• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/bn.h>
58 
59 #include <assert.h>
60 #include <ctype.h>
61 #include <limits.h>
62 #include <stdio.h>
63 #include <string.h>
64 
65 #include <openssl/bio.h>
66 #include <openssl/bytestring.h>
67 #include <openssl/err.h>
68 #include <openssl/mem.h>
69 
70 #include "internal.h"
71 
BN_bin2bn(const uint8_t * in,size_t len,BIGNUM * ret)72 BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret) {
73   size_t num_words;
74   unsigned m;
75   BN_ULONG word = 0;
76   BIGNUM *bn = NULL;
77 
78   if (ret == NULL) {
79     ret = bn = BN_new();
80   }
81 
82   if (ret == NULL) {
83     return NULL;
84   }
85 
86   if (len == 0) {
87     ret->top = 0;
88     return ret;
89   }
90 
91   num_words = ((len - 1) / BN_BYTES) + 1;
92   m = (len - 1) % BN_BYTES;
93   if (bn_wexpand(ret, num_words) == NULL) {
94     if (bn) {
95       BN_free(bn);
96     }
97     return NULL;
98   }
99 
100   /* |bn_wexpand| must check bounds on |num_words| to write it into
101    * |ret->dmax|. */
102   assert(num_words <= INT_MAX);
103   ret->top = (int)num_words;
104   ret->neg = 0;
105 
106   while (len--) {
107     word = (word << 8) | *(in++);
108     if (m-- == 0) {
109       ret->d[--num_words] = word;
110       word = 0;
111       m = BN_BYTES - 1;
112     }
113   }
114 
115   /* need to call this due to clear byte at top if avoiding having the top bit
116    * set (-ve number) */
117   bn_correct_top(ret);
118   return ret;
119 }
120 
BN_bn2bin(const BIGNUM * in,uint8_t * out)121 size_t BN_bn2bin(const BIGNUM *in, uint8_t *out) {
122   size_t n, i;
123   BN_ULONG l;
124 
125   n = i = BN_num_bytes(in);
126   while (i--) {
127     l = in->d[i / BN_BYTES];
128     *(out++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff;
129   }
130   return n;
131 }
132 
133 /* constant_time_select_ulong returns |x| if |v| is 1 and |y| if |v| is 0. Its
134  * behavior is undefined if |v| takes any other value. */
constant_time_select_ulong(int v,BN_ULONG x,BN_ULONG y)135 static BN_ULONG constant_time_select_ulong(int v, BN_ULONG x, BN_ULONG y) {
136   BN_ULONG mask = v;
137   mask--;
138 
139   return (~mask & x) | (mask & y);
140 }
141 
142 /* constant_time_le_size_t returns 1 if |x| <= |y| and 0 otherwise. |x| and |y|
143  * must not have their MSBs set. */
constant_time_le_size_t(size_t x,size_t y)144 static int constant_time_le_size_t(size_t x, size_t y) {
145   return ((x - y - 1) >> (sizeof(size_t) * 8 - 1)) & 1;
146 }
147 
148 /* read_word_padded returns the |i|'th word of |in|, if it is not out of
149  * bounds. Otherwise, it returns 0. It does so without branches on the size of
150  * |in|, however it necessarily does not have the same memory access pattern. If
151  * the access would be out of bounds, it reads the last word of |in|. |in| must
152  * not be zero. */
read_word_padded(const BIGNUM * in,size_t i)153 static BN_ULONG read_word_padded(const BIGNUM *in, size_t i) {
154   /* Read |in->d[i]| if valid. Otherwise, read the last word. */
155   BN_ULONG l = in->d[constant_time_select_ulong(
156       constant_time_le_size_t(in->dmax, i), in->dmax - 1, i)];
157 
158   /* Clamp to zero if above |d->top|. */
159   return constant_time_select_ulong(constant_time_le_size_t(in->top, i), 0, l);
160 }
161 
BN_bn2bin_padded(uint8_t * out,size_t len,const BIGNUM * in)162 int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in) {
163   size_t i;
164   BN_ULONG l;
165 
166   /* Special case for |in| = 0. Just branch as the probability is negligible. */
167   if (BN_is_zero(in)) {
168     memset(out, 0, len);
169     return 1;
170   }
171 
172   /* Check if the integer is too big. This case can exit early in non-constant
173    * time. */
174   if ((size_t)in->top > (len + (BN_BYTES - 1)) / BN_BYTES) {
175     return 0;
176   }
177   if ((len % BN_BYTES) != 0) {
178     l = read_word_padded(in, len / BN_BYTES);
179     if (l >> (8 * (len % BN_BYTES)) != 0) {
180       return 0;
181     }
182   }
183 
184   /* Write the bytes out one by one. Serialization is done without branching on
185    * the bits of |in| or on |in->top|, but if the routine would otherwise read
186    * out of bounds, the memory access pattern can't be fixed. However, for an
187    * RSA key of size a multiple of the word size, the probability of BN_BYTES
188    * leading zero octets is low.
