• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 /** \mainpage V8 API Reference Guide
6  *
7  * V8 is Google's open source JavaScript engine.
8  *
9  * This set of documents provides reference material generated from the
10  * V8 header file, include/v8.h.
11  *
12  * For other documentation see http://code.google.com/apis/v8/
13  */
14 
15 #ifndef INCLUDE_V8_H_
16 #define INCLUDE_V8_H_
17 
18 #include <stddef.h>
19 #include <stdint.h>
20 #include <stdio.h>
21 
22 #include "v8-version.h"  // NOLINT(build/include)
23 #include "v8config.h"    // NOLINT(build/include)
24 
25 // We reserve the V8_* prefix for macros defined in V8 public API and
26 // assume there are no name conflicts with the embedder's code.
27 
28 #ifdef V8_OS_WIN
29 
30 // Setup for Windows DLL export/import. When building the V8 DLL the
31 // BUILDING_V8_SHARED needs to be defined. When building a program which uses
32 // the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
33 // static library or building a program which uses the V8 static library neither
34 // BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
35 #if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED)
36 #error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\
37   build configuration to ensure that at most one of these is set
38 #endif
39 
40 #ifdef BUILDING_V8_SHARED
41 # define V8_EXPORT __declspec(dllexport)
42 #elif USING_V8_SHARED
43 # define V8_EXPORT __declspec(dllimport)
44 #else
45 # define V8_EXPORT
46 #endif  // BUILDING_V8_SHARED
47 
48 #else  // V8_OS_WIN
49 
50 // Setup for Linux shared library export.
51 #if V8_HAS_ATTRIBUTE_VISIBILITY && defined(V8_SHARED)
52 # ifdef BUILDING_V8_SHARED
53 #  define V8_EXPORT __attribute__ ((visibility("default")))
54 # else
55 #  define V8_EXPORT
56 # endif
57 #else
58 # define V8_EXPORT
59 #endif
60 
61 #endif  // V8_OS_WIN
62 
63 /**
64  * The v8 JavaScript engine.
65  */
66 namespace v8 {
67 
68 class AccessorSignature;
69 class Array;
70 class Boolean;
71 class BooleanObject;
72 class Context;
73 class CpuProfiler;
74 class Data;
75 class Date;
76 class External;
77 class Function;
78 class FunctionTemplate;
79 class HeapProfiler;
80 class ImplementationUtilities;
81 class Int32;
82 class Integer;
83 class Isolate;
84 template <class T>
85 class Maybe;
86 class Name;
87 class Number;
88 class NumberObject;
89 class Object;
90 class ObjectOperationDescriptor;
91 class ObjectTemplate;
92 class Platform;
93 class Primitive;
94 class Promise;
95 class Proxy;
96 class RawOperationDescriptor;
97 class Script;
98 class SharedArrayBuffer;
99 class Signature;
100 class StartupData;
101 class StackFrame;
102 class StackTrace;
103 class String;
104 class StringObject;
105 class Symbol;
106 class SymbolObject;
107 class Private;
108 class Uint32;
109 class Utils;
110 class Value;
111 template <class T> class Local;
112 template <class T>
113 class MaybeLocal;
114 template <class T> class Eternal;
115 template<class T> class NonCopyablePersistentTraits;
116 template<class T> class PersistentBase;
117 template <class T, class M = NonCopyablePersistentTraits<T> >
118 class Persistent;
119 template <class T>
120 class Global;
121 template<class K, class V, class T> class PersistentValueMap;
122 template <class K, class V, class T>
123 class PersistentValueMapBase;
124 template <class K, class V, class T>
125 class GlobalValueMap;
126 template<class V, class T> class PersistentValueVector;
127 template<class T, class P> class WeakCallbackObject;
128 class FunctionTemplate;
129 class ObjectTemplate;
130 class Data;
131 template<typename T> class FunctionCallbackInfo;
132 template<typename T> class PropertyCallbackInfo;
133 class StackTrace;
134 class StackFrame;
135 class Isolate;
136 class CallHandlerHelper;
137 class EscapableHandleScope;
138 template<typename T> class ReturnValue;
139 
140 namespace experimental {
141 class FastAccessorBuilder;
142 }  // namespace experimental
143 
144 namespace internal {
145 class Arguments;
146 class Heap;
147 class HeapObject;
148 class Isolate;
149 class Object;
150 struct StreamedSource;
151 template<typename T> class CustomArguments;
152 class PropertyCallbackArguments;
153 class FunctionCallbackArguments;
154 class GlobalHandles;
155 }  // namespace internal
156 
157 
158 /**
159  * General purpose unique identifier.
160  */
161 class UniqueId {
162  public:
UniqueId(intptr_t data)163   explicit UniqueId(intptr_t data)
164       : data_(data) {}
165 
166   bool operator==(const UniqueId& other) const {
167     return data_ == other.data_;
168   }
169 
170   bool operator!=(const UniqueId& other) const {
171     return data_ != other.data_;
172   }
173 
174   bool operator<(const UniqueId& other) const {
175     return data_ < other.data_;
176   }
177 
178  private:
179   intptr_t data_;
180 };
181 
182 // --- Handles ---
183 
184 #define TYPE_CHECK(T, S)                                       \
185   while (false) {                                              \
186     *(static_cast<T* volatile*>(0)) = static_cast<S*>(0);      \
187   }
188 
189 
190 /**
191  * An object reference managed by the v8 garbage collector.
192  *
193  * All objects returned from v8 have to be tracked by the garbage
194  * collector so that it knows that the objects are still alive.  Also,
195  * because the garbage collector may move objects, it is unsafe to
196  * point directly to an object.  Instead, all objects are stored in
197  * handles which are known by the garbage collector and updated
198  * whenever an object moves.  Handles should always be passed by value
199  * (except in cases like out-parameters) and they should never be
200  * allocated on the heap.
201  *
202  * There are two types of handles: local and persistent handles.
203  * Local handles are light-weight and transient and typically used in
204  * local operations.  They are managed by HandleScopes.  Persistent
205  * handles can be used when storing objects across several independent
206  * operations and have to be explicitly deallocated when they're no
207  * longer used.
208  *
209  * It is safe to extract the object stored in the handle by
210  * dereferencing the handle (for instance, to extract the Object* from
211  * a Local<Object>); the value will still be governed by a handle
212  * behind the scenes and the same rules apply to these values as to
213  * their handles.
214  */
215 template <class T>
216 class Local {
217  public:
Local()218   V8_INLINE Local() : val_(0) {}
219   template <class S>
Local(Local<S> that)220   V8_INLINE Local(Local<S> that)
221       : val_(reinterpret_cast<T*>(*that)) {
222     /**
223      * This check fails when trying to convert between incompatible
224      * handles. For example, converting from a Local<String> to a
225      * Local<Number>.
226      */
227     TYPE_CHECK(T, S);
228   }
229 
230   /**
231    * Returns true if the handle is empty.
232    */
IsEmpty()233   V8_INLINE bool IsEmpty() const { return val_ == 0; }
234 
235   /**
236    * Sets the handle to be empty. IsEmpty() will then return true.
237    */
Clear()238   V8_INLINE void Clear() { val_ = 0; }
239 
240   V8_INLINE T* operator->() const { return val_; }
241 
242   V8_INLINE T* operator*() const { return val_; }
243 
244   /**
245    * Checks whether two handles are the same.
246    * Returns true if both are empty, or if the objects
247    * to which they refer are identical.
248    * The handles' references are not checked.
249    */
250   template <class S>
251   V8_INLINE bool operator==(const Local<S>& that) const {
252     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
253     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
254     if (a == 0) return b == 0;
255     if (b == 0) return false;
256     return *a == *b;
257   }
258 
259   template <class S> V8_INLINE bool operator==(
260       const PersistentBase<S>& that) const {
261     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
262     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
263     if (a == 0) return b == 0;
264     if (b == 0) return false;
265     return *a == *b;
266   }
267 
268   /**
269    * Checks whether two handles are different.
270    * Returns true if only one of the handles is empty, or if
271    * the objects to which they refer are different.
272    * The handles' references are not checked.
273    */
274   template <class S>
275   V8_INLINE bool operator!=(const Local<S>& that) const {
276     return !operator==(that);
277   }
278 
279   template <class S> V8_INLINE bool operator!=(
280       const Persistent<S>& that) const {
281     return !operator==(that);
282   }
283 
Cast(Local<S> that)284   template <class S> V8_INLINE static Local<T> Cast(Local<S> that) {
285 #ifdef V8_ENABLE_CHECKS
286     // If we're going to perform the type check then we have to check
287     // that the handle isn't empty before doing the checked cast.
288     if (that.IsEmpty()) return Local<T>();
289 #endif
290     return Local<T>(T::Cast(*that));
291   }
292 
293 
As()294   template <class S> V8_INLINE Local<S> As() {
295     return Local<S>::Cast(*this);
296   }
297 
298   /**
299    * Create a local handle for the content of another handle.
300    * The referee is kept alive by the local handle even when
301    * the original handle is destroyed/disposed.
302    */
303   V8_INLINE static Local<T> New(Isolate* isolate, Local<T> that);
304   V8_INLINE static Local<T> New(Isolate* isolate,
305                                 const PersistentBase<T>& that);
306 
307  private:
308   friend class Utils;
309   template<class F> friend class Eternal;
310   template<class F> friend class PersistentBase;
311   template<class F, class M> friend class Persistent;
312   template<class F> friend class Local;
313   template <class F>
314   friend class MaybeLocal;
315   template<class F> friend class FunctionCallbackInfo;
316   template<class F> friend class PropertyCallbackInfo;
317   friend class String;
318   friend class Object;
319   friend class Context;
320   friend class Private;
321   template<class F> friend class internal::CustomArguments;
322   friend Local<Primitive> Undefined(Isolate* isolate);
323   friend Local<Primitive> Null(Isolate* isolate);
324   friend Local<Boolean> True(Isolate* isolate);
325   friend Local<Boolean> False(Isolate* isolate);
326   friend class HandleScope;
327   friend class EscapableHandleScope;
328   template <class F1, class F2, class F3>
329   friend class PersistentValueMapBase;
330   template<class F1, class F2> friend class PersistentValueVector;
331 
332   template <class S>
Local(S * that)333   V8_INLINE Local(S* that)
334       : val_(that) {}
335   V8_INLINE static Local<T> New(Isolate* isolate, T* that);
336   T* val_;
337 };
338 
339 
340 #if !defined(V8_IMMINENT_DEPRECATION_WARNINGS)
341 // Local is an alias for Local for historical reasons.
342 template <class T>
343 using Handle = Local<T>;
344 #endif
345 
346 
347 /**
348  * A MaybeLocal<> is a wrapper around Local<> that enforces a check whether
349  * the Local<> is empty before it can be used.
350  *
351  * If an API method returns a MaybeLocal<>, the API method can potentially fail
352  * either because an exception is thrown, or because an exception is pending,
353  * e.g. because a previous API call threw an exception that hasn't been caught
354  * yet, or because a TerminateExecution exception was thrown. In that case, an
355  * empty MaybeLocal is returned.
356  */
357 template <class T>
358 class MaybeLocal {
359  public:
MaybeLocal()360   V8_INLINE MaybeLocal() : val_(nullptr) {}
361   template <class S>
MaybeLocal(Local<S> that)362   V8_INLINE MaybeLocal(Local<S> that)
363       : val_(reinterpret_cast<T*>(*that)) {
364     TYPE_CHECK(T, S);
365   }
366 
IsEmpty()367   V8_INLINE bool IsEmpty() const { return val_ == nullptr; }
368 
369   template <class S>
ToLocal(Local<S> * out)370   V8_WARN_UNUSED_RESULT V8_INLINE bool ToLocal(Local<S>* out) const {
371     out->val_ = IsEmpty() ? nullptr : this->val_;
372     return !IsEmpty();
373   }
374 
375   // Will crash if the MaybeLocal<> is empty.
376   V8_INLINE Local<T> ToLocalChecked();
377 
378   template <class S>
FromMaybe(Local<S> default_value)379   V8_INLINE Local<S> FromMaybe(Local<S> default_value) const {
380     return IsEmpty() ? default_value : Local<S>(val_);
381   }
382 
383  private:
384   T* val_;
385 };
386 
387 
388 // Eternal handles are set-once handles that live for the life of the isolate.
389 template <class T> class Eternal {
390  public:
Eternal()391   V8_INLINE Eternal() : index_(kInitialValue) { }
392   template<class S>
Eternal(Isolate * isolate,Local<S> handle)393   V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : index_(kInitialValue) {
394     Set(isolate, handle);
395   }
396   // Can only be safely called if already set.
397   V8_INLINE Local<T> Get(Isolate* isolate);
IsEmpty()398   V8_INLINE bool IsEmpty() { return index_ == kInitialValue; }
399   template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle);
400 
401  private:
402   static const int kInitialValue = -1;
403   int index_;
404 };
405 
406 
407 static const int kInternalFieldsInWeakCallback = 2;
408 
409 
410 template <typename T>
411 class WeakCallbackInfo {
412  public:
413   typedef void (*Callback)(const WeakCallbackInfo<T>& data);
414 
WeakCallbackInfo(Isolate * isolate,T * parameter,void * internal_fields[kInternalFieldsInWeakCallback],Callback * callback)415   WeakCallbackInfo(Isolate* isolate, T* parameter,
416                    void* internal_fields[kInternalFieldsInWeakCallback],
417                    Callback* callback)
418       : isolate_(isolate), parameter_(parameter), callback_(callback) {
419     for (int i = 0; i < kInternalFieldsInWeakCallback; ++i) {
420       internal_fields_[i] = internal_fields[i];
421     }
422   }
423 
GetIsolate()424   V8_INLINE Isolate* GetIsolate() const { return isolate_; }
GetParameter()425   V8_INLINE T* GetParameter() const { return parameter_; }
426   V8_INLINE void* GetInternalField(int index) const;
427 
428   V8_INLINE V8_DEPRECATED("use indexed version",
GetInternalField1()429                           void* GetInternalField1() const) {
430     return internal_fields_[0];
431   }
432   V8_INLINE V8_DEPRECATED("use indexed version",
GetInternalField2()433                           void* GetInternalField2() const) {
434     return internal_fields_[1];
435   }
436 
IsFirstPass()437   bool IsFirstPass() const { return callback_ != nullptr; }
438 
439   // When first called, the embedder MUST Reset() the Global which triggered the
440   // callback. The Global itself is unusable for anything else. No v8 other api
441   // calls may be called in the first callback. Should additional work be
442   // required, the embedder must set a second pass callback, which will be
443   // called after all the initial callbacks are processed.
444   // Calling SetSecondPassCallback on the second pass will immediately crash.
SetSecondPassCallback(Callback callback)445   void SetSecondPassCallback(Callback callback) const { *callback_ = callback; }
446 
447  private:
448   Isolate* isolate_;
449   T* parameter_;
450   Callback* callback_;
451   void* internal_fields_[kInternalFieldsInWeakCallback];
452 };
453 
454 
455 template <class T, class P>
456 class WeakCallbackData {
457  public:
458   typedef void (*Callback)(const WeakCallbackData<T, P>& data);
459 
WeakCallbackData(Isolate * isolate,P * parameter,Local<T> handle)460   WeakCallbackData(Isolate* isolate, P* parameter, Local<T> handle)
461       : isolate_(isolate), parameter_(parameter), handle_(handle) {}
462 
GetIsolate()463   V8_INLINE Isolate* GetIsolate() const { return isolate_; }
GetParameter()464   V8_INLINE P* GetParameter() const { return parameter_; }
GetValue()465   V8_INLINE Local<T> GetValue() const { return handle_; }
466 
467  private:
468   Isolate* isolate_;
469   P* parameter_;
470   Local<T> handle_;
471 };
472 
473 
474 // TODO(dcarney): delete this with WeakCallbackData
475 template <class T>
476 using PhantomCallbackData = WeakCallbackInfo<T>;
477 
478 
479 enum class WeakCallbackType { kParameter, kInternalFields };
480 
481 
482 /**
483  * An object reference that is independent of any handle scope.  Where
484  * a Local handle only lives as long as the HandleScope in which it was
485  * allocated, a PersistentBase handle remains valid until it is explicitly
486  * disposed.
487  *
488  * A persistent handle contains a reference to a storage cell within
489  * the v8 engine which holds an object value and which is updated by
490  * the garbage collector whenever the object is moved.  A new storage
491  * cell can be created using the constructor or PersistentBase::Reset and
492  * existing handles can be disposed using PersistentBase::Reset.
493  *
494  */
495 template <class T> class PersistentBase {
496  public:
497   /**
498    * If non-empty, destroy the underlying storage cell
499    * IsEmpty() will return true after this call.
500    */
501   V8_INLINE void Reset();
502   /**
503    * If non-empty, destroy the underlying storage cell
504    * and create a new one with the contents of other if other is non empty
505    */
506   template <class S>
507   V8_INLINE void Reset(Isolate* isolate, const Local<S>& other);
508 
509   /**
510    * If non-empty, destroy the underlying storage cell
511    * and create a new one with the contents of other if other is non empty
512    */
513   template <class S>
514   V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other);
515 
IsEmpty()516   V8_INLINE bool IsEmpty() const { return val_ == NULL; }
Empty()517   V8_INLINE void Empty() { val_ = 0; }
518 
Get(Isolate * isolate)519   V8_INLINE Local<T> Get(Isolate* isolate) const {
520     return Local<T>::New(isolate, *this);
521   }
522 
523   template <class S>
524   V8_INLINE bool operator==(const PersistentBase<S>& that) const {
525     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
526     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
527     if (a == NULL) return b == NULL;
528     if (b == NULL) return false;
529     return *a == *b;
530   }
531 
532   template <class S>
533   V8_INLINE bool operator==(const Local<S>& that) const {
534     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
535     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
536     if (a == NULL) return b == NULL;
537     if (b == NULL) return false;
538     return *a == *b;
539   }
540 
541   template <class S>
542   V8_INLINE bool operator!=(const PersistentBase<S>& that) const {
543     return !operator==(that);
544   }
545 
546   template <class S>
547   V8_INLINE bool operator!=(const Local<S>& that) const {
548     return !operator==(that);
549   }
550 
551   /**
552    *  Install a finalization callback on this object.
553    *  NOTE: There is no guarantee as to *when* or even *if* the callback is
554    *  invoked. The invocation is performed solely on a best effort basis.
555    *  As always, GC-based finalization should *not* be relied upon for any
556    *  critical form of resource management!
557    */
558   template <typename P>
559   V8_INLINE V8_DEPRECATED(
560       "use WeakCallbackInfo version",
561       void SetWeak(P* parameter,
562                    typename WeakCallbackData<T, P>::Callback callback));
563 
564   template <typename S, typename P>
565   V8_INLINE V8_DEPRECATED(
566       "use WeakCallbackInfo version",
567       void SetWeak(P* parameter,
568                    typename WeakCallbackData<S, P>::Callback callback));
569 
570   // Phantom persistents work like weak persistents, except that the pointer to
571   // the object being collected is not available in the finalization callback.
572   // This enables the garbage collector to collect the object and any objects
573   // it references transitively in one GC cycle. At the moment you can either
574   // specify a parameter for the callback or the location of two internal
575   // fields in the dying object.
576   template <typename P>
577   V8_INLINE V8_DEPRECATED(
578       "use SetWeak",
579       void SetPhantom(P* parameter,
580                       typename WeakCallbackInfo<P>::Callback callback,
581                       int internal_field_index1 = -1,
582                       int internal_field_index2 = -1));
583 
584   template <typename P>
585   V8_INLINE void SetWeak(P* parameter,
586                          typename WeakCallbackInfo<P>::Callback callback,
587                          WeakCallbackType type);
588 
589   template<typename P>
590   V8_INLINE P* ClearWeak();
591 
592   // TODO(dcarney): remove this.
ClearWeak()593   V8_INLINE void ClearWeak() { ClearWeak<void>(); }
594 
595   /**
596    * Marks the reference to this object independent. Garbage collector is free
597    * to ignore any object groups containing this object. Weak callback for an
598    * independent handle should not assume that it will be preceded by a global
599    * GC prologue callback or followed by a global GC epilogue callback.
600    */
601   V8_INLINE void MarkIndependent();
602 
603   /**
604    * Marks the reference to this object partially dependent. Partially dependent
605    * handles only depend on other partially dependent handles and these
606    * dependencies are provided through object groups. It provides a way to build
607    * smaller object groups for young objects that represent only a subset of all
608    * external dependencies. This mark is automatically cleared after each
609    * garbage collection.
610    */
611   V8_INLINE void MarkPartiallyDependent();
612 
613   /**
614    * Marks the reference to this object as active. The scavenge garbage
615    * collection should not reclaim the objects marked as active.
616    * This bit is cleared after the each garbage collection pass.
617    */
618   V8_INLINE void MarkActive();
619 
620   V8_INLINE bool IsIndependent() const;
621 
622   /** Checks if the handle holds the only reference to an object. */
623   V8_INLINE bool IsNearDeath() const;
624 
625   /** Returns true if the handle's reference is weak.  */
626   V8_INLINE bool IsWeak() const;
627 
628   /**
629    * Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface
630    * description in v8-profiler.h for details.
631    */
632   V8_INLINE void SetWrapperClassId(uint16_t class_id);
633 
634   /**
635    * Returns the class ID previously assigned to this handle or 0 if no class ID
636    * was previously assigned.
637    */
638   V8_INLINE uint16_t WrapperClassId() const;
639 
640  private:
641   friend class Isolate;
642   friend class Utils;
643   template<class F> friend class Local;
644   template<class F1, class F2> friend class Persistent;
645   template <class F>
646   friend class Global;
647   template<class F> friend class PersistentBase;
648   template<class F> friend class ReturnValue;
649   template <class F1, class F2, class F3>
650   friend class PersistentValueMapBase;
651   template<class F1, class F2> friend class PersistentValueVector;
652   friend class Object;
653 
PersistentBase(T * val)654   explicit V8_INLINE PersistentBase(T* val) : val_(val) {}
655   PersistentBase(const PersistentBase& other) = delete;  // NOLINT
656   void operator=(const PersistentBase&) = delete;
657   V8_INLINE static T* New(Isolate* isolate, T* that);
658 
659   T* val_;
660 };
661 
662 
663 /**
664  * Default traits for Persistent. This class does not allow
665  * use of the copy constructor or assignment operator.
666  * At present kResetInDestructor is not set, but that will change in a future
667  * version.
668  */
669 template<class T>
670 class NonCopyablePersistentTraits {
671  public:
672   typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent;
673   static const bool kResetInDestructor = false;
674   template<class S, class M>
Copy(const Persistent<S,M> & source,NonCopyablePersistent * dest)675   V8_INLINE static void Copy(const Persistent<S, M>& source,
676                              NonCopyablePersistent* dest) {
677     Uncompilable<Object>();
678   }
679   // TODO(dcarney): come up with a good compile error here.
Uncompilable()680   template<class O> V8_INLINE static void Uncompilable() {
681     TYPE_CHECK(O, Primitive);
682   }
683 };
684 
685 
686 /**
687  * Helper class traits to allow copying and assignment of Persistent.
688  * This will clone the contents of storage cell, but not any of the flags, etc.
689  */
690 template<class T>
691 struct CopyablePersistentTraits {
692   typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent;
693   static const bool kResetInDestructor = true;
694   template<class S, class M>
CopyCopyablePersistentTraits695   static V8_INLINE void Copy(const Persistent<S, M>& source,
696                              CopyablePersistent* dest) {
697     // do nothing, just allow copy
698   }
699 };
700 
701 
702 /**
703  * A PersistentBase which allows copy and assignment.
704  *
705  * Copy, assignment and destructor bevavior is controlled by the traits
706  * class M.
707  *
708  * Note: Persistent class hierarchy is subject to future changes.
709  */
710 template <class T, class M> class Persistent : public PersistentBase<T> {
711  public:
712   /**
713    * A Persistent with no storage cell.
714    */
Persistent()715   V8_INLINE Persistent() : PersistentBase<T>(0) { }
716   /**
717    * Construct a Persistent from a Local.
718    * When the Local is non-empty, a new storage cell is created
719    * pointing to the same object, and no flags are set.
720    */
721   template <class S>
Persistent(Isolate * isolate,Local<S> that)722   V8_INLINE Persistent(Isolate* isolate, Local<S> that)
723       : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
724     TYPE_CHECK(T, S);
725   }
726   /**
727    * Construct a Persistent from a Persistent.
728    * When the Persistent is non-empty, a new storage cell is created
729    * pointing to the same object, and no flags are set.
730    */
731   template <class S, class M2>
Persistent(Isolate * isolate,const Persistent<S,M2> & that)732   V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that)
733     : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
734     TYPE_CHECK(T, S);
735   }
736   /**
737    * The copy constructors and assignment operator create a Persistent
738    * exactly as the Persistent constructor, but the Copy function from the
739    * traits class is called, allowing the setting of flags based on the
740    * copied Persistent.
741    */
Persistent(const Persistent & that)742   V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) {
743     Copy(that);
744   }
745   template <class S, class M2>
Persistent(const Persistent<S,M2> & that)746   V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) {
747     Copy(that);
748   }
749   V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT
750     Copy(that);
751     return *this;
752   }
753   template <class S, class M2>
754   V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT
755     Copy(that);
756     return *this;
757   }
758   /**
759    * The destructor will dispose the Persistent based on the
760    * kResetInDestructor flags in the traits class.  Since not calling dispose
761    * can result in a memory leak, it is recommended to always set this flag.
762    */
~Persistent()763   V8_INLINE ~Persistent() {
764     if (M::kResetInDestructor) this->Reset();
765   }
766 
767   // TODO(dcarney): this is pretty useless, fix or remove
768   template <class S>
Cast(Persistent<S> & that)769   V8_INLINE static Persistent<T>& Cast(Persistent<S>& that) { // NOLINT
770 #ifdef V8_ENABLE_CHECKS
771     // If we're going to perform the type check then we have to check
772     // that the handle isn't empty before doing the checked cast.
773     if (!that.IsEmpty()) T::Cast(*that);
774 #endif
775     return reinterpret_cast<Persistent<T>&>(that);
776   }
777 
778   // TODO(dcarney): this is pretty useless, fix or remove
As()779   template <class S> V8_INLINE Persistent<S>& As() { // NOLINT
780     return Persistent<S>::Cast(*this);
781   }
782 
783  private:
784   friend class Isolate;
785   friend class Utils;
786   template<class F> friend class Local;
787   template<class F1, class F2> friend class Persistent;
788   template<class F> friend class ReturnValue;
789 
Persistent(S * that)790   template <class S> V8_INLINE Persistent(S* that) : PersistentBase<T>(that) { }
791   V8_INLINE T* operator*() const { return this->val_; }
792   template<class S, class M2>
793   V8_INLINE void Copy(const Persistent<S, M2>& that);
794 };
795 
796 
797 /**
798  * A PersistentBase which has move semantics.
799  *
800  * Note: Persistent class hierarchy is subject to future changes.
801  */
802 template <class T>
803 class Global : public PersistentBase<T> {
804  public:
805   /**
806    * A Global with no storage cell.
807    */
Global()808   V8_INLINE Global() : PersistentBase<T>(nullptr) {}
809   /**
810    * Construct a Global from a Local.
