance");
1650 }
1651 PutBackReference(obj, back_reference);
1652 }
1653 return true;
1654 }
1655 return false;
1656 }
1657
1658
StartupSerializer(Isolate * isolate,SnapshotByteSink * sink)1659 StartupSerializer::StartupSerializer(Isolate* isolate, SnapshotByteSink* sink)
1660 : Serializer(isolate, sink), root_index_wave_front_(0) {
1661 // Clear the cache of objects used by the partial snapshot. After the
1662 // strong roots have been serialized we can create a partial snapshot
1663 // which will repopulate the cache with objects needed by that partial
1664 // snapshot.
1665 isolate->partial_snapshot_cache()->Clear();
1666 InitializeCodeAddressMap();
1667 }
1668
1669
SerializeObject(HeapObject * obj,HowToCode how_to_code,WhereToPoint where_to_point,int skip)1670 void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
1671 WhereToPoint where_to_point, int skip) {
1672 DCHECK(!obj->IsJSFunction());
1673
1674 int root_index = root_index_map_.Lookup(obj);
1675 // We can only encode roots as such if it has already been serialized.
1676 // That applies to root indices below the wave front.
1677 if (root_index != RootIndexMap::kInvalidRootIndex &&
1678 root_index < root_index_wave_front_) {
1679 PutRoot(root_index, obj, how_to_code, where_to_point, skip);
1680 return;
1681 }
1682
1683 if (obj->IsCode() && Code::cast(obj)->kind() == Code::FUNCTION) {
1684 obj = isolate()->builtins()->builtin(Builtins::kCompileLazy);
1685 }
1686
1687 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
1688
1689 FlushSkip(skip);
1690
1691 // Object has not yet been serialized. Serialize it here.
1692 ObjectSerializer object_serializer(this, obj, sink_, how_to_code,
1693 where_to_point);
1694 object_serializer.Serialize();
1695 }
1696
1697
SerializeWeakReferencesAndDeferred()1698 void StartupSerializer::SerializeWeakReferencesAndDeferred() {
1699 // This phase comes right after the serialization (of the snapshot).
1700 // After we have done the partial serialization the partial snapshot cache
1701 // will contain some references needed to decode the partial snapshot. We
1702 // add one entry with 'undefined' which is the sentinel that the deserializer
1703 // uses to know it is done deserializing the array.
1704 Object* undefined = isolate()->heap()->undefined_value();
1705 VisitPointer(&undefined);
1706 isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
1707 SerializeDeferredObjects();
1708 Pad();
1709 }
1710
1711
PutRoot(int root_index,HeapObject * object,SerializerDeserializer::HowToCode how_to_code,SerializerDeserializer::WhereToPoint where_to_point,int skip)1712 void Serializer::PutRoot(int root_index,
1713 HeapObject* object,
1714 SerializerDeserializer::HowToCode how_to_code,
1715 SerializerDeserializer::WhereToPoint where_to_point,
1716 int skip) {
1717 if (FLAG_trace_serializer) {
1718 PrintF(" Encoding root %d:", root_index);
1719 object->ShortPrint();
1720 PrintF("\n");
1721 }
1722
1723 if (how_to_code == kPlain && where_to_point == kStartOfObject &&
1724 root_index < kNumberOfRootArrayConstants &&
1725 !isolate()->heap()->InNewSpace(object)) {
1726 if (skip == 0) {
1727 sink_->Put(kRootArrayConstants + root_index, "RootConstant");
1728 } else {
1729 sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant");
1730 sink_->PutInt(skip, "SkipInPutRoot");
1731 }
1732 } else {
1733 FlushSkip(skip);
1734 sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
1735 sink_->PutInt(root_index, "root_index");
1736 }
1737 }
1738
1739
PutBackReference(HeapObject * object,BackReference reference)1740 void Serializer::PutBackReference(HeapObject* object, BackReference reference) {
1741 DCHECK(BackReferenceIsAlreadyAllocated(reference));
1742 sink_->PutInt(reference.reference(), "BackRefValue");
1743 hot_objects_.Add(object);
1744 }
1745
1746
PutAlignmentPrefix(HeapObject * object)1747 int Serializer::PutAlignmentPrefix(HeapObject* object) {
1748 AllocationAlignment alignment = object->RequiredAlignment();
1749 if (alignment != kWordAligned) {
1750 DCHECK(1 <= alignment && alignment <= 3);
1751 byte prefix = (kAlignmentPrefix - 1) + alignment;
1752 sink_->Put(prefix, "Alignment");
1753 return Heap::GetMaximumFillToAlign(alignment);
1754 }
1755 return 0;
1756 }
1757
1758
SerializeObject(HeapObject * obj,HowToCode how_to_code,WhereToPoint where_to_point,int skip)1759 void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
1760 WhereToPoint where_to_point, int skip) {
1761 if (obj->IsMap()) {
1762 // The code-caches link to context-specific code objects, which
1763 // the startup and context serializes cannot currently handle.
1764 DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array());
1765 }
1766
1767 // Replace typed arrays by undefined.
1768 if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value();
1769
1770 int root_index = root_index_map_.Lookup(obj);
1771 if (root_index != RootIndexMap::kInvalidRootIndex) {
1772 PutRoot(root_index, obj, how_to_code, where_to_point, skip);
1773 return;
1774 }
1775
1776 if (ShouldBeInThePartialSnapshotCache(obj)) {
1777 FlushSkip(skip);
1778
1779 int cache_index = PartialSnapshotCacheIndex(obj);
1780 sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
1781 "PartialSnapshotCache");
1782 sink_->PutInt(cache_index, "partial_snapshot_cache_index");
1783 return;
1784 }
1785
1786 // Pointers from the partial snapshot to the objects in the startup snapshot
1787 // should go through the root array or through the partial snapshot cache.
1788 // If this is not the case you may have to add something to the root array.
1789 DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid());
1790 // All the internalized strings that the partial snapshot needs should be
1791 // either in the root table or in the partial snapshot cache.
