• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements C++ semantic analysis for scope specifiers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/NestedNameSpecifier.h"
20 #include "clang/Basic/PartialDiagnostic.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/Template.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace clang;
27 
28 /// \brief Find the current instantiation that associated with the given type.
getCurrentInstantiationOf(QualType T,DeclContext * CurContext)29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
30                                                 DeclContext *CurContext) {
31   if (T.isNull())
32     return nullptr;
33 
34   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37     if (!Record->isDependentContext() ||
38         Record->isCurrentInstantiation(CurContext))
39       return Record;
40 
41     return nullptr;
42   } else if (isa<InjectedClassNameType>(Ty))
43     return cast<InjectedClassNameType>(Ty)->getDecl();
44   else
45     return nullptr;
46 }
47 
48 /// \brief Compute the DeclContext that is associated with the given type.
49 ///
50 /// \param T the type for which we are attempting to find a DeclContext.
51 ///
52 /// \returns the declaration context represented by the type T,
53 /// or NULL if the declaration context cannot be computed (e.g., because it is
54 /// dependent and not the current instantiation).
computeDeclContext(QualType T)55 DeclContext *Sema::computeDeclContext(QualType T) {
56   if (!T->isDependentType())
57     if (const TagType *Tag = T->getAs<TagType>())
58       return Tag->getDecl();
59 
60   return ::getCurrentInstantiationOf(T, CurContext);
61 }
62 
63 /// \brief Compute the DeclContext that is associated with the given
64 /// scope specifier.
65 ///
66 /// \param SS the C++ scope specifier as it appears in the source
67 ///
68 /// \param EnteringContext when true, we will be entering the context of
69 /// this scope specifier, so we can retrieve the declaration context of a
70 /// class template or class template partial specialization even if it is
71 /// not the current instantiation.
72 ///
73 /// \returns the declaration context represented by the scope specifier @p SS,
74 /// or NULL if the declaration context cannot be computed (e.g., because it is
75 /// dependent and not the current instantiation).
computeDeclContext(const CXXScopeSpec & SS,bool EnteringContext)76 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
77                                       bool EnteringContext) {
78   if (!SS.isSet() || SS.isInvalid())
79     return nullptr;
80 
81   NestedNameSpecifier *NNS = SS.getScopeRep();
82   if (NNS->isDependent()) {
83     // If this nested-name-specifier refers to the current
84     // instantiation, return its DeclContext.
85     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
86       return Record;
87 
88     if (EnteringContext) {
89       const Type *NNSType = NNS->getAsType();
90       if (!NNSType) {
91         return nullptr;
92       }
93 
94       // Look through type alias templates, per C++0x [temp.dep.type]p1.
95       NNSType = Context.getCanonicalType(NNSType);
96       if (const TemplateSpecializationType *SpecType
97             = NNSType->getAs<TemplateSpecializationType>()) {
98         // We are entering the context of the nested name specifier, so try to
99         // match the nested name specifier to either a primary class template
100         // or a class template partial specialization.
101         if (ClassTemplateDecl *ClassTemplate
102               = dyn_cast_or_null<ClassTemplateDecl>(
103                             SpecType->getTemplateName().getAsTemplateDecl())) {
104           QualType ContextType
105             = Context.getCanonicalType(QualType(SpecType, 0));
106 
107           // If the type of the nested name specifier is the same as the
108           // injected class name of the named class template, we're entering
109           // into that class template definition.
110           QualType Injected
111             = ClassTemplate->getInjectedClassNameSpecialization();
112           if (Context.hasSameType(Injected, ContextType))
113             return ClassTemplate->getTemplatedDecl();
114 
115           // If the type of the nested name specifier is the same as the
116           // type of one of the class template's class template partial
117           // specializations, we're entering into the definition of that
118           // class template partial specialization.
119           if (ClassTemplatePartialSpecializationDecl *PartialSpec
120                 = ClassTemplate->findPartialSpecialization(ContextType))
121             return PartialSpec;
122         }
123       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
124         // The nested name specifier refers to a member of a class template.