811    * When the Local is non-empty, a new storage cell is created
812    * pointing to the same object, and no flags are set.
813    */
814   template <class S>
Global(Isolate * isolate,Local<S> that)815   V8_INLINE Global(Isolate* isolate, Local<S> that)
816       : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
817     TYPE_CHECK(T, S);
818   }
819   /**
820    * Construct a Global from a PersistentBase.
821    * When the Persistent is non-empty, a new storage cell is created
822    * pointing to the same object, and no flags are set.
823    */
824   template <class S>
Global(Isolate * isolate,const PersistentBase<S> & that)825   V8_INLINE Global(Isolate* isolate, const PersistentBase<S>& that)
826       : PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) {
827     TYPE_CHECK(T, S);
828   }
829   /**
830    * Move constructor.
831    */
Global(Global && other)832   V8_INLINE Global(Global&& other) : PersistentBase<T>(other.val_) {  // NOLINT
833     other.val_ = nullptr;
834   }
~Global()835   V8_INLINE ~Global() { this->Reset(); }
836   /**
837    * Move via assignment.
838    */
839   template <class S>
840   V8_INLINE Global& operator=(Global<S>&& rhs) {  // NOLINT
841     TYPE_CHECK(T, S);
842     if (this != &rhs) {
843       this->Reset();
844       this->val_ = rhs.val_;
845       rhs.val_ = nullptr;
846     }
847     return *this;
848   }
849   /**
850    * Pass allows returning uniques from functions, etc.
851    */
Pass()852   Global Pass() { return static_cast<Global&&>(*this); }  // NOLINT
853 
854   /*
855    * For compatibility with Chromium's base::Bind (base::Passed).
856    */
857   typedef void MoveOnlyTypeForCPP03;
858 
859  private:
860   template <class F>
861   friend class ReturnValue;
862   Global(const Global&) = delete;
863   void operator=(const Global&) = delete;
864   V8_INLINE T* operator*() const { return this->val_; }
865 };
866 
867 
868 // UniquePersistent is an alias for Global for historical reason.
869 template <class T>
870 using UniquePersistent = Global<T>;
871 
872 
873  /**
874  * A stack-allocated class that governs a number of local handles.
875  * After a handle scope has been created, all local handles will be
876  * allocated within that handle scope until either the handle scope is
877  * deleted or another handle scope is created.  If there is already a
878  * handle scope and a new one is created, all allocations will take
879  * place in the new handle scope until it is deleted.  After that,
880  * new handles will again be allocated in the original handle scope.
881  *
882  * After the handle scope of a local handle has been deleted the
883  * garbage collector will no longer track the object stored in the
884  * handle and may deallocate it.  The behavior of accessing a handle
885  * for which the handle scope has been deleted is undefined.
886  */
887 class V8_EXPORT HandleScope {
888  public:
889   HandleScope(Isolate* isolate);
890 
891   ~HandleScope();
892 
893   /**
894    * Counts the number of allocated handles.
895    */
896   static int NumberOfHandles(Isolate* isolate);
897 
GetIsolate()898   V8_INLINE Isolate* GetIsolate() const {
899     return reinterpret_cast<Isolate*>(isolate_);
900   }
901 
902  protected:
HandleScope()903   V8_INLINE HandleScope() {}
904 
905   void Initialize(Isolate* isolate);
906 
907   static internal::Object** CreateHandle(internal::Isolate* isolate,
908                                          internal::Object* value);
909 
910  private:
911   // Uses heap_object to obtain the current Isolate.
912   static internal::Object** CreateHandle(internal::HeapObject* heap_object,
913                                          internal::Object* value);
914 
915   // Make it hard to create heap-allocated or illegal handle scopes by
916   // disallowing certain operations.
917   HandleScope(const HandleScope&);
918   void operator=(const HandleScope&);
919   void* operator new(size_t size);
920   void operator delete(void*, size_t);
921 
922   internal::Isolate* isolate_;
923   internal::Object** prev_next_;
924   internal::Object** prev_limit_;
925 
926   // Local::New uses CreateHandle with an Isolate* parameter.
927   template<class F> friend class Local;
928 
929   // Object::GetInternalField and Context::GetEmbedderData use CreateHandle with
930   // a HeapObject* in their shortcuts.
931   friend class Object;
932   friend class Context;
933 };
934 
935 
936 /**
937  * A HandleScope which first allocates a handle in the current scope
938  * which will be later filled with the escape value.
939  */
940 class V8_EXPORT EscapableHandleScope : public HandleScope {
941  public:
942   EscapableHandleScope(Isolate* isolate);
~EscapableHandleScope()943   V8_INLINE ~EscapableHandleScope() {}
944 
945   /**
946    * Pushes the value into the previous scope and returns a handle to it.
947    * Cannot be called twice.
948    */
949   template <class T>
Escape(Local<T> value)950   V8_INLINE Local<T> Escape(Local<T> value) {
951     internal::Object** slot =
952         Escape(reinterpret_cast<internal::Object**>(*value));
953     return Local<T>(reinterpret_cast<T*>(slot));
954   }
955 
956  private:
957   internal::Object** Escape(internal::Object** escape_value);
958 
959   // Make it hard to create heap-allocated or illegal handle scopes by
960   // disallowing certain operations.
961   EscapableHandleScope(const EscapableHandleScope&);
962   void operator=(const EscapableHandleScope&);
963   void* operator new(size_t size);
964   void operator delete(void*, size_t);
965 
966   internal::Object** escape_slot_;
967 };
968 
969 class V8_EXPORT SealHandleScope {
970  public:
971   SealHandleScope(Isolate* isolate);
972   ~SealHandleScope();
973 
974  private:
975   // Make it hard to create heap-allocated or illegal handle scopes by
976   // disallowing certain operations.
977   SealHandleScope(const SealHandleScope&);
978   void operator=(const SealHandleScope&);
979   void* operator new(size_t size);
980   void operator delete(void*, size_t);
981 
982   internal::Isolate* isolate_;
983   internal::Object** prev_limit_;
984   int prev_sealed_level_;
985 };
986 
987 
988 // --- Special objects ---
989 
990 
991 /**
992  * The superclass of values and API object templates.
993  */
994 class V8_EXPORT Data {
995  private:
996   Data();
997 };
998 
999 
1000 /**
1001  * The optional attributes of ScriptOrigin.
1002  */
1003 class ScriptOriginOptions {
1004  public:
1005   V8_INLINE ScriptOriginOptions(bool is_embedder_debug_script = false,
1006                                 bool is_shared_cross_origin = false,
1007                                 bool is_opaque = false)
1008       : flags_((is_embedder_debug_script ? kIsEmbedderDebugScript : 0) |
1009                (is_shared_cross_origin ? kIsSharedCrossOrigin : 0) |
1010                (is_opaque ? kIsOpaque : 0)) {}
ScriptOriginOptions(int flags)1011   V8_INLINE ScriptOriginOptions(int flags)
1012       : flags_(flags &
1013                (kIsEmbedderDebugScript | kIsSharedCrossOrigin | kIsOpaque)) {}
IsEmbedderDebugScript()1014   bool IsEmbedderDebugScript() const {
1015     return (flags_ & kIsEmbedderDebugScript) != 0;
1016   }
IsSharedCrossOrigin()1017   bool IsSharedCrossOrigin() const {
1018     return (flags_ & kIsSharedCrossOrigin) != 0;
1019   }
IsOpaque()1020   bool IsOpaque() const { return (flags_ & kIsOpaque) != 0; }
Flags()1021   int Flags() const { return flags_; }
1022 
1023  private:
1024   enum {
1025     kIsEmbedderDebugScript = 1,
1026     kIsSharedCrossOrigin = 1 << 1,
1027     kIsOpaque = 1 << 2
1028   };
1029   const int flags_;
1030 };
1031 
1032 /**
1033  * The origin, within a file, of a script.
1034  */
1035 class ScriptOrigin {
1036  public:
1037   V8_INLINE ScriptOrigin(
1038       Local<Value> resource_name,
1039       Local<Integer> resource_line_offset = Local<Integer>(),
1040       Local<Integer> resource_column_offset = Local<Integer>(),
1041       Local<Boolean> resource_is_shared_cross_origin = Local<Boolean>(),
1042       Local<Integer> script_id = Local<Integer>(),
1043       Local<Boolean> resource_is_embedder_debug_script = Local<Boolean>(),
1044       Local<Value> source_map_url = Local<Value>(),
1045       Local<Boolean> resource_is_opaque = Local<Boolean>());
1046   V8_INLINE Local<Value> ResourceName() const;
1047   V8_INLINE Local<Integer> ResourceLineOffset() const;
1048   V8_INLINE Local<Integer> ResourceColumnOffset() const;
1049   /**
1050     * Returns true for embedder's debugger scripts
1051     */
1052   V8_INLINE Local<Integer> ScriptID() const;
1053   V8_INLINE Local<Value> SourceMapUrl() const;
Options()1054   V8_INLINE ScriptOriginOptions Options() const { return options_; }
1055 
1056  private:
1057   Local<Value> resource_name_;
1058   Local<Integer> resource_line_offset_;
1059   Local<Integer> resource_column_offset_;
1060   ScriptOriginOptions options_;
1061   Local<Integer> script_id_;
1062   Local<Value> source_map_url_;
1063 };
1064 
1065 
1066 /**
1067  * A compiled JavaScript script, not yet tied to a Context.
1068  */
1069 class V8_EXPORT UnboundScript {
1070  public:
1071   /**
1072    * Binds the script to the currently entered context.
1073    */
1074   Local<Script> BindToCurrentContext();
1075 
1076   int GetId();
1077   Local<Value> GetScriptName();
1078 
1079   /**
1080    * Data read from magic sourceURL comments.
1081    */
1082   Local<Value> GetSourceURL();
1083   /**
1084    * Data read from magic sourceMappingURL comments.
1085    */
1086   Local<Value> GetSourceMappingURL();
1087 
1088   /**
1089    * Returns zero based line number of the code_pos location in the script.
1090    * -1 will be returned if no information available.
1091    */
1092   int GetLineNumber(int code_pos);
1093 
1094   static const int kNoScriptId = 0;
1095 };
1096 
1097 
1098 /**
1099  * A compiled JavaScript script, tied to a Context which was active when the
1100  * script was compiled.
1101  */
1102 class V8_EXPORT Script {
1103  public:
1104   /**
1105    * A shorthand for ScriptCompiler::Compile().
1106    */
1107   static V8_DEPRECATE_SOON(
1108       "Use maybe version",
1109       Local<Script> Compile(Local<String> source,
1110                             ScriptOrigin* origin = nullptr));
1111   static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1112       Local<Context> context, Local<String> source,
1113       ScriptOrigin* origin = nullptr);
1114 
1115   static Local<Script> V8_DEPRECATE_SOON("Use maybe version",
1116                                          Compile(Local<String> source,
1117                                                  Local<String> file_name));
1118 
1119   /**
1120    * Runs the script returning the resulting value. It will be run in the
1121    * context in which it was created (ScriptCompiler::CompileBound or
1122    * UnboundScript::BindToCurrentContext()).
1123    */
1124   V8_DEPRECATE_SOON("Use maybe version", Local<Value> Run());
1125   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Run(Local<Context> context);
1126 
1127   /**
1128    * Returns the corresponding context-unbound script.
1129    */
1130   Local<UnboundScript> GetUnboundScript();
1131 };
1132 
1133 
1134 /**
1135  * For compiling scripts.
1136  */
1137 class V8_EXPORT ScriptCompiler {
1138  public:
1139   /**
1140    * Compilation data that the embedder can cache and pass back to speed up
1141    * future compilations. The data is produced if the CompilerOptions passed to
1142    * the compilation functions in ScriptCompiler contains produce_data_to_cache
1143    * = true. The data to cache can then can be retrieved from
1144    * UnboundScript.
1145    */
1146   struct V8_EXPORT CachedData {
1147     enum BufferPolicy {
1148       BufferNotOwned,
1149       BufferOwned
1150     };
1151 
CachedDataCachedData1152     CachedData()
1153         : data(NULL),
1154           length(0),
1155           rejected(false),
1156           buffer_policy(BufferNotOwned) {}
1157 
1158     // If buffer_policy is BufferNotOwned, the caller keeps the ownership of
1159     // data and guarantees that it stays alive until the CachedData object is
1160     // destroyed. If the policy is BufferOwned, the given data will be deleted
1161     // (with delete[]) when the CachedData object is destroyed.
1162     CachedData(const uint8_t* data, int length,
1163                BufferPolicy buffer_policy = BufferNotOwned);
1164     ~CachedData();
1165     // TODO(marja): Async compilation; add constructors which take a callback
1166     // which will be called when V8 no longer needs the data.
1167     const uint8_t* data;
1168     int length;
1169     bool rejected;
1170     BufferPolicy buffer_policy;
1171 
1172    private:
1173     // Prevent copying. Not implemented.
1174     CachedData(const CachedData&);
1175     CachedData& operator=(const CachedData&);
1176   };
1177 
1178   /**
1179    * Source code which can be then compiled to a UnboundScript or Script.
1180    */
1181   class Source {
1182    public:
1183     // Source takes ownership of CachedData.
1184     V8_INLINE Source(Local<String> source_string, const ScriptOrigin& origin,
1185            CachedData* cached_data = NULL);
1186     V8_INLINE Source(Local<String> source_string,
1187                      CachedData* cached_data = NULL);
1188     V8_INLINE ~Source();
1189 
1190     // Ownership of the CachedData or its buffers is *not* transferred to the
1191     // caller. The CachedData object is alive as long as the Source object is
1192     // alive.
1193     V8_INLINE const CachedData* GetCachedData() const;
1194 
1195    private:
1196     friend class ScriptCompiler;
1197     // Prevent copying. Not implemented.
1198     Source(const Source&);
1199     Source& operator=(const Source&);
1200 
1201     Local<String> source_string;
1202 
1203     // Origin information
1204     Local<Value> resource_name;
1205     Local<Integer> resource_line_offset;
1206     Local<Integer> resource_column_offset;
1207     ScriptOriginOptions resource_options;
1208     Local<Value> source_map_url;
1209 
1210     // Cached data from previous compilation (if a kConsume*Cache flag is
1211     // set), or hold newly generated cache data (kProduce*Cache flags) are
1212     // set when calling a compile method.
1213     CachedData* cached_data;
1214   };
1215 
1216   /**
1217    * For streaming incomplete script data to V8. The embedder should implement a
1218    * subclass of this class.
1219    */
1220   class V8_EXPORT ExternalSourceStream {
1221    public:
~ExternalSourceStream()1222     virtual ~ExternalSourceStream() {}
1223 
1224     /**
1225      * V8 calls this to request the next chunk of data from the embedder. This
1226      * function will be called on a background thread, so it's OK to block and
1227      * wait for the data, if the embedder doesn't have data yet. Returns the
1228      * length of the data returned. When the data ends, GetMoreData should
1229      * return 0. Caller takes ownership of the data.
1230      *
1231      * When streaming UTF-8 data, V8 handles multi-byte characters split between
1232      * two data chunks, but doesn't handle multi-byte characters split between
1233      * more than two data chunks. The embedder can avoid this problem by always
1234      * returning at least 2 bytes of data.
1235      *
1236      * If the embedder wants to cancel the streaming, they should make the next
1237      * GetMoreData call return 0. V8 will interpret it as end of data (and most
1238      * probably, parsing will fail). The streaming task will return as soon as
1239      * V8 has parsed the data it received so far.
1240      */
1241     virtual size_t GetMoreData(const uint8_t** src) = 0;
1242 
1243     /**
1244      * V8 calls this method to set a 'bookmark' at the current position in
1245      * the source stream, for the purpose of (maybe) later calling
1246      * ResetToBookmark. If ResetToBookmark is called later, then subsequent
1247      * calls to GetMoreData should return the same data as they did when
1248      * SetBookmark was called earlier.
1249      *
1250      * The embedder may return 'false' to indicate it cannot provide this
1251      * functionality.
1252      */
1253     virtual bool SetBookmark();
1254 
1255     /**
1256      * V8 calls this to return to a previously set bookmark.
1257      */
1258     virtual void ResetToBookmark();
1259   };
1260 
1261 
1262   /**
1263    * Source code which can be streamed into V8 in pieces. It will be parsed
1264    * while streaming. It can be compiled after the streaming is complete.
1265    * StreamedSource must be kept alive while the streaming task is ran (see
1266    * ScriptStreamingTask below).
1267    */
1268   class V8_EXPORT StreamedSource {
1269    public:
1270     enum Encoding { ONE_BYTE, TWO_BYTE, UTF8 };
1271 
1272     StreamedSource(ExternalSourceStream* source_stream, Encoding encoding);
1273     ~StreamedSource();
1274 
1275     // Ownership of the CachedData or its buffers is *not* transferred to the
1276     // caller. The CachedData object is alive as long as the StreamedSource
1277     // object is alive.
1278     const CachedData* GetCachedData() const;
1279 
impl()1280     internal::StreamedSource* impl() const { return impl_; }
1281 
1282    private:
1283     // Prevent copying. Not implemented.
1284     StreamedSource(const StreamedSource&);
1285     StreamedSource& operator=(const StreamedSource&);
1286 
1287     internal::StreamedSource* impl_;
1288   };
1289 
1290   /**
1291    * A streaming task which the embedder must run on a background thread to
1292    * stream scripts into V8. Returned by ScriptCompiler::StartStreamingScript.
1293    */
1294   class ScriptStreamingTask {
1295    public:
~ScriptStreamingTask()1296     virtual ~ScriptStreamingTask() {}
1297     virtual void Run() = 0;
1298   };
1299 
1300   enum CompileOptions {
1301     kNoCompileOptions = 0,
1302     kProduceParserCache,
1303     kConsumeParserCache,
1304     kProduceCodeCache,
1305     kConsumeCodeCache
1306   };
1307 
1308   /**
1309    * Compiles the specified script (context-independent).
1310    * Cached data as part of the source object can be optionally produced to be
1311    * consumed later to speed up compilation of identical source scripts.
1312    *
1313    * Note that when producing cached data, the source must point to NULL for
1314    * cached data. When consuming cached data, the cached data must have been
1315    * produced by the same version of V8.
1316    *
1317    * \param source Script source code.
1318    * \return Compiled script object (context independent; for running it must be
1319    *   bound to a context).
1320    */
1321   static V8_DEPRECATED("Use maybe version",
1322                        Local<UnboundScript> CompileUnbound(
1323                            Isolate* isolate, Source* source,
1324                            CompileOptions options = kNoCompileOptions));
1325   static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundScript(
1326       Isolate* isolate, Source* source,
1327       CompileOptions options = kNoCompileOptions);
1328 
1329   /**
1330    * Compiles the specified script (bound to current context).
1331    *
1332    * \param source Script source code.
1333    * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
1334    *   using pre_data speeds compilation if it's done multiple times.
1335    *   Owned by caller, no references are kept when this function returns.
1336    * \return Compiled script object, bound to the context that was active
1337    *   when this function was called. When run it will always use this
1338    *   context.
1339    */
1340   static V8_DEPRECATED(
1341       "Use maybe version",
1342       Local<Script> Compile(Isolate* isolate, Source* source,
1343                             CompileOptions options = kNoCompileOptions));
1344   static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1345       Local<Context> context, Source* source,
1346       CompileOptions options = kNoCompileOptions);
1347 
1348   /**
1349    * Returns a task which streams script data into V8, or NULL if the script
1350    * cannot be streamed. The user is responsible for running the task on a
1351    * background thread and deleting it. When ran, the task starts parsing the
1352    * script, and it will request data from the StreamedSource as needed. When
1353    * ScriptStreamingTask::Run exits, all data has been streamed and the script
1354    * can be compiled (see Compile below).
1355    *
1356    * This API allows to start the streaming with as little data as possible, and
1357    * the remaining data (for example, the ScriptOrigin) is passed to Compile.
1358    */
1359   static ScriptStreamingTask* StartStreamingScript(
1360       Isolate* isolate, StreamedSource* source,
1361       CompileOptions options = kNoCompileOptions);
1362 
1363   /**
1364    * Compiles a streamed script (bound to current context).
1365    *
1366    * This can only be called after the streaming has finished
1367    * (ScriptStreamingTask has been run). V8 doesn't construct the source string
1368    * during streaming, so the embedder needs to pass the full source here.
1369    */
1370   static V8_DEPRECATED("Use maybe version",
1371                        Local<Script> Compile(Isolate* isolate,
1372                                              StreamedSource* source,
1373                                              Local<String> full_source_string,
1374                                              const ScriptOrigin& origin));
1375   static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1376       Local<Context> context, StreamedSource* source,
1377       Local<String> full_source_string, const ScriptOrigin& origin);
1378 
1379   /**
1380    * Return a version tag for CachedData for the current V8 version & flags.
1381    *
1382    * This value is meant only for determining whether a previously generated
1383    * CachedData instance is still valid; the tag has no other meaing.
1384    *
1385    * Background: The data carried by CachedData may depend on the exact
1386    *   V8 version number or currently compiler flags. This means when
1387    *   persisting CachedData, the embedder must take care to not pass in
1388    *   data from another V8 version, or the same version with different
1389    *   features enabled.
1390    *
1391    *   The easiest way to do so is to clear the embedder's cache on any
1392    *   such change.
1393    *
1394    *   Alternatively, this tag can be stored alongside the cached data and
1395    *   compared when it is being used.
1396    */
1397   static uint32_t CachedDataVersionTag();
1398 
1399   /**
1400    * Compile an ES6 module.
1401    *
1402    * This is an unfinished experimental feature, and is only exposed
1403    * here for internal testing purposes.
1404    * Only parsing works at the moment. Do not use.
1405    *
1406    * TODO(adamk): Script is likely the wrong return value for this;
1407    * should return some new Module type.
1408    */
1409   static V8_WARN_UNUSED_RESULT MaybeLocal<Script> CompileModule(
1410       Local<Context> context, Source* source,
1411       CompileOptions options = kNoCompileOptions);
1412 
1413   /**
1414    * Compile a function for a given context. This is equivalent to running
1415    *
1416    * with (obj) {
1417    *   return function(args) { ... }
1418    * }
1419    *
1420    * It is possible to specify multiple context extensions (obj in the above
1421    * example).
1422    */
1423   static V8_DEPRECATE_SOON("Use maybe version",
1424                            Local<Function> CompileFunctionInContext(
1425                                Isolate* isolate, Source* source,
1426                                Local<Context> context, size_t arguments_count,
1427                                Local<String> arguments[],
1428                                size_t context_extension_count,
1429                                Local<Object> context_extensions[]));
1430   static V8_WARN_UNUSED_RESULT MaybeLocal<Function> CompileFunctionInContext(
1431       Local<Context> context, Source* source, size_t arguments_count,
1432       Local<String> arguments[], size_t context_extension_count,
1433       Local<Object> context_extensions[]);
1434 
1435  private:
1436   static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundInternal(
1437       Isolate* isolate, Source* source, CompileOptions options, bool is_module);
1438 };
1439 
1440 
1441 /**
1442  * An error message.
1443  */
1444 class V8_EXPORT Message {
1445  public:
1446   Local<String> Get() const;
1447 
1448   V8_DEPRECATE_SOON("Use maybe version", Local<String> GetSourceLine() const);
1449   V8_WARN_UNUSED_RESULT MaybeLocal<String> GetSourceLine(
1450       Local<Context> context) const;
1451 
1452   /**
1453    * Returns the origin for the script from where the function causing the
1454    * error originates.
1455    */
1456   ScriptOrigin GetScriptOrigin() const;
1457 
1458   /**
1459    * Returns the resource name for the script from where the function causing
1460    * the error originates.
1461    */
1462   Local<Value> GetScriptResourceName() const;
1463 
1464   /**
1465    * Exception stack trace. By default stack traces are not captured for
1466    * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows
1467    * to change this option.
1468    */
1469   Local<StackTrace> GetStackTrace() const;
1470 
1471   /**
1472    * Returns the number, 1-based, of the line where the error occurred.
1473    */
1474   V8_DEPRECATE_SOON("Use maybe version", int GetLineNumber() const);
1475   V8_WARN_UNUSED_RESULT Maybe<int> GetLineNumber(Local<Context> context) const;
1476 
1477   /**
1478    * Returns the index within the script of the first character where
1479    * the error occurred.
1480    */
1481   int GetStartPosition() const;
1482 
1483   /**
1484    * Returns the index within the script of the last character where
1485    * the error occurred.
1486    */
1487   int GetEndPosition() const;
1488 
1489   /**
1490    * Returns the index within the line of the first character where
1491    * the error occurred.
1492    */
1493   V8_DEPRECATE_SOON("Use maybe version", int GetStartColumn() const);
1494   V8_WARN_UNUSED_RESULT Maybe<int> GetStartColumn(Local<Context> context) const;
1495 
1496   /**
1497    * Returns the index within the line of the last character where
1498    * the error occurred.
1499    */
1500   V8_DEPRECATED("Use maybe version", int GetEndColumn() const);
1501   V8_WARN_UNUSED_RESULT Maybe<int> GetEndColumn(Local<Context> context) const;
1502 
1503   /**
1504    * Passes on the value set by the embedder when it fed the script from which
1505    * this Message was generated to V8.
1506    */
1507   bool IsSharedCrossOrigin() const;
1508   bool IsOpaque() const;
1509 
1510   // TODO(1245381): Print to a string instead of on a FILE.
1511   static void PrintCurrentStackTrace(Isolate* isolate, FILE* out);
1512 
1513   static const int kNoLineNumberInfo = 0;
1514   static const int kNoColumnInfo = 0;
1515   static const int kNoScriptIdInfo = 0;
1516 };
1517 
1518 
1519 /**
1520  * Representation of a JavaScript stack trace. The information collected is a
1521  * snapshot of the execution stack and the information remains valid after
1522  * execution continues.
1523  */
1524 class V8_EXPORT StackTrace {
1525  public:
1526   /**
1527    * Flags that determine what information is placed captured for each
1528    * StackFrame when grabbing the current stack trace.
1529    */
1530   enum StackTraceOptions {
1531     kLineNumber = 1,
1532     kColumnOffset = 1 << 1 | kLineNumber,
1533     kScriptName = 1 << 2,
1534     kFunctionName = 1 << 3,
1535     kIsEval = 1 << 4,
1536     kIsConstructor = 1 << 5,
1537     kScriptNameOrSourceURL = 1 << 6,
1538     kScriptId = 1 << 7,
1539     kExposeFramesAcrossSecurityOrigins = 1 << 8,
1540     kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
1541     kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL
1542   };
1543 
1544   /**
1545    * Returns a StackFrame at a particular index.
1546    */
1547   Local<StackFrame> GetFrame(uint32_t index) const;
1548 
1549   /**
1550    * Returns the number of StackFrames.
1551    */
1552   int GetFrameCount() const;
1553 
1554   /**
1555    * Returns StackTrace as a v8::Array that contains StackFrame objects.
1556    */
1557   Local<Array> AsArray();
1558 
1559   /**
1560    * Grab a snapshot of the current JavaScript execution stack.
1561    *
1562    * \param frame_limit The maximum number of stack frames we want to capture.
1563    * \param options Enumerates the set of things we will capture for each
1564    *   StackFrame.
1565    */
1566   static Local<StackTrace> CurrentStackTrace(
1567       Isolate* isolate,
1568       int frame_limit,
1569       StackTraceOptions options = kOverview);
1570 };
1571 
1572 
1573 /**
1574  * A single JavaScript stack frame.