189    *
190    * See Falko Stenzke, "Manger's Attack revisited", ICICS 2010. */
191   i = len;
192   while (i--) {
193     l = read_word_padded(in, i / BN_BYTES);
194     *(out++) = (uint8_t)(l >> (8 * (i % BN_BYTES))) & 0xff;
195   }
196   return 1;
197 }
198 
BN_bn2cbb_padded(CBB * out,size_t len,const BIGNUM * in)199 int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in) {
200   uint8_t *ptr;
201   return CBB_add_space(out, &ptr, len) && BN_bn2bin_padded(ptr, len, in);
202 }
203 
204 static const char hextable[] = "0123456789abcdef";
205 
BN_bn2hex(const BIGNUM * bn)206 char *BN_bn2hex(const BIGNUM *bn) {
207   int i, j, v, z = 0;
208   char *buf;
209   char *p;
210 
211   buf = (char *)OPENSSL_malloc(bn->top * BN_BYTES * 2 + 2);
212   if (buf == NULL) {
213     OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
214     return NULL;
215   }
216 
217   p = buf;
218   if (bn->neg) {
219     *(p++) = '-';
220   }
221 
222   if (BN_is_zero(bn)) {
223     *(p++) = '0';
224   }
225 
226   for (i = bn->top - 1; i >= 0; i--) {
227     for (j = BN_BITS2 - 8; j >= 0; j -= 8) {
228       /* strip leading zeros */
229       v = ((int)(bn->d[i] >> (long)j)) & 0xff;
230       if (z || v != 0) {
231         *(p++) = hextable[v >> 4];
232         *(p++) = hextable[v & 0x0f];
233         z = 1;
234       }
235     }
236   }
237   *p = '\0';
238 
239   return buf;
240 }
241 
242 /* decode_hex decodes |in_len| bytes of hex data from |in| and updates |bn|. */
decode_hex(BIGNUM * bn,const char * in,int in_len)243 static int decode_hex(BIGNUM *bn, const char *in, int in_len) {
244   if (in_len > INT_MAX/4) {
245     OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
246     return 0;
247   }
248   /* |in_len| is the number of hex digits. */
249   if (bn_expand(bn, in_len * 4) == NULL) {
250     return 0;
251   }
252 
253   int i = 0;
254   while (in_len > 0) {
255     /* Decode one |BN_ULONG| at a time. */
256     int todo = BN_BYTES * 2;
257     if (todo > in_len) {
258       todo = in_len;
259     }
260 
261     BN_ULONG word = 0;
262     int j;
263     for (j = todo; j > 0; j--) {
264       char c = in[in_len - j];
265 
266       BN_ULONG hex;
267       if (c >= '0' && c <= '9') {
268         hex = c - '0';
269       } else if (c >= 'a' && c <= 'f') {
270         hex = c - 'a' + 10;
271       } else if (c >= 'A' && c <= 'F') {
272         hex = c - 'A' + 10;
273       } else {
274         hex = 0;
275         /* This shouldn't happen. The caller checks |isxdigit|. */
276         assert(0);
277       }
278       word = (word << 4) | hex;
279     }
280 
281     bn->d[i++] = word;
282     in_len -= todo;
283   }
284   assert(i <= bn->dmax);
285   bn->top = i;
286   return 1;
287 }
288 
289 /* decode_dec decodes |in_len| bytes of decimal data from |in| and updates |bn|. */
decode_dec(BIGNUM * bn,const char * in,int in_len)290 static int decode_dec(BIGNUM *bn, const char *in, int in_len) {
291   int i, j;
292   BN_ULONG l = 0;
293 
294   /* Decode |BN_DEC_NUM| digits at a time. */
295   j = BN_DEC_NUM - (in_len % BN_DEC_NUM);
296   if (j == BN_DEC_NUM) {