125         return RecordT->getDecl();
126       }
127     }
128 
129     return nullptr;
130   }
131 
132   switch (NNS->getKind()) {
133   case NestedNameSpecifier::Identifier:
134     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
135 
136   case NestedNameSpecifier::Namespace:
137     return NNS->getAsNamespace();
138 
139   case NestedNameSpecifier::NamespaceAlias:
140     return NNS->getAsNamespaceAlias()->getNamespace();
141 
142   case NestedNameSpecifier::TypeSpec:
143   case NestedNameSpecifier::TypeSpecWithTemplate: {
144     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
145     assert(Tag && "Non-tag type in nested-name-specifier");
146     return Tag->getDecl();
147   }
148 
149   case NestedNameSpecifier::Global:
150     return Context.getTranslationUnitDecl();
151 
152   case NestedNameSpecifier::Super:
153     return NNS->getAsRecordDecl();
154   }
155 
156   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
157 }
158 
isDependentScopeSpecifier(const CXXScopeSpec & SS)159 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
160   if (!SS.isSet() || SS.isInvalid())
161     return false;
162 
163   return SS.getScopeRep()->isDependent();
164 }
165 
166 /// \brief If the given nested name specifier refers to the current
167 /// instantiation, return the declaration that corresponds to that
168 /// current instantiation (C++0x [temp.dep.type]p1).
169 ///
170 /// \param NNS a dependent nested name specifier.
getCurrentInstantiationOf(NestedNameSpecifier * NNS)171 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
172   assert(getLangOpts().CPlusPlus && "Only callable in C++");
173   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
174 
175   if (!NNS->getAsType())
176     return nullptr;
177 
178   QualType T = QualType(NNS->getAsType(), 0);
179   return ::getCurrentInstantiationOf(T, CurContext);
180 }
181 
182 /// \brief Require that the context specified by SS be complete.
183 ///
184 /// If SS refers to a type, this routine checks whether the type is
185 /// complete enough (or can be made complete enough) for name lookup
186 /// into the DeclContext. A type that is not yet completed can be
187 /// considered "complete enough" if it is a class/struct/union/enum
188 /// that is currently being defined. Or, if we have a type that names
189 /// a class template specialization that is not a complete type, we
190 /// will attempt to instantiate that class template.
RequireCompleteDeclContext(CXXScopeSpec & SS,DeclContext * DC)191 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
192                                       DeclContext *DC) {
193   assert(DC && "given null context");
194 
195   TagDecl *tag = dyn_cast<TagDecl>(DC);
196 
197   // If this is a dependent type, then we consider it complete.
198   if (!tag || tag->isDependentContext())
199     return false;
200 
201   // If we're currently defining this type, then lookup into the
202   // type is okay: don't complain that it isn't complete yet.
203   QualType type = Context.getTypeDeclType(tag);
204   const TagType *tagType = type->getAs<TagType>();
205   if (tagType && tagType->isBeingDefined())
206     return false;
207 
208   SourceLocation loc = SS.getLastQualifierNameLoc();
209   if (loc.isInvalid()) loc = SS.getRange().getBegin();
210 
211   // The type must be complete.
212   if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
213                           SS.getRange())) {
214     SS.SetInvalid(SS.getRange());
215     return true;
216   }
217 
218   // Fixed enum types are complete, but they aren't valid as scopes
219   // until we see a definition, so awkwardly pull out this special
220   // case.
221   // FIXME: The definition might not be visible; complain if it is not.
222   const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
223   if (!enumType || enumType->getDecl()->isCompleteDefinition())
224     return false;
225 
226   // Try to instantiate the definition, if this is a specialization of an
227   // enumeration temploid.
228   EnumDecl *ED = enumType->getDecl();
229   if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
230     MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
231     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
232       if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
233                           TSK_ImplicitInstantiation)) {
234         SS.SetInvalid(SS.getRange());
235         return true;
236       }
237       return false;
238     }
239   }
240 
241   Diag(loc, diag::err_incomplete_nested_name_spec)
242     << type << SS.getRange();
243   SS.SetInvalid(SS.getRange());
244   return true;
245 }
246 
ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,CXXScopeSpec & SS)247 bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
248                                         CXXScopeSpec &SS) {
249   SS.MakeGlobal(Context, CCLoc);
250   return false;
251 }
252 
ActOnSuperScopeSpecifier(SourceLocation SuperLoc,SourceLocation ColonColonLoc,CXXScopeSpec & SS)253 bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
254                                     SourceLocation ColonColonLoc,
255                                     CXXScopeSpec &SS) {
256   CXXRecordDecl *RD = nullptr;
257   for (Scope *S = getCurScope(); S; S = S->getParent()) {
258     if (S->isFunctionScope()) {
259       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
260         RD = MD->getParent();
261       break;
262     }
263     if (S->isClassScope()) {
264       RD = cast<CXXRecordDecl>(S->getEntity());
265       break;
266     }
267   }
268 
269   if (!RD) {
270     Diag(SuperLoc, diag::err_invalid_super_scope);
271     return true;
272   } else if (RD->isLambda()) {
273     Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
274     return true;
275   } else if (RD->getNumBases() == 0) {
276     Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
277     return true;
278   }
279 
280   SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
281   return false;
282 }
283 
284 /// \brief Determines whether the given declaration is an valid acceptable
285 /// result for name lookup of a nested-name-specifier.