1575  */
1576 class V8_EXPORT StackFrame {
1577  public:
1578   /**
1579    * Returns the number, 1-based, of the line for the associate function call.
1580    * This method will return Message::kNoLineNumberInfo if it is unable to
1581    * retrieve the line number, or if kLineNumber was not passed as an option
1582    * when capturing the StackTrace.
1583    */
1584   int GetLineNumber() const;
1585 
1586   /**
1587    * Returns the 1-based column offset on the line for the associated function
1588    * call.
1589    * This method will return Message::kNoColumnInfo if it is unable to retrieve
1590    * the column number, or if kColumnOffset was not passed as an option when
1591    * capturing the StackTrace.
1592    */
1593   int GetColumn() const;
1594 
1595   /**
1596    * Returns the id of the script for the function for this StackFrame.
1597    * This method will return Message::kNoScriptIdInfo if it is unable to
1598    * retrieve the script id, or if kScriptId was not passed as an option when
1599    * capturing the StackTrace.
1600    */
1601   int GetScriptId() const;
1602 
1603   /**
1604    * Returns the name of the resource that contains the script for the
1605    * function for this StackFrame.
1606    */
1607   Local<String> GetScriptName() const;
1608 
1609   /**
1610    * Returns the name of the resource that contains the script for the
1611    * function for this StackFrame or sourceURL value if the script name
1612    * is undefined and its source ends with //# sourceURL=... string or
1613    * deprecated //@ sourceURL=... string.
1614    */
1615   Local<String> GetScriptNameOrSourceURL() const;
1616 
1617   /**
1618    * Returns the name of the function associated with this stack frame.
1619    */
1620   Local<String> GetFunctionName() const;
1621 
1622   /**
1623    * Returns whether or not the associated function is compiled via a call to
1624    * eval().
1625    */
1626   bool IsEval() const;
1627 
1628   /**
1629    * Returns whether or not the associated function is called as a
1630    * constructor via "new".
1631    */
1632   bool IsConstructor() const;
1633 };
1634 
1635 
1636 // A StateTag represents a possible state of the VM.
1637 enum StateTag { JS, GC, COMPILER, OTHER, EXTERNAL, IDLE };
1638 
1639 
1640 // A RegisterState represents the current state of registers used
1641 // by the sampling profiler API.
1642 struct RegisterState {
RegisterStateRegisterState1643   RegisterState() : pc(NULL), sp(NULL), fp(NULL) {}
1644   void* pc;  // Instruction pointer.
1645   void* sp;  // Stack pointer.
1646   void* fp;  // Frame pointer.
1647 };
1648 
1649 
1650 // The output structure filled up by GetStackSample API function.
1651 struct SampleInfo {
1652   size_t frames_count;
1653   StateTag vm_state;
1654 };
1655 
1656 
1657 /**
1658  * A JSON Parser.
1659  */
1660 class V8_EXPORT JSON {
1661  public:
1662   /**
1663    * Tries to parse the string |json_string| and returns it as value if
1664    * successful.
1665    *
1666    * \param json_string The string to parse.
1667    * \return The corresponding value if successfully parsed.
1668    */
1669   static V8_DEPRECATED("Use maybe version",
1670                        Local<Value> Parse(Local<String> json_string));
1671   static V8_WARN_UNUSED_RESULT MaybeLocal<Value> Parse(
1672       Isolate* isolate, Local<String> json_string);
1673 };
1674 
1675 
1676 /**
1677  * A map whose keys are referenced weakly. It is similar to JavaScript WeakMap
1678  * but can be created without entering a v8::Context and hence shouldn't
1679  * escape to JavaScript.
1680  */
1681 class V8_EXPORT NativeWeakMap : public Data {
1682  public:
1683   static Local<NativeWeakMap> New(Isolate* isolate);
1684   void Set(Local<Value> key, Local<Value> value);
1685   Local<Value> Get(Local<Value> key);
1686   bool Has(Local<Value> key);
1687   bool Delete(Local<Value> key);
1688 };
1689 
1690 
1691 // --- Value ---
1692 
1693 
1694 /**
1695  * The superclass of all JavaScript values and objects.
1696  */
1697 class V8_EXPORT Value : public Data {
1698  public:
1699   /**
1700    * Returns true if this value is the undefined value.  See ECMA-262
1701    * 4.3.10.
1702    */
1703   V8_INLINE bool IsUndefined() const;
1704 
1705   /**
1706    * Returns true if this value is the null value.  See ECMA-262
1707    * 4.3.11.
1708    */
1709   V8_INLINE bool IsNull() const;
1710 
1711    /**
1712    * Returns true if this value is true.
1713    */
1714   bool IsTrue() const;
1715 
1716   /**
1717    * Returns true if this value is false.
1718    */
1719   bool IsFalse() const;
1720 
1721   /**
1722    * Returns true if this value is a symbol or a string.
1723    * This is an experimental feature.
1724    */
1725   bool IsName() const;
1726 
1727   /**
1728    * Returns true if this value is an instance of the String type.
1729    * See ECMA-262 8.4.
1730    */
1731   V8_INLINE bool IsString() const;
1732 
1733   /**
1734    * Returns true if this value is a symbol.
1735    * This is an experimental feature.
1736    */
1737   bool IsSymbol() const;
1738 
1739   /**
1740    * Returns true if this value is a function.
1741    */
1742   bool IsFunction() const;
1743 
1744   /**
1745    * Returns true if this value is an array. Note that it will return false for
1746    * an Proxy for an array.
1747    */
1748   bool IsArray() const;
1749 
1750   /**
1751    * Returns true if this value is an object.
1752    */
1753   bool IsObject() const;
1754 
1755   /**
1756    * Returns true if this value is boolean.
1757    */
1758   bool IsBoolean() const;
1759 
1760   /**
1761    * Returns true if this value is a number.
1762    */
1763   bool IsNumber() const;
1764 
1765   /**
1766    * Returns true if this value is external.
1767    */
1768   bool IsExternal() const;
1769 
1770   /**
1771    * Returns true if this value is a 32-bit signed integer.
1772    */
1773   bool IsInt32() const;
1774 
1775   /**
1776    * Returns true if this value is a 32-bit unsigned integer.
1777    */
1778   bool IsUint32() const;
1779 
1780   /**
1781    * Returns true if this value is a Date.
1782    */
1783   bool IsDate() const;
1784 
1785   /**
1786    * Returns true if this value is an Arguments object.
1787    */
1788   bool IsArgumentsObject() const;
1789 
1790   /**
1791    * Returns true if this value is a Boolean object.
1792    */
1793   bool IsBooleanObject() const;
1794 
1795   /**
1796    * Returns true if this value is a Number object.
1797    */
1798   bool IsNumberObject() const;
1799 
1800   /**
1801    * Returns true if this value is a String object.
1802    */
1803   bool IsStringObject() const;
1804 
1805   /**
1806    * Returns true if this value is a Symbol object.
1807    * This is an experimental feature.
1808    */
1809   bool IsSymbolObject() const;
1810 
1811   /**
1812    * Returns true if this value is a NativeError.
1813    */
1814   bool IsNativeError() const;
1815 
1816   /**
1817    * Returns true if this value is a RegExp.
1818    */
1819   bool IsRegExp() const;
1820 
1821   /**
1822    * Returns true if this value is a Generator function.
1823    * This is an experimental feature.
1824    */
1825   bool IsGeneratorFunction() const;
1826 
1827   /**
1828    * Returns true if this value is a Generator object (iterator).
1829    * This is an experimental feature.
1830    */
1831   bool IsGeneratorObject() const;
1832 
1833   /**
1834    * Returns true if this value is a Promise.
1835    * This is an experimental feature.
1836    */
1837   bool IsPromise() const;
1838 
1839   /**
1840    * Returns true if this value is a Map.
1841    */
1842   bool IsMap() const;
1843 
1844   /**
1845    * Returns true if this value is a Set.
1846    */
1847   bool IsSet() const;
1848 
1849   /**
1850    * Returns true if this value is a Map Iterator.
1851    */
1852   bool IsMapIterator() const;
1853 
1854   /**
1855    * Returns true if this value is a Set Iterator.
1856    */
1857   bool IsSetIterator() const;
1858 
1859   /**
1860    * Returns true if this value is a WeakMap.
1861    */
1862   bool IsWeakMap() const;
1863 
1864   /**
1865    * Returns true if this value is a WeakSet.
1866    */
1867   bool IsWeakSet() const;
1868 
1869   /**
1870    * Returns true if this value is an ArrayBuffer.
1871    * This is an experimental feature.
1872    */
1873   bool IsArrayBuffer() const;
1874 
1875   /**
1876    * Returns true if this value is an ArrayBufferView.
1877    * This is an experimental feature.
1878    */
1879   bool IsArrayBufferView() const;
1880 
1881   /**
1882    * Returns true if this value is one of TypedArrays.
1883    * This is an experimental feature.
1884    */
1885   bool IsTypedArray() const;
1886 
1887   /**
1888    * Returns true if this value is an Uint8Array.
1889    * This is an experimental feature.
1890    */
1891   bool IsUint8Array() const;
1892 
1893   /**
1894    * Returns true if this value is an Uint8ClampedArray.
1895    * This is an experimental feature.
1896    */
1897   bool IsUint8ClampedArray() const;
1898 
1899   /**
1900    * Returns true if this value is an Int8Array.
1901    * This is an experimental feature.
1902    */
1903   bool IsInt8Array() const;
1904 
1905   /**
1906    * Returns true if this value is an Uint16Array.
1907    * This is an experimental feature.
1908    */
1909   bool IsUint16Array() const;
1910 
1911   /**
1912    * Returns true if this value is an Int16Array.
1913    * This is an experimental feature.
1914    */
1915   bool IsInt16Array() const;
1916 
1917   /**
1918    * Returns true if this value is an Uint32Array.
1919    * This is an experimental feature.
1920    */
1921   bool IsUint32Array() const;
1922 
1923   /**
1924    * Returns true if this value is an Int32Array.
1925    * This is an experimental feature.
1926    */
1927   bool IsInt32Array() const;
1928 
1929   /**
1930    * Returns true if this value is a Float32Array.
1931    * This is an experimental feature.
1932    */
1933   bool IsFloat32Array() const;
1934 
1935   /**
1936    * Returns true if this value is a Float64Array.
1937    * This is an experimental feature.
1938    */
1939   bool IsFloat64Array() const;
1940 
1941   /**
1942    * Returns true if this value is a SIMD Float32x4.
1943    * This is an experimental feature.
1944    */
1945   bool IsFloat32x4() const;
1946 
1947   /**
1948    * Returns true if this value is a DataView.
1949    * This is an experimental feature.
1950    */
1951   bool IsDataView() const;
1952 
1953   /**
1954    * Returns true if this value is a SharedArrayBuffer.
1955    * This is an experimental feature.
1956    */
1957   bool IsSharedArrayBuffer() const;
1958 
1959   /**
1960    * Returns true if this value is a JavaScript Proxy.
1961    */
1962   bool IsProxy() const;
1963 
1964 
1965   V8_WARN_UNUSED_RESULT MaybeLocal<Boolean> ToBoolean(
1966       Local<Context> context) const;
1967   V8_WARN_UNUSED_RESULT MaybeLocal<Number> ToNumber(
1968       Local<Context> context) const;
1969   V8_WARN_UNUSED_RESULT MaybeLocal<String> ToString(
1970       Local<Context> context) const;
1971   V8_WARN_UNUSED_RESULT MaybeLocal<String> ToDetailString(
1972       Local<Context> context) const;
1973   V8_WARN_UNUSED_RESULT MaybeLocal<Object> ToObject(
1974       Local<Context> context) const;
1975   V8_WARN_UNUSED_RESULT MaybeLocal<Integer> ToInteger(
1976       Local<Context> context) const;
1977   V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToUint32(
1978       Local<Context> context) const;
1979   V8_WARN_UNUSED_RESULT MaybeLocal<Int32> ToInt32(Local<Context> context) const;
1980 
1981   V8_DEPRECATE_SOON("Use maybe version",
1982                     Local<Boolean> ToBoolean(Isolate* isolate) const);
1983   V8_DEPRECATE_SOON("Use maybe version",
1984                     Local<Number> ToNumber(Isolate* isolate) const);
1985   V8_DEPRECATE_SOON("Use maybe version",
1986                     Local<String> ToString(Isolate* isolate) const);
1987   V8_DEPRECATED("Use maybe version",
1988                 Local<String> ToDetailString(Isolate* isolate) const);
1989   V8_DEPRECATE_SOON("Use maybe version",
1990                     Local<Object> ToObject(Isolate* isolate) const);
1991   V8_DEPRECATE_SOON("Use maybe version",
1992                     Local<Integer> ToInteger(Isolate* isolate) const);
1993   V8_DEPRECATED("Use maybe version",
1994                 Local<Uint32> ToUint32(Isolate* isolate) const);
1995   V8_DEPRECATE_SOON("Use maybe version",
1996                     Local<Int32> ToInt32(Isolate* isolate) const);
1997 
1998   inline V8_DEPRECATE_SOON("Use maybe version",
1999                            Local<Boolean> ToBoolean() const);
2000   inline V8_DEPRECATED("Use maybe version", Local<Number> ToNumber() const);
2001   inline V8_DEPRECATE_SOON("Use maybe version", Local<String> ToString() const);
2002   inline V8_DEPRECATED("Use maybe version",
2003                        Local<String> ToDetailString() const);
2004   inline V8_DEPRECATE_SOON("Use maybe version", Local<Object> ToObject() const);
2005   inline V8_DEPRECATE_SOON("Use maybe version",
2006                            Local<Integer> ToInteger() const);
2007   inline V8_DEPRECATED("Use maybe version", Local<Uint32> ToUint32() const);
2008   inline V8_DEPRECATED("Use maybe version", Local<Int32> ToInt32() const);
2009 
2010   /**
2011    * Attempts to convert a string to an array index.
2012    * Returns an empty handle if the conversion fails.
2013    */
2014   V8_DEPRECATED("Use maybe version", Local<Uint32> ToArrayIndex() const);
2015   V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToArrayIndex(
2016       Local<Context> context) const;
2017 
2018   V8_WARN_UNUSED_RESULT Maybe<bool> BooleanValue(Local<Context> context) const;
2019   V8_WARN_UNUSED_RESULT Maybe<double> NumberValue(Local<Context> context) const;
2020   V8_WARN_UNUSED_RESULT Maybe<int64_t> IntegerValue(
2021       Local<Context> context) const;
2022   V8_WARN_UNUSED_RESULT Maybe<uint32_t> Uint32Value(
2023       Local<Context> context) const;
2024   V8_WARN_UNUSED_RESULT Maybe<int32_t> Int32Value(Local<Context> context) const;
2025 
2026   V8_DEPRECATE_SOON("Use maybe version", bool BooleanValue() const);
2027   V8_DEPRECATE_SOON("Use maybe version", double NumberValue() const);
2028   V8_DEPRECATE_SOON("Use maybe version", int64_t IntegerValue() const);
2029   V8_DEPRECATE_SOON("Use maybe version", uint32_t Uint32Value() const);
2030   V8_DEPRECATE_SOON("Use maybe version", int32_t Int32Value() const);
2031 
2032   /** JS == */
2033   V8_DEPRECATE_SOON("Use maybe version", bool Equals(Local<Value> that) const);
2034   V8_WARN_UNUSED_RESULT Maybe<bool> Equals(Local<Context> context,
2035                                            Local<Value> that) const;
2036   bool StrictEquals(Local<Value> that) const;
2037   bool SameValue(Local<Value> that) const;
2038 
2039   template <class T> V8_INLINE static Value* Cast(T* value);
2040 
2041  private:
2042   V8_INLINE bool QuickIsUndefined() const;
2043   V8_INLINE bool QuickIsNull() const;
2044   V8_INLINE bool QuickIsString() const;
2045   bool FullIsUndefined() const;
2046   bool FullIsNull() const;
2047   bool FullIsString() const;
2048 };
2049 
2050 
2051 /**
2052  * The superclass of primitive values.  See ECMA-262 4.3.2.
2053  */
2054 class V8_EXPORT Primitive : public Value { };
2055 
2056 
2057 /**
2058  * A primitive boolean value (ECMA-262, 4.3.14).  Either the true
2059  * or false value.
2060  */
2061 class V8_EXPORT Boolean : public Primitive {
2062  public:
2063   bool Value() const;
2064   V8_INLINE static Boolean* Cast(v8::Value* obj);
2065   V8_INLINE static Local<Boolean> New(Isolate* isolate, bool value);
2066 
2067  private:
2068   static void CheckCast(v8::Value* obj);
2069 };
2070 
2071 
2072 /**
2073  * A superclass for symbols and strings.
2074  */
2075 class V8_EXPORT Name : public Primitive {
2076  public:
2077   /**
2078    * Returns the identity hash for this object. The current implementation
2079    * uses an inline property on the object to store the identity hash.
2080    *
2081    * The return value will never be 0. Also, it is not guaranteed to be
2082    * unique.
2083    */
2084   int GetIdentityHash();
2085 
2086   V8_INLINE static Name* Cast(v8::Value* obj);
2087  private:
2088   static void CheckCast(v8::Value* obj);
2089 };
2090 
2091 
2092 enum class NewStringType { kNormal, kInternalized };
2093 
2094 
2095 /**
2096  * A JavaScript string value (ECMA-262, 4.3.17).
2097  */
2098 class V8_EXPORT String : public Name {
2099  public:
2100   static const int kMaxLength = (1 << 28) - 16;
2101 
2102   enum Encoding {
2103     UNKNOWN_ENCODING = 0x1,
2104     TWO_BYTE_ENCODING = 0x0,
2105     ONE_BYTE_ENCODING = 0x4
2106   };
2107   /**
2108    * Returns the number of characters in this string.
2109    */
2110   int Length() const;
2111 
2112   /**
2113    * Returns the number of bytes in the UTF-8 encoded
2114    * representation of this string.
2115    */
2116   int Utf8Length() const;
2117 
2118   /**
2119    * Returns whether this string is known to contain only one byte data.
2120    * Does not read the string.
2121    * False negatives are possible.
2122    */
2123   bool IsOneByte() const;
2124 
2125   /**
2126    * Returns whether this string contain only one byte data.
2127    * Will read the entire string in some cases.
2128    */
2129   bool ContainsOnlyOneByte() const;
2130 
2131   /**
2132    * Write the contents of the string to an external buffer.
2133    * If no arguments are given, expects the buffer to be large
2134    * enough to hold the entire string and NULL terminator. Copies
2135    * the contents of the string and the NULL terminator into the
2136    * buffer.
2137    *
2138    * WriteUtf8 will not write partial UTF-8 sequences, preferring to stop
2139    * before the end of the buffer.
2140    *
2141    * Copies up to length characters into the output buffer.
2142    * Only null-terminates if there is enough space in the buffer.
2143    *
2144    * \param buffer The buffer into which the string will be copied.
2145    * \param start The starting position within the string at which
2146    * copying begins.
2147    * \param length The number of characters to copy from the string.  For
2148    *    WriteUtf8 the number of bytes in the buffer.
2149    * \param nchars_ref The number of characters written, can be NULL.
2150    * \param options Various options that might affect performance of this or
2151    *    subsequent operations.
2152    * \return The number of characters copied to the buffer excluding the null
2153    *    terminator.  For WriteUtf8: The number of bytes copied to the buffer
2154    *    including the null terminator (if written).
2155    */
2156   enum WriteOptions {
2157     NO_OPTIONS = 0,
2158     HINT_MANY_WRITES_EXPECTED = 1,
2159     NO_NULL_TERMINATION = 2,
2160     PRESERVE_ONE_BYTE_NULL = 4,
2161     // Used by WriteUtf8 to replace orphan surrogate code units with the
2162     // unicode replacement character. Needs to be set to guarantee valid UTF-8
2163     // output.
2164     REPLACE_INVALID_UTF8 = 8
2165   };
2166 
2167   // 16-bit character codes.
2168   int Write(uint16_t* buffer,
2169             int start = 0,
2170             int length = -1,
2171             int options = NO_OPTIONS) const;
2172   // One byte characters.
2173   int WriteOneByte(uint8_t* buffer,
2174                    int start = 0,
2175                    int length = -1,
2176                    int options = NO_OPTIONS) const;
2177   // UTF-8 encoded characters.
2178   int WriteUtf8(char* buffer,
2179                 int length = -1,
2180                 int* nchars_ref = NULL,
2181                 int options = NO_OPTIONS) const;
2182 
2183   /**
2184    * A zero length string.
2185    */
2186   V8_INLINE static v8::Local<v8::String> Empty(Isolate* isolate);
2187 
2188   /**
2189    * Returns true if the string is external
2190    */
2191   bool IsExternal() const;
2192 
2193   /**
2194    * Returns true if the string is both external and one-byte.
2195    */
2196   bool IsExternalOneByte() const;
2197 
2198   class V8_EXPORT ExternalStringResourceBase {  // NOLINT
2199    public:
~ExternalStringResourceBase()2200     virtual ~ExternalStringResourceBase() {}
2201 
IsCompressible()2202     virtual bool IsCompressible() const { return false; }
2203 
2204    protected:
ExternalStringResourceBase()2205     ExternalStringResourceBase() {}
2206 
2207     /**
2208      * Internally V8 will call this Dispose method when the external string
2209      * resource is no longer needed. The default implementation will use the
2210      * delete operator. This method can be overridden in subclasses to
2211      * control how allocated external string resources are disposed.
2212      */
Dispose()2213     virtual void Dispose() { delete this; }
2214 
2215    private:
2216     // Disallow copying and assigning.
2217     ExternalStringResourceBase(const ExternalStringResourceBase&);
2218     void operator=(const ExternalStringResourceBase&);
2219 
2220     friend class v8::internal::Heap;
2221   };
2222 
2223   /**
2224    * An ExternalStringResource is a wrapper around a two-byte string
2225    * buffer that resides outside V8's heap. Implement an
2226    * ExternalStringResource to manage the life cycle of the underlying
2227    * buffer.  Note that the string data must be immutable.
2228    */
2229   class V8_EXPORT ExternalStringResource
2230       : public ExternalStringResourceBase {
2231    public:
2232     /**
2233      * Override the destructor to manage the life cycle of the underlying
2234      * buffer.
2235      */
~ExternalStringResource()2236     virtual ~ExternalStringResource() {}
2237 
2238     /**
2239      * The string data from the underlying buffer.
2240      */
2241     virtual const uint16_t* data() const = 0;
2242 
2243     /**
2244      * The length of the string. That is, the number of two-byte characters.
2245      */
2246     virtual size_t length() const = 0;
2247 
2248    protected:
ExternalStringResource()2249     ExternalStringResource() {}
2250   };
2251 
2252   /**
2253    * An ExternalOneByteStringResource is a wrapper around an one-byte
2254    * string buffer that resides outside V8's heap. Implement an
2255    * ExternalOneByteStringResource to manage the life cycle of the
2256    * underlying buffer.  Note that the string data must be immutable
2257    * and that the data must be Latin-1 and not UTF-8, which would require
2258    * special treatment internally in the engine and do not allow efficient
2259    * indexing.  Use String::New or convert to 16 bit data for non-Latin1.
2260    */
2261 
2262   class V8_EXPORT ExternalOneByteStringResource
2263       : public ExternalStringResourceBase {
2264    public:
2265     /**
2266      * Override the destructor to manage the life cycle of the underlying
2267      * buffer.
2268      */
~ExternalOneByteStringResource()2269     virtual ~ExternalOneByteStringResource() {}
2270     /** The string data from the underlying buffer.*/
2271     virtual const char* data() const = 0;
2272     /** The number of Latin-1 characters in the string.*/
2273     virtual size_t length() const = 0;
2274    protected:
ExternalOneByteStringResource()2275     ExternalOneByteStringResource() {}
2276   };
2277 
2278   /**
2279    * If the string is an external string, return the ExternalStringResourceBase
2280    * regardless of the encoding, otherwise return NULL.  The encoding of the
2281    * string is returned in encoding_out.
2282    */
2283   V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase(
2284       Encoding* encoding_out) const;
2285 
2286   /**
2287    * Get the ExternalStringResource for an external string.  Returns
2288    * NULL if IsExternal() doesn't return true.
2289    */
2290   V8_INLINE ExternalStringResource* GetExternalStringResource() const;
2291 
2292   /**
2293    * Get the ExternalOneByteStringResource for an external one-byte string.
2294    * Returns NULL if IsExternalOneByte() doesn't return true.
2295    */
2296   const ExternalOneByteStringResource* GetExternalOneByteStringResource() const;
2297 
2298   V8_INLINE static String* Cast(v8::Value* obj);
2299 
2300   // TODO(dcarney): remove with deprecation of New functions.
2301   enum NewStringType {
2302     kNormalString = static_cast<int>(v8::NewStringType::kNormal),
2303     kInternalizedString = static_cast<int>(v8::NewStringType::kInternalized)
2304   };
2305 
2306   /** Allocates a new string from UTF-8 data.*/
2307   static V8_DEPRECATE_SOON(
2308       "Use maybe version",
2309       Local<String> NewFromUtf8(Isolate* isolate, const char* data,
2310                                 NewStringType type = kNormalString,
2311                                 int length = -1));
2312 
2313   /** Allocates a new string from UTF-8 data. Only returns an empty value when
2314    * length > kMaxLength. **/
2315   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromUtf8(
2316       Isolate* isolate, const char* data, v8::NewStringType type,
2317       int length = -1);
2318 
2319   /** Allocates a new string from Latin-1 data.*/
2320   static V8_DEPRECATED(
2321       "Use maybe version",
2322       Local<String> NewFromOneByte(Isolate* isolate, const uint8_t* data,
2323                                    NewStringType type = kNormalString,
2324                                    int length = -1));
2325 
2326   /** Allocates a new string from Latin-1 data.  Only returns an empty value
2327    * when length > kMaxLength. **/
2328   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromOneByte(
2329       Isolate* isolate, const uint8_t* data, v8::NewStringType type,
2330       int length = -1);
2331 
2332   /** Allocates a new string from UTF-16 data.*/
2333   static V8_DEPRECATE_SOON(
2334       "Use maybe version",
2335       Local<String> NewFromTwoByte(Isolate* isolate, const uint16_t* data,
2336                                    NewStringType type = kNormalString,
2337                                    int length = -1));
2338 
2339   /** Allocates a new string from UTF-16 data. Only returns an empty value when
2340    * length > kMaxLength. **/
2341   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromTwoByte(
2342       Isolate* isolate, const uint16_t* data, v8::NewStringType type,
2343       int length = -1);
2344 
2345   /**
2346    * Creates a new string by concatenating the left and the right strings
2347    * passed in as parameters.
2348    */
2349   static Local<String> Concat(Local<String> left, Local<String> right);
2350 
2351   /**
2352    * Creates a new external string using the data defined in the given
2353    * resource. When the external string is no longer live on V8's heap the
2354    * resource will be disposed by calling its Dispose method. The caller of
2355    * this function should not otherwise delete or modify the resource. Neither
2356    * should the underlying buffer be deallocated or modified except through the
2357    * destructor of the external string resource.