297     j = 0;
298   }
299   l = 0;
300   for (i = 0; i < in_len; i++) {
301     l *= 10;
302     l += in[i] - '0';
303     if (++j == BN_DEC_NUM) {
304       if (!BN_mul_word(bn, BN_DEC_CONV) ||
305           !BN_add_word(bn, l)) {
306         return 0;
307       }
308       l = 0;
309       j = 0;
310     }
311   }
312   return 1;
313 }
314 
315 typedef int (*decode_func) (BIGNUM *bn, const char *in, int in_len);
316 typedef int (*char_test_func) (int c);
317 
bn_x2bn(BIGNUM ** outp,const char * in,decode_func decode,char_test_func want_char)318 static int bn_x2bn(BIGNUM **outp, const char *in, decode_func decode, char_test_func want_char) {
319   BIGNUM *ret = NULL;
320   int neg = 0, i;
321   int num;
322 
323   if (in == NULL || *in == 0) {
324     return 0;
325   }
326 
327   if (*in == '-') {
328     neg = 1;
329     in++;
330   }
331 
332   for (i = 0; want_char((unsigned char)in[i]) && i + neg < INT_MAX; i++) {}
333 
334   num = i + neg;
335   if (outp == NULL) {
336     return num;
337   }
338 
339   /* in is the start of the hex digits, and it is 'i' long */
340   if (*outp == NULL) {
341     ret = BN_new();
342     if (ret == NULL) {
343       return 0;
344     }
345   } else {
346     ret = *outp;
347     BN_zero(ret);
348   }
349 
350   if (!decode(ret, in, i)) {
351     goto err;
352   }
353 
354   bn_correct_top(ret);
355   if (!BN_is_zero(ret)) {
356     ret->neg = neg;
357   }
358 
359   *outp = ret;
360   return num;
361 
362 err:
363   if (*outp == NULL) {
364     BN_free(ret);
365   }
366 
367   return 0;
368 }
369 
BN_hex2bn(BIGNUM ** outp,const char * in)370 int BN_hex2bn(BIGNUM **outp, const char *in) {
371   return bn_x2bn(outp, in, decode_hex, isxdigit);
372 }
373 
BN_bn2dec(const BIGNUM * a)374 char *BN_bn2dec(const BIGNUM *a) {
375   int i = 0, num, ok = 0;
376   char *buf = NULL;
377   char *p;
378   BIGNUM *t = NULL;
379   BN_ULONG *bn_data = NULL, *lp;
380 
381   /* get an upper bound for the length of the decimal integer
382    * num <= (BN_num_bits(a) + 1) * log(2)
383    *     <= 3 * BN_num_bits(a) * 0.1001 + log(2) + 1     (rounding error)
384    *     <= BN_num_bits(a)/10 + BN_num_bits/1000 + 1 + 1
385    */
386   i = BN_num_bits(a) * 3;
387   num = i / 10 + i / 1000 + 1 + 1;
388   bn_data =
389       (BN_ULONG *)OPENSSL_malloc((num / BN_DEC_NUM + 1) * sizeof(BN_ULONG));
390   buf = (char *)OPENSSL_malloc(num + 3);
391   if ((buf == NULL) || (bn_data == NULL)) {
392     OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
393     goto err;
394   }
395   t = BN_dup(a);
396   if (t == NULL) {
397     goto err;
398   }
399 
400 #define BUF_REMAIN (num + 3 - (size_t)(p - buf))
401   p = buf;
402   lp = bn_data;
403   if (BN_is_zero(t)) {
404     *(p++) = '0';
405     *(p++) = '\0';
406   } else {
407     if (BN_is_negative(t)) {
408       *p++ = '-';
409     }
410 
411     while (!BN_is_zero(t)) {
412       *lp = BN_div_word(t, BN_DEC_CONV);
413       lp++;
414     }
415     lp--;
416     /* We now have a series of blocks, BN_DEC_NUM chars
417      * in length, where the last one needs truncation.