1792 DCHECK(!obj->IsInternalizedString());
1793
1794 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
1795
1796 FlushSkip(skip);
1797
1798 // Clear literal boilerplates.
1799 if (obj->IsJSFunction()) {
1800 FixedArray* literals = JSFunction::cast(obj)->literals();
1801 for (int i = 0; i < literals->length(); i++) literals->set_undefined(i);
1802 }
1803
1804 // Object has not yet been serialized. Serialize it here.
1805 ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point);
1806 serializer.Serialize();
1807 }
1808
1809
SerializePrologue(AllocationSpace space,int size,Map * map)1810 void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space,
1811 int size, Map* map) {
1812 if (serializer_->code_address_map_) {
1813 const char* code_name =
1814 serializer_->code_address_map_->Lookup(object_->address());
1815 LOG(serializer_->isolate_,
1816 CodeNameEvent(object_->address(), sink_->Position(), code_name));
1817 LOG(serializer_->isolate_,
1818 SnapshotPositionEvent(object_->address(), sink_->Position()));
1819 }
1820
1821 BackReference back_reference;
1822 if (space == LO_SPACE) {
1823 sink_->Put(kNewObject + reference_representation_ + space,
1824 "NewLargeObject");
1825 sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
1826 if (object_->IsCode()) {
1827 sink_->Put(EXECUTABLE, "executable large object");
1828 } else {
1829 sink_->Put(NOT_EXECUTABLE, "not executable large object");
1830 }
1831 back_reference = serializer_->AllocateLargeObject(size);
1832 } else {
1833 int fill = serializer_->PutAlignmentPrefix(object_);
1834 back_reference = serializer_->Allocate(space, size + fill);
1835 sink_->Put(kNewObject + reference_representation_ + space, "NewObject");
1836 sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
1837 }
1838
1839 #ifdef OBJECT_PRINT
1840 if (FLAG_serialization_statistics) {
1841 serializer_->CountInstanceType(map, size);
1842 }
1843 #endif // OBJECT_PRINT
1844
1845 // Mark this object as already serialized.
1846 serializer_->back_reference_map()->Add(object_, back_reference);
1847
1848 // Serialize the map (first word of the object).
1849 serializer_->SerializeObject(map, kPlain, kStartOfObject, 0);
1850 }
1851
1852
SerializeExternalString()1853 void Serializer::ObjectSerializer::SerializeExternalString() {
1854 // Instead of serializing this as an external string, we serialize
1855 // an imaginary sequential string with the same content.
1856 Isolate* isolate = serializer_->isolate();
1857 DCHECK(object_->IsExternalString());
1858 DCHECK(object_->map() != isolate->heap()->native_source_string_map());
1859 ExternalString* string = ExternalString::cast(object_);
1860 int length = string->length();
1861 Map* map;
1862 int content_size;
1863 int allocation_size;
1864 const byte* resource;
1865 // Find the map and size for the imaginary sequential string.
1866 bool internalized = object_->IsInternalizedString();
1867 if (object_->IsExternalOneByteString()) {
1868 map = internalized ? isolate->heap()->one_byte_internalized_string_map()
1869 : isolate->heap()->one_byte_string_map();
1870 allocation_size = SeqOneByteString::SizeFor(length);
1871 content_size = length * kCharSize;
1872 resource = reinterpret_cast<const byte*>(
1873 ExternalOneByteString::cast(string)->resource()->data());
1874 } else {
1875 map = internalized ? isolate->heap()->internalized_string_map()
1876 : isolate->heap()->string_map();
1877 allocation_size = SeqTwoByteString::SizeFor(length);
1878 content_size = length * kShortSize;
1879 resource = reinterpret_cast<const byte*>(
1880 ExternalTwoByteString::cast(string)->resource()->data());
1881 }
1882
1883 AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize)
1884 ? LO_SPACE
1885 : OLD_SPACE;
1886 SerializePrologue(space, allocation_size, map);
1887
1888 // Output the rest of the imaginary string.
1889 int bytes_to_output = allocation_size - HeapObject::kHeaderSize;
1890
1891 // Output raw data header. Do not bother with common raw length cases here.
1892 sink_->Put(kVariableRawData, "RawDataForString");
1893 sink_->PutInt(bytes_to_output, "length");
1894
1895 // Serialize string header (except for map).
1896 Address string_start = string->address();
1897 for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) {
1898 sink_->PutSection(string_start[i], "StringHeader");
1899 }
1900
1901 // Serialize string content.
1902 sink_->PutRaw(resource, content_size, "StringContent");
1903
1904 // Since the allocation size is rounded up to object alignment, there
1905 // maybe left-over bytes that need to be padded.
1906 int padding_size = allocation_size - SeqString::kHeaderSize - content_size;
1907 DCHECK(0 <= padding_size && padding_size < kObjectAlignment);
1908 for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding");
1909
1910 sink_->Put(kSkip, "SkipAfterString");
1911 sink_->PutInt(bytes_to_output, "SkipDistance");
1912 }
1913
1914
1915 // Clear and later restore the next link in the weak cell, if the object is one.
1916 class UnlinkWeakCellScope {
1917 public:
UnlinkWeakCellScope(HeapObject * object)1918 explicit UnlinkWeakCellScope(HeapObject* object) : weak_cell_(NULL) {
1919 if (object->IsWeakCell()) {
1920 weak_cell_ = WeakCell::cast(object);
1921 next_ = weak_cell_->next();
1922 weak_cell_->clear_next(object->GetHeap()->the_hole_value());
1923 }
1924 }
1925
~UnlinkWeakCellScope()1926 ~UnlinkWeakCellScope() {
1927 if (weak_cell_) weak_cell_->set_next(next_, UPDATE_WEAK_WRITE_BARRIER);
1928 }
1929
1930 private:
1931 WeakCell* weak_cell_;
1932 Object* next_;
1933 DisallowHeapAllocation no_gc_;
1934 };
1935
1936
Serialize()1937 void Serializer::ObjectSerializer::Serialize() {
1938 if (FLAG_trace_serializer) {
1939 PrintF(" Encoding heap object: ");
1940 object_->ShortPrint();
1941 PrintF("\n");
1942 }
1943
1944 // We cannot serialize typed array objects correctly.