2358    */
2359   static V8_DEPRECATED("Use maybe version",
2360                        Local<String> NewExternal(
2361                            Isolate* isolate, ExternalStringResource* resource));
2362   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalTwoByte(
2363       Isolate* isolate, ExternalStringResource* resource);
2364 
2365   /**
2366    * Associate an external string resource with this string by transforming it
2367    * in place so that existing references to this string in the JavaScript heap
2368    * will use the external string resource. The external string resource's
2369    * character contents need to be equivalent to this string.
2370    * Returns true if the string has been changed to be an external string.
2371    * The string is not modified if the operation fails. See NewExternal for
2372    * information on the lifetime of the resource.
2373    */
2374   bool MakeExternal(ExternalStringResource* resource);
2375 
2376   /**
2377    * Creates a new external string using the one-byte data defined in the given
2378    * resource. When the external string is no longer live on V8's heap the
2379    * resource will be disposed by calling its Dispose method. The caller of
2380    * this function should not otherwise delete or modify the resource. Neither
2381    * should the underlying buffer be deallocated or modified except through the
2382    * destructor of the external string resource.
2383    */
2384   static V8_DEPRECATE_SOON(
2385       "Use maybe version",
2386       Local<String> NewExternal(Isolate* isolate,
2387                                 ExternalOneByteStringResource* resource));
2388   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalOneByte(
2389       Isolate* isolate, ExternalOneByteStringResource* resource);
2390 
2391   /**
2392    * Associate an external string resource with this string by transforming it
2393    * in place so that existing references to this string in the JavaScript heap
2394    * will use the external string resource. The external string resource's
2395    * character contents need to be equivalent to this string.
2396    * Returns true if the string has been changed to be an external string.
2397    * The string is not modified if the operation fails. See NewExternal for
2398    * information on the lifetime of the resource.
2399    */
2400   bool MakeExternal(ExternalOneByteStringResource* resource);
2401 
2402   /**
2403    * Returns true if this string can be made external.
2404    */
2405   bool CanMakeExternal();
2406 
2407   /**
2408    * Converts an object to a UTF-8-encoded character array.  Useful if
2409    * you want to print the object.  If conversion to a string fails
2410    * (e.g. due to an exception in the toString() method of the object)
2411    * then the length() method returns 0 and the * operator returns
2412    * NULL.
2413    */
2414   class V8_EXPORT Utf8Value {
2415    public:
2416     explicit Utf8Value(Local<v8::Value> obj);
2417     ~Utf8Value();
2418     char* operator*() { return str_; }
2419     const char* operator*() const { return str_; }
length()2420     int length() const { return length_; }
2421    private:
2422     char* str_;
2423     int length_;
2424 
2425     // Disallow copying and assigning.
2426     Utf8Value(const Utf8Value&);
2427     void operator=(const Utf8Value&);
2428   };
2429 
2430   /**
2431    * Converts an object to a two-byte string.
2432    * If conversion to a string fails (eg. due to an exception in the toString()
2433    * method of the object) then the length() method returns 0 and the * operator
2434    * returns NULL.
2435    */
2436   class V8_EXPORT Value {
2437    public:
2438     explicit Value(Local<v8::Value> obj);
2439     ~Value();
2440     uint16_t* operator*() { return str_; }
2441     const uint16_t* operator*() const { return str_; }
length()2442     int length() const { return length_; }
2443    private:
2444     uint16_t* str_;
2445     int length_;
2446 
2447     // Disallow copying and assigning.
2448     Value(const Value&);
2449     void operator=(const Value&);
2450   };
2451 
2452  private:
2453   void VerifyExternalStringResourceBase(ExternalStringResourceBase* v,
2454                                         Encoding encoding) const;
2455   void VerifyExternalStringResource(ExternalStringResource* val) const;
2456   static void CheckCast(v8::Value* obj);
2457 };
2458 
2459 
2460 /**
2461  * A JavaScript symbol (ECMA-262 edition 6)
2462  *
2463  * This is an experimental feature. Use at your own risk.
2464  */
2465 class V8_EXPORT Symbol : public Name {
2466  public:
2467   // Returns the print name string of the symbol, or undefined if none.
2468   Local<Value> Name() const;
2469 
2470   // Create a symbol. If name is not empty, it will be used as the description.
2471   static Local<Symbol> New(Isolate* isolate,
2472                            Local<String> name = Local<String>());
2473 
2474   // Access global symbol registry.
2475   // Note that symbols created this way are never collected, so
2476   // they should only be used for statically fixed properties.
2477   // Also, there is only one global name space for the names used as keys.
2478   // To minimize the potential for clashes, use qualified names as keys.
2479   static Local<Symbol> For(Isolate *isolate, Local<String> name);
2480 
2481   // Retrieve a global symbol. Similar to |For|, but using a separate
2482   // registry that is not accessible by (and cannot clash with) JavaScript code.
2483   static Local<Symbol> ForApi(Isolate *isolate, Local<String> name);
2484 
2485   // Well-known symbols
2486   static Local<Symbol> GetIterator(Isolate* isolate);
2487   static Local<Symbol> GetUnscopables(Isolate* isolate);
2488   static Local<Symbol> GetToStringTag(Isolate* isolate);
2489   static Local<Symbol> GetIsConcatSpreadable(Isolate* isolate);
2490 
2491   V8_INLINE static Symbol* Cast(v8::Value* obj);
2492 
2493  private:
2494   Symbol();
2495   static void CheckCast(v8::Value* obj);
2496 };
2497 
2498 
2499 /**
2500  * A private symbol
2501  *
2502  * This is an experimental feature. Use at your own risk.
2503  */
2504 class V8_EXPORT Private : public Data {
2505  public:
2506   // Returns the print name string of the private symbol, or undefined if none.
2507   Local<Value> Name() const;
2508 
2509   // Create a private symbol. If name is not empty, it will be the description.
2510   static Local<Private> New(Isolate* isolate,
2511                             Local<String> name = Local<String>());
2512 
2513   // Retrieve a global private symbol. If a symbol with this name has not
2514   // been retrieved in the same isolate before, it is created.
2515   // Note that private symbols created this way are never collected, so
2516   // they should only be used for statically fixed properties.
2517   // Also, there is only one global name space for the names used as keys.
2518   // To minimize the potential for clashes, use qualified names as keys,
2519   // e.g., "Class#property".
2520   static Local<Private> ForApi(Isolate* isolate, Local<String> name);
2521 
2522  private:
2523   Private();
2524 };
2525 
2526 
2527 /**
2528  * A JavaScript number value (ECMA-262, 4.3.20)
2529  */
2530 class V8_EXPORT Number : public Primitive {
2531  public:
2532   double Value() const;
2533   static Local<Number> New(Isolate* isolate, double value);
2534   V8_INLINE static Number* Cast(v8::Value* obj);
2535  private:
2536   Number();
2537   static void CheckCast(v8::Value* obj);
2538 };
2539 
2540 
2541 /**
2542  * A JavaScript value representing a signed integer.
2543  */
2544 class V8_EXPORT Integer : public Number {
2545  public:
2546   static Local<Integer> New(Isolate* isolate, int32_t value);
2547   static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value);
2548   int64_t Value() const;
2549   V8_INLINE static Integer* Cast(v8::Value* obj);
2550  private:
2551   Integer();
2552   static void CheckCast(v8::Value* obj);
2553 };
2554 
2555 
2556 /**
2557  * A JavaScript value representing a 32-bit signed integer.
2558  */
2559 class V8_EXPORT Int32 : public Integer {
2560  public:
2561   int32_t Value() const;
2562   V8_INLINE static Int32* Cast(v8::Value* obj);
2563 
2564  private:
2565   Int32();
2566   static void CheckCast(v8::Value* obj);
2567 };
2568 
2569 
2570 /**
2571  * A JavaScript value representing a 32-bit unsigned integer.
2572  */
2573 class V8_EXPORT Uint32 : public Integer {
2574  public:
2575   uint32_t Value() const;
2576   V8_INLINE static Uint32* Cast(v8::Value* obj);
2577 
2578  private:
2579   Uint32();
2580   static void CheckCast(v8::Value* obj);
2581 };
2582 
2583 
2584 enum PropertyAttribute {
2585   None       = 0,
2586   ReadOnly   = 1 << 0,
2587   DontEnum   = 1 << 1,
2588   DontDelete = 1 << 2
2589 };
2590 
2591 /**
2592  * Accessor[Getter|Setter] are used as callback functions when
2593  * setting|getting a particular property. See Object and ObjectTemplate's
2594  * method SetAccessor.
2595  */
2596 typedef void (*AccessorGetterCallback)(
2597     Local<String> property,
2598     const PropertyCallbackInfo<Value>& info);
2599 typedef void (*AccessorNameGetterCallback)(
2600     Local<Name> property,
2601     const PropertyCallbackInfo<Value>& info);
2602 
2603 
2604 typedef void (*AccessorSetterCallback)(
2605     Local<String> property,
2606     Local<Value> value,
2607     const PropertyCallbackInfo<void>& info);
2608 typedef void (*AccessorNameSetterCallback)(
2609     Local<Name> property,
2610     Local<Value> value,
2611     const PropertyCallbackInfo<void>& info);
2612 
2613 
2614 /**
2615  * Access control specifications.
2616  *
2617  * Some accessors should be accessible across contexts.  These
2618  * accessors have an explicit access control parameter which specifies
2619  * the kind of cross-context access that should be allowed.
2620  *
2621  * TODO(dcarney): Remove PROHIBITS_OVERWRITING as it is now unused.
2622  */
2623 enum AccessControl {
2624   DEFAULT               = 0,
2625   ALL_CAN_READ          = 1,
2626   ALL_CAN_WRITE         = 1 << 1,
2627   PROHIBITS_OVERWRITING = 1 << 2
2628 };
2629 
2630 
2631 /**
2632  * A JavaScript object (ECMA-262, 4.3.3)
2633  */
2634 class V8_EXPORT Object : public Value {
2635  public:
2636   V8_DEPRECATE_SOON("Use maybe version",
2637                     bool Set(Local<Value> key, Local<Value> value));
2638   V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context,
2639                                         Local<Value> key, Local<Value> value);
2640 
2641   V8_DEPRECATE_SOON("Use maybe version",
2642                     bool Set(uint32_t index, Local<Value> value));
2643   V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, uint32_t index,
2644                                         Local<Value> value);
2645 
2646   // Implements CreateDataProperty (ECMA-262, 7.3.4).
2647   //
2648   // Defines a configurable, writable, enumerable property with the given value
2649   // on the object unless the property already exists and is not configurable
2650   // or the object is not extensible.
2651   //
2652   // Returns true on success.
2653   V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
2654                                                        Local<Name> key,
2655                                                        Local<Value> value);
2656   V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
2657                                                        uint32_t index,
2658                                                        Local<Value> value);
2659 
2660   // Implements DefineOwnProperty.
2661   //
2662   // In general, CreateDataProperty will be faster, however, does not allow
2663   // for specifying attributes.
2664   //
2665   // Returns true on success.
2666   V8_WARN_UNUSED_RESULT Maybe<bool> DefineOwnProperty(
2667       Local<Context> context, Local<Name> key, Local<Value> value,
2668       PropertyAttribute attributes = None);
2669 
2670   // Sets an own property on this object bypassing interceptors and
2671   // overriding accessors or read-only properties.
2672   //
2673   // Note that if the object has an interceptor the property will be set
2674   // locally, but since the interceptor takes precedence the local property
2675   // will only be returned if the interceptor doesn't return a value.
2676   //
2677   // Note also that this only works for named properties.
2678   V8_DEPRECATED("Use CreateDataProperty / DefineOwnProperty",
2679                 bool ForceSet(Local<Value> key, Local<Value> value,
2680                               PropertyAttribute attribs = None));
2681   V8_DEPRECATED("Use CreateDataProperty / DefineOwnProperty",
2682                 Maybe<bool> ForceSet(Local<Context> context, Local<Value> key,
2683                                      Local<Value> value,
2684                                      PropertyAttribute attribs = None));
2685 
2686   V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(Local<Value> key));
2687   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2688                                               Local<Value> key);
2689 
2690   V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(uint32_t index));
2691   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2692                                               uint32_t index);
2693 
2694   /**
2695    * Gets the property attributes of a property which can be None or
2696    * any combination of ReadOnly, DontEnum and DontDelete. Returns
2697    * None when the property doesn't exist.
2698    */
2699   V8_DEPRECATED("Use maybe version",
2700                 PropertyAttribute GetPropertyAttributes(Local<Value> key));
2701   V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetPropertyAttributes(
2702       Local<Context> context, Local<Value> key);
2703 
2704   /**
2705    * Returns Object.getOwnPropertyDescriptor as per ES5 section 15.2.3.3.
2706    */
2707   V8_DEPRECATED("Use maybe version",
2708                 Local<Value> GetOwnPropertyDescriptor(Local<String> key));
2709   V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetOwnPropertyDescriptor(
2710       Local<Context> context, Local<String> key);
2711 
2712   V8_DEPRECATE_SOON("Use maybe version", bool Has(Local<Value> key));
2713   V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
2714                                         Local<Value> key);
2715 
2716   V8_DEPRECATE_SOON("Use maybe version", bool Delete(Local<Value> key));
2717   // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
2718   Maybe<bool> Delete(Local<Context> context, Local<Value> key);
2719 
2720   V8_DEPRECATED("Use maybe version", bool Has(uint32_t index));
2721   V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, uint32_t index);
2722 
2723   V8_DEPRECATED("Use maybe version", bool Delete(uint32_t index));
2724   // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
2725   Maybe<bool> Delete(Local<Context> context, uint32_t index);
2726 
2727   V8_DEPRECATED("Use maybe version",
2728                 bool SetAccessor(Local<String> name,
2729                                  AccessorGetterCallback getter,
2730                                  AccessorSetterCallback setter = 0,
2731                                  Local<Value> data = Local<Value>(),
2732                                  AccessControl settings = DEFAULT,
2733                                  PropertyAttribute attribute = None));
2734   V8_DEPRECATED("Use maybe version",
2735                 bool SetAccessor(Local<Name> name,
2736                                  AccessorNameGetterCallback getter,
2737                                  AccessorNameSetterCallback setter = 0,
2738                                  Local<Value> data = Local<Value>(),
2739                                  AccessControl settings = DEFAULT,
2740                                  PropertyAttribute attribute = None));
2741   // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
2742   Maybe<bool> SetAccessor(Local<Context> context, Local<Name> name,
2743                           AccessorNameGetterCallback getter,
2744                           AccessorNameSetterCallback setter = 0,
2745                           MaybeLocal<Value> data = MaybeLocal<Value>(),
2746                           AccessControl settings = DEFAULT,
2747                           PropertyAttribute attribute = None);
2748 
2749   void SetAccessorProperty(Local<Name> name, Local<Function> getter,
2750                            Local<Function> setter = Local<Function>(),
2751                            PropertyAttribute attribute = None,
2752                            AccessControl settings = DEFAULT);
2753 
2754   /**
2755    * Functionality for private properties.
2756    * This is an experimental feature, use at your own risk.
2757    * Note: Private properties are not inherited. Do not rely on this, since it
2758    * may change.
2759    */
2760   Maybe<bool> HasPrivate(Local<Context> context, Local<Private> key);
2761   Maybe<bool> SetPrivate(Local<Context> context, Local<Private> key,
2762                          Local<Value> value);
2763   Maybe<bool> DeletePrivate(Local<Context> context, Local<Private> key);
2764   MaybeLocal<Value> GetPrivate(Local<Context> context, Local<Private> key);
2765 
2766   /**
2767    * Returns an array containing the names of the enumerable properties
2768    * of this object, including properties from prototype objects.  The
2769    * array returned by this method contains the same values as would
2770    * be enumerated by a for-in statement over this object.
2771    */
2772   V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetPropertyNames());
2773   V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames(
2774       Local<Context> context);
2775 
2776   /**
2777    * This function has the same functionality as GetPropertyNames but
2778    * the returned array doesn't contain the names of properties from
2779    * prototype objects.
2780    */
2781   V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetOwnPropertyNames());
2782   V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames(
2783       Local<Context> context);
2784 
2785   /**
2786    * Get the prototype object.  This does not skip objects marked to
2787    * be skipped by __proto__ and it does not consult the security
2788    * handler.
2789    */
2790   Local<Value> GetPrototype();
2791 
2792   /**
2793    * Set the prototype object.  This does not skip objects marked to
2794    * be skipped by __proto__ and it does not consult the security
2795    * handler.
2796    */
2797   V8_DEPRECATED("Use maybe version", bool SetPrototype(Local<Value> prototype));
2798   V8_WARN_UNUSED_RESULT Maybe<bool> SetPrototype(Local<Context> context,
2799                                                  Local<Value> prototype);
2800 
2801   /**
2802    * Finds an instance of the given function template in the prototype
2803    * chain.
2804    */
2805   Local<Object> FindInstanceInPrototypeChain(Local<FunctionTemplate> tmpl);
2806 
2807   /**
2808    * Call builtin Object.prototype.toString on this object.
2809    * This is different from Value::ToString() that may call
2810    * user-defined toString function. This one does not.
2811    */
2812   V8_DEPRECATED("Use maybe version", Local<String> ObjectProtoToString());
2813   V8_WARN_UNUSED_RESULT MaybeLocal<String> ObjectProtoToString(
2814       Local<Context> context);
2815 
2816   /**
2817    * Returns the name of the function invoked as a constructor for this object.
2818    */
2819   Local<String> GetConstructorName();
2820 
2821   /** Gets the number of internal fields for this Object. */
2822   int InternalFieldCount();
2823 
2824   /** Same as above, but works for Persistents */
InternalFieldCount(const PersistentBase<Object> & object)2825   V8_INLINE static int InternalFieldCount(
2826       const PersistentBase<Object>& object) {
2827     return object.val_->InternalFieldCount();
2828   }
2829 
2830   /** Gets the value from an internal field. */
2831   V8_INLINE Local<Value> GetInternalField(int index);
2832 
2833   /** Sets the value in an internal field. */
2834   void SetInternalField(int index, Local<Value> value);
2835 
2836   /**
2837    * Gets a 2-byte-aligned native pointer from an internal field. This field
2838    * must have been set by SetAlignedPointerInInternalField, everything else
2839    * leads to undefined behavior.
2840    */
2841   V8_INLINE void* GetAlignedPointerFromInternalField(int index);
2842 
2843   /** Same as above, but works for Persistents */
GetAlignedPointerFromInternalField(const PersistentBase<Object> & object,int index)2844   V8_INLINE static void* GetAlignedPointerFromInternalField(
2845       const PersistentBase<Object>& object, int index) {
2846     return object.val_->GetAlignedPointerFromInternalField(index);
2847   }
2848 
2849   /**
2850    * Sets a 2-byte-aligned native pointer in an internal field. To retrieve such
2851    * a field, GetAlignedPointerFromInternalField must be used, everything else
2852    * leads to undefined behavior.
2853    */
2854   void SetAlignedPointerInInternalField(int index, void* value);
2855 
2856   // Testers for local properties.
2857   V8_DEPRECATED("Use maybe version", bool HasOwnProperty(Local<String> key));
2858   V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context,
2859                                                    Local<Name> key);
2860   V8_DEPRECATE_SOON("Use maybe version",
2861                     bool HasRealNamedProperty(Local<String> key));
2862   V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedProperty(Local<Context> context,
2863                                                          Local<Name> key);
2864   V8_DEPRECATE_SOON("Use maybe version",
2865                     bool HasRealIndexedProperty(uint32_t index));
2866   V8_WARN_UNUSED_RESULT Maybe<bool> HasRealIndexedProperty(
2867       Local<Context> context, uint32_t index);
2868   V8_DEPRECATE_SOON("Use maybe version",
2869                     bool HasRealNamedCallbackProperty(Local<String> key));
2870   V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedCallbackProperty(
2871       Local<Context> context, Local<Name> key);
2872 
2873   /**
2874    * If result.IsEmpty() no real property was located in the prototype chain.
2875    * This means interceptors in the prototype chain are not called.
2876    */
2877   V8_DEPRECATED(
2878       "Use maybe version",
2879       Local<Value> GetRealNamedPropertyInPrototypeChain(Local<String> key));
2880   V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedPropertyInPrototypeChain(
2881       Local<Context> context, Local<Name> key);
2882 
2883   /**
2884    * Gets the property attributes of a real property in the prototype chain,
2885    * which can be None or any combination of ReadOnly, DontEnum and DontDelete.
2886    * Interceptors in the prototype chain are not called.
2887    */
2888   V8_DEPRECATED(
2889       "Use maybe version",
2890       Maybe<PropertyAttribute> GetRealNamedPropertyAttributesInPrototypeChain(
2891           Local<String> key));
2892   V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute>
2893   GetRealNamedPropertyAttributesInPrototypeChain(Local<Context> context,
2894                                                  Local<Name> key);
2895 
2896   /**
2897    * If result.IsEmpty() no real property was located on the object or
2898    * in the prototype chain.
2899    * This means interceptors in the prototype chain are not called.
2900    */
2901   V8_DEPRECATED("Use maybe version",
2902                 Local<Value> GetRealNamedProperty(Local<String> key));
2903   V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedProperty(
2904       Local<Context> context, Local<Name> key);
2905 
2906   /**
2907    * Gets the property attributes of a real property which can be
2908    * None or any combination of ReadOnly, DontEnum and DontDelete.
2909    * Interceptors in the prototype chain are not called.
2910    */
2911   V8_DEPRECATED("Use maybe version",
2912                 Maybe<PropertyAttribute> GetRealNamedPropertyAttributes(
2913                     Local<String> key));
2914   V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetRealNamedPropertyAttributes(
2915       Local<Context> context, Local<Name> key);
2916 
2917   /** Tests for a named lookup interceptor.*/
2918   bool HasNamedLookupInterceptor();
2919 
2920   /** Tests for an index lookup interceptor.*/
2921   bool HasIndexedLookupInterceptor();
2922 
2923   /**
2924    * Returns the identity hash for this object. The current implementation
2925    * uses a hidden property on the object to store the identity hash.
2926    *
2927    * The return value will never be 0. Also, it is not guaranteed to be
2928    * unique.
2929    */
2930   int GetIdentityHash();
2931 
2932   V8_DEPRECATED("Use v8::Object::SetPrivate instead.",
2933                 bool SetHiddenValue(Local<String> key, Local<Value> value));
2934   V8_DEPRECATED("Use v8::Object::GetPrivate instead.",
2935                 Local<Value> GetHiddenValue(Local<String> key));
2936   V8_DEPRECATED("Use v8::Object::DeletePrivate instead.",
2937                 bool DeleteHiddenValue(Local<String> key));
2938 
2939   /**
2940    * Clone this object with a fast but shallow copy.  Values will point
2941    * to the same values as the original object.
2942    */
2943   // TODO(dcarney): take an isolate and optionally bail out?
2944   Local<Object> Clone();
2945 
2946   /**
2947    * Returns the context in which the object was created.
2948    */
2949   Local<Context> CreationContext();
2950 
2951   /**
2952    * Checks whether a callback is set by the
2953    * ObjectTemplate::SetCallAsFunctionHandler method.
2954    * When an Object is callable this method returns true.
2955    */
2956   bool IsCallable();
2957 
2958   /**
2959    * Call an Object as a function if a callback is set by the
2960    * ObjectTemplate::SetCallAsFunctionHandler method.
2961    */
2962   V8_DEPRECATED("Use maybe version",
2963                 Local<Value> CallAsFunction(Local<Value> recv, int argc,
2964                                             Local<Value> argv[]));
2965   V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsFunction(Local<Context> context,
2966                                                          Local<Value> recv,
2967                                                          int argc,
2968                                                          Local<Value> argv[]);
2969 
2970   /**
2971    * Call an Object as a constructor if a callback is set by the
2972    * ObjectTemplate::SetCallAsFunctionHandler method.
2973    * Note: This method behaves like the Function::NewInstance method.
2974    */
2975   V8_DEPRECATED("Use maybe version",
2976                 Local<Value> CallAsConstructor(int argc, Local<Value> argv[]));
2977   V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsConstructor(
2978       Local<Context> context, int argc, Local<Value> argv[]);
2979 
2980   /**
2981    * Return the isolate to which the Object belongs to.
2982    */
2983   V8_DEPRECATE_SOON("Keep track of isolate correctly", Isolate* GetIsolate());
2984 
2985   static Local<Object> New(Isolate* isolate);
2986 
2987   V8_INLINE static Object* Cast(Value* obj);
2988 
2989  private:
2990   Object();
2991   static void CheckCast(Value* obj);
2992   Local<Value> SlowGetInternalField(int index);
2993   void* SlowGetAlignedPointerFromInternalField(int index);
2994 };
2995 
2996 
2997 /**
2998  * An instance of the built-in array constructor (ECMA-262, 15.4.2).
2999  */
3000 class V8_EXPORT Array : public Object {
3001  public:
3002   uint32_t Length() const;
3003 
3004   /**
3005    * Clones an element at index |index|.  Returns an empty
3006    * handle if cloning fails (for any reason).
3007    */
3008   V8_DEPRECATED("Cloning is not supported.",
3009                 Local<Object> CloneElementAt(uint32_t index));
3010   V8_DEPRECATED("Cloning is not supported.",
3011                 MaybeLocal<Object> CloneElementAt(Local<Context> context,
3012                                                   uint32_t index));
3013 
3014   /**
3015    * Creates a JavaScript array with the given length. If the length
3016    * is negative the returned array will have length 0.
3017    */
3018   static Local<Array> New(Isolate* isolate, int length = 0);
3019 
3020   V8_INLINE static Array* Cast(Value* obj);
3021  private:
3022   Array();
3023   static void CheckCast(Value* obj);
3024 };
3025 
3026 
3027 /**
3028  * An instance of the built-in Map constructor (ECMA-262, 6th Edition, 23.1.1).
3029  */
3030 class V8_EXPORT Map : public Object {
3031  public:
3032   size_t Size() const;
3033   void Clear();
3034   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
3035                                               Local<Value> key);
3036   V8_WARN_UNUSED_RESULT MaybeLocal<Map> Set(Local<Context> context,
3037                                             Local<Value> key,
3038                                             Local<Value> value);
3039   V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3040                                         Local<Value> key);
3041   V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
3042                                            Local<Value> key);
3043 
3044   /**
3045    * Returns an array of length Size() * 2, where index N is the Nth key and
3046    * index N + 1 is the Nth value.
3047    */
3048   Local<Array> AsArray() const;
3049 
3050   /**
3051    * Creates a new empty Map.
3052    */
3053   static Local<Map> New(Isolate* isolate);
3054 
3055   V8_INLINE static Map* Cast(Value* obj);
3056 
3057  private:
3058   Map();
3059   static void CheckCast(Value* obj);
3060 };
3061 
3062 
3063 /**
3064  * An instance of the built-in Set constructor (ECMA-262, 6th Edition, 23.2.1).
3065  */
3066 class V8_EXPORT Set : public Object {
3067  public:
3068   size_t Size() const;
3069   void Clear();
3070   V8_WARN_UNUSED_RESULT MaybeLocal<Set> Add(Local<Context> context,
3071                                             Local<Value> key);
3072   V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3073                                         Local<Value> key);
3074   V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
3075                                            Local<Value> key);
3076 
3077   /**
3078    * Returns an array of the keys in this Set.