286 /// \param SD Declaration checked for nested-name-specifier.
287 /// \param IsExtension If not null and the declaration is accepted as an
288 /// extension, the pointed variable is assigned true.
isAcceptableNestedNameSpecifier(const NamedDecl * SD,bool * IsExtension)289 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
290                                            bool *IsExtension) {
291   if (!SD)
292     return false;
293 
294   // Namespace and namespace aliases are fine.
295   if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
296     return true;
297 
298   if (!isa<TypeDecl>(SD))
299     return false;
300 
301   // Determine whether we have a class (or, in C++11, an enum) or
302   // a typedef thereof. If so, build the nested-name-specifier.
303   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
304   if (T->isDependentType())
305     return true;
306   if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
307     if (TD->getUnderlyingType()->isRecordType())
308       return true;
309     if (TD->getUnderlyingType()->isEnumeralType()) {
310       if (Context.getLangOpts().CPlusPlus11)
311         return true;
312       if (IsExtension)
313         *IsExtension = true;
314     }
315   } else if (isa<RecordDecl>(SD)) {
316     return true;
317   } else if (isa<EnumDecl>(SD)) {
318     if (Context.getLangOpts().CPlusPlus11)
319       return true;
320     if (IsExtension)
321       *IsExtension = true;
322   }
323 
324   return false;
325 }
326 
327 /// \brief If the given nested-name-specifier begins with a bare identifier
328 /// (e.g., Base::), perform name lookup for that identifier as a
329 /// nested-name-specifier within the given scope, and return the result of that
330 /// name lookup.
FindFirstQualifierInScope(Scope * S,NestedNameSpecifier * NNS)331 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
332   if (!S || !NNS)
333     return nullptr;
334 
335   while (NNS->getPrefix())
336     NNS = NNS->getPrefix();
337 
338   if (NNS->getKind() != NestedNameSpecifier::Identifier)
339     return nullptr;
340 
341   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
342                      LookupNestedNameSpecifierName);
343   LookupName(Found, S);
344   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
345 
346   if (!Found.isSingleResult())
347     return nullptr;
348 
349   NamedDecl *Result = Found.getFoundDecl();
350   if (isAcceptableNestedNameSpecifier(Result))
351     return Result;
352 
353   return nullptr;
354 }
355 
isNonTypeNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation IdLoc,IdentifierInfo & II,ParsedType ObjectTypePtr)356 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
357                                         SourceLocation IdLoc,
358                                         IdentifierInfo &II,
359                                         ParsedType ObjectTypePtr) {
360   QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
361   LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
362 
363   // Determine where to perform name lookup
364   DeclContext *LookupCtx = nullptr;
365   bool isDependent = false;
366   if (!ObjectType.isNull()) {
367     // This nested-name-specifier occurs in a member access expression, e.g.,
368     // x->B::f, and we are looking into the type of the object.
369     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
370     LookupCtx = computeDeclContext(ObjectType);
371     isDependent = ObjectType->isDependentType();
372   } else if (SS.isSet()) {
373     // This nested-name-specifier occurs after another nested-name-specifier,
374     // so long into the context associated with the prior nested-name-specifier.
375     LookupCtx = computeDeclContext(SS, false);
376     isDependent = isDependentScopeSpecifier(SS);
377     Found.setContextRange(SS.getRange());
378   }
379 
380   if (LookupCtx) {
381     // Perform "qualified" name lookup into the declaration context we
382     // computed, which is either the type of the base of a member access
383     // expression or the declaration context associated with a prior
384     // nested-name-specifier.
385 
386     // The declaration context must be complete.
387     if (!LookupCtx->isDependentContext() &&
388         RequireCompleteDeclContext(SS, LookupCtx))
389       return false;
390 
391     LookupQualifiedName(Found, LookupCtx);
392   } else if (isDependent) {
393     return false;
394   } else {
395     LookupName(Found, S);
396   }
397   Found.suppressDiagnostics();
398 
399   if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
400     return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
401 
402   return false;
403 }
404 
405 namespace {
406 
407 // Callback to only accept typo corrections that can be a valid C++ member
408 // intializer: either a non-static field member or a base class.
409 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
410  public:
NestedNameSpecifierValidatorCCC(Sema & SRef)411   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
412       : SRef(SRef) {}
413 
ValidateCandidate(const TypoCorrection & candidate)414   bool ValidateCandidate(const TypoCorrection &candidate) override {
415     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
416   }
417 
418  private:
419   Sema &SRef;
420 };
421 
422 }
423 
424 /// \brief Build a new nested-name-specifier for "identifier::", as described
425 /// by ActOnCXXNestedNameSpecifier.