1945 DCHECK(!object_->IsJSTypedArray());
1946
1947 // We don't expect fillers.
1948 DCHECK(!object_->IsFiller());
1949
1950 if (object_->IsScript()) {
1951 // Clear cached line ends.
1952 Object* undefined = serializer_->isolate()->heap()->undefined_value();
1953 Script::cast(object_)->set_line_ends(undefined);
1954 }
1955
1956 if (object_->IsExternalString()) {
1957 Heap* heap = serializer_->isolate()->heap();
1958 if (object_->map() != heap->native_source_string_map()) {
1959 // Usually we cannot recreate resources for external strings. To work
1960 // around this, external strings are serialized to look like ordinary
1961 // sequential strings.
1962 // The exception are native source code strings, since we can recreate
1963 // their resources. In that case we fall through and leave it to
1964 // VisitExternalOneByteString further down.
1965 SerializeExternalString();
1966 return;
1967 }
1968 }
1969
1970 int size = object_->Size();
1971 Map* map = object_->map();
1972 AllocationSpace space =
1973 MemoryChunk::FromAddress(object_->address())->owner()->identity();
1974 SerializePrologue(space, size, map);
1975
1976 // Serialize the rest of the object.
1977 CHECK_EQ(0, bytes_processed_so_far_);
1978 bytes_processed_so_far_ = kPointerSize;
1979
1980 RecursionScope recursion(serializer_);
1981 // Objects that are immediately post processed during deserialization
1982 // cannot be deferred, since post processing requires the object content.
1983 if (recursion.ExceedsMaximum() && CanBeDeferred(object_)) {
1984 serializer_->QueueDeferredObject(object_);
1985 sink_->Put(kDeferred, "Deferring object content");
1986 return;
1987 }
1988
1989 UnlinkWeakCellScope unlink_weak_cell(object_);
1990
1991 object_->IterateBody(map->instance_type(), size, this);
1992 OutputRawData(object_->address() + size);
1993 }
1994
1995
SerializeDeferred()1996 void Serializer::ObjectSerializer::SerializeDeferred() {
1997 if (FLAG_trace_serializer) {
1998 PrintF(" Encoding deferred heap object: ");
1999 object_->ShortPrint();
2000 PrintF("\n");
2001 }
2002
2003 int size = object_->Size();
2004 Map* map = object_->map();
2005 BackReference reference = serializer_->back_reference_map()->Lookup(object_);
2006
2007 // Serialize the rest of the object.
2008 CHECK_EQ(0, bytes_processed_so_far_);
2009 bytes_processed_so_far_ = kPointerSize;
2010
2011 serializer_->PutAlignmentPrefix(object_);
2012 sink_->Put(kNewObject + reference.space(), "deferred object");
2013 serializer_->PutBackReference(object_, reference);
2014 sink_->PutInt(size >> kPointerSizeLog2, "deferred object size");
2015
2016 UnlinkWeakCellScope unlink_weak_cell(object_);
2017
2018 object_->IterateBody(map->instance_type(), size, this);
2019 OutputRawData(object_->address() + size);
2020 }
2021
2022
VisitPointers(Object ** start,Object ** end)2023 void Serializer::ObjectSerializer::VisitPointers(Object** start,
2024 Object** end) {
2025 Object** current = start;
2026 while (current < end) {
2027 while (current < end && (*current)->IsSmi()) current++;
2028 if (current < end) OutputRawData(reinterpret_cast<Address>(current));
2029
2030 while (current < end && !(*current)->IsSmi()) {
2031 HeapObject* current_contents = HeapObject::cast(*current);
2032 int root_index = serializer_->root_index_map()->Lookup(current_contents);
2033 // Repeats are not subject to the write barrier so we can only use
2034 // immortal immovable root members. They are never in new space.
2035 if (current != start && root_index != RootIndexMap::kInvalidRootIndex &&
2036 Heap::RootIsImmortalImmovable(root_index) &&
2037 current_contents == current[-1]) {
2038 DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
2039 int repeat_count = 1;
2040 while (¤t[repeat_count] < end - 1 &&
2041 current[repeat_count] == current_contents) {
2042 repeat_count++;
2043 }
2044 current += repeat_count;
2045 bytes_processed_so_far_ += repeat_count * kPointerSize;
2046 if (repeat_count > kNumberOfFixedRepeat) {
2047 sink_->Put(kVariableRepeat, "VariableRepeat");
2048 sink_->PutInt(repeat_count, "repeat count");
2049 } else {
2050 sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat");
2051 }
2052 } else {
2053 serializer_->SerializeObject(
2054 current_contents, kPlain, kStartOfObject, 0);
2055 bytes_processed_so_far_ += kPointerSize;
2056 current++;
2057 }
2058 }
2059 }
2060 }
2061
2062
VisitEmbeddedPointer(RelocInfo * rinfo)2063 void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
2064 int skip = OutputRawData(rinfo->target_address_address(),
2065 kCanReturnSkipInsteadOfSkipping);
2066 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
2067 Object* object = rinfo->target_object();
2068 serializer_->SerializeObject(HeapObject::cast(object), how_to_code,
2069 kStartOfObject, skip);
2070 bytes_processed_so_far_ += rinfo->target_address_size();
2071 }
2072
2073
VisitExternalReference(Address * p)2074 void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
2075 int skip = OutputRawData(reinterpret_cast<Address>(p),
2076 kCanReturnSkipInsteadOfSkipping);
2077 sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
2078 sink_->PutInt(skip, "SkipB4ExternalRef");
2079 Address target = *p;
2080 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
2081 bytes_processed_so_far_ += kPointerSize;
2082 }
2083
2084
VisitExternalReference(RelocInfo * rinfo)2085 void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
2086 int skip = OutputRawData(rinfo->target_address_address(),
2087 kCanReturnSkipInsteadOfSkipping);
2088 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
2089 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
2090 sink_->PutInt(skip, "SkipB4ExternalRef");
2091 Address target = rinfo->target_external_reference();
2092 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
2093 bytes_processed_so_far_ += rinfo->target_address_size();
2094 }
2095
2096
VisitInternalReference(RelocInfo * rinfo)2097 void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) {
2098 // We can only reference to internal references of code that has been output.