418      * The blocks need to be reversed in order. */
419     BIO_snprintf(p, BUF_REMAIN, BN_DEC_FMT1, *lp);
420     while (*p) {
421       p++;
422     }
423     while (lp != bn_data) {
424       lp--;
425       BIO_snprintf(p, BUF_REMAIN, BN_DEC_FMT2, *lp);
426       while (*p) {
427         p++;
428       }
429     }
430   }
431   ok = 1;
432 
433 err:
434   OPENSSL_free(bn_data);
435   BN_free(t);
436   if (!ok) {
437     OPENSSL_free(buf);
438     buf = NULL;
439   }
440 
441   return buf;
442 }
443 
BN_dec2bn(BIGNUM ** outp,const char * in)444 int BN_dec2bn(BIGNUM **outp, const char *in) {
445   return bn_x2bn(outp, in, decode_dec, isdigit);
446 }
447 
BN_asc2bn(BIGNUM ** outp,const char * in)448 int BN_asc2bn(BIGNUM **outp, const char *in) {
449   const char *const orig_in = in;
450   if (*in == '-') {
451     in++;
452   }
453 
454   if (in[0] == '0' && (in[1] == 'X' || in[1] == 'x')) {
455     if (!BN_hex2bn(outp, in+2)) {
456       return 0;
457     }
458   } else {
459     if (!BN_dec2bn(outp, in)) {
460       return 0;
461     }
462   }
463 
464   if (*orig_in == '-' && !BN_is_zero(*outp)) {
465     (*outp)->neg = 1;
466   }
467 
468   return 1;
469 }
470 
BN_print(BIO * bp,const BIGNUM * a)471 int BN_print(BIO *bp, const BIGNUM *a) {
472   int i, j, v, z = 0;
473   int ret = 0;
474 
475   if (a->neg && BIO_write(bp, "-", 1) != 1) {
476     goto end;
477   }
478 
479   if (BN_is_zero(a) && BIO_write(bp, "0", 1) != 1) {
480     goto end;
481   }
482 
483   for (i = a->top - 1; i >= 0; i--) {
484     for (j = BN_BITS2 - 4; j >= 0; j -= 4) {
485       /* strip leading zeros */
486       v = ((int)(a->d[i] >> (long)j)) & 0x0f;
487       if (z || v != 0) {
488         if (BIO_write(bp, &hextable[v], 1) != 1) {
489           goto end;
490         }
491         z = 1;
492       }
493     }
494   }
495   ret = 1;
496 
497 end:
498   return ret;
499 }
500 
BN_print_fp(FILE * fp,const BIGNUM * a)501 int BN_print_fp(FILE *fp, const BIGNUM *a) {
502   BIO *b;
503   int ret;
504 
505   b = BIO_new(BIO_s_file());
506   if (b == NULL) {
507     return 0;
508   }
509   BIO_set_fp(b, fp, BIO_NOCLOSE);
510   ret = BN_print(b, a);
511   BIO_free(b);
512 
513   return ret;
514 }
515 
BN_get_word(const BIGNUM * bn)516 BN_ULONG BN_get_word(const BIGNUM *bn) {
517   switch (bn->top) {
518     case 0:
519       return 0;
520     case 1:
521       return bn->d[0];
522     default:
523       return BN_MASK2;
524   }
525 }
526 
BN_bn2mpi(const BIGNUM * in,uint8_t * out)527 size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out) {
528   const size_t bits = BN_num_bits(in);
529   const size_t bytes = (bits + 7) / 8;
530   /* If the number of bits is a multiple of 8, i.e. if the MSB is set,
531    * prefix with a zero byte. */
532   int extend = 0;
533   if (bytes != 0 && (bits & 0x07) == 0) {
534     extend = 1;
535   }
536 
537   const size_t len = bytes + extend;
538   if (len < bytes ||
539       4 + len < len ||
540       (len & 0xffffffff) != len) {
541     /* If we cannot represent the number then we emit zero as the interface
542      * doesn't allow an error to be signalled. */
543     if (out) {
544       memset(out, 0, 4);
545     }
546     return 4;
547   }
548 
549   if (out == NULL) {
550     return 4 + len;
551   }
552 
553   out[0] = len >> 24;
554   out[1] = len >> 16;
555   out[2] = len >> 8;
556   out[3] = len;
557   if (extend) {
558     out[4] = 0;
559   }
560   BN_bn2bin(in, out + 4 + extend);
561   if (in->neg && len > 0) {
562     out[4] |= 0x80;
563   }
564   return len + 4;
565 }
566 
BN_mpi2bn(const uint8_t * in,size_t len,BIGNUM * out)567 BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out) {
568   if (len < 4) {
569     OPENSSL_PUT_ERROR(BN, BN_R_BAD_ENCODING);
570     return NULL;
571   }
572   const size_t in_len = ((size_t)in[0] << 24) |
573                         ((size_t)in[1] << 16) |
574                         ((size_t)in[2] << 8) |
575                         ((size_t)in[3]);
576   if (in_len != len - 4) {
577     OPENSSL_PUT_ERROR(BN, BN_R_BAD_ENCODING);
578     return NULL;
579   }
580 
581   if (out == NULL) {
582     out = BN_new();
583   }
584   if (out == NULL) {
585     OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
586     return NULL;
587   }
588 
589   if (in_len == 0) {
590     BN_zero(out);
591     return out;
592   }
593 
594   in += 4;
595   if (BN_bin2bn(in, in_len, out) == NULL) {
596     return NULL;
597   }
598   out->neg = ((*in) & 0x80) != 0;
599   if (out->neg) {
600     BN_clear_bit(out, BN_num_bits(out) - 1);
601   }
602   return out;
603 }
604