426 ///
427 /// \param S Scope in which the nested-name-specifier occurs.
428 /// \param Identifier Identifier in the sequence "identifier" "::".
429 /// \param IdentifierLoc Location of the \p Identifier.
430 /// \param CCLoc Location of "::" following Identifier.
431 /// \param ObjectType Type of postfix expression if the nested-name-specifier
432 ///        occurs in construct like: <tt>ptr->nns::f</tt>.
433 /// \param EnteringContext If true, enter the context specified by the
434 ///        nested-name-specifier.
435 /// \param SS Optional nested name specifier preceding the identifier.
436 /// \param ScopeLookupResult Provides the result of name lookup within the
437 ///        scope of the nested-name-specifier that was computed at template
438 ///        definition time.
439 /// \param ErrorRecoveryLookup Specifies if the method is called to improve
440 ///        error recovery and what kind of recovery is performed.
441 /// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
442 ///        are allowed.  The bool value pointed by this parameter is set to
443 ///       'true' if the identifier is treated as if it was followed by ':',
444 ///        not '::'.
445 ///
446 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
447 /// that it contains an extra parameter \p ScopeLookupResult, which provides
448 /// the result of name lookup within the scope of the nested-name-specifier
449 /// that was computed at template definition time.
450 ///
451 /// If ErrorRecoveryLookup is true, then this call is used to improve error
452 /// recovery.  This means that it should not emit diagnostics, it should
453 /// just return true on failure.  It also means it should only return a valid
454 /// scope if it *knows* that the result is correct.  It should not return in a
455 /// dependent context, for example. Nor will it extend \p SS with the scope
456 /// specifier.
BuildCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,QualType ObjectType,bool EnteringContext,CXXScopeSpec & SS,NamedDecl * ScopeLookupResult,bool ErrorRecoveryLookup,bool * IsCorrectedToColon)457 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
458                                        IdentifierInfo &Identifier,
459                                        SourceLocation IdentifierLoc,
460                                        SourceLocation CCLoc,
461                                        QualType ObjectType,
462                                        bool EnteringContext,
463                                        CXXScopeSpec &SS,
464                                        NamedDecl *ScopeLookupResult,
465                                        bool ErrorRecoveryLookup,
466                                        bool *IsCorrectedToColon) {
467   LookupResult Found(*this, &Identifier, IdentifierLoc,
468                      LookupNestedNameSpecifierName);
469 
470   // Determine where to perform name lookup
471   DeclContext *LookupCtx = nullptr;
472   bool isDependent = false;
473   if (IsCorrectedToColon)
474     *IsCorrectedToColon = false;
475   if (!ObjectType.isNull()) {
476     // This nested-name-specifier occurs in a member access expression, e.g.,
477     // x->B::f, and we are looking into the type of the object.
478     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
479     LookupCtx = computeDeclContext(ObjectType);
480     isDependent = ObjectType->isDependentType();
481   } else if (SS.isSet()) {
482     // This nested-name-specifier occurs after another nested-name-specifier,
483     // so look into the context associated with the prior nested-name-specifier.
484     LookupCtx = computeDeclContext(SS, EnteringContext);
485     isDependent = isDependentScopeSpecifier(SS);
486     Found.setContextRange(SS.getRange());
487   }
488 
489   bool ObjectTypeSearchedInScope = false;
490   if (LookupCtx) {
491     // Perform "qualified" name lookup into the declaration context we
492     // computed, which is either the type of the base of a member access
493     // expression or the declaration context associated with a prior
494     // nested-name-specifier.
495 
496     // The declaration context must be complete.
497     if (!LookupCtx->isDependentContext() &&
498         RequireCompleteDeclContext(SS, LookupCtx))
499       return true;
500 
501     LookupQualifiedName(Found, LookupCtx);
502 
503     if (!ObjectType.isNull() && Found.empty()) {
504       // C++ [basic.lookup.classref]p4:
505       //   If the id-expression in a class member access is a qualified-id of
506       //   the form
507       //
508       //        class-name-or-namespace-name::...
509       //
510       //   the class-name-or-namespace-name following the . or -> operator is
511       //   looked up both in the context of the entire postfix-expression and in
512       //   the scope of the class of the object expression. If the name is found
513       //   only in the scope of the class of the object expression, the name
514       //   shall refer to a class-name. If the name is found only in the
515       //   context of the entire postfix-expression, the name shall refer to a
516       //   class-name or namespace-name. [...]
517       //
518       // Qualified name lookup into a class will not find a namespace-name,
519       // so we do not need to diagnose that case specifically. However,
520       // this qualified name lookup may find nothing. In that case, perform
521       // unqualified name lookup in the given scope (if available) or
522       // reconstruct the result from when name lookup was performed at template
523       // definition time.