2099 DCHECK(is_code_object_ && code_has_been_output_);
2100 // We do not use skip from last patched pc to find the pc to patch, since
2101 // target_address_address may not return addresses in ascending order when
2102 // used for internal references. External references may be stored at the
2103 // end of the code in the constant pool, whereas internal references are
2104 // inline. That would cause the skip to be negative. Instead, we store the
2105 // offset from code entry.
2106 Address entry = Code::cast(object_)->entry();
2107 intptr_t pc_offset = rinfo->target_internal_reference_address() - entry;
2108 intptr_t target_offset = rinfo->target_internal_reference() - entry;
2109 DCHECK(0 <= pc_offset &&
2110 pc_offset <= Code::cast(object_)->instruction_size());
2111 DCHECK(0 <= target_offset &&
2112 target_offset <= Code::cast(object_)->instruction_size());
2113 sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE
2114 ? kInternalReference
2115 : kInternalReferenceEncoded,
2116 "InternalRef");
2117 sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address");
2118 sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value");
2119 }
2120
2121
VisitRuntimeEntry(RelocInfo * rinfo)2122 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
2123 int skip = OutputRawData(rinfo->target_address_address(),
2124 kCanReturnSkipInsteadOfSkipping);
2125 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
2126 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
2127 sink_->PutInt(skip, "SkipB4ExternalRef");
2128 Address target = rinfo->target_address();
2129 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
2130 bytes_processed_so_far_ += rinfo->target_address_size();
2131 }
2132
2133
VisitCodeTarget(RelocInfo * rinfo)2134 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
2135 int skip = OutputRawData(rinfo->target_address_address(),
2136 kCanReturnSkipInsteadOfSkipping);
2137 Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
2138 serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
2139 bytes_processed_so_far_ += rinfo->target_address_size();
2140 }
2141
2142
VisitCodeEntry(Address entry_address)2143 void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
2144 int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
2145 Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
2146 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
2147 bytes_processed_so_far_ += kPointerSize;
2148 }
2149
2150
VisitCell(RelocInfo * rinfo)2151 void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
2152 int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
2153 Cell* object = Cell::cast(rinfo->target_cell());
2154 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
2155 bytes_processed_so_far_ += kPointerSize;
2156 }
2157
2158
SerializeExternalNativeSourceString(int builtin_count,v8::String::ExternalOneByteStringResource ** resource_pointer,FixedArray * source_cache,int resource_index)2159 bool Serializer::ObjectSerializer::SerializeExternalNativeSourceString(
2160 int builtin_count,
2161 v8::String::ExternalOneByteStringResource** resource_pointer,
2162 FixedArray* source_cache, int resource_index) {
2163 for (int i = 0; i < builtin_count; i++) {
2164 Object* source = source_cache->get(i);
2165 if (!source->IsUndefined()) {
2166 ExternalOneByteString* string = ExternalOneByteString::cast(source);
2167 typedef v8::String::ExternalOneByteStringResource Resource;
2168 const Resource* resource = string->resource();
2169 if (resource == *resource_pointer) {
2170 sink_->Put(resource_index, "NativesStringResource");
2171 sink_->PutSection(i, "NativesStringResourceEnd");
2172 bytes_processed_so_far_ += sizeof(resource);
2173 return true;
2174 }
2175 }
2176 }
2177 return false;
2178 }
2179
2180
VisitExternalOneByteString(v8::String::ExternalOneByteStringResource ** resource_pointer)2181 void Serializer::ObjectSerializer::VisitExternalOneByteString(
2182 v8::String::ExternalOneByteStringResource** resource_pointer) {
2183 Address references_start = reinterpret_cast<Address>(resource_pointer);
2184 OutputRawData(references_start);
2185 if (SerializeExternalNativeSourceString(
2186 Natives::GetBuiltinsCount(), resource_pointer,
2187 Natives::GetSourceCache(serializer_->isolate()->heap()),
2188 kNativesStringResource)) {
2189 return;
2190 }
2191 if (SerializeExternalNativeSourceString(
2192 ExtraNatives::GetBuiltinsCount(), resource_pointer,
2193 ExtraNatives::GetSourceCache(serializer_->isolate()->heap()),
2194 kExtraNativesStringResource)) {
2195 return;
2196 }
2197 // One of the strings in the natives cache should match the resource. We
2198 // don't expect any other kinds of external strings here.
2199 UNREACHABLE();
2200 }
2201
2202
PrepareCode()2203 Address Serializer::ObjectSerializer::PrepareCode() {
2204 // To make snapshots reproducible, we make a copy of the code object
2205 // and wipe all pointers in the copy, which we then serialize.
2206 Code* original = Code::cast(object_);
2207 Code* code = serializer_->CopyCode(original);
2208 // Code age headers are not serializable.
2209 code->MakeYoung(serializer_->isolate());
2210 int mode_mask = RelocInfo::kCodeTargetMask |
2211 RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
2212 RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
2213 RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
2214 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
2215 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
2216 for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
2217 RelocInfo* rinfo = it.rinfo();
2218 rinfo->WipeOut();
2219 }
2220 // We need to wipe out the header fields *after* wiping out the
2221 // relocations, because some of these fields are needed for the latter.