3079    */
3080   Local<Array> AsArray() const;
3081 
3082   /**
3083    * Creates a new empty Set.
3084    */
3085   static Local<Set> New(Isolate* isolate);
3086 
3087   V8_INLINE static Set* Cast(Value* obj);
3088 
3089  private:
3090   Set();
3091   static void CheckCast(Value* obj);
3092 };
3093 
3094 
3095 template<typename T>
3096 class ReturnValue {
3097  public:
ReturnValue(const ReturnValue<S> & that)3098   template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that)
3099       : value_(that.value_) {
3100     TYPE_CHECK(T, S);
3101   }
3102   // Local setters
3103   template <typename S>
3104   V8_INLINE V8_DEPRECATE_SOON("Use Global<> instead",
3105                               void Set(const Persistent<S>& handle));
3106   template <typename S>
3107   V8_INLINE void Set(const Global<S>& handle);
3108   template <typename S>
3109   V8_INLINE void Set(const Local<S> handle);
3110   // Fast primitive setters
3111   V8_INLINE void Set(bool value);
3112   V8_INLINE void Set(double i);
3113   V8_INLINE void Set(int32_t i);
3114   V8_INLINE void Set(uint32_t i);
3115   // Fast JS primitive setters
3116   V8_INLINE void SetNull();
3117   V8_INLINE void SetUndefined();
3118   V8_INLINE void SetEmptyString();
3119   // Convenience getter for Isolate
3120   V8_INLINE Isolate* GetIsolate();
3121 
3122   // Pointer setter: Uncompilable to prevent inadvertent misuse.
3123   template <typename S>
3124   V8_INLINE void Set(S* whatever);
3125 
3126  private:
3127   template<class F> friend class ReturnValue;
3128   template<class F> friend class FunctionCallbackInfo;
3129   template<class F> friend class PropertyCallbackInfo;
3130   template <class F, class G, class H>
3131   friend class PersistentValueMapBase;
SetInternal(internal::Object * value)3132   V8_INLINE void SetInternal(internal::Object* value) { *value_ = value; }
3133   V8_INLINE internal::Object* GetDefaultValue();
3134   V8_INLINE explicit ReturnValue(internal::Object** slot);
3135   internal::Object** value_;
3136 };
3137 
3138 
3139 /**
3140  * The argument information given to function call callbacks.  This
3141  * class provides access to information about the context of the call,
3142  * including the receiver, the number and values of arguments, and
3143  * the holder of the function.
3144  */
3145 template<typename T>
3146 class FunctionCallbackInfo {
3147  public:
3148   V8_INLINE int Length() const;
3149   V8_INLINE Local<Value> operator[](int i) const;
3150   V8_INLINE Local<Function> Callee() const;
3151   V8_INLINE Local<Object> This() const;
3152   V8_INLINE Local<Object> Holder() const;
3153   V8_INLINE bool IsConstructCall() const;
3154   V8_INLINE Local<Value> Data() const;
3155   V8_INLINE Isolate* GetIsolate() const;
3156   V8_INLINE ReturnValue<T> GetReturnValue() const;
3157   // This shouldn't be public, but the arm compiler needs it.
3158   static const int kArgsLength = 7;
3159 
3160  protected:
3161   friend class internal::FunctionCallbackArguments;
3162   friend class internal::CustomArguments<FunctionCallbackInfo>;
3163   static const int kHolderIndex = 0;
3164   static const int kIsolateIndex = 1;
3165   static const int kReturnValueDefaultValueIndex = 2;
3166   static const int kReturnValueIndex = 3;
3167   static const int kDataIndex = 4;
3168   static const int kCalleeIndex = 5;
3169   static const int kContextSaveIndex = 6;
3170 
3171   V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args,
3172                    internal::Object** values,
3173                    int length,
3174                    bool is_construct_call);
3175   internal::Object** implicit_args_;
3176   internal::Object** values_;
3177   int length_;
3178   int is_construct_call_;
3179 };
3180 
3181 
3182 /**
3183  * The information passed to a property callback about the context
3184  * of the property access.
3185  */
3186 template<typename T>
3187 class PropertyCallbackInfo {
3188  public:
3189   V8_INLINE Isolate* GetIsolate() const;
3190   V8_INLINE Local<Value> Data() const;
3191   V8_INLINE Local<Object> This() const;
3192   V8_INLINE Local<Object> Holder() const;
3193   V8_INLINE ReturnValue<T> GetReturnValue() const;
3194   // This shouldn't be public, but the arm compiler needs it.
3195   static const int kArgsLength = 6;
3196 
3197  protected:
3198   friend class MacroAssembler;
3199   friend class internal::PropertyCallbackArguments;
3200   friend class internal::CustomArguments<PropertyCallbackInfo>;
3201   static const int kHolderIndex = 0;
3202   static const int kIsolateIndex = 1;
3203   static const int kReturnValueDefaultValueIndex = 2;
3204   static const int kReturnValueIndex = 3;
3205   static const int kDataIndex = 4;
3206   static const int kThisIndex = 5;
3207 
PropertyCallbackInfo(internal::Object ** args)3208   V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {}
3209   internal::Object** args_;
3210 };
3211 
3212 
3213 typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info);
3214 
3215 
3216 /**
3217  * A JavaScript function object (ECMA-262, 15.3).
3218  */
3219 class V8_EXPORT Function : public Object {
3220  public:
3221   /**
3222    * Create a function in the current execution context
3223    * for a given FunctionCallback.
3224    */
3225   static MaybeLocal<Function> New(Local<Context> context,
3226                                   FunctionCallback callback,
3227                                   Local<Value> data = Local<Value>(),
3228                                   int length = 0);
3229   static V8_DEPRECATE_SOON(
3230       "Use maybe version",
3231       Local<Function> New(Isolate* isolate, FunctionCallback callback,
3232                           Local<Value> data = Local<Value>(), int length = 0));
3233 
3234   V8_DEPRECATED("Use maybe version",
3235                 Local<Object> NewInstance(int argc, Local<Value> argv[]) const);
3236   V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(
3237       Local<Context> context, int argc, Local<Value> argv[]) const;
3238 
3239   V8_DEPRECATED("Use maybe version", Local<Object> NewInstance() const);
NewInstance(Local<Context> context)3240   V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(
3241       Local<Context> context) const {
3242     return NewInstance(context, 0, nullptr);
3243   }
3244 
3245   V8_DEPRECATE_SOON("Use maybe version",
3246                     Local<Value> Call(Local<Value> recv, int argc,
3247                                       Local<Value> argv[]));
3248   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Call(Local<Context> context,
3249                                                Local<Value> recv, int argc,
3250                                                Local<Value> argv[]);
3251 
3252   void SetName(Local<String> name);
3253   Local<Value> GetName() const;
3254 
3255   /**
3256    * Name inferred from variable or property assignment of this function.
3257    * Used to facilitate debugging and profiling of JavaScript code written
3258    * in an OO style, where many functions are anonymous but are assigned
3259    * to object properties.
3260    */
3261   Local<Value> GetInferredName() const;
3262 
3263   /**
3264    * displayName if it is set, otherwise name if it is configured, otherwise
3265    * function name, otherwise inferred name.
3266    */
3267   Local<Value> GetDebugName() const;
3268 
3269   /**
3270    * User-defined name assigned to the "displayName" property of this function.
3271    * Used to facilitate debugging and profiling of JavaScript code.
3272    */
3273   Local<Value> GetDisplayName() const;
3274 
3275   /**
3276    * Returns zero based line number of function body and
3277    * kLineOffsetNotFound if no information available.
3278    */
3279   int GetScriptLineNumber() const;
3280   /**
3281    * Returns zero based column number of function body and
3282    * kLineOffsetNotFound if no information available.
3283    */
3284   int GetScriptColumnNumber() const;
3285 
3286   /**
3287    * Tells whether this function is builtin.
3288    */
3289   bool IsBuiltin() const;
3290 
3291   /**
3292    * Returns scriptId.
3293    */
3294   int ScriptId() const;
3295 
3296   /**
3297    * Returns the original function if this function is bound, else returns
3298    * v8::Undefined.
3299    */
3300   Local<Value> GetBoundFunction() const;
3301 
3302   ScriptOrigin GetScriptOrigin() const;
3303   V8_INLINE static Function* Cast(Value* obj);
3304   static const int kLineOffsetNotFound;
3305 
3306  private:
3307   Function();
3308   static void CheckCast(Value* obj);
3309 };
3310 
3311 
3312 /**
3313  * An instance of the built-in Promise constructor (ES6 draft).
3314  * This API is experimental. Only works with --harmony flag.
3315  */
3316 class V8_EXPORT Promise : public Object {
3317  public:
3318   class V8_EXPORT Resolver : public Object {
3319    public:
3320     /**
3321      * Create a new resolver, along with an associated promise in pending state.
3322      */
3323     static V8_DEPRECATE_SOON("Use maybe version",
3324                              Local<Resolver> New(Isolate* isolate));
3325     static V8_WARN_UNUSED_RESULT MaybeLocal<Resolver> New(
3326         Local<Context> context);
3327 
3328     /**
3329      * Extract the associated promise.
3330      */
3331     Local<Promise> GetPromise();
3332 
3333     /**
3334      * Resolve/reject the associated promise with a given value.
3335      * Ignored if the promise is no longer pending.
3336      */
3337     V8_DEPRECATE_SOON("Use maybe version", void Resolve(Local<Value> value));
3338     // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3339     Maybe<bool> Resolve(Local<Context> context, Local<Value> value);
3340 
3341     V8_DEPRECATE_SOON("Use maybe version", void Reject(Local<Value> value));
3342     // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3343     Maybe<bool> Reject(Local<Context> context, Local<Value> value);
3344 
3345     V8_INLINE static Resolver* Cast(Value* obj);
3346 
3347    private:
3348     Resolver();
3349     static void CheckCast(Value* obj);
3350   };
3351 
3352   /**
3353    * Register a resolution/rejection handler with a promise.
3354    * The handler is given the respective resolution/rejection value as
3355    * an argument. If the promise is already resolved/rejected, the handler is
3356    * invoked at the end of turn.
3357    */
3358   V8_DEPRECATED("Use maybe version of Then",
3359                 Local<Promise> Chain(Local<Function> handler));
3360   V8_DEPRECATED("Use Then",
3361                 V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Chain(
3362                     Local<Context> context, Local<Function> handler));
3363 
3364   V8_DEPRECATED("Use maybe version",
3365                 Local<Promise> Catch(Local<Function> handler));
3366   V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Catch(Local<Context> context,
3367                                                   Local<Function> handler);
3368 
3369   V8_DEPRECATED("Use maybe version",
3370                 Local<Promise> Then(Local<Function> handler));
3371   V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Then(Local<Context> context,
3372                                                  Local<Function> handler);
3373 
3374   /**
3375    * Returns true if the promise has at least one derived promise, and
3376    * therefore resolve/reject handlers (including default handler).
3377    */
3378   bool HasHandler();
3379 
3380   V8_INLINE static Promise* Cast(Value* obj);
3381 
3382  private:
3383   Promise();
3384   static void CheckCast(Value* obj);
3385 };
3386 
3387 
3388 /**
3389  * An instance of the built-in Proxy constructor (ECMA-262, 6th Edition,
3390  * 26.2.1).
3391  */
3392 class V8_EXPORT Proxy : public Object {
3393  public:
3394   Local<Object> GetTarget();
3395   Local<Value> GetHandler();
3396   bool IsRevoked();
3397   void Revoke();
3398 
3399   /**
3400    * Creates a new empty Map.
3401    */
3402   static MaybeLocal<Proxy> New(Local<Context> context,
3403                                Local<Object> local_target,
3404                                Local<Object> local_handler);
3405 
3406   V8_INLINE static Proxy* Cast(Value* obj);
3407 
3408  private:
3409   Proxy();
3410   static void CheckCast(Value* obj);
3411 };
3412 
3413 
3414 #ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT
3415 // The number of required internal fields can be defined by embedder.
3416 #define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2
3417 #endif
3418 
3419 
3420 enum class ArrayBufferCreationMode { kInternalized, kExternalized };
3421 
3422 
3423 /**
3424  * An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5).
3425  * This API is experimental and may change significantly.
3426  */
3427 class V8_EXPORT ArrayBuffer : public Object {
3428  public:
3429   /**
3430    * Allocator that V8 uses to allocate |ArrayBuffer|'s memory.
3431    * The allocator is a global V8 setting. It has to be set via
3432    * Isolate::CreateParams.
3433    *
3434    * This API is experimental and may change significantly.
3435    */
3436   class V8_EXPORT Allocator { // NOLINT
3437    public:
~Allocator()3438     virtual ~Allocator() {}
3439 
3440     /**
3441      * Allocate |length| bytes. Return NULL if allocation is not successful.
3442      * Memory should be initialized to zeroes.
3443      */
3444     virtual void* Allocate(size_t length) = 0;
3445 
3446     /**
3447      * Allocate |length| bytes. Return NULL if allocation is not successful.
3448      * Memory does not have to be initialized.
3449      */
3450     virtual void* AllocateUninitialized(size_t length) = 0;
3451     /**
3452      * Free the memory block of size |length|, pointed to by |data|.
3453      * That memory is guaranteed to be previously allocated by |Allocate|.
3454      */
3455     virtual void Free(void* data, size_t length) = 0;
3456   };
3457 
3458   /**
3459    * The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer|
3460    * returns an instance of this class, populated, with a pointer to data
3461    * and byte length.
3462    *
3463    * The Data pointer of ArrayBuffer::Contents is always allocated with
3464    * Allocator::Allocate that is set via Isolate::CreateParams.
3465    *
3466    * This API is experimental and may change significantly.
3467    */
3468   class V8_EXPORT Contents { // NOLINT
3469    public:
Contents()3470     Contents() : data_(NULL), byte_length_(0) {}
3471 
Data()3472     void* Data() const { return data_; }
ByteLength()3473     size_t ByteLength() const { return byte_length_; }
3474 
3475    private:
3476     void* data_;
3477     size_t byte_length_;
3478 
3479     friend class ArrayBuffer;
3480   };
3481 
3482 
3483   /**
3484    * Data length in bytes.
3485    */
3486   size_t ByteLength() const;
3487 
3488   /**
3489    * Create a new ArrayBuffer. Allocate |byte_length| bytes.
3490    * Allocated memory will be owned by a created ArrayBuffer and
3491    * will be deallocated when it is garbage-collected,
3492    * unless the object is externalized.
3493    */
3494   static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length);
3495 
3496   /**
3497    * Create a new ArrayBuffer over an existing memory block.
3498    * The created array buffer is by default immediately in externalized state.
3499    * The memory block will not be reclaimed when a created ArrayBuffer
3500    * is garbage-collected.
3501    */
3502   static Local<ArrayBuffer> New(
3503       Isolate* isolate, void* data, size_t byte_length,
3504       ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized);
3505 
3506   /**
3507    * Returns true if ArrayBuffer is externalized, that is, does not
3508    * own its memory block.
3509    */
3510   bool IsExternal() const;
3511 
3512   /**
3513    * Returns true if this ArrayBuffer may be neutered.
3514    */
3515   bool IsNeuterable() const;
3516 
3517   /**
3518    * Neuters this ArrayBuffer and all its views (typed arrays).
3519    * Neutering sets the byte length of the buffer and all typed arrays to zero,
3520    * preventing JavaScript from ever accessing underlying backing store.
3521    * ArrayBuffer should have been externalized and must be neuterable.
3522    */
3523   void Neuter();
3524 
3525   /**
3526    * Make this ArrayBuffer external. The pointer to underlying memory block
3527    * and byte length are returned as |Contents| structure. After ArrayBuffer
3528    * had been etxrenalized, it does no longer owns the memory block. The caller
3529    * should take steps to free memory when it is no longer needed.
3530    *
3531    * The memory block is guaranteed to be allocated with |Allocator::Allocate|
3532    * that has been set via Isolate::CreateParams.
3533    */
3534   Contents Externalize();
3535 
3536   /**
3537    * Get a pointer to the ArrayBuffer's underlying memory block without
3538    * externalizing it. If the ArrayBuffer is not externalized, this pointer
3539    * will become invalid as soon as the ArrayBuffer became garbage collected.
3540    *
3541    * The embedder should make sure to hold a strong reference to the
3542    * ArrayBuffer while accessing this pointer.
3543    *
3544    * The memory block is guaranteed to be allocated with |Allocator::Allocate|.
3545    */
3546   Contents GetContents();
3547 
3548   V8_INLINE static ArrayBuffer* Cast(Value* obj);
3549 
3550   static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
3551 
3552  private:
3553   ArrayBuffer();
3554   static void CheckCast(Value* obj);
3555 };
3556 
3557 
3558 #ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT
3559 // The number of required internal fields can be defined by embedder.
3560 #define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2
3561 #endif
3562 
3563 
3564 /**
3565  * A base class for an instance of one of "views" over ArrayBuffer,
3566  * including TypedArrays and DataView (ES6 draft 15.13).
3567  *
3568  * This API is experimental and may change significantly.
3569  */
3570 class V8_EXPORT ArrayBufferView : public Object {
3571  public:
3572   /**
3573    * Returns underlying ArrayBuffer.
3574    */
3575   Local<ArrayBuffer> Buffer();
3576   /**
3577    * Byte offset in |Buffer|.
3578    */
3579   size_t ByteOffset();
3580   /**
3581    * Size of a view in bytes.
3582    */
3583   size_t ByteLength();
3584 
3585   /**
3586    * Copy the contents of the ArrayBufferView's buffer to an embedder defined
3587    * memory without additional overhead that calling ArrayBufferView::Buffer
3588    * might incur.
3589    *
3590    * Will write at most min(|byte_length|, ByteLength) bytes starting at
3591    * ByteOffset of the underling buffer to the memory starting at |dest|.
3592    * Returns the number of bytes actually written.
3593    */
3594   size_t CopyContents(void* dest, size_t byte_length);
3595 
3596   /**
3597    * Returns true if ArrayBufferView's backing ArrayBuffer has already been
3598    * allocated.
3599    */
3600   bool HasBuffer() const;
3601 
3602   V8_INLINE static ArrayBufferView* Cast(Value* obj);
3603 
3604   static const int kInternalFieldCount =
3605       V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT;
3606 
3607  private:
3608   ArrayBufferView();
3609   static void CheckCast(Value* obj);
3610 };
3611 
3612 
3613 /**
3614  * A base class for an instance of TypedArray series of constructors
3615  * (ES6 draft 15.13.6).
3616  * This API is experimental and may change significantly.
3617  */
3618 class V8_EXPORT TypedArray : public ArrayBufferView {
3619  public:
3620   /**
3621    * Number of elements in this typed array
3622    * (e.g. for Int16Array, |ByteLength|/2).
3623    */
3624   size_t Length();
3625 
3626   V8_INLINE static TypedArray* Cast(Value* obj);
3627 
3628  private:
3629   TypedArray();
3630   static void CheckCast(Value* obj);
3631 };
3632 
3633 
3634 /**
3635  * An instance of Uint8Array constructor (ES6 draft 15.13.6).
3636  * This API is experimental and may change significantly.
3637  */
3638 class V8_EXPORT Uint8Array : public TypedArray {
3639  public:
3640   static Local<Uint8Array> New(Local<ArrayBuffer> array_buffer,
3641                                size_t byte_offset, size_t length);
3642   static Local<Uint8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3643                                size_t byte_offset, size_t length);
3644   V8_INLINE static Uint8Array* Cast(Value* obj);
3645 
3646  private:
3647   Uint8Array();
3648   static void CheckCast(Value* obj);
3649 };
3650 
3651 
3652 /**
3653  * An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6).
3654  * This API is experimental and may change significantly.
3655  */
3656 class V8_EXPORT Uint8ClampedArray : public TypedArray {
3657  public:
3658   static Local<Uint8ClampedArray> New(Local<ArrayBuffer> array_buffer,
3659                                       size_t byte_offset, size_t length);
3660   static Local<Uint8ClampedArray> New(
3661       Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset,
3662       size_t length);
3663   V8_INLINE static Uint8ClampedArray* Cast(Value* obj);
3664 
3665  private:
3666   Uint8ClampedArray();
3667   static void CheckCast(Value* obj);
3668 };
3669 
3670 /**
3671  * An instance of Int8Array constructor (ES6 draft 15.13.6).
3672  * This API is experimental and may change significantly.
3673  */
3674 class V8_EXPORT Int8Array : public TypedArray {
3675  public:
3676   static Local<Int8Array> New(Local<ArrayBuffer> array_buffer,
3677                               size_t byte_offset, size_t length);
3678   static Local<Int8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3679                               size_t byte_offset, size_t length);
3680   V8_INLINE static Int8Array* Cast(Value* obj);
3681 
3682  private:
3683   Int8Array();
3684   static void CheckCast(Value* obj);
3685 };
3686 
3687 
3688 /**
3689  * An instance of Uint16Array constructor (ES6 draft 15.13.6).
3690  * This API is experimental and may change significantly.
3691  */
3692 class V8_EXPORT Uint16Array : public TypedArray {
3693  public:
3694   static Local<Uint16Array> New(Local<ArrayBuffer> array_buffer,
3695                                 size_t byte_offset, size_t length);
3696   static Local<Uint16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3697                                 size_t byte_offset, size_t length);
3698   V8_INLINE static Uint16Array* Cast(Value* obj);
3699 
3700  private:
3701   Uint16Array();
3702   static void CheckCast(Value* obj);
3703 };
3704 
3705 
3706 /**
3707  * An instance of Int16Array constructor (ES6 draft 15.13.6).
3708  * This API is experimental and may change significantly.
3709  */
3710 class V8_EXPORT Int16Array : public TypedArray {
3711  public:
3712   static Local<Int16Array> New(Local<ArrayBuffer> array_buffer,
3713                                size_t byte_offset, size_t length);
3714   static Local<Int16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3715                                size_t byte_offset, size_t length);
3716   V8_INLINE static Int16Array* Cast(Value* obj);
3717 
3718  private:
3719   Int16Array();
3720   static void CheckCast(Value* obj);
3721 };
3722 
3723 
3724 /**
3725  * An instance of Uint32Array constructor (ES6 draft 15.13.6).
3726  * This API is experimental and may change significantly.
3727  */
3728 class V8_EXPORT Uint32Array : public TypedArray {
3729  public:
3730   static Local<Uint32Array> New(Local<ArrayBuffer> array_buffer,
3731                                 size_t byte_offset, size_t length);
3732   static Local<Uint32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3733                                 size_t byte_offset, size_t length);
3734   V8_INLINE static Uint32Array* Cast(Value* obj);
3735 
3736  private:
3737   Uint32Array();
3738   static void CheckCast(Value* obj);
3739 };
3740 
3741 
3742 /**
3743  * An instance of Int32Array constructor (ES6 draft 15.13.6).
3744  * This API is experimental and may change significantly.
3745  */
3746 class V8_EXPORT Int32Array : public TypedArray {
3747  public:
3748   static Local<Int32Array> New(Local<ArrayBuffer> array_buffer,
3749                                size_t byte_offset, size_t length);
3750   static Local<Int32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3751                                size_t byte_offset, size_t length);
3752   V8_INLINE static Int32Array* Cast(Value* obj);
3753 
3754  private:
3755   Int32Array();
3756   static void CheckCast(Value* obj);
3757 };
3758 
3759 
3760 /**
3761  * An instance of Float32Array constructor (ES6 draft 15.13.6).
3762  * This API is experimental and may change significantly.
3763  */
3764 class V8_EXPORT Float32Array : public TypedArray {
3765  public:
3766   static Local<Float32Array> New(Local<ArrayBuffer> array_buffer,
3767                                  size_t byte_offset, size_t length);
3768   static Local<Float32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3769                                  size_t byte_offset, size_t length);
3770   V8_INLINE static Float32Array* Cast(Value* obj);
3771 
3772  private:
3773   Float32Array();
3774   static void CheckCast(Value* obj);
3775 };
3776 
3777 
3778 /**
3779  * An instance of Float64Array constructor (ES6 draft 15.13.6).
3780  * This API is experimental and may change significantly.
3781  */
3782 class V8_EXPORT Float64Array : public TypedArray {
3783  public:
3784   static Local<Float64Array> New(Local<ArrayBuffer> array_buffer,
3785                                  size_t byte_offset, size_t length);
3786   static Local<Float64Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3787                                  size_t byte_offset, size_t length);
3788   V8_INLINE static Float64Array* Cast(Value* obj);
3789 
3790  private:
3791   Float64Array();
3792   static void CheckCast(Value* obj);
3793 };
3794 
3795 
3796 /**
3797  * An instance of DataView constructor (ES6 draft 15.13.7).
3798  * This API is experimental and may change significantly.
3799  */
3800 class V8_EXPORT DataView : public ArrayBufferView {
3801  public:
3802   static Local<DataView> New(Local<ArrayBuffer> array_buffer,
3803                              size_t byte_offset, size_t length);
3804   static Local<DataView> New(Local<SharedArrayBuffer> shared_array_buffer,
3805                              size_t byte_offset, size_t length);
3806   V8_INLINE static DataView* Cast(Value* obj);
3807 
3808  private:
3809   DataView();
3810   static void CheckCast(Value* obj);
3811 };
3812 
3813 
3814 /**
3815  * An instance of the built-in SharedArrayBuffer constructor.
3816  * This API is experimental and may change significantly.
3817  */
3818 class V8_EXPORT SharedArrayBuffer : public Object {
3819  public:
3820   /**
3821    * The contents of an |SharedArrayBuffer|. Externalization of
3822    * |SharedArrayBuffer| returns an instance of this class, populated, with a
3823    * pointer to data and byte length.
3824    *
3825    * The Data pointer of SharedArrayBuffer::Contents is always allocated with
3826    * |ArrayBuffer::Allocator::Allocate| by the allocator specified in
3827    * v8::Isolate::CreateParams::array_buffer_allocator.
3828    *
3829    * This API is experimental and may change significantly.
3830    */
3831   class V8_EXPORT Contents {  // NOLINT
3832    public:
Contents()3833     Contents() : data_(NULL), byte_length_(0) {}
3834 
Data()3835     void* Data() const { return data_; }
ByteLength()3836     size_t ByteLength() const { return byte_length_; }
3837 
3838    private:
3839     void* data_;
3840     size_t byte_length_;
3841 
3842     friend class SharedArrayBuffer;
3843   };
3844 
3845 
3846   /**
3847    * Data length in bytes.
3848    */
3849   size_t ByteLength() const;
3850 
3851   /**
3852    * Create a new SharedArrayBuffer. Allocate |byte_length| bytes.
3853    * Allocated memory will be owned by a created SharedArrayBuffer and
3854    * will be deallocated when it is garbage-collected,
3855    * unless the object is externalized.
3856    */
3857   static Local<SharedArrayBuffer> New(Isolate* isolate, size_t byte_length);
3858 
3859   /**
3860    * Create a new SharedArrayBuffer over an existing memory block.  The created
3861    * array buffer is immediately in externalized state unless otherwise
3862    * specified. The memory block will not be reclaimed when a created
3863    * SharedArrayBuffer is garbage-collected.
3864    */
3865   static Local<SharedArrayBuffer> New(
3866       Isolate* isolate, void* data, size_t byte_length,
3867       ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized);
3868 
3869   /**
3870    * Returns true if SharedArrayBuffer is externalized, that is, does not
3871    * own its memory block.