524       if (S)
525         LookupName(Found, S);
526       else if (ScopeLookupResult)
527         Found.addDecl(ScopeLookupResult);
528 
529       ObjectTypeSearchedInScope = true;
530     }
531   } else if (!isDependent) {
532     // Perform unqualified name lookup in the current scope.
533     LookupName(Found, S);
534   }
535 
536   if (Found.isAmbiguous())
537     return true;
538 
539   // If we performed lookup into a dependent context and did not find anything,
540   // that's fine: just build a dependent nested-name-specifier.
541   if (Found.empty() && isDependent &&
542       !(LookupCtx && LookupCtx->isRecord() &&
543         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
544          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
545     // Don't speculate if we're just trying to improve error recovery.
546     if (ErrorRecoveryLookup)
547       return true;
548 
549     // We were not able to compute the declaration context for a dependent
550     // base object type or prior nested-name-specifier, so this
551     // nested-name-specifier refers to an unknown specialization. Just build
552     // a dependent nested-name-specifier.
553     SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
554     return false;
555   }
556 
557   if (Found.empty() && !ErrorRecoveryLookup) {
558     // If identifier is not found as class-name-or-namespace-name, but is found
559     // as other entity, don't look for typos.
560     LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
561     if (LookupCtx)
562       LookupQualifiedName(R, LookupCtx);
563     else if (S && !isDependent)
564       LookupName(R, S);
565     if (!R.empty()) {
566       // Don't diagnose problems with this speculative lookup.
567       R.suppressDiagnostics();
568       // The identifier is found in ordinary lookup. If correction to colon is
569       // allowed, suggest replacement to ':'.
570       if (IsCorrectedToColon) {
571         *IsCorrectedToColon = true;
572         Diag(CCLoc, diag::err_nested_name_spec_is_not_class)
573             << &Identifier << getLangOpts().CPlusPlus
574             << FixItHint::CreateReplacement(CCLoc, ":");
575         if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
576           Diag(ND->getLocation(), diag::note_declared_at);
577         return true;
578       }
579       // Replacement '::' -> ':' is not allowed, just issue respective error.
580       Diag(R.getNameLoc(), diag::err_expected_class_or_namespace)
581           << &Identifier << getLangOpts().CPlusPlus;
582       if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
583         Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
584       return true;
585     }
586   }
587 
588   if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
589     // We haven't found anything, and we're not recovering from a
590     // different kind of error, so look for typos.
591     DeclarationName Name = Found.getLookupName();
592     Found.clear();
593     if (TypoCorrection Corrected = CorrectTypo(
594             Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
595             llvm::make_unique<NestedNameSpecifierValidatorCCC>(*this),
596             CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
597       if (LookupCtx) {
598         bool DroppedSpecifier =
599             Corrected.WillReplaceSpecifier() &&
600             Name.getAsString() == Corrected.getAsString(getLangOpts());
601         if (DroppedSpecifier)
602           SS.clear();
603         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
604                                   << Name << LookupCtx << DroppedSpecifier
605                                   << SS.getRange());
606       } else
607         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
608                                   << Name);
609 
610       if (NamedDecl *ND = Corrected.getCorrectionDecl())
611         Found.addDecl(ND);
612       Found.setLookupName(Corrected.getCorrection());
613     } else {
614       Found.setLookupName(&Identifier);
615     }
616   }
617 
618   NamedDecl *SD = Found.getAsSingle<NamedDecl>();
619   bool IsExtension = false;
620   bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
621   if (!AcceptSpec && IsExtension) {
622     AcceptSpec = true;
623     Diag(IdentifierLoc, diag::ext_nested_name_spec_is_enum);
624   }
625   if (AcceptSpec) {
626     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
627         !getLangOpts().CPlusPlus11) {
628       // C++03 [basic.lookup.classref]p4:
629       //   [...] If the name is found in both contexts, the
630       //   class-name-or-namespace-name shall refer to the same entity.
631       //
632       // We already found the name in the scope of the object. Now, look
633       // into the current scope (the scope of the postfix-expression) to
634       // see if we can find the same name there. As above, if there is no
635       // scope, reconstruct the result from the template instantiation itself.
636       //
637       // Note that C++11 does *not* perform this redundant lookup.
638       NamedDecl *OuterDecl;
639       if (S) {
640         LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
641                                 LookupNestedNameSpecifierName);
642         LookupName(FoundOuter, S);
643         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
644       } else
645         OuterDecl = ScopeLookupResult;
646 
647       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
648           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
649           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
650            !Context.hasSameType(
651                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
652                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
653         if (ErrorRecoveryLookup)
654           return true;
655 
656          Diag(IdentifierLoc,
657               diag::err_nested_name_member_ref_lookup_ambiguous)
658            << &Identifier;
659          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
660            << ObjectType;
661          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
662 
663          // Fall through so that we'll pick the name we found in the object
664          // type, since that's probably what the user wanted anyway.