2222 code->WipeOutHeader();
2223 return code->address();
2224 }
2225
2226
OutputRawData(Address up_to,Serializer::ObjectSerializer::ReturnSkip return_skip)2227 int Serializer::ObjectSerializer::OutputRawData(
2228 Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
2229 Address object_start = object_->address();
2230 int base = bytes_processed_so_far_;
2231 int up_to_offset = static_cast<int>(up_to - object_start);
2232 int to_skip = up_to_offset - bytes_processed_so_far_;
2233 int bytes_to_output = to_skip;
2234 bytes_processed_so_far_ += to_skip;
2235 // This assert will fail if the reloc info gives us the target_address_address
2236 // locations in a non-ascending order. Luckily that doesn't happen.
2237 DCHECK(to_skip >= 0);
2238 bool outputting_code = false;
2239 if (to_skip != 0 && is_code_object_ && !code_has_been_output_) {
2240 // Output the code all at once and fix later.
2241 bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
2242 outputting_code = true;
2243 code_has_been_output_ = true;
2244 }
2245 if (bytes_to_output != 0 && (!is_code_object_ || outputting_code)) {
2246 if (!outputting_code && bytes_to_output == to_skip &&
2247 IsAligned(bytes_to_output, kPointerAlignment) &&
2248 bytes_to_output <= kNumberOfFixedRawData * kPointerSize) {
2249 int size_in_words = bytes_to_output >> kPointerSizeLog2;
2250 sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData");
2251 to_skip = 0; // This instruction includes skip.
2252 } else {
2253 // We always end up here if we are outputting the code of a code object.
2254 sink_->Put(kVariableRawData, "VariableRawData");
2255 sink_->PutInt(bytes_to_output, "length");
2256 }
2257
2258 if (is_code_object_) object_start = PrepareCode();
2259
2260 const char* description = is_code_object_ ? "Code" : "Byte";
2261 sink_->PutRaw(object_start + base, bytes_to_output, description);
2262 }
2263 if (to_skip != 0 && return_skip == kIgnoringReturn) {
2264 sink_->Put(kSkip, "Skip");
2265 sink_->PutInt(to_skip, "SkipDistance");
2266 to_skip = 0;
2267 }
2268 return to_skip;
2269 }
2270
2271
AllocateLargeObject(int size)2272 BackReference Serializer::AllocateLargeObject(int size) {
2273 // Large objects are allocated one-by-one when deserializing. We do not
2274 // have to keep track of multiple chunks.
2275 large_objects_total_size_ += size;
2276 return BackReference::LargeObjectReference(seen_large_objects_index_++);
2277 }
2278
2279
Allocate(AllocationSpace space,int size)2280 BackReference Serializer::Allocate(AllocationSpace space, int size) {
2281 DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces);
2282 DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space)));
2283 uint32_t new_chunk_size = pending_chunk_[space] + size;
2284 if (new_chunk_size > max_chunk_size(space)) {
2285 // The new chunk size would not fit onto a single page. Complete the
2286 // current chunk and start a new one.
2287 sink_->Put(kNextChunk, "NextChunk");
2288 sink_->Put(space, "NextChunkSpace");
2289 completed_chunks_[space].Add(pending_chunk_[space]);
2290 DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex);
2291 pending_chunk_[space] = 0;
2292 new_chunk_size = size;
2293 }
2294 uint32_t offset = pending_chunk_[space];
2295 pending_chunk_[space] = new_chunk_size;
2296 return BackReference::Reference(space, completed_chunks_[space].length(),
2297 offset);
2298 }
2299
2300
Pad()2301 void Serializer::Pad() {
2302 // The non-branching GetInt will read up to 3 bytes too far, so we need
2303 // to pad the snapshot to make sure we don't read over the end.
2304 for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
2305 sink_->Put(kNop, "Padding");
2306 }
2307 // Pad up to pointer size for checksum.
2308 while (!IsAligned(sink_->Position(), kPointerAlignment)) {
2309 sink_->Put(kNop, "Padding");
2310 }
2311 }
2312
2313
InitializeCodeAddressMap()2314 void Serializer::InitializeCodeAddressMap() {
2315 isolate_->InitializeLoggingAndCounters();
2316 code_address_map_ = new CodeAddressMap(isolate_);
2317 }
2318
2319
CopyCode(Code * code)2320 Code* Serializer::CopyCode(Code* code) {
2321 code_buffer_.Rewind(0); // Clear buffer without deleting backing store.
2322 int size = code->CodeSize();
2323 code_buffer_.AddAll(Vector<byte>(code->address(), size));
2324 return Code::cast(HeapObject::FromAddress(&code_buffer_.first()));
2325 }
2326
2327
Serialize(Isolate * isolate,Handle<SharedFunctionInfo> info,Handle<String> source)2328 ScriptData* CodeSerializer::Serialize(Isolate* isolate,
2329 Handle<SharedFunctionInfo> info,
2330 Handle<String> source) {
2331 base::ElapsedTimer timer;
2332 if (FLAG_profile_deserialization) timer.Start();
2333 if (FLAG_trace_serializer) {
2334 PrintF("[Serializing from");
2335 Object* script = info->script();
2336 if (script->IsScript()) Script::cast(script)->name()->ShortPrint();
2337 PrintF("]\n");
2338 }
2339
2340 // Serialize code object.
2341 SnapshotByteSink sink(info->code()->CodeSize() * 2);
2342 CodeSerializer cs(isolate, &sink, *source);
2343 DisallowHeapAllocation no_gc;
2344 Object** location = Handle<Object>::cast(info).location();
2345 cs.VisitPointer(location);
2346 cs.SerializeDeferredObjects();
2347 cs.Pad();
2348
2349 SerializedCodeData data(sink.data(), cs);
2350 ScriptData* script_data = data.GetScriptData();
2351
2352 if (FLAG_profile_deserialization) {
2353 double ms = timer.Elapsed().InMillisecondsF();
2354 int length = script_data->length();
2355 PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms);
2356 }
2357
2358 return script_data;
2359 }
2360
2361
SerializeObject(HeapObject * obj,HowToCode how_to_code,WhereToPoint where_to_point,int skip)2362 void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
2363 WhereToPoint where_to_point, int skip) {
2364 int root_index = root_index_map_.Lookup(obj);
2365 if (root_index != RootIndexMap::kInvalidRootIndex) {
2366 PutRoot(root_index, obj, how_to_code, where_to_point, skip);
2367 return;
2368 }
2369
2370 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
2371
2372 FlushSkip(skip);
2373
2374 if (obj->IsCode()) {
2375 Code* code_object = Code::cast(obj);
2376 switch (code_object->kind()) {
2377 case Code::OPTIMIZED_FUNCTION: // No optimized code compiled yet.