3872    */
3873   bool IsExternal() const;
3874 
3875   /**
3876    * Make this SharedArrayBuffer external. The pointer to underlying memory
3877    * block and byte length are returned as |Contents| structure. After
3878    * SharedArrayBuffer had been etxrenalized, it does no longer owns the memory
3879    * block. The caller should take steps to free memory when it is no longer
3880    * needed.
3881    *
3882    * The memory block is guaranteed to be allocated with |Allocator::Allocate|
3883    * by the allocator specified in
3884    * v8::Isolate::CreateParams::array_buffer_allocator.
3885    *
3886    */
3887   Contents Externalize();
3888 
3889   /**
3890    * Get a pointer to the ArrayBuffer's underlying memory block without
3891    * externalizing it. If the ArrayBuffer is not externalized, this pointer
3892    * will become invalid as soon as the ArrayBuffer became garbage collected.
3893    *
3894    * The embedder should make sure to hold a strong reference to the
3895    * ArrayBuffer while accessing this pointer.
3896    *
3897    * The memory block is guaranteed to be allocated with |Allocator::Allocate|
3898    * by the allocator specified in
3899    * v8::Isolate::CreateParams::array_buffer_allocator.
3900    */
3901   Contents GetContents();
3902 
3903   V8_INLINE static SharedArrayBuffer* Cast(Value* obj);
3904 
3905   static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
3906 
3907  private:
3908   SharedArrayBuffer();
3909   static void CheckCast(Value* obj);
3910 };
3911 
3912 
3913 /**
3914  * An instance of the built-in Date constructor (ECMA-262, 15.9).
3915  */
3916 class V8_EXPORT Date : public Object {
3917  public:
3918   static V8_DEPRECATE_SOON("Use maybe version.",
3919                            Local<Value> New(Isolate* isolate, double time));
3920   static V8_WARN_UNUSED_RESULT MaybeLocal<Value> New(Local<Context> context,
3921                                                      double time);
3922 
3923   /**
3924    * A specialization of Value::NumberValue that is more efficient
3925    * because we know the structure of this object.
3926    */
3927   double ValueOf() const;
3928 
3929   V8_INLINE static Date* Cast(v8::Value* obj);
3930 
3931   /**
3932    * Notification that the embedder has changed the time zone,
3933    * daylight savings time, or other date / time configuration
3934    * parameters.  V8 keeps a cache of various values used for
3935    * date / time computation.  This notification will reset
3936    * those cached values for the current context so that date /
3937    * time configuration changes would be reflected in the Date
3938    * object.
3939    *
3940    * This API should not be called more than needed as it will
3941    * negatively impact the performance of date operations.
3942    */
3943   static void DateTimeConfigurationChangeNotification(Isolate* isolate);
3944 
3945  private:
3946   static void CheckCast(v8::Value* obj);
3947 };
3948 
3949 
3950 /**
3951  * A Number object (ECMA-262, 4.3.21).
3952  */
3953 class V8_EXPORT NumberObject : public Object {
3954  public:
3955   static Local<Value> New(Isolate* isolate, double value);
3956 
3957   double ValueOf() const;
3958 
3959   V8_INLINE static NumberObject* Cast(v8::Value* obj);
3960 
3961  private:
3962   static void CheckCast(v8::Value* obj);
3963 };
3964 
3965 
3966 /**
3967  * A Boolean object (ECMA-262, 4.3.15).
3968  */
3969 class V8_EXPORT BooleanObject : public Object {
3970  public:
3971   static Local<Value> New(Isolate* isolate, bool value);
3972   V8_DEPRECATED("Pass an isolate", static Local<Value> New(bool value));
3973 
3974   bool ValueOf() const;
3975 
3976   V8_INLINE static BooleanObject* Cast(v8::Value* obj);
3977 
3978  private:
3979   static void CheckCast(v8::Value* obj);
3980 };
3981 
3982 
3983 /**
3984  * A String object (ECMA-262, 4.3.18).
3985  */
3986 class V8_EXPORT StringObject : public Object {
3987  public:
3988   static Local<Value> New(Local<String> value);
3989 
3990   Local<String> ValueOf() const;
3991 
3992   V8_INLINE static StringObject* Cast(v8::Value* obj);
3993 
3994  private:
3995   static void CheckCast(v8::Value* obj);
3996 };
3997 
3998 
3999 /**
4000  * A Symbol object (ECMA-262 edition 6).
4001  *
4002  * This is an experimental feature. Use at your own risk.
4003  */
4004 class V8_EXPORT SymbolObject : public Object {
4005  public:
4006   static Local<Value> New(Isolate* isolate, Local<Symbol> value);
4007 
4008   Local<Symbol> ValueOf() const;
4009 
4010   V8_INLINE static SymbolObject* Cast(v8::Value* obj);
4011 
4012  private:
4013   static void CheckCast(v8::Value* obj);
4014 };
4015 
4016 
4017 /**
4018  * An instance of the built-in RegExp constructor (ECMA-262, 15.10).
4019  */
4020 class V8_EXPORT RegExp : public Object {
4021  public:
4022   /**
4023    * Regular expression flag bits. They can be or'ed to enable a set
4024    * of flags.
4025    */
4026   enum Flags {
4027     kNone = 0,
4028     kGlobal = 1,
4029     kIgnoreCase = 2,
4030     kMultiline = 4,
4031     kSticky = 8,
4032     kUnicode = 16
4033   };
4034 
4035   /**
4036    * Creates a regular expression from the given pattern string and
4037    * the flags bit field. May throw a JavaScript exception as
4038    * described in ECMA-262, 15.10.4.1.
4039    *
4040    * For example,
4041    *   RegExp::New(v8::String::New("foo"),
4042    *               static_cast<RegExp::Flags>(kGlobal | kMultiline))
4043    * is equivalent to evaluating "/foo/gm".
4044    */
4045   static V8_DEPRECATE_SOON("Use maybe version",
4046                            Local<RegExp> New(Local<String> pattern,
4047                                              Flags flags));
4048   static V8_WARN_UNUSED_RESULT MaybeLocal<RegExp> New(Local<Context> context,
4049                                                       Local<String> pattern,
4050                                                       Flags flags);
4051 
4052   /**
4053    * Returns the value of the source property: a string representing
4054    * the regular expression.
4055    */
4056   Local<String> GetSource() const;
4057 
4058   /**
4059    * Returns the flags bit field.
4060    */
4061   Flags GetFlags() const;
4062 
4063   V8_INLINE static RegExp* Cast(v8::Value* obj);
4064 
4065  private:
4066   static void CheckCast(v8::Value* obj);
4067 };
4068 
4069 
4070 /**
4071  * A JavaScript value that wraps a C++ void*. This type of value is mainly used
4072  * to associate C++ data structures with JavaScript objects.
4073  */
4074 class V8_EXPORT External : public Value {
4075  public:
4076   static Local<External> New(Isolate* isolate, void* value);
4077   V8_INLINE static External* Cast(Value* obj);
4078   void* Value() const;
4079  private:
4080   static void CheckCast(v8::Value* obj);
4081 };
4082 
4083 
4084 #define V8_INTRINSICS_LIST(F) F(ArrayProto_values, array_values_iterator)
4085 
4086 enum Intrinsic {
4087 #define V8_DECL_INTRINSIC(name, iname) k##name,
4088   V8_INTRINSICS_LIST(V8_DECL_INTRINSIC)
4089 #undef V8_DECL_INTRINSIC
4090 };
4091 
4092 
4093 // --- Templates ---
4094 
4095 
4096 /**
4097  * The superclass of object and function templates.
4098  */
4099 class V8_EXPORT Template : public Data {
4100  public:
4101   /** Adds a property to each instance created by this template.*/
4102   void Set(Local<Name> name, Local<Data> value,
4103            PropertyAttribute attributes = None);
4104   V8_INLINE void Set(Isolate* isolate, const char* name, Local<Data> value);
4105 
4106   void SetAccessorProperty(
4107      Local<Name> name,
4108      Local<FunctionTemplate> getter = Local<FunctionTemplate>(),
4109      Local<FunctionTemplate> setter = Local<FunctionTemplate>(),
4110      PropertyAttribute attribute = None,
4111      AccessControl settings = DEFAULT);
4112 
4113   /**
4114    * Whenever the property with the given name is accessed on objects
4115    * created from this Template the getter and setter callbacks
4116    * are called instead of getting and setting the property directly
4117    * on the JavaScript object.
4118    *
4119    * \param name The name of the property for which an accessor is added.
4120    * \param getter The callback to invoke when getting the property.
4121    * \param setter The callback to invoke when setting the property.
4122    * \param data A piece of data that will be passed to the getter and setter
4123    *   callbacks whenever they are invoked.
4124    * \param settings Access control settings for the accessor. This is a bit
4125    *   field consisting of one of more of
4126    *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
4127    *   The default is to not allow cross-context access.
4128    *   ALL_CAN_READ means that all cross-context reads are allowed.
4129    *   ALL_CAN_WRITE means that all cross-context writes are allowed.
4130    *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
4131    *   cross-context access.
4132    * \param attribute The attributes of the property for which an accessor
4133    *   is added.
4134    * \param signature The signature describes valid receivers for the accessor
4135    *   and is used to perform implicit instance checks against them. If the
4136    *   receiver is incompatible (i.e. is not an instance of the constructor as
4137    *   defined by FunctionTemplate::HasInstance()), an implicit TypeError is
4138    *   thrown and no callback is invoked.
4139    */
4140   void SetNativeDataProperty(
4141       Local<String> name, AccessorGetterCallback getter,
4142       AccessorSetterCallback setter = 0,
4143       // TODO(dcarney): gcc can't handle Local below
4144       Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
4145       Local<AccessorSignature> signature = Local<AccessorSignature>(),
4146       AccessControl settings = DEFAULT);
4147   void SetNativeDataProperty(
4148       Local<Name> name, AccessorNameGetterCallback getter,
4149       AccessorNameSetterCallback setter = 0,
4150       // TODO(dcarney): gcc can't handle Local below
4151       Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
4152       Local<AccessorSignature> signature = Local<AccessorSignature>(),
4153       AccessControl settings = DEFAULT);
4154 
4155   /**
4156    * During template instantiation, sets the value with the intrinsic property
4157    * from the correct context.
4158    */
4159   void SetIntrinsicDataProperty(Local<Name> name, Intrinsic intrinsic,
4160                                 PropertyAttribute attribute = None);
4161 
4162  private:
4163   Template();
4164 
4165   friend class ObjectTemplate;
4166   friend class FunctionTemplate;
4167 };
4168 
4169 
4170 /**
4171  * NamedProperty[Getter|Setter] are used as interceptors on object.
4172  * See ObjectTemplate::SetNamedPropertyHandler.
4173  */
4174 typedef void (*NamedPropertyGetterCallback)(
4175     Local<String> property,
4176     const PropertyCallbackInfo<Value>& info);
4177 
4178 
4179 /**
4180  * Returns the value if the setter intercepts the request.
4181  * Otherwise, returns an empty handle.
4182  */
4183 typedef void (*NamedPropertySetterCallback)(
4184     Local<String> property,
4185     Local<Value> value,
4186     const PropertyCallbackInfo<Value>& info);
4187 
4188 
4189 /**
4190  * Returns a non-empty handle if the interceptor intercepts the request.
4191  * The result is an integer encoding property attributes (like v8::None,
4192  * v8::DontEnum, etc.)
4193  */
4194 typedef void (*NamedPropertyQueryCallback)(
4195     Local<String> property,
4196     const PropertyCallbackInfo<Integer>& info);
4197 
4198 
4199 /**
4200  * Returns a non-empty handle if the deleter intercepts the request.
4201  * The return value is true if the property could be deleted and false
4202  * otherwise.
4203  */
4204 typedef void (*NamedPropertyDeleterCallback)(
4205     Local<String> property,
4206     const PropertyCallbackInfo<Boolean>& info);
4207 
4208 
4209 /**
4210  * Returns an array containing the names of the properties the named
4211  * property getter intercepts.
4212  */
4213 typedef void (*NamedPropertyEnumeratorCallback)(
4214     const PropertyCallbackInfo<Array>& info);
4215 
4216 
4217 // TODO(dcarney): Deprecate and remove previous typedefs, and replace
4218 // GenericNamedPropertyFooCallback with just NamedPropertyFooCallback.
4219 /**
4220  * GenericNamedProperty[Getter|Setter] are used as interceptors on object.
4221  * See ObjectTemplate::SetNamedPropertyHandler.
4222  */
4223 typedef void (*GenericNamedPropertyGetterCallback)(
4224     Local<Name> property, const PropertyCallbackInfo<Value>& info);
4225 
4226 
4227 /**
4228  * Returns the value if the setter intercepts the request.
4229  * Otherwise, returns an empty handle.
4230  */
4231 typedef void (*GenericNamedPropertySetterCallback)(
4232     Local<Name> property, Local<Value> value,
4233     const PropertyCallbackInfo<Value>& info);
4234 
4235 
4236 /**
4237  * Returns a non-empty handle if the interceptor intercepts the request.
4238  * The result is an integer encoding property attributes (like v8::None,
4239  * v8::DontEnum, etc.)
4240  */
4241 typedef void (*GenericNamedPropertyQueryCallback)(
4242     Local<Name> property, const PropertyCallbackInfo<Integer>& info);
4243 
4244 
4245 /**
4246  * Returns a non-empty handle if the deleter intercepts the request.
4247  * The return value is true if the property could be deleted and false
4248  * otherwise.
4249  */
4250 typedef void (*GenericNamedPropertyDeleterCallback)(
4251     Local<Name> property, const PropertyCallbackInfo<Boolean>& info);
4252 
4253 
4254 /**
4255  * Returns an array containing the names of the properties the named
4256  * property getter intercepts.
4257  */
4258 typedef void (*GenericNamedPropertyEnumeratorCallback)(
4259     const PropertyCallbackInfo<Array>& info);
4260 
4261 
4262 /**
4263  * Returns the value of the property if the getter intercepts the
4264  * request.  Otherwise, returns an empty handle.
4265  */
4266 typedef void (*IndexedPropertyGetterCallback)(
4267     uint32_t index,
4268     const PropertyCallbackInfo<Value>& info);
4269 
4270 
4271 /**
4272  * Returns the value if the setter intercepts the request.
4273  * Otherwise, returns an empty handle.
4274  */
4275 typedef void (*IndexedPropertySetterCallback)(
4276     uint32_t index,
4277     Local<Value> value,
4278     const PropertyCallbackInfo<Value>& info);
4279 
4280 
4281 /**
4282  * Returns a non-empty handle if the interceptor intercepts the request.
4283  * The result is an integer encoding property attributes.
4284  */
4285 typedef void (*IndexedPropertyQueryCallback)(
4286     uint32_t index,
4287     const PropertyCallbackInfo<Integer>& info);
4288 
4289 
4290 /**
4291  * Returns a non-empty handle if the deleter intercepts the request.
4292  * The return value is true if the property could be deleted and false
4293  * otherwise.
4294  */
4295 typedef void (*IndexedPropertyDeleterCallback)(
4296     uint32_t index,
4297     const PropertyCallbackInfo<Boolean>& info);
4298 
4299 
4300 /**
4301  * Returns an array containing the indices of the properties the
4302  * indexed property getter intercepts.
4303  */
4304 typedef void (*IndexedPropertyEnumeratorCallback)(
4305     const PropertyCallbackInfo<Array>& info);
4306 
4307 
4308 /**
4309  * Access type specification.
4310  */
4311 enum AccessType {
4312   ACCESS_GET,
4313   ACCESS_SET,
4314   ACCESS_HAS,
4315   ACCESS_DELETE,
4316   ACCESS_KEYS
4317 };
4318 
4319 
4320 /**
4321  * Returns true if the given context should be allowed to access the given
4322  * object.
4323  */
4324 typedef bool (*AccessCheckCallback)(Local<Context> accessing_context,
4325                                     Local<Object> accessed_object);
4326 
4327 
4328 /**
4329  * Returns true if cross-context access should be allowed to the named
4330  * property with the given key on the host object.
4331  */
4332 typedef bool (*NamedSecurityCallback)(Local<Object> host,
4333                                       Local<Value> key,
4334                                       AccessType type,
4335                                       Local<Value> data);
4336 
4337 
4338 /**
4339  * Returns true if cross-context access should be allowed to the indexed
4340  * property with the given index on the host object.
4341  */
4342 typedef bool (*IndexedSecurityCallback)(Local<Object> host,
4343                                         uint32_t index,
4344                                         AccessType type,
4345                                         Local<Value> data);
4346 
4347 
4348 /**
4349  * A FunctionTemplate is used to create functions at runtime. There
4350  * can only be one function created from a FunctionTemplate in a
4351  * context.  The lifetime of the created function is equal to the
4352  * lifetime of the context.  So in case the embedder needs to create
4353  * temporary functions that can be collected using Scripts is
4354  * preferred.
4355  *
4356  * Any modification of a FunctionTemplate after first instantiation will trigger
4357  *a crash.
4358  *
4359  * A FunctionTemplate can have properties, these properties are added to the
4360  * function object when it is created.
4361  *
4362  * A FunctionTemplate has a corresponding instance template which is
4363  * used to create object instances when the function is used as a
4364  * constructor. Properties added to the instance template are added to
4365  * each object instance.
4366  *
4367  * A FunctionTemplate can have a prototype template. The prototype template
4368  * is used to create the prototype object of the function.
4369  *
4370  * The following example shows how to use a FunctionTemplate:
4371  *
4372  * \code
4373  *    v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New();
4374  *    t->Set("func_property", v8::Number::New(1));
4375  *
4376  *    v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
4377  *    proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback));
4378  *    proto_t->Set("proto_const", v8::Number::New(2));
4379  *
4380  *    v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
4381  *    instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback);
4382  *    instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...);
4383  *    instance_t->Set("instance_property", Number::New(3));
4384  *
4385  *    v8::Local<v8::Function> function = t->GetFunction();
4386  *    v8::Local<v8::Object> instance = function->NewInstance();
4387  * \endcode
4388  *
4389  * Let's use "function" as the JS variable name of the function object
4390  * and "instance" for the instance object created above.  The function
4391  * and the instance will have the following properties:
4392  *
4393  * \code
4394  *   func_property in function == true;
4395  *   function.func_property == 1;
4396  *
4397  *   function.prototype.proto_method() invokes 'InvokeCallback'
4398  *   function.prototype.proto_const == 2;
4399  *
4400  *   instance instanceof function == true;
4401  *   instance.instance_accessor calls 'InstanceAccessorCallback'
4402  *   instance.instance_property == 3;
4403  * \endcode
4404  *
4405  * A FunctionTemplate can inherit from another one by calling the
4406  * FunctionTemplate::Inherit method.  The following graph illustrates
4407  * the semantics of inheritance:
4408  *
4409  * \code
4410  *   FunctionTemplate Parent  -> Parent() . prototype -> { }
4411  *     ^                                                  ^
4412  *     | Inherit(Parent)                                  | .__proto__
4413  *     |                                                  |
4414  *   FunctionTemplate Child   -> Child()  . prototype -> { }
4415  * \endcode
4416  *
4417  * A FunctionTemplate 'Child' inherits from 'Parent', the prototype
4418  * object of the Child() function has __proto__ pointing to the
4419  * Parent() function's prototype object. An instance of the Child
4420  * function has all properties on Parent's instance templates.
4421  *
4422  * Let Parent be the FunctionTemplate initialized in the previous
4423  * section and create a Child FunctionTemplate by:
4424  *
4425  * \code
4426  *   Local<FunctionTemplate> parent = t;
4427  *   Local<FunctionTemplate> child = FunctionTemplate::New();
4428  *   child->Inherit(parent);
4429  *
4430  *   Local<Function> child_function = child->GetFunction();
4431  *   Local<Object> child_instance = child_function->NewInstance();
4432  * \endcode
4433  *
4434  * The Child function and Child instance will have the following
4435  * properties:
4436  *
4437  * \code
4438  *   child_func.prototype.__proto__ == function.prototype;
4439  *   child_instance.instance_accessor calls 'InstanceAccessorCallback'
4440  *   child_instance.instance_property == 3;
4441  * \endcode
4442  */
4443 class V8_EXPORT FunctionTemplate : public Template {
4444  public:
4445   /** Creates a function template.*/
4446   static Local<FunctionTemplate> New(
4447       Isolate* isolate, FunctionCallback callback = 0,
4448       Local<Value> data = Local<Value>(),
4449       Local<Signature> signature = Local<Signature>(), int length = 0);
4450 
4451   /**
4452    * Creates a function template with a fast handler. If a fast handler is set,
4453    * the callback cannot be null.
4454    */
4455   static Local<FunctionTemplate> NewWithFastHandler(
4456       Isolate* isolate, FunctionCallback callback,
4457       experimental::FastAccessorBuilder* fast_handler = nullptr,
4458       Local<Value> data = Local<Value>(),
4459       Local<Signature> signature = Local<Signature>(), int length = 0);
4460 
4461   /** Returns the unique function instance in the current execution context.*/
4462   V8_DEPRECATE_SOON("Use maybe version", Local<Function> GetFunction());
4463   V8_WARN_UNUSED_RESULT MaybeLocal<Function> GetFunction(
4464       Local<Context> context);
4465 
4466   /**
4467    * Set the call-handler callback for a FunctionTemplate.  This
4468    * callback is called whenever the function created from this
4469    * FunctionTemplate is called.
4470    */
4471   void SetCallHandler(
4472       FunctionCallback callback, Local<Value> data = Local<Value>(),
4473       experimental::FastAccessorBuilder* fast_handler = nullptr);
4474 
4475   /** Set the predefined length property for the FunctionTemplate. */
4476   void SetLength(int length);
4477 
4478   /** Get the InstanceTemplate. */
4479   Local<ObjectTemplate> InstanceTemplate();
4480 
4481   /** Causes the function template to inherit from a parent function template.*/
4482   void Inherit(Local<FunctionTemplate> parent);
4483 
4484   /**
4485    * A PrototypeTemplate is the template used to create the prototype object
4486    * of the function created by this template.
4487    */
4488   Local<ObjectTemplate> PrototypeTemplate();
4489 
4490   /**
4491    * Set the class name of the FunctionTemplate.  This is used for
4492    * printing objects created with the function created from the
4493    * FunctionTemplate as its constructor.
4494    */
4495   void SetClassName(Local<String> name);
4496 
4497 
4498   /**
4499    * When set to true, no access check will be performed on the receiver of a
4500    * function call.  Currently defaults to true, but this is subject to change.
4501    */
4502   void SetAcceptAnyReceiver(bool value);
4503 
4504   /**
4505    * Determines whether the __proto__ accessor ignores instances of
4506    * the function template.  If instances of the function template are
4507    * ignored, __proto__ skips all instances and instead returns the
4508    * next object in the prototype chain.
4509    *
4510    * Call with a value of true to make the __proto__ accessor ignore
4511    * instances of the function template.  Call with a value of false
4512    * to make the __proto__ accessor not ignore instances of the
4513    * function template.  By default, instances of a function template
4514    * are not ignored.
4515    */
4516   void SetHiddenPrototype(bool value);
4517 
4518   /**
4519    * Sets the ReadOnly flag in the attributes of the 'prototype' property
4520    * of functions created from this FunctionTemplate to true.
4521    */
4522   void ReadOnlyPrototype();
4523 
4524   /**
4525    * Removes the prototype property from functions created from this
4526    * FunctionTemplate.
4527    */
4528   void RemovePrototype();
4529 
4530   /**
4531    * Returns true if the given object is an instance of this function
4532    * template.
4533    */
4534   bool HasInstance(Local<Value> object);
4535 
4536  private:
4537   FunctionTemplate();
4538   friend class Context;
4539   friend class ObjectTemplate;
4540 };
4541 
4542 
4543 enum class PropertyHandlerFlags {
4544   kNone = 0,
4545   // See ALL_CAN_READ above.
4546   kAllCanRead = 1,
4547   // Will not call into interceptor for properties on the receiver or prototype
4548   // chain.  Currently only valid for named interceptors.
4549   kNonMasking = 1 << 1,
4550   // Will not call into interceptor for symbol lookup.  Only meaningful for
4551   // named interceptors.
4552   kOnlyInterceptStrings = 1 << 2,
4553 };
4554 
4555 
4556 struct NamedPropertyHandlerConfiguration {
4557   NamedPropertyHandlerConfiguration(
4558       /** Note: getter is required **/
4559       GenericNamedPropertyGetterCallback getter = 0,
4560       GenericNamedPropertySetterCallback setter = 0,
4561       GenericNamedPropertyQueryCallback query = 0,
4562       GenericNamedPropertyDeleterCallback deleter = 0,
4563       GenericNamedPropertyEnumeratorCallback enumerator = 0,
4564       Local<Value> data = Local<Value>(),
4565       PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterNamedPropertyHandlerConfiguration4566       : getter(getter),
4567         setter(setter),
4568         query(query),
4569         deleter(deleter),
4570         enumerator(enumerator),
4571         data(data),
4572         flags(flags) {}
4573 
4574   GenericNamedPropertyGetterCallback getter;
4575   GenericNamedPropertySetterCallback setter;
4576   GenericNamedPropertyQueryCallback query;
4577   GenericNamedPropertyDeleterCallback deleter;
4578   GenericNamedPropertyEnumeratorCallback enumerator;
4579   Local<Value> data;
4580   PropertyHandlerFlags flags;
4581 };
4582 
4583 
4584 struct IndexedPropertyHandlerConfiguration {
4585   IndexedPropertyHandlerConfiguration(
4586       /** Note: getter is required **/
4587       IndexedPropertyGetterCallback getter = 0,
4588       IndexedPropertySetterCallback setter = 0,
4589       IndexedPropertyQueryCallback query = 0,
4590       IndexedPropertyDeleterCallback deleter = 0,
4591       IndexedPropertyEnumeratorCallback enumerator = 0,
4592       Local<Value> data = Local<Value>(),
4593       PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterIndexedPropertyHandlerConfiguration4594       : getter(getter),
4595         setter(setter),
4596         query(query),
4597         deleter(deleter),
4598         enumerator(enumerator),
4599         data(data),
4600         flags(flags) {}
4601 
4602   IndexedPropertyGetterCallback getter;
4603   IndexedPropertySetterCallback setter;
4604   IndexedPropertyQueryCallback query;
4605   IndexedPropertyDeleterCallback deleter;
4606   IndexedPropertyEnumeratorCallback enumerator;
4607   Local<Value> data;
4608   PropertyHandlerFlags flags;
4609 };
4610 
4611 
4612 /**
4613  * An ObjectTemplate is used to create objects at runtime.
4614  *
4615  * Properties added to an ObjectTemplate are added to each object
4616  * created from the ObjectTemplate.
4617  */
4618 class V8_EXPORT ObjectTemplate : public Template {
4619  public:
4620   /** Creates an ObjectTemplate. */
4621   static Local<ObjectTemplate> New(
4622       Isolate* isolate,
4623       Local<FunctionTemplate> constructor = Local<FunctionTemplate>());
4624   static V8_DEPRECATED("Use isolate version", Local<ObjectTemplate> New());
4625 
4626   /** Creates a new instance of this template.*/
4627   V8_DEPRECATE_SOON("Use maybe version", Local<Object> NewInstance());
4628   V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(Local<Context> context);
4629 
4630   /**
4631    * Sets an accessor on the object template.