665        }
666     }
667 
668     if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
669       MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
670 
671     // If we're just performing this lookup for error-recovery purposes,
672     // don't extend the nested-name-specifier. Just return now.
673     if (ErrorRecoveryLookup)
674       return false;
675 
676     // The use of a nested name specifier may trigger deprecation warnings.
677     DiagnoseUseOfDecl(SD, CCLoc);
678 
679 
680     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
681       SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
682       return false;
683     }
684 
685     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
686       SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
687       return false;
688     }
689 
690     QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
691     TypeLocBuilder TLB;
692     if (isa<InjectedClassNameType>(T)) {
693       InjectedClassNameTypeLoc InjectedTL
694         = TLB.push<InjectedClassNameTypeLoc>(T);
695       InjectedTL.setNameLoc(IdentifierLoc);
696     } else if (isa<RecordType>(T)) {
697       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
698       RecordTL.setNameLoc(IdentifierLoc);
699     } else if (isa<TypedefType>(T)) {
700       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
701       TypedefTL.setNameLoc(IdentifierLoc);
702     } else if (isa<EnumType>(T)) {
703       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
704       EnumTL.setNameLoc(IdentifierLoc);
705     } else if (isa<TemplateTypeParmType>(T)) {
706       TemplateTypeParmTypeLoc TemplateTypeTL
707         = TLB.push<TemplateTypeParmTypeLoc>(T);
708       TemplateTypeTL.setNameLoc(IdentifierLoc);
709     } else if (isa<UnresolvedUsingType>(T)) {
710       UnresolvedUsingTypeLoc UnresolvedTL
711         = TLB.push<UnresolvedUsingTypeLoc>(T);
712       UnresolvedTL.setNameLoc(IdentifierLoc);
713     } else if (isa<SubstTemplateTypeParmType>(T)) {
714       SubstTemplateTypeParmTypeLoc TL
715         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
716       TL.setNameLoc(IdentifierLoc);
717     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
718       SubstTemplateTypeParmPackTypeLoc TL
719         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
720       TL.setNameLoc(IdentifierLoc);
721     } else {
722       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
723     }
724 
725     if (T->isEnumeralType())
726       Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
727 
728     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
729               CCLoc);
730     return false;
731   }
732 
733   // Otherwise, we have an error case.  If we don't want diagnostics, just
734   // return an error now.
735   if (ErrorRecoveryLookup)
736     return true;
737 
738   // If we didn't find anything during our lookup, try again with
739   // ordinary name lookup, which can help us produce better error
740   // messages.
741   if (Found.empty()) {
742     Found.clear(LookupOrdinaryName);
743     LookupName(Found, S);
744   }
745 
746   // In Microsoft mode, if we are within a templated function and we can't
747   // resolve Identifier, then extend the SS with Identifier. This will have
748   // the effect of resolving Identifier during template instantiation.
749   // The goal is to be able to resolve a function call whose
750   // nested-name-specifier is located inside a dependent base class.
751   // Example:
752   //
753   // class C {
754   // public:
755   //    static void foo2() {  }
756   // };
757   // template <class T> class A { public: typedef C D; };
758   //
759   // template <class T> class B : public A<T> {
760   // public:
761   //   void foo() { D::foo2(); }
762   // };
763   if (getLangOpts().MSVCCompat) {
764     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
765     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
766       CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
767       if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
768         Diag(IdentifierLoc, diag::ext_undeclared_unqual_id_with_dependent_base)
769             << &Identifier << ContainingClass;
770         SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
771         return false;
772       }
773     }
774   }
775 
776   if (!Found.empty()) {
777     if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
778       Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
779           << QualType(TD->getTypeForDecl(), 0) << getLangOpts().CPlusPlus;
780     else {
781       Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
782           << &Identifier << getLangOpts().CPlusPlus;
783       if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
784         Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
785     }
786   } else if (SS.isSet())
787     Diag(IdentifierLoc, diag::err_no_member) << &Identifier << LookupCtx
788                                              << SS.getRange();
789   else
790     Diag(IdentifierLoc, diag::err_undeclared_var_use) << &Identifier;
791 
792   return true;
793 }
794 
ActOnCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,ParsedType ObjectType,bool EnteringContext,CXXScopeSpec & SS,bool ErrorRecoveryLookup,bool * IsCorrectedToColon)795 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
796                                        IdentifierInfo &Identifier,
797                                        SourceLocation IdentifierLoc,
798                                        SourceLocation CCLoc,
799                                        ParsedType ObjectType,
800                                        bool EnteringContext,
801                                        CXXScopeSpec &SS,
802                                        bool ErrorRecoveryLookup,
803                                        bool *IsCorrectedToColon) {
804   if (SS.isInvalid())
805     return true;
806 
807   return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
808                                      GetTypeFromParser(ObjectType),
809                                      EnteringContext, SS,
810                                      /*ScopeLookupResult=*/nullptr, false,
811                                      IsCorrectedToColon);
812 }
813 
ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec & SS,const DeclSpec & DS,SourceLocation ColonColonLoc)814 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
815                                                const DeclSpec &DS,
816                                                SourceLocation ColonColonLoc) {
817   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
818     return true;
819 
820   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
821 
822   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
823   if (!T->isDependentType() && !T->getAs<TagType>()) {
824     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
825       << T << getLangOpts().CPlusPlus;
826     return true;
827   }
828 
829   TypeLocBuilder TLB;
830   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
831   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
832   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
833             ColonColonLoc);
834   return false;
835 }
836 
837 /// IsInvalidUnlessNestedName - This method is used for error recovery
838 /// purposes to determine whether the specified identifier is only valid as
839 /// a nested name specifier, for example a namespace name.  It is
840 /// conservatively correct to always return false from this method.