2378 case Code::HANDLER: // No handlers patched in yet.
2379 case Code::REGEXP: // No regexp literals initialized yet.
2380 case Code::NUMBER_OF_KINDS: // Pseudo enum value.
2381 CHECK(false);
2382 case Code::BUILTIN:
2383 SerializeBuiltin(code_object->builtin_index(), how_to_code,
2384 where_to_point);
2385 return;
2386 case Code::STUB:
2387 SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point);
2388 return;
2389 #define IC_KIND_CASE(KIND) case Code::KIND:
2390 IC_KIND_LIST(IC_KIND_CASE)
2391 #undef IC_KIND_CASE
2392 SerializeIC(code_object, how_to_code, where_to_point);
2393 return;
2394 case Code::FUNCTION:
2395 DCHECK(code_object->has_reloc_info_for_serialization());
2396 SerializeGeneric(code_object, how_to_code, where_to_point);
2397 return;
2398 case Code::WASM_FUNCTION:
2399 UNREACHABLE();
2400 }
2401 UNREACHABLE();
2402 }
2403
2404 // Past this point we should not see any (context-specific) maps anymore.
2405 CHECK(!obj->IsMap());
2406 // There should be no references to the global object embedded.
2407 CHECK(!obj->IsJSGlobalProxy() && !obj->IsJSGlobalObject());
2408 // There should be no hash table embedded. They would require rehashing.
2409 CHECK(!obj->IsHashTable());
2410 // We expect no instantiated function objects or contexts.
2411 CHECK(!obj->IsJSFunction() && !obj->IsContext());
2412
2413 SerializeGeneric(obj, how_to_code, where_to_point);
2414 }
2415
2416
SerializeGeneric(HeapObject * heap_object,HowToCode how_to_code,WhereToPoint where_to_point)2417 void CodeSerializer::SerializeGeneric(HeapObject* heap_object,
2418 HowToCode how_to_code,
2419 WhereToPoint where_to_point) {
2420 // Object has not yet been serialized. Serialize it here.
2421 ObjectSerializer serializer(this, heap_object, sink_, how_to_code,
2422 where_to_point);
2423 serializer.Serialize();
2424 }
2425
2426
SerializeBuiltin(int builtin_index,HowToCode how_to_code,WhereToPoint where_to_point)2427 void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code,
2428 WhereToPoint where_to_point) {
2429 DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
2430 (how_to_code == kPlain && where_to_point == kInnerPointer) ||
2431 (how_to_code == kFromCode && where_to_point == kInnerPointer));
2432 DCHECK_LT(builtin_index, Builtins::builtin_count);
2433 DCHECK_LE(0, builtin_index);
2434
2435 if (FLAG_trace_serializer) {
2436 PrintF(" Encoding builtin: %s\n",
2437 isolate()->builtins()->name(builtin_index));
2438 }
2439
2440 sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin");
2441 sink_->PutInt(builtin_index, "builtin_index");
2442 }
2443
2444
SerializeCodeStub(uint32_t stub_key,HowToCode how_to_code,WhereToPoint where_to_point)2445 void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code,
2446 WhereToPoint where_to_point) {
2447 DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
2448 (how_to_code == kPlain && where_to_point == kInnerPointer) ||
2449 (how_to_code == kFromCode && where_to_point == kInnerPointer));
2450 DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache);
2451 DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null());
2452
2453 int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex;
2454
2455 if (FLAG_trace_serializer) {
2456 PrintF(" Encoding code stub %s as %d\n",
2457 CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key)), index);
2458 }
2459
2460 sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub");
2461 sink_->PutInt(index, "CodeStub key");
2462 }
2463
2464
SerializeIC(Code * ic,HowToCode how_to_code,WhereToPoint where_to_point)2465 void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code,
2466 WhereToPoint where_to_point) {
2467 // The IC may be implemented as a stub.
2468 uint32_t stub_key = ic->stub_key();
2469 if (stub_key != CodeStub::NoCacheKey()) {
2470 if (FLAG_trace_serializer) {
2471 PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind()));
2472 }
2473 SerializeCodeStub(stub_key, how_to_code, where_to_point);
2474 return;
2475 }
2476 // The IC may be implemented as builtin. Only real builtins have an
2477 // actual builtin_index value attached (otherwise it's just garbage).
2478 // Compare to make sure we are really dealing with a builtin.
2479 int builtin_index = ic->builtin_index();
2480 if (builtin_index < Builtins::builtin_count) {
2481 Builtins::Name name = static_cast<Builtins::Name>(builtin_index);
2482 Code* builtin = isolate()->builtins()->builtin(name);
2483 if (builtin == ic) {
2484 if (FLAG_trace_serializer) {
2485 PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind()));
2486 }
2487 DCHECK(ic->kind() == Code::KEYED_LOAD_IC ||
2488 ic->kind() == Code::KEYED_STORE_IC);
2489 SerializeBuiltin(builtin_index, how_to_code, where_to_point);
2490 return;
2491 }
2492 }
2493 // The IC may also just be a piece of code kept in the non_monomorphic_cache.
2494 // In that case, just serialize as a normal code object.
2495 if (FLAG_trace_serializer) {
2496 PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind()));
2497 }
2498 DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC);
2499 SerializeGeneric(ic, how_to_code, where_to_point);
2500 }
2501
2502
AddCodeStubKey(uint32_t stub_key)2503 int CodeSerializer::AddCodeStubKey(uint32_t stub_key) {
2504 // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2).