4632    *
4633    * Whenever the property with the given name is accessed on objects
4634    * created from this ObjectTemplate the getter and setter callbacks
4635    * are called instead of getting and setting the property directly
4636    * on the JavaScript object.
4637    *
4638    * \param name The name of the property for which an accessor is added.
4639    * \param getter The callback to invoke when getting the property.
4640    * \param setter The callback to invoke when setting the property.
4641    * \param data A piece of data that will be passed to the getter and setter
4642    *   callbacks whenever they are invoked.
4643    * \param settings Access control settings for the accessor. This is a bit
4644    *   field consisting of one of more of
4645    *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
4646    *   The default is to not allow cross-context access.
4647    *   ALL_CAN_READ means that all cross-context reads are allowed.
4648    *   ALL_CAN_WRITE means that all cross-context writes are allowed.
4649    *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
4650    *   cross-context access.
4651    * \param attribute The attributes of the property for which an accessor
4652    *   is added.
4653    * \param signature The signature describes valid receivers for the accessor
4654    *   and is used to perform implicit instance checks against them. If the
4655    *   receiver is incompatible (i.e. is not an instance of the constructor as
4656    *   defined by FunctionTemplate::HasInstance()), an implicit TypeError is
4657    *   thrown and no callback is invoked.
4658    */
4659   void SetAccessor(
4660       Local<String> name, AccessorGetterCallback getter,
4661       AccessorSetterCallback setter = 0, Local<Value> data = Local<Value>(),
4662       AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
4663       Local<AccessorSignature> signature = Local<AccessorSignature>());
4664   void SetAccessor(
4665       Local<Name> name, AccessorNameGetterCallback getter,
4666       AccessorNameSetterCallback setter = 0, Local<Value> data = Local<Value>(),
4667       AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
4668       Local<AccessorSignature> signature = Local<AccessorSignature>());
4669 
4670   /**
4671    * Sets a named property handler on the object template.
4672    *
4673    * Whenever a property whose name is a string is accessed on objects created
4674    * from this object template, the provided callback is invoked instead of
4675    * accessing the property directly on the JavaScript object.
4676    *
4677    * Note that new code should use the second version that can intercept
4678    * symbol-named properties as well as string-named properties.
4679    *
4680    * \param getter The callback to invoke when getting a property.
4681    * \param setter The callback to invoke when setting a property.
4682    * \param query The callback to invoke to check if a property is present,
4683    *   and if present, get its attributes.
4684    * \param deleter The callback to invoke when deleting a property.
4685    * \param enumerator The callback to invoke to enumerate all the named
4686    *   properties of an object.
4687    * \param data A piece of data that will be passed to the callbacks
4688    *   whenever they are invoked.
4689    */
4690   // TODO(dcarney): deprecate
4691   void SetNamedPropertyHandler(NamedPropertyGetterCallback getter,
4692                                NamedPropertySetterCallback setter = 0,
4693                                NamedPropertyQueryCallback query = 0,
4694                                NamedPropertyDeleterCallback deleter = 0,
4695                                NamedPropertyEnumeratorCallback enumerator = 0,
4696                                Local<Value> data = Local<Value>());
4697   void SetHandler(const NamedPropertyHandlerConfiguration& configuration);
4698 
4699   /**
4700    * Sets an indexed property handler on the object template.
4701    *
4702    * Whenever an indexed property is accessed on objects created from
4703    * this object template, the provided callback is invoked instead of
4704    * accessing the property directly on the JavaScript object.
4705    *
4706    * \param getter The callback to invoke when getting a property.
4707    * \param setter The callback to invoke when setting a property.
4708    * \param query The callback to invoke to check if an object has a property.
4709    * \param deleter The callback to invoke when deleting a property.
4710    * \param enumerator The callback to invoke to enumerate all the indexed
4711    *   properties of an object.
4712    * \param data A piece of data that will be passed to the callbacks
4713    *   whenever they are invoked.
4714    */
4715   void SetHandler(const IndexedPropertyHandlerConfiguration& configuration);
4716   // TODO(dcarney): deprecate
4717   void SetIndexedPropertyHandler(
4718       IndexedPropertyGetterCallback getter,
4719       IndexedPropertySetterCallback setter = 0,
4720       IndexedPropertyQueryCallback query = 0,
4721       IndexedPropertyDeleterCallback deleter = 0,
4722       IndexedPropertyEnumeratorCallback enumerator = 0,
4723       Local<Value> data = Local<Value>()) {
4724     SetHandler(IndexedPropertyHandlerConfiguration(getter, setter, query,
4725                                                    deleter, enumerator, data));
4726   }
4727   /**
4728    * Sets the callback to be used when calling instances created from
4729    * this template as a function.  If no callback is set, instances
4730    * behave like normal JavaScript objects that cannot be called as a
4731    * function.
4732    */
4733   void SetCallAsFunctionHandler(FunctionCallback callback,
4734                                 Local<Value> data = Local<Value>());
4735 
4736   /**
4737    * Mark object instances of the template as undetectable.
4738    *
4739    * In many ways, undetectable objects behave as though they are not
4740    * there.  They behave like 'undefined' in conditionals and when
4741    * printed.  However, properties can be accessed and called as on
4742    * normal objects.
4743    */
4744   void MarkAsUndetectable();
4745 
4746   /**
4747    * Sets access check callback on the object template and enables access
4748    * checks.
4749    *
4750    * When accessing properties on instances of this object template,
4751    * the access check callback will be called to determine whether or
4752    * not to allow cross-context access to the properties.
4753    */
4754   void SetAccessCheckCallback(AccessCheckCallback callback,
4755                               Local<Value> data = Local<Value>());
4756 
4757   V8_DEPRECATED(
4758       "Use SetAccessCheckCallback instead",
4759       void SetAccessCheckCallbacks(NamedSecurityCallback named_handler,
4760                                    IndexedSecurityCallback indexed_handler,
4761                                    Local<Value> data = Local<Value>()));
4762 
4763   /**
4764    * Gets the number of internal fields for objects generated from
4765    * this template.
4766    */
4767   int InternalFieldCount();
4768 
4769   /**
4770    * Sets the number of internal fields for objects generated from
4771    * this template.
4772    */
4773   void SetInternalFieldCount(int value);
4774 
4775  private:
4776   ObjectTemplate();
4777   static Local<ObjectTemplate> New(internal::Isolate* isolate,
4778                                    Local<FunctionTemplate> constructor);
4779   friend class FunctionTemplate;
4780 };
4781 
4782 
4783 /**
4784  * A Signature specifies which receiver is valid for a function.
4785  */
4786 class V8_EXPORT Signature : public Data {
4787  public:
4788   static Local<Signature> New(
4789       Isolate* isolate,
4790       Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
4791 
4792  private:
4793   Signature();
4794 };
4795 
4796 
4797 /**
4798  * An AccessorSignature specifies which receivers are valid parameters
4799  * to an accessor callback.
4800  */
4801 class V8_EXPORT AccessorSignature : public Data {
4802  public:
4803   static Local<AccessorSignature> New(
4804       Isolate* isolate,
4805       Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
4806 
4807  private:
4808   AccessorSignature();
4809 };
4810 
4811 
4812 // --- Extensions ---
4813 
4814 class V8_EXPORT ExternalOneByteStringResourceImpl
4815     : public String::ExternalOneByteStringResource {
4816  public:
ExternalOneByteStringResourceImpl()4817   ExternalOneByteStringResourceImpl() : data_(0), length_(0) {}
ExternalOneByteStringResourceImpl(const char * data,size_t length)4818   ExternalOneByteStringResourceImpl(const char* data, size_t length)
4819       : data_(data), length_(length) {}
data()4820   const char* data() const { return data_; }
length()4821   size_t length() const { return length_; }
4822 
4823  private:
4824   const char* data_;
4825   size_t length_;
4826 };
4827 
4828 /**
4829  * Ignore
4830  */
4831 class V8_EXPORT Extension {  // NOLINT
4832  public:
4833   // Note that the strings passed into this constructor must live as long
4834   // as the Extension itself.
4835   Extension(const char* name,
4836             const char* source = 0,
4837             int dep_count = 0,
4838             const char** deps = 0,
4839             int source_length = -1);
~Extension()4840   virtual ~Extension() { }
GetNativeFunctionTemplate(v8::Isolate * isolate,v8::Local<v8::String> name)4841   virtual v8::Local<v8::FunctionTemplate> GetNativeFunctionTemplate(
4842       v8::Isolate* isolate, v8::Local<v8::String> name) {
4843     return v8::Local<v8::FunctionTemplate>();
4844   }
4845 
name()4846   const char* name() const { return name_; }
source_length()4847   size_t source_length() const { return source_length_; }
source()4848   const String::ExternalOneByteStringResource* source() const {
4849     return &source_; }
dependency_count()4850   int dependency_count() { return dep_count_; }
dependencies()4851   const char** dependencies() { return deps_; }
set_auto_enable(bool value)4852   void set_auto_enable(bool value) { auto_enable_ = value; }
auto_enable()4853   bool auto_enable() { return auto_enable_; }
4854 
4855  private:
4856   const char* name_;
4857   size_t source_length_;  // expected to initialize before source_
4858   ExternalOneByteStringResourceImpl source_;
4859   int dep_count_;
4860   const char** deps_;
4861   bool auto_enable_;
4862 
4863   // Disallow copying and assigning.
4864   Extension(const Extension&);
4865   void operator=(const Extension&);
4866 };
4867 
4868 
4869 void V8_EXPORT RegisterExtension(Extension* extension);
4870 
4871 
4872 // --- Statics ---
4873 
4874 V8_INLINE Local<Primitive> Undefined(Isolate* isolate);
4875 V8_INLINE Local<Primitive> Null(Isolate* isolate);
4876 V8_INLINE Local<Boolean> True(Isolate* isolate);
4877 V8_INLINE Local<Boolean> False(Isolate* isolate);
4878 
4879 
4880 /**
4881  * A set of constraints that specifies the limits of the runtime's memory use.
4882  * You must set the heap size before initializing the VM - the size cannot be
4883  * adjusted after the VM is initialized.
4884  *
4885  * If you are using threads then you should hold the V8::Locker lock while
4886  * setting the stack limit and you must set a non-default stack limit separately
4887  * for each thread.
4888  */
4889 class V8_EXPORT ResourceConstraints {
4890  public:
4891   ResourceConstraints();
4892 
4893   /**
4894    * Configures the constraints with reasonable default values based on the
4895    * capabilities of the current device the VM is running on.
4896    *
4897    * \param physical_memory The total amount of physical memory on the current
4898    *   device, in bytes.
4899    * \param virtual_memory_limit The amount of virtual memory on the current
4900    *   device, in bytes, or zero, if there is no limit.
4901    */
4902   void ConfigureDefaults(uint64_t physical_memory,
4903                          uint64_t virtual_memory_limit);
4904 
max_semi_space_size()4905   int max_semi_space_size() const { return max_semi_space_size_; }
set_max_semi_space_size(int value)4906   void set_max_semi_space_size(int value) { max_semi_space_size_ = value; }
max_old_space_size()4907   int max_old_space_size() const { return max_old_space_size_; }
set_max_old_space_size(int value)4908   void set_max_old_space_size(int value) { max_old_space_size_ = value; }
max_executable_size()4909   int max_executable_size() const { return max_executable_size_; }
set_max_executable_size(int value)4910   void set_max_executable_size(int value) { max_executable_size_ = value; }
stack_limit()4911   uint32_t* stack_limit() const { return stack_limit_; }
4912   // Sets an address beyond which the VM's stack may not grow.
set_stack_limit(uint32_t * value)4913   void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
code_range_size()4914   size_t code_range_size() const { return code_range_size_; }
set_code_range_size(size_t value)4915   void set_code_range_size(size_t value) {
4916     code_range_size_ = value;
4917   }
4918 
4919  private:
4920   int max_semi_space_size_;
4921   int max_old_space_size_;
4922   int max_executable_size_;
4923   uint32_t* stack_limit_;
4924   size_t code_range_size_;
4925 };
4926 
4927 
4928 // --- Exceptions ---
4929 
4930 
4931 typedef void (*FatalErrorCallback)(const char* location, const char* message);
4932 
4933 
4934 typedef void (*MessageCallback)(Local<Message> message, Local<Value> error);
4935 
4936 // --- Tracing ---
4937 
4938 typedef void (*LogEventCallback)(const char* name, int event);
4939 
4940 /**
4941  * Create new error objects by calling the corresponding error object
4942  * constructor with the message.
4943  */
4944 class V8_EXPORT Exception {
4945  public:
4946   static Local<Value> RangeError(Local<String> message);
4947   static Local<Value> ReferenceError(Local<String> message);
4948   static Local<Value> SyntaxError(Local<String> message);
4949   static Local<Value> TypeError(Local<String> message);
4950   static Local<Value> Error(Local<String> message);
4951 
4952   /**
4953    * Creates an error message for the given exception.
4954    * Will try to reconstruct the original stack trace from the exception value,
4955    * or capture the current stack trace if not available.
4956    */
4957   static Local<Message> CreateMessage(Isolate* isolate, Local<Value> exception);
4958   V8_DEPRECATED("Use version with an Isolate*",
4959                 static Local<Message> CreateMessage(Local<Value> exception));
4960 
4961   /**
4962    * Returns the original stack trace that was captured at the creation time
4963    * of a given exception, or an empty handle if not available.
4964    */
4965   static Local<StackTrace> GetStackTrace(Local<Value> exception);
4966 };
4967 
4968 
4969 // --- Counters Callbacks ---
4970 
4971 typedef int* (*CounterLookupCallback)(const char* name);
4972 
4973 typedef void* (*CreateHistogramCallback)(const char* name,
4974                                          int min,
4975                                          int max,
4976                                          size_t buckets);
4977 
4978 typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
4979 
4980 // --- Memory Allocation Callback ---
4981 enum ObjectSpace {
4982   kObjectSpaceNewSpace = 1 << 0,
4983   kObjectSpaceOldSpace = 1 << 1,
4984   kObjectSpaceCodeSpace = 1 << 2,
4985   kObjectSpaceMapSpace = 1 << 3,
4986   kObjectSpaceLoSpace = 1 << 4,
4987   kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldSpace |
4988                     kObjectSpaceCodeSpace | kObjectSpaceMapSpace |
4989                     kObjectSpaceLoSpace
4990 };
4991 
4992   enum AllocationAction {
4993     kAllocationActionAllocate = 1 << 0,
4994     kAllocationActionFree = 1 << 1,
4995     kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree
4996   };
4997 
4998 typedef void (*MemoryAllocationCallback)(ObjectSpace space,
4999                                          AllocationAction action,
5000                                          int size);
5001 
5002 // --- Leave Script Callback ---
5003 typedef void (*CallCompletedCallback)();
5004 
5005 // --- Promise Reject Callback ---
5006 enum PromiseRejectEvent {
5007   kPromiseRejectWithNoHandler = 0,
5008   kPromiseHandlerAddedAfterReject = 1
5009 };
5010 
5011 class PromiseRejectMessage {
5012  public:
PromiseRejectMessage(Local<Promise> promise,PromiseRejectEvent event,Local<Value> value,Local<StackTrace> stack_trace)5013   PromiseRejectMessage(Local<Promise> promise, PromiseRejectEvent event,
5014                        Local<Value> value, Local<StackTrace> stack_trace)
5015       : promise_(promise),
5016         event_(event),
5017         value_(value),
5018         stack_trace_(stack_trace) {}
5019 
GetPromise()5020   V8_INLINE Local<Promise> GetPromise() const { return promise_; }
GetEvent()5021   V8_INLINE PromiseRejectEvent GetEvent() const { return event_; }
GetValue()5022   V8_INLINE Local<Value> GetValue() const { return value_; }
5023 
5024   V8_DEPRECATED("Use v8::Exception::CreateMessage(GetValue())->GetStackTrace()",
5025                 V8_INLINE Local<StackTrace> GetStackTrace() const) {
5026     return stack_trace_;
5027   }
5028 
5029  private:
5030   Local<Promise> promise_;
5031   PromiseRejectEvent event_;
5032   Local<Value> value_;
5033   Local<StackTrace> stack_trace_;
5034 };
5035 
5036 typedef void (*PromiseRejectCallback)(PromiseRejectMessage message);
5037 
5038 // --- Microtask Callback ---
5039 typedef void (*MicrotaskCallback)(void* data);
5040 
5041 // --- Failed Access Check Callback ---
5042 typedef void (*FailedAccessCheckCallback)(Local<Object> target,
5043                                           AccessType type,
5044                                           Local<Value> data);
5045 
5046 // --- AllowCodeGenerationFromStrings callbacks ---
5047 
5048 /**
5049  * Callback to check if code generation from strings is allowed. See
5050  * Context::AllowCodeGenerationFromStrings.
5051  */
5052 typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context);
5053 
5054 // --- Garbage Collection Callbacks ---
5055 
5056 /**
5057  * Applications can register callback functions which will be called before and
5058  * after certain garbage collection operations.  Allocations are not allowed in
5059  * the callback functions, you therefore cannot manipulate objects (set or
5060  * delete properties for example) since it is possible such operations will
5061  * result in the allocation of objects.
5062  */
5063 enum GCType {
5064   kGCTypeScavenge = 1 << 0,
5065   kGCTypeMarkSweepCompact = 1 << 1,
5066   kGCTypeIncrementalMarking = 1 << 2,
5067   kGCTypeProcessWeakCallbacks = 1 << 3,
5068   kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact |
5069                kGCTypeIncrementalMarking | kGCTypeProcessWeakCallbacks
5070 };
5071 
5072 enum GCCallbackFlags {
5073   kNoGCCallbackFlags = 0,
5074   kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1,
5075   kGCCallbackFlagForced = 1 << 2,
5076   kGCCallbackFlagSynchronousPhantomCallbackProcessing = 1 << 3
5077 };
5078 
5079 typedef void (*GCCallback)(GCType type, GCCallbackFlags flags);
5080 
5081 typedef void (*InterruptCallback)(Isolate* isolate, void* data);
5082 
5083 
5084 /**
5085  * Collection of V8 heap information.
5086  *
5087  * Instances of this class can be passed to v8::V8::HeapStatistics to
5088  * get heap statistics from V8.
5089  */
5090 class V8_EXPORT HeapStatistics {
5091  public:
5092   HeapStatistics();
total_heap_size()5093   size_t total_heap_size() { return total_heap_size_; }
total_heap_size_executable()5094   size_t total_heap_size_executable() { return total_heap_size_executable_; }
total_physical_size()5095   size_t total_physical_size() { return total_physical_size_; }
total_available_size()5096   size_t total_available_size() { return total_available_size_; }
used_heap_size()5097   size_t used_heap_size() { return used_heap_size_; }
heap_size_limit()5098   size_t heap_size_limit() { return heap_size_limit_; }
does_zap_garbage()5099   size_t does_zap_garbage() { return does_zap_garbage_; }
5100 
5101  private:
5102   size_t total_heap_size_;
5103   size_t total_heap_size_executable_;
5104   size_t total_physical_size_;
5105   size_t total_available_size_;
5106   size_t used_heap_size_;
5107   size_t heap_size_limit_;
5108   bool does_zap_garbage_;
5109 
5110   friend class V8;
5111   friend class Isolate;
5112 };
5113 
5114 
5115 class V8_EXPORT HeapSpaceStatistics {
5116  public:
5117   HeapSpaceStatistics();
space_name()5118   const char* space_name() { return space_name_; }
space_size()5119   size_t space_size() { return space_size_; }
space_used_size()5120   size_t space_used_size() { return space_used_size_; }
space_available_size()5121   size_t space_available_size() { return space_available_size_; }
physical_space_size()5122   size_t physical_space_size() { return physical_space_size_; }
5123 
5124  private:
5125   const char* space_name_;
5126   size_t space_size_;
5127   size_t space_used_size_;
5128   size_t space_available_size_;
5129   size_t physical_space_size_;
5130 
5131   friend class Isolate;
5132 };
5133 
5134 
5135 class V8_EXPORT HeapObjectStatistics {
5136  public:
5137   HeapObjectStatistics();
object_type()5138   const char* object_type() { return object_type_; }
object_sub_type()5139   const char* object_sub_type() { return object_sub_type_; }
object_count()5140   size_t object_count() { return object_count_; }
object_size()5141   size_t object_size() { return object_size_; }
5142 
5143  private:
5144   const char* object_type_;
5145   const char* object_sub_type_;
5146   size_t object_count_;
5147   size_t object_size_;
5148 
5149   friend class Isolate;
5150 };
5151 
5152 
5153 class RetainedObjectInfo;
5154 
5155 
5156 /**
5157  * FunctionEntryHook is the type of the profile entry hook called at entry to
5158  * any generated function when function-level profiling is enabled.
5159  *
5160  * \param function the address of the function that's being entered.
5161  * \param return_addr_location points to a location on stack where the machine
5162  *    return address resides. This can be used to identify the caller of
5163  *    \p function, and/or modified to divert execution when \p function exits.
5164  *
5165  * \note the entry hook must not cause garbage collection.
5166  */
5167 typedef void (*FunctionEntryHook)(uintptr_t function,
5168                                   uintptr_t return_addr_location);
5169 
5170 /**
5171  * A JIT code event is issued each time code is added, moved or removed.
5172  *
5173  * \note removal events are not currently issued.
5174  */
5175 struct JitCodeEvent {
5176   enum EventType {
5177     CODE_ADDED,
5178     CODE_MOVED,
5179     CODE_REMOVED,
5180     CODE_ADD_LINE_POS_INFO,
5181     CODE_START_LINE_INFO_RECORDING,
5182     CODE_END_LINE_INFO_RECORDING
5183   };
5184   // Definition of the code position type. The "POSITION" type means the place
5185   // in the source code which are of interest when making stack traces to
5186   // pin-point the source location of a stack frame as close as possible.
5187   // The "STATEMENT_POSITION" means the place at the beginning of each
5188   // statement, and is used to indicate possible break locations.
5189   enum PositionType { POSITION, STATEMENT_POSITION };
5190 
5191   // Type of event.
5192   EventType type;
5193   // Start of the instructions.
5194   void* code_start;
5195   // Size of the instructions.
5196   size_t code_len;
5197   // Script info for CODE_ADDED event.
5198   Local<UnboundScript> script;
5199   // User-defined data for *_LINE_INFO_* event. It's used to hold the source
5200   // code line information which is returned from the
5201   // CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent
5202   // CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events.
5203   void* user_data;
5204 
5205   struct name_t {
5206     // Name of the object associated with the code, note that the string is not
5207     // zero-terminated.
5208     const char* str;
5209     // Number of chars in str.
5210     size_t len;
5211   };
5212 
5213   struct line_info_t {
5214     // PC offset
5215     size_t offset;
5216     // Code postion
5217     size_t pos;
5218     // The position type.
5219     PositionType position_type;
5220   };
5221 
5222   union {
5223     // Only valid for CODE_ADDED.
5224     struct name_t name;
5225 
5226     // Only valid for CODE_ADD_LINE_POS_INFO
5227     struct line_info_t line_info;
5228 
5229     // New location of instructions. Only valid for CODE_MOVED.
5230     void* new_code_start;
5231   };
5232 };
5233 
5234 /**
5235  * Option flags passed to the SetJitCodeEventHandler function.
5236  */
5237 enum JitCodeEventOptions {
5238   kJitCodeEventDefault = 0,
5239   // Generate callbacks for already existent code.
5240   kJitCodeEventEnumExisting = 1
5241 };
5242 
5243 
5244 /**
5245  * Callback function passed to SetJitCodeEventHandler.
5246  *
5247  * \param event code add, move or removal event.
5248  */
5249 typedef void (*JitCodeEventHandler)(const JitCodeEvent* event);
5250 
5251 
5252 /**
5253  * Interface for iterating through all external resources in the heap.
5254  */
5255 class V8_EXPORT ExternalResourceVisitor {  // NOLINT
5256  public:
~ExternalResourceVisitor()5257   virtual ~ExternalResourceVisitor() {}
VisitExternalString(Local<String> string)5258   virtual void VisitExternalString(Local<String> string) {}
5259 };
5260 
5261 
5262 /**
5263  * Interface for iterating through all the persistent handles in the heap.
5264  */
5265 class V8_EXPORT PersistentHandleVisitor {  // NOLINT
5266  public:
~PersistentHandleVisitor()5267   virtual ~PersistentHandleVisitor() {}
VisitPersistentHandle(Persistent<Value> * value,uint16_t class_id)5268   virtual void VisitPersistentHandle(Persistent<Value>* value,
5269                                      uint16_t class_id) {}
5270 };
5271 
5272 
5273 /**
5274  * Isolate represents an isolated instance of the V8 engine.  V8 isolates have
5275  * completely separate states.  Objects from one isolate must not be used in
5276  * other isolates.  The embedder can create multiple isolates and use them in
5277  * parallel in multiple threads.  An isolate can be entered by at most one
5278  * thread at any given time.  The Locker/Unlocker API must be used to
5279  * synchronize.
5280  */
5281 class V8_EXPORT Isolate {
5282  public:
5283   /**
5284    * Initial configuration parameters for a new Isolate.
5285    */
5286   struct CreateParams {
CreateParamsCreateParams5287     CreateParams()
5288         : entry_hook(NULL),
5289           code_event_handler(NULL),
5290           snapshot_blob(NULL),
5291           counter_lookup_callback(NULL),
5292           create_histogram_callback(NULL),
5293           add_histogram_sample_callback(NULL),
5294           array_buffer_allocator(NULL) {}
5295 
5296     /**
5297      * The optional entry_hook allows the host application to provide the
5298      * address of a function that's invoked on entry to every V8-generated
5299      * function.  Note that entry_hook is invoked at the very start of each
5300      * generated function. Furthermore, if an  entry_hook is given, V8 will
5301      * always run without a context snapshot.
5302      */
5303     FunctionEntryHook entry_hook;
5304 
5305     /**
5306      * Allows the host application to provide the address of a function that is
5307      * notified each time code is added, moved or removed.
5308      */
5309     JitCodeEventHandler code_event_handler;
5310 
5311     /**
5312      * ResourceConstraints to use for the new Isolate.
5313      */
5314     ResourceConstraints constraints;
5315 
5316     /**
5317      * Explicitly specify a startup snapshot blob. The embedder owns the blob.
5318      */
5319     StartupData* snapshot_blob;
5320 
5321 
5322     /**
5323      * Enables the host application to provide a mechanism for recording
5324      * statistics counters.
5325      */
5326     CounterLookupCallback counter_lookup_callback;
5327 
5328     /**
5329      * Enables the host application to provide a mechanism for recording
5330      * histograms. The CreateHistogram function returns a
5331      * histogram which will later be passed to the AddHistogramSample
5332      * function.
5333      */
5334     CreateHistogramCallback create_histogram_callback;
5335     AddHistogramSampleCallback add_histogram_sample_callback;
5336 
5337     /**
5338      * The ArrayBuffer::Allocator to use for allocating and freeing the backing
5339      * store of ArrayBuffers.
5340      */
5341     ArrayBuffer::Allocator* array_buffer_allocator;
5342   };
5343 
5344 
5345   /**
5346    * Stack-allocated class which sets the isolate for all operations
5347    * executed within a local scope.