841 ///
842 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
IsInvalidUnlessNestedName(Scope * S,CXXScopeSpec & SS,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation ColonLoc,ParsedType ObjectType,bool EnteringContext)843 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
844                                      IdentifierInfo &Identifier,
845                                      SourceLocation IdentifierLoc,
846                                      SourceLocation ColonLoc,
847                                      ParsedType ObjectType,
848                                      bool EnteringContext) {
849   if (SS.isInvalid())
850     return false;
851 
852   return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
853                                       GetTypeFromParser(ObjectType),
854                                       EnteringContext, SS,
855                                       /*ScopeLookupResult=*/nullptr, true);
856 }
857 
ActOnCXXNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy Template,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,SourceLocation CCLoc,bool EnteringContext)858 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
859                                        CXXScopeSpec &SS,
860                                        SourceLocation TemplateKWLoc,
861                                        TemplateTy Template,
862                                        SourceLocation TemplateNameLoc,
863                                        SourceLocation LAngleLoc,
864                                        ASTTemplateArgsPtr TemplateArgsIn,
865                                        SourceLocation RAngleLoc,
866                                        SourceLocation CCLoc,
867                                        bool EnteringContext) {
868   if (SS.isInvalid())
869     return true;
870 
871   // Translate the parser's template argument list in our AST format.
872   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
873   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
874 
875   DependentTemplateName *DTN = Template.get().getAsDependentTemplateName();
876   if (DTN && DTN->isIdentifier()) {
877     // Handle a dependent template specialization for which we cannot resolve
878     // the template name.
879     assert(DTN->getQualifier() == SS.getScopeRep());
880     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
881                                                           DTN->getQualifier(),
882                                                           DTN->getIdentifier(),
883                                                                 TemplateArgs);
884 
885     // Create source-location information for this type.
886     TypeLocBuilder Builder;
887     DependentTemplateSpecializationTypeLoc SpecTL
888       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
889     SpecTL.setElaboratedKeywordLoc(SourceLocation());
890     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
891     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
892     SpecTL.setTemplateNameLoc(TemplateNameLoc);
893     SpecTL.setLAngleLoc(LAngleLoc);
894     SpecTL.setRAngleLoc(RAngleLoc);
895     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
896       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
897 
898     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
899               CCLoc);
900     return false;
901   }
902 
903   TemplateDecl *TD = Template.get().getAsTemplateDecl();
904   if (Template.get().getAsOverloadedTemplate() || DTN ||
905       isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
906     SourceRange R(TemplateNameLoc, RAngleLoc);
907     if (SS.getRange().isValid())
908       R.setBegin(SS.getRange().getBegin());
909 
910     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
911       << (TD && isa<VarTemplateDecl>(TD)) << Template.get() << R;
912     NoteAllFoundTemplates(Template.get());
913     return true;
914   }
915 
916   // We were able to resolve the template name to an actual template.
917   // Build an appropriate nested-name-specifier.
918   QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
919                                    TemplateArgs);
920   if (T.isNull())
921     return true;
922 
923   // Alias template specializations can produce types which are not valid
924   // nested name specifiers.
925   if (!T->isDependentType() && !T->getAs<TagType>()) {
926     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
927     NoteAllFoundTemplates(Template.get());
928     return true;
929   }
930 
931   // Provide source-location information for the template specialization type.