2505 int index = 0;
2506 while (index < stub_keys_.length()) {
2507 if (stub_keys_[index] == stub_key) return index;
2508 index++;
2509 }
2510 stub_keys_.Add(stub_key);
2511 return index;
2512 }
2513
2514
Deserialize(Isolate * isolate,ScriptData * cached_data,Handle<String> source)2515 MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize(
2516 Isolate* isolate, ScriptData* cached_data, Handle<String> source) {
2517 base::ElapsedTimer timer;
2518 if (FLAG_profile_deserialization) timer.Start();
2519
2520 HandleScope scope(isolate);
2521
2522 base::SmartPointer<SerializedCodeData> scd(
2523 SerializedCodeData::FromCachedData(isolate, cached_data, *source));
2524 if (scd.is_empty()) {
2525 if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n");
2526 DCHECK(cached_data->rejected());
2527 return MaybeHandle<SharedFunctionInfo>();
2528 }
2529
2530 // Prepare and register list of attached objects.
2531 Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys();
2532 Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(
2533 code_stub_keys.length() + kCodeStubsBaseIndex);
2534 attached_objects[kSourceObjectIndex] = source;
2535 for (int i = 0; i < code_stub_keys.length(); i++) {
2536 attached_objects[i + kCodeStubsBaseIndex] =
2537 CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked();
2538 }
2539
2540 Deserializer deserializer(scd.get());
2541 deserializer.SetAttachedObjects(attached_objects);
2542
2543 // Deserialize.
2544 Handle<SharedFunctionInfo> result;
2545 if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) {
2546 // Deserializing may fail if the reservations cannot be fulfilled.
2547 if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n");
2548 return MaybeHandle<SharedFunctionInfo>();
2549 }
2550
2551 if (FLAG_profile_deserialization) {
2552 double ms = timer.Elapsed().InMillisecondsF();
2553 int length = cached_data->length();
2554 PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms);
2555 }
2556 result->set_deserialized(true);
2557
2558 if (isolate->logger()->is_logging_code_events() ||
2559 isolate->cpu_profiler()->is_profiling()) {
2560 String* name = isolate->heap()->empty_string();
2561 if (result->script()->IsScript()) {
2562 Script* script = Script::cast(result->script());
2563 if (script->name()->IsString()) name = String::cast(script->name());
2564 }
2565 isolate->logger()->CodeCreateEvent(Logger::SCRIPT_TAG, result->code(),
2566 *result, NULL, name);
2567 }
2568 return scope.CloseAndEscape(result);
2569 }
2570
2571
AllocateData(int size)2572 void SerializedData::AllocateData(int size) {
2573 DCHECK(!owns_data_);
2574 data_ = NewArray<byte>(size);
2575 size_ = size;
2576 owns_data_ = true;
2577 DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment));
2578 }
2579
2580
SnapshotData(const Serializer & ser)2581 SnapshotData::SnapshotData(const Serializer& ser) {
2582 DisallowHeapAllocation no_gc;
2583 List<Reservation> reservations;
2584 ser.EncodeReservations(&reservations);
2585 const List<byte>& payload = ser.sink()->data();
2586
2587 // Calculate sizes.
2588 int reservation_size = reservations.length() * kInt32Size;
2589 int size = kHeaderSize + reservation_size + payload.length();
2590
2591 // Allocate backing store and create result data.
2592 AllocateData(size);
2593
2594 // Set header values.
2595 SetMagicNumber(ser.isolate());
2596 SetHeaderValue(kCheckSumOffset, Version::Hash());
2597 SetHeaderValue(kNumReservationsOffset, reservations.length());
2598 SetHeaderValue(kPayloadLengthOffset, payload.length());
2599
2600 // Copy reservation chunk sizes.
2601 CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
2602 reservation_size);
2603
2604 // Copy serialized data.
2605 CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(),
2606 static_cast<size_t>(payload.length()));
2607 }
2608
2609
IsSane()2610 bool SnapshotData::IsSane() {
2611 return GetHeaderValue(kCheckSumOffset) == Version::Hash();
2612 }
2613
2614
Reservations() const2615 Vector<const SerializedData::Reservation> SnapshotData::Reservations() const {
2616 return Vector<const Reservation>(
2617 reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
2618 GetHeaderValue(kNumReservationsOffset));
2619 }
2620
2621
Payload() const2622 Vector<const byte> SnapshotData::Payload() const {
2623 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
2624 const byte* payload = data_ + kHeaderSize + reservations_size;
2625 int length = GetHeaderValue(kPayloadLengthOffset);
2626 DCHECK_EQ(data_ + size_, payload + length);
2627 return Vector<const byte>(payload, length);
2628 }
2629
2630
2631 class Checksum {
2632 public:
Checksum(Vector<const byte> payload)2633 explicit Checksum(Vector<const byte> payload) {
2634 #ifdef MEMORY_SANITIZER
2635 // Computing the checksum includes padding bytes for objects like strings.
2636 // Mark every object as initialized in the code serializer.
2637 MSAN_MEMORY_IS_INITIALIZED(payload.start(), payload.length());
2638 #endif // MEMORY_SANITIZER
2639 // Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit.
2640 uintptr_t a = 1;
2641 uintptr_t b = 0;
2642 const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start());
2643 DCHECK(IsAligned(payload.length(), kIntptrSize));
2644 const uintptr_t* end = cur + payload.length() / kIntptrSize;
2645 while (cur < end) {
2646 // Unsigned overflow expected and intended.
2647 a += *cur++;
2648 b += a;
2649 }
2650 #if V8_HOST_ARCH_64_BIT
2651 a ^= a >> 32;
2652 b ^= b >> 32;
2653 #endif // V8_HOST_ARCH_64_BIT
2654 a_ = static_cast<uint32_t>(a);
2655 b_ = static_cast<uint32_t>(b);
2656 }
2657
Check(uint32_t a,uint32_t b) const2658 bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; }
2659
a() const2660 uint32_t a() const { return a_; }
b() const2661 uint32_t b() const { return b_; }
2662
2663 private:
2664 uint32_t a_;
2665 uint32_t b_;
2666
2667 DISALLOW_COPY_AND_ASSIGN(Checksum);
2668 };
2669
2670
SerializedCodeData(const List<byte> & payload,const CodeSerializer & cs)2671 SerializedCodeData::SerializedCodeData(const List<byte>& payload,
2672 const CodeSerializer& cs) {
2673 DisallowHeapAllocation no_gc;
2674 const List<uint32_t>* stub_keys = cs.stub_keys();
2675
2676 List<Reservation> reservations;
2677 cs.EncodeReservations(&reservations);
2678
2679 // Calculate sizes.
2680 int reservation_size = reservations.length() * kInt32Size;
2681 int num_stub_keys = stub_keys->length();
2682 int stub_keys_size = stub_keys->length() * kInt32Size;
2683 int payload_offset = kHeaderSize + reservation_size + stub_keys_size;
2684 int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
2685 int size = padded_payload_offset + payload.length();
2686
2687 // Allocate backing store and create result data.
2688 AllocateData(size);
2689
2690 // Set header values.
2691 SetMagicNumber(cs.isolate());
2692 SetHeaderValue(kVersionHashOffset, Version::Hash());
2693 SetHeaderValue(kSourceHashOffset, SourceHash(cs.source()));
2694 SetHeaderValue(kCpuFeaturesOffset,
2695 static_cast<uint32_t>(CpuFeatures::SupportedFeatures()));
2696 SetHeaderValue(kFlagHashOffset, FlagList::Hash());
2697 SetHeaderValue(kNumReservationsOffset, reservations.length());
2698 SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys);
2699 SetHeaderValue(kPayloadLengthOffset, payload.length());
2700
2701 Checksum checksum(payload.ToConstVector());
2702 SetHeaderValue(kChecksum1Offset, checksum.a());
2703 SetHeaderValue(kChecksum2Offset, checksum.b());
2704
2705 // Copy reservation chunk sizes.
2706 CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
2707 reservation_size);
2708
2709 // Copy code stub keys.
2710 CopyBytes(data_ + kHeaderSize + reservation_size,
2711 reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size);
2712
2713 memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset);
2714
2715 // Copy serialized data.
2716 CopyBytes(data_ + padded_payload_offset, payload.begin(),
2717 static_cast<size_t>(payload.length()));
2718 }
2719
2720
SanityCheck(Isolate * isolate,String * source) const2721 SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck(
2722 Isolate* isolate, String* source) const {
2723 uint32_t magic_number = GetMagicNumber();
2724 if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH;
2725 uint32_t version_hash = GetHeaderValue(kVersionHashOffset);
2726 uint32_t source_hash = GetHeaderValue(kSourceHashOffset);
2727 uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset);
2728 uint32_t flags_hash = GetHeaderValue(kFlagHashOffset);
2729 uint32_t c1 = GetHeaderValue(kChecksum1Offset);
2730 uint32_t c2 = GetHeaderValue(kChecksum2Offset);
2731 if (version_hash != Version::Hash()) return VERSION_MISMATCH;
2732 if (source_hash != SourceHash(source)) return SOURCE_MISMATCH;
2733 if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) {
2734 return CPU_FEATURES_MISMATCH;
2735 }
2736 if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH;
2737 if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH;
2738 return CHECK_SUCCESS;
2739 }
2740
2741
SourceHash(String * source) const2742 uint32_t SerializedCodeData::SourceHash(String* source) const {
2743 return source->length();
2744 }
2745
2746
2747 // Return ScriptData object and relinquish ownership over it to the caller.
GetScriptData()2748 ScriptData* SerializedCodeData::GetScriptData() {
2749 DCHECK(owns_data_);
2750 ScriptData* result = new ScriptData(data_, size_);
2751 result->AcquireDataOwnership();
2752 owns_data_ = false;
2753 data_ = NULL;
2754 return result;
2755 }
2756
2757
Reservations() const2758 Vector<const SerializedData::Reservation> SerializedCodeData::Reservations()
2759 const {
2760 return Vector<const Reservation>(
2761 reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
2762 GetHeaderValue(kNumReservationsOffset));
2763 }
2764
2765
Payload() const2766 Vector<const byte> SerializedCodeData::Payload() const {
2767 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
2768 int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size;
2769 int payload_offset = kHeaderSize + reservations_size + code_stubs_size;
2770 int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
2771 const byte* payload = data_ + padded_payload_offset;
2772 DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment));
2773 int length = GetHeaderValue(kPayloadLengthOffset);
2774 DCHECK_EQ(data_ + size_, payload + length);
2775 return Vector<const byte>(payload, length);
2776 }
2777
2778
CodeStubKeys() const2779 Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const {
2780 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
2781 const byte* start = data_ + kHeaderSize + reservations_size;
2782 return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start),
2783 GetHeaderValue(kNumCodeStubKeysOffset));
2784 }
2785
2786
SerializedCodeData(ScriptData * data)2787 SerializedCodeData::SerializedCodeData(ScriptData* data)
2788 : SerializedData(const_cast<byte*>(data->data()), data->length()) {}
2789
2790
FromCachedData(Isolate * isolate,ScriptData * cached_data,String * source)2791 SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate,
2792 ScriptData* cached_data,
2793 String* source) {
2794 DisallowHeapAllocation no_gc;
2795 SerializedCodeData* scd = new SerializedCodeData(cached_data);
2796 SanityCheckResult r = scd->SanityCheck(isolate, source);
2797 if (r == CHECK_SUCCESS) return scd;
2798 cached_data->Reject();
2799 source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r);
2800 delete scd;
2801 return NULL;
2802 }
2803 } // namespace internal
2804 } // namespace v8
2805