932   TypeLocBuilder Builder;
933   TemplateSpecializationTypeLoc SpecTL
934     = Builder.push<TemplateSpecializationTypeLoc>(T);
935   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
936   SpecTL.setTemplateNameLoc(TemplateNameLoc);
937   SpecTL.setLAngleLoc(LAngleLoc);
938   SpecTL.setRAngleLoc(RAngleLoc);
939   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
940     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
941 
942 
943   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
944             CCLoc);
945   return false;
946 }
947 
948 namespace {
949   /// \brief A structure that stores a nested-name-specifier annotation,
950   /// including both the nested-name-specifier
951   struct NestedNameSpecifierAnnotation {
952     NestedNameSpecifier *NNS;
953   };
954 }
955 
SaveNestedNameSpecifierAnnotation(CXXScopeSpec & SS)956 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
957   if (SS.isEmpty() || SS.isInvalid())
958     return nullptr;
959 
960   void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
961                                                         SS.location_size()),
962                                llvm::alignOf<NestedNameSpecifierAnnotation>());
963   NestedNameSpecifierAnnotation *Annotation
964     = new (Mem) NestedNameSpecifierAnnotation;
965   Annotation->NNS = SS.getScopeRep();
966   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
967   return Annotation;
968 }
969 
RestoreNestedNameSpecifierAnnotation(void * AnnotationPtr,SourceRange AnnotationRange,CXXScopeSpec & SS)970 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
971                                                 SourceRange AnnotationRange,
972                                                 CXXScopeSpec &SS) {
973   if (!AnnotationPtr) {
974     SS.SetInvalid(AnnotationRange);
975     return;
976   }
977 
978   NestedNameSpecifierAnnotation *Annotation
979     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
980   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
981 }
982 
ShouldEnterDeclaratorScope(Scope * S,const CXXScopeSpec & SS)983 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
984   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
985 
986   NestedNameSpecifier *Qualifier = SS.getScopeRep();
987 
988   // There are only two places a well-formed program may qualify a
989   // declarator: first, when defining a namespace or class member
990   // out-of-line, and second, when naming an explicitly-qualified
991   // friend function.  The latter case is governed by
992   // C++03 [basic.lookup.unqual]p10:
993   //   In a friend declaration naming a member function, a name used
994   //   in the function declarator and not part of a template-argument
995   //   in a template-id is first looked up in the scope of the member
996   //   function's class. If it is not found, or if the name is part of
997   //   a template-argument in a template-id, the look up is as
998   //   described for unqualified names in the definition of the class
999   //   granting friendship.
1000   // i.e. we don't push a scope unless it's a class member.
1001 
1002   switch (Qualifier->getKind()) {
1003   case NestedNameSpecifier::Global:
1004   case NestedNameSpecifier::Namespace:
1005   case NestedNameSpecifier::NamespaceAlias:
1006     // These are always namespace scopes.  We never want to enter a
1007     // namespace scope from anything but a file context.
1008     return CurContext->getRedeclContext()->isFileContext();
1009 
1010   case NestedNameSpecifier::Identifier:
1011   case NestedNameSpecifier::TypeSpec:
1012   case NestedNameSpecifier::TypeSpecWithTemplate:
1013   case NestedNameSpecifier::Super:
1014     // These are never namespace scopes.
1015     return true;
1016   }
1017 
1018   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
1019 }
1020 
1021 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
1022 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
1023 /// After this method is called, according to [C++ 3.4.3p3], names should be
1024 /// looked up in the declarator-id's scope, until the declarator is parsed and
1025 /// ActOnCXXExitDeclaratorScope is called.
1026 /// The 'SS' should be a non-empty valid CXXScopeSpec.
ActOnCXXEnterDeclaratorScope(Scope * S,CXXScopeSpec & SS)1027 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
1028   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1029 
1030   if (SS.isInvalid()) return true;
1031 
1032   DeclContext *DC = computeDeclContext(SS, true);
1033   if (!DC) return true;
1034 
1035   // Before we enter a declarator's context, we need to make sure that
1036   // it is a complete declaration context.
1037   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
1038     return true;
1039 
1040   EnterDeclaratorContext(S, DC);
1041 
1042   // Rebuild the nested name specifier for the new scope.
1043   if (DC->isDependentContext())
1044     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
1045 
1046   return false;
1047 }
1048 
1049 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
1050 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
1051 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
1052 /// Used to indicate that names should revert to being looked up in the
1053 /// defining scope.
ActOnCXXExitDeclaratorScope(Scope * S,const CXXScopeSpec & SS)1054 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1055   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1056   if (SS.isInvalid())
1057     return;
1058   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
1059          "exiting declarator scope we never really entered");
1060   ExitDeclaratorContext(S);
1061 }
1062