5348    */
5349   class V8_EXPORT Scope {
5350    public:
Scope(Isolate * isolate)5351     explicit Scope(Isolate* isolate) : isolate_(isolate) {
5352       isolate->Enter();
5353     }
5354 
~Scope()5355     ~Scope() { isolate_->Exit(); }
5356 
5357    private:
5358     Isolate* const isolate_;
5359 
5360     // Prevent copying of Scope objects.
5361     Scope(const Scope&);
5362     Scope& operator=(const Scope&);
5363   };
5364 
5365 
5366   /**
5367    * Assert that no Javascript code is invoked.
5368    */
5369   class V8_EXPORT DisallowJavascriptExecutionScope {
5370    public:
5371     enum OnFailure { CRASH_ON_FAILURE, THROW_ON_FAILURE };
5372 
5373     DisallowJavascriptExecutionScope(Isolate* isolate, OnFailure on_failure);
5374     ~DisallowJavascriptExecutionScope();
5375 
5376    private:
5377     bool on_failure_;
5378     void* internal_;
5379 
5380     // Prevent copying of Scope objects.
5381     DisallowJavascriptExecutionScope(const DisallowJavascriptExecutionScope&);
5382     DisallowJavascriptExecutionScope& operator=(
5383         const DisallowJavascriptExecutionScope&);
5384   };
5385 
5386 
5387   /**
5388    * Introduce exception to DisallowJavascriptExecutionScope.
5389    */
5390   class V8_EXPORT AllowJavascriptExecutionScope {
5391    public:
5392     explicit AllowJavascriptExecutionScope(Isolate* isolate);
5393     ~AllowJavascriptExecutionScope();
5394 
5395    private:
5396     void* internal_throws_;
5397     void* internal_assert_;
5398 
5399     // Prevent copying of Scope objects.
5400     AllowJavascriptExecutionScope(const AllowJavascriptExecutionScope&);
5401     AllowJavascriptExecutionScope& operator=(
5402         const AllowJavascriptExecutionScope&);
5403   };
5404 
5405   /**
5406    * Do not run microtasks while this scope is active, even if microtasks are
5407    * automatically executed otherwise.
5408    */
5409   class V8_EXPORT SuppressMicrotaskExecutionScope {
5410    public:
5411     explicit SuppressMicrotaskExecutionScope(Isolate* isolate);
5412     ~SuppressMicrotaskExecutionScope();
5413 
5414    private:
5415     internal::Isolate* isolate_;
5416 
5417     // Prevent copying of Scope objects.
5418     SuppressMicrotaskExecutionScope(const SuppressMicrotaskExecutionScope&);
5419     SuppressMicrotaskExecutionScope& operator=(
5420         const SuppressMicrotaskExecutionScope&);
5421   };
5422 
5423   /**
5424    * Types of garbage collections that can be requested via
5425    * RequestGarbageCollectionForTesting.
5426    */
5427   enum GarbageCollectionType {
5428     kFullGarbageCollection,
5429     kMinorGarbageCollection
5430   };
5431 
5432   /**
5433    * Features reported via the SetUseCounterCallback callback. Do not change
5434    * assigned numbers of existing items; add new features to the end of this
5435    * list.
5436    */
5437   enum UseCounterFeature {
5438     kUseAsm = 0,
5439     kBreakIterator = 1,
5440     kLegacyConst = 2,
5441     kMarkDequeOverflow = 3,
5442     kStoreBufferOverflow = 4,
5443     kSlotsBufferOverflow = 5,
5444     kObjectObserve = 6,
5445     kForcedGC = 7,
5446     kSloppyMode = 8,
5447     kStrictMode = 9,
5448     kStrongMode = 10,
5449     kRegExpPrototypeStickyGetter = 11,
5450     kRegExpPrototypeToString = 12,
5451     kRegExpPrototypeUnicodeGetter = 13,
5452     kIntlV8Parse = 14,
5453     kIntlPattern = 15,
5454     kIntlResolved = 16,
5455     kPromiseChain = 17,
5456     kPromiseAccept = 18,
5457     kPromiseDefer = 19,
5458     kUseCounterFeatureCount  // This enum value must be last.
5459   };
5460 
5461   typedef void (*UseCounterCallback)(Isolate* isolate,
5462                                      UseCounterFeature feature);
5463 
5464 
5465   /**
5466    * Creates a new isolate.  Does not change the currently entered
5467    * isolate.
5468    *
5469    * When an isolate is no longer used its resources should be freed
5470    * by calling Dispose().  Using the delete operator is not allowed.
5471    *
5472    * V8::Initialize() must have run prior to this.
5473    */
5474   static Isolate* New(const CreateParams& params);
5475 
5476   /**
5477    * Returns the entered isolate for the current thread or NULL in
5478    * case there is no current isolate.
5479    *
5480    * This method must not be invoked before V8::Initialize() was invoked.
5481    */
5482   static Isolate* GetCurrent();
5483 
5484   /**
5485    * Custom callback used by embedders to help V8 determine if it should abort
5486    * when it throws and no internal handler is predicted to catch the
5487    * exception. If --abort-on-uncaught-exception is used on the command line,
5488    * then V8 will abort if either:
5489    * - no custom callback is set.
5490    * - the custom callback set returns true.
5491    * Otherwise, the custom callback will not be called and V8 will not abort.
5492    */
5493   typedef bool (*AbortOnUncaughtExceptionCallback)(Isolate*);
5494   void SetAbortOnUncaughtExceptionCallback(
5495       AbortOnUncaughtExceptionCallback callback);
5496 
5497   /**
5498    * Methods below this point require holding a lock (using Locker) in
5499    * a multi-threaded environment.
5500    */
5501 
5502   /**
5503    * Sets this isolate as the entered one for the current thread.
5504    * Saves the previously entered one (if any), so that it can be
5505    * restored when exiting.  Re-entering an isolate is allowed.
5506    */
5507   void Enter();
5508 
5509   /**
5510    * Exits this isolate by restoring the previously entered one in the
5511    * current thread.  The isolate may still stay the same, if it was
5512    * entered more than once.
5513    *
5514    * Requires: this == Isolate::GetCurrent().
5515    */
5516   void Exit();
5517 
5518   /**
5519    * Disposes the isolate.  The isolate must not be entered by any
5520    * thread to be disposable.
5521    */
5522   void Dispose();
5523 
5524   /**
5525    * Discards all V8 thread-specific data for the Isolate. Should be used
5526    * if a thread is terminating and it has used an Isolate that will outlive
5527    * the thread -- all thread-specific data for an Isolate is discarded when
5528    * an Isolate is disposed so this call is pointless if an Isolate is about
5529    * to be Disposed.
5530    */
5531   void DiscardThreadSpecificMetadata();
5532 
5533   /**
5534    * Associate embedder-specific data with the isolate. |slot| has to be
5535    * between 0 and GetNumberOfDataSlots() - 1.
5536    */
5537   V8_INLINE void SetData(uint32_t slot, void* data);
5538 
5539   /**
5540    * Retrieve embedder-specific data from the isolate.
5541    * Returns NULL if SetData has never been called for the given |slot|.
5542    */
5543   V8_INLINE void* GetData(uint32_t slot);
5544 
5545   /**
5546    * Returns the maximum number of available embedder data slots. Valid slots
5547    * are in the range of 0 - GetNumberOfDataSlots() - 1.
5548    */
5549   V8_INLINE static uint32_t GetNumberOfDataSlots();
5550 
5551   /**
5552    * Get statistics about the heap memory usage.
5553    */
5554   void GetHeapStatistics(HeapStatistics* heap_statistics);
5555 
5556   /**
5557    * Returns the number of spaces in the heap.
5558    */
5559   size_t NumberOfHeapSpaces();
5560 
5561   /**
5562    * Get the memory usage of a space in the heap.
5563    *
5564    * \param space_statistics The HeapSpaceStatistics object to fill in
5565    *   statistics.
5566    * \param index The index of the space to get statistics from, which ranges
5567    *   from 0 to NumberOfHeapSpaces() - 1.
5568    * \returns true on success.
5569    */
5570   bool GetHeapSpaceStatistics(HeapSpaceStatistics* space_statistics,
5571                               size_t index);
5572 
5573   /**
5574    * Returns the number of types of objects tracked in the heap at GC.
5575    */
5576   size_t NumberOfTrackedHeapObjectTypes();
5577 
5578   /**
5579    * Get statistics about objects in the heap.
5580    *
5581    * \param object_statistics The HeapObjectStatistics object to fill in
5582    *   statistics of objects of given type, which were live in the previous GC.
5583    * \param type_index The index of the type of object to fill details about,
5584    *   which ranges from 0 to NumberOfTrackedHeapObjectTypes() - 1.
5585    * \returns true on success.
5586    */
5587   bool GetHeapObjectStatisticsAtLastGC(HeapObjectStatistics* object_statistics,
5588                                        size_t type_index);
5589 
5590   /**
5591    * Get a call stack sample from the isolate.
5592    * \param state Execution state.
5593    * \param frames Caller allocated buffer to store stack frames.
5594    * \param frames_limit Maximum number of frames to capture. The buffer must
5595    *                     be large enough to hold the number of frames.
5596    * \param sample_info The sample info is filled up by the function
5597    *                    provides number of actual captured stack frames and
5598    *                    the current VM state.
5599    * \note GetStackSample should only be called when the JS thread is paused or
5600    *       interrupted. Otherwise the behavior is undefined.
5601    */
5602   void GetStackSample(const RegisterState& state, void** frames,
5603                       size_t frames_limit, SampleInfo* sample_info);
5604 
5605   /**
5606    * Adjusts the amount of registered external memory. Used to give V8 an
5607    * indication of the amount of externally allocated memory that is kept alive
5608    * by JavaScript objects. V8 uses this to decide when to perform global
5609    * garbage collections. Registering externally allocated memory will trigger
5610    * global garbage collections more often than it would otherwise in an attempt
5611    * to garbage collect the JavaScript objects that keep the externally
5612    * allocated memory alive.
5613    *
5614    * \param change_in_bytes the change in externally allocated memory that is
5615    *   kept alive by JavaScript objects.
5616    * \returns the adjusted value.
5617    */
5618   V8_INLINE int64_t
5619       AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes);
5620 
5621   /**
5622    * Returns heap profiler for this isolate. Will return NULL until the isolate
5623    * is initialized.
5624    */
5625   HeapProfiler* GetHeapProfiler();
5626 
5627   /**
5628    * Returns CPU profiler for this isolate. Will return NULL unless the isolate
5629    * is initialized. It is the embedder's responsibility to stop all CPU
5630    * profiling activities if it has started any.
5631    */
5632   CpuProfiler* GetCpuProfiler();
5633 
5634   /** Returns true if this isolate has a current context. */
5635   bool InContext();
5636 
5637   /**
5638    * Returns the context of the currently running JavaScript, or the context
5639    * on the top of the stack if no JavaScript is running.
5640    */
5641   Local<Context> GetCurrentContext();
5642 
5643   /**
5644    * Returns the context of the calling JavaScript code.  That is the
5645    * context of the top-most JavaScript frame.  If there are no
5646    * JavaScript frames an empty handle is returned.
5647    */
5648   V8_DEPRECATE_SOON(
5649       "Calling context concept is not compatible with tail calls, and will be "
5650       "removed.",
5651       Local<Context> GetCallingContext());
5652 
5653   /** Returns the last context entered through V8's C++ API. */
5654   Local<Context> GetEnteredContext();
5655 
5656   /**
5657    * Schedules an exception to be thrown when returning to JavaScript.  When an
5658    * exception has been scheduled it is illegal to invoke any JavaScript
5659    * operation; the caller must return immediately and only after the exception
5660    * has been handled does it become legal to invoke JavaScript operations.
5661    */
5662   Local<Value> ThrowException(Local<Value> exception);
5663 
5664   /**
5665    * Allows the host application to group objects together. If one
5666    * object in the group is alive, all objects in the group are alive.
5667    * After each garbage collection, object groups are removed. It is
5668    * intended to be used in the before-garbage-collection callback
5669    * function, for instance to simulate DOM tree connections among JS
5670    * wrapper objects. Object groups for all dependent handles need to
5671    * be provided for kGCTypeMarkSweepCompact collections, for all other
5672    * garbage collection types it is sufficient to provide object groups
5673    * for partially dependent handles only.
5674    */
5675   template<typename T> void SetObjectGroupId(const Persistent<T>& object,
5676                                              UniqueId id);
5677 
5678   /**
5679    * Allows the host application to declare implicit references from an object
5680    * group to an object. If the objects of the object group are alive, the child
5681    * object is alive too. After each garbage collection, all implicit references
5682    * are removed. It is intended to be used in the before-garbage-collection
5683    * callback function.
5684    */
5685   template<typename T> void SetReferenceFromGroup(UniqueId id,
5686                                                   const Persistent<T>& child);
5687 
5688   /**
5689    * Allows the host application to declare implicit references from an object
5690    * to another object. If the parent object is alive, the child object is alive
5691    * too. After each garbage collection, all implicit references are removed. It
5692    * is intended to be used in the before-garbage-collection callback function.
5693    */
5694   template<typename T, typename S>
5695   void SetReference(const Persistent<T>& parent, const Persistent<S>& child);
5696 
5697   typedef void (*GCCallback)(Isolate* isolate, GCType type,
5698                              GCCallbackFlags flags);
5699 
5700   /**
5701    * Enables the host application to receive a notification before a
5702    * garbage collection. Allocations are allowed in the callback function,
5703    * but the callback is not re-entrant: if the allocation inside it will
5704    * trigger the garbage collection, the callback won't be called again.
5705    * It is possible to specify the GCType filter for your callback. But it is
5706    * not possible to register the same callback function two times with
5707    * different GCType filters.
5708    */
5709   void AddGCPrologueCallback(GCCallback callback,
5710                              GCType gc_type_filter = kGCTypeAll);
5711 
5712   /**
5713    * This function removes callback which was installed by
5714    * AddGCPrologueCallback function.
5715    */
5716   void RemoveGCPrologueCallback(GCCallback callback);
5717 
5718   /**
5719    * Enables the host application to receive a notification after a
5720    * garbage collection. Allocations are allowed in the callback function,
5721    * but the callback is not re-entrant: if the allocation inside it will
5722    * trigger the garbage collection, the callback won't be called again.
5723    * It is possible to specify the GCType filter for your callback. But it is
5724    * not possible to register the same callback function two times with
5725    * different GCType filters.
5726    */
5727   void AddGCEpilogueCallback(GCCallback callback,
5728                              GCType gc_type_filter = kGCTypeAll);
5729 
5730   /**
5731    * This function removes callback which was installed by
5732    * AddGCEpilogueCallback function.
5733    */
5734   void RemoveGCEpilogueCallback(GCCallback callback);
5735 
5736   /**
5737    * Forcefully terminate the current thread of JavaScript execution
5738    * in the given isolate.
5739    *
5740    * This method can be used by any thread even if that thread has not
5741    * acquired the V8 lock with a Locker object.
5742    */
5743   void TerminateExecution();
5744 
5745   /**
5746    * Is V8 terminating JavaScript execution.
5747    *
5748    * Returns true if JavaScript execution is currently terminating
5749    * because of a call to TerminateExecution.  In that case there are
5750    * still JavaScript frames on the stack and the termination
5751    * exception is still active.
5752    */
5753   bool IsExecutionTerminating();
5754 
5755   /**
5756    * Resume execution capability in the given isolate, whose execution
5757    * was previously forcefully terminated using TerminateExecution().
5758    *
5759    * When execution is forcefully terminated using TerminateExecution(),
5760    * the isolate can not resume execution until all JavaScript frames
5761    * have propagated the uncatchable exception which is generated.  This
5762    * method allows the program embedding the engine to handle the
5763    * termination event and resume execution capability, even if
5764    * JavaScript frames remain on the stack.
5765    *
5766    * This method can be used by any thread even if that thread has not
5767    * acquired the V8 lock with a Locker object.
5768    */
5769   void CancelTerminateExecution();
5770 
5771   /**
5772    * Request V8 to interrupt long running JavaScript code and invoke
5773    * the given |callback| passing the given |data| to it. After |callback|
5774    * returns control will be returned to the JavaScript code.
5775    * There may be a number of interrupt requests in flight.
5776    * Can be called from another thread without acquiring a |Locker|.
5777    * Registered |callback| must not reenter interrupted Isolate.
5778    */
5779   void RequestInterrupt(InterruptCallback callback, void* data);
5780 
5781   /**
5782    * Request garbage collection in this Isolate. It is only valid to call this
5783    * function if --expose_gc was specified.
5784    *
5785    * This should only be used for testing purposes and not to enforce a garbage
5786    * collection schedule. It has strong negative impact on the garbage
5787    * collection performance. Use IdleNotificationDeadline() or
5788    * LowMemoryNotification() instead to influence the garbage collection
5789    * schedule.
5790    */
5791   void RequestGarbageCollectionForTesting(GarbageCollectionType type);
5792 
5793   /**
5794    * Set the callback to invoke for logging event.
5795    */
5796   void SetEventLogger(LogEventCallback that);
5797 
5798   /**
5799    * Adds a callback to notify the host application when a script finished
5800    * running.  If a script re-enters the runtime during executing, the
5801    * CallCompletedCallback is only invoked when the outer-most script
5802    * execution ends.  Executing scripts inside the callback do not trigger
5803    * further callbacks.
5804    */
5805   void AddCallCompletedCallback(CallCompletedCallback callback);
5806 
5807   /**
5808    * Removes callback that was installed by AddCallCompletedCallback.
5809    */
5810   void RemoveCallCompletedCallback(CallCompletedCallback callback);
5811 
5812 
5813   /**
5814    * Set callback to notify about promise reject with no handler, or
5815    * revocation of such a previous notification once the handler is added.
5816    */
5817   void SetPromiseRejectCallback(PromiseRejectCallback callback);
5818 
5819   /**
5820    * Experimental: Runs the Microtask Work Queue until empty
5821    * Any exceptions thrown by microtask callbacks are swallowed.
5822    */
5823   void RunMicrotasks();
5824 
5825   /**
5826    * Experimental: Enqueues the callback to the Microtask Work Queue
5827    */
5828   void EnqueueMicrotask(Local<Function> microtask);
5829 
5830   /**
5831    * Experimental: Enqueues the callback to the Microtask Work Queue
5832    */
5833   void EnqueueMicrotask(MicrotaskCallback microtask, void* data = NULL);
5834 
5835    /**
5836    * Experimental: Controls whether the Microtask Work Queue is automatically
5837    * run when the script call depth decrements to zero.
5838    */
5839   void SetAutorunMicrotasks(bool autorun);
5840 
5841   /**
5842    * Experimental: Returns whether the Microtask Work Queue is automatically
5843    * run when the script call depth decrements to zero.
5844    */
5845   bool WillAutorunMicrotasks() const;
5846 
5847   /**
5848    * Sets a callback for counting the number of times a feature of V8 is used.
5849    */
5850   void SetUseCounterCallback(UseCounterCallback callback);
5851 
5852   /**
5853    * Enables the host application to provide a mechanism for recording
5854    * statistics counters.
5855    */
5856   void SetCounterFunction(CounterLookupCallback);
5857 
5858   /**
5859    * Enables the host application to provide a mechanism for recording
5860    * histograms. The CreateHistogram function returns a
5861    * histogram which will later be passed to the AddHistogramSample
5862    * function.
5863    */
5864   void SetCreateHistogramFunction(CreateHistogramCallback);
5865   void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
5866 
5867   /**
5868    * Optional notification that the embedder is idle.
5869    * V8 uses the notification to perform garbage collection.
5870    * This call can be used repeatedly if the embedder remains idle.
5871    * Returns true if the embedder should stop calling IdleNotificationDeadline
5872    * until real work has been done.  This indicates that V8 has done
5873    * as much cleanup as it will be able to do.
5874    *
5875    * The deadline_in_seconds argument specifies the deadline V8 has to finish
5876    * garbage collection work. deadline_in_seconds is compared with
5877    * MonotonicallyIncreasingTime() and should be based on the same timebase as
5878    * that function. There is no guarantee that the actual work will be done
5879    * within the time limit.
5880    */
5881   bool IdleNotificationDeadline(double deadline_in_seconds);
5882 
5883   V8_DEPRECATED("use IdleNotificationDeadline()",
5884                 bool IdleNotification(int idle_time_in_ms));
5885 
5886   /**
5887    * Optional notification that the system is running low on memory.
5888    * V8 uses these notifications to attempt to free memory.
5889    */
5890   void LowMemoryNotification();
5891 
5892   /**
5893    * Optional notification that a context has been disposed. V8 uses
5894    * these notifications to guide the GC heuristic. Returns the number
5895    * of context disposals - including this one - since the last time
5896    * V8 had a chance to clean up.
5897    *
5898    * The optional parameter |dependant_context| specifies whether the disposed
5899    * context was depending on state from other contexts or not.
5900    */
5901   int ContextDisposedNotification(bool dependant_context = true);
5902 
5903   /**
5904    * Optional notification that the isolate switched to the foreground.
5905    * V8 uses these notifications to guide heuristics.
5906    */
5907   void IsolateInForegroundNotification();
5908 
5909   /**
5910    * Optional notification that the isolate switched to the background.
5911    * V8 uses these notifications to guide heuristics.
5912    */
5913   void IsolateInBackgroundNotification();
5914 
5915   /**
5916    * Allows the host application to provide the address of a function that is
5917    * notified each time code is added, moved or removed.
5918    *
5919    * \param options options for the JIT code event handler.
5920    * \param event_handler the JIT code event handler, which will be invoked
5921    *     each time code is added, moved or removed.
5922    * \note \p event_handler won't get notified of existent code.
5923    * \note since code removal notifications are not currently issued, the
5924    *     \p event_handler may get notifications of code that overlaps earlier
5925    *     code notifications. This happens when code areas are reused, and the
5926    *     earlier overlapping code areas should therefore be discarded.
5927    * \note the events passed to \p event_handler and the strings they point to
5928    *     are not guaranteed to live past each call. The \p event_handler must
5929    *     copy strings and other parameters it needs to keep around.
5930    * \note the set of events declared in JitCodeEvent::EventType is expected to
5931    *     grow over time, and the JitCodeEvent structure is expected to accrue
5932    *     new members. The \p event_handler function must ignore event codes
5933    *     it does not recognize to maintain future compatibility.
5934    * \note Use Isolate::CreateParams to get events for code executed during
5935    *     Isolate setup.
5936    */
5937   void SetJitCodeEventHandler(JitCodeEventOptions options,
5938                               JitCodeEventHandler event_handler);
5939 
5940   /**
5941    * Modifies the stack limit for this Isolate.
5942    *
5943    * \param stack_limit An address beyond which the Vm's stack may not grow.
5944    *
5945    * \note  If you are using threads then you should hold the V8::Locker lock
5946    *     while setting the stack limit and you must set a non-default stack
5947    *     limit separately for each thread.
5948    */
5949   void SetStackLimit(uintptr_t stack_limit);
5950 
5951   /**
5952    * Returns a memory range that can potentially contain jitted code.
5953    *
5954    * On Win64, embedders are advised to install function table callbacks for
5955    * these ranges, as default SEH won't be able to unwind through jitted code.
5956    *
5957    * The first page of the code range is reserved for the embedder and is
5958    * committed, writable, and executable.
5959    *
5960    * Might be empty on other platforms.
5961    *
5962    * https://code.google.com/p/v8/issues/detail?id=3598
5963    */
5964   void GetCodeRange(void** start, size_t* length_in_bytes);
5965 
5966   /** Set the callback to invoke in case of fatal errors. */
5967   void SetFatalErrorHandler(FatalErrorCallback that);
5968 
5969   /**
5970    * Set the callback to invoke to check if code generation from
5971    * strings should be allowed.
5972    */
5973   void SetAllowCodeGenerationFromStringsCallback(
5974       AllowCodeGenerationFromStringsCallback callback);
5975 
5976   /**
5977   * Check if V8 is dead and therefore unusable.  This is the case after
5978   * fatal errors such as out-of-memory situations.
5979   */
5980   bool IsDead();
5981 
5982   /**
5983    * Adds a message listener.
5984    *
5985    * The same message listener can be added more than once and in that
5986    * case it will be called more than once for each message.
5987    *
5988    * If data is specified, it will be passed to the callback when it is called.
5989    * Otherwise, the exception object will be passed to the callback instead.
5990    */
5991   bool AddMessageListener(MessageCallback that,
5992                           Local<Value> data = Local<Value>());
5993 
5994   /**
5995    * Remove all message listeners from the specified callback function.
5996    */
5997   void RemoveMessageListeners(MessageCallback that);
5998 
5999   /** Callback function for reporting failed access checks.*/
6000   void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
6001 
6002   /**
6003    * Tells V8 to capture current stack trace when uncaught exception occurs
6004    * and report it to the message listeners. The option is off by default.
6005    */
6006   void SetCaptureStackTraceForUncaughtExceptions(
6007       bool capture, int frame_limit = 10,
6008       StackTrace::StackTraceOptions options = StackTrace::kOverview);
6009 
6010   /**
6011    * Enables the host application to provide a mechanism to be notified
6012    * and perform custom logging when V8 Allocates Executable Memory.
6013    */
6014   void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
6015                                    ObjectSpace space, AllocationAction action);
6016 
6017   /**
6018    * Removes callback that was installed by AddMemoryAllocationCallback.
6019    */
6020   void RemoveMemoryAllocationCallback(MemoryAllocationCallback callback);
6021 
6022   /**
6023    * Iterates through all external resources referenced from current isolate
6024    * heap.  GC is not invoked prior to iterating, therefore there is no
6025    * guarantee that visited objects are still alive.
6026    */
6027   void VisitExternalResources(ExternalResourceVisitor* visitor);
6028 
6029   /**
6030    * Iterates through all the persistent handles in the current isolate's heap
6031    * that have class_ids.
6032    */
6033   void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor);
6034 
6035   /**
6036    * Iterates through all the persistent handles in the current isolate's heap
6037    * that have class_ids and are candidates to be marked as partially dependent
6038    * handles. This will visit handles to young objects created since the last
6039    * garbage collection but is free to visit an arbitrary superset of these
6040    * objects.
6041    */
6042   void VisitHandlesForPartialDependence(PersistentHandleVisitor* visitor);
6043 
6044   /**
6045    * Iterates through all the persistent handles in the current isolate's heap
6046    * that have class_ids and are weak to be marked as inactive if there is no
6047    * pending activity for the handle.
6048    */
6049   void VisitWeakHandles(PersistentHandleVisitor* visitor);
6050 
6051  private:
6052   template <class K, class V, class Traits>
6053   friend class PersistentValueMapBase;
6054 
6055   Isolate();
6056   Isolate(const Isolate&);
6057   ~Isolate();
6058   Isolate& operator=(const Isolate&);
6059   void* operator new(size_t size);
6060   void operator delete(void*, size_t);
6061 
6062   void SetObjectGroupId(internal::Object** object, UniqueId id);
6063   void SetReferenceFromGroup(UniqueId id, internal::Object** object);
6064   void SetReference(internal::Object** parent, internal::Object** child);
6065   void ReportExternalAllocationLimitReached();
6066 };
6067 
6068 class V8_EXPORT StartupData {
6069  public:
6070   const char* data;
6071   int raw_size;
6072 };
6073 
6074 
6075 /**
6076  * EntropySource is used as a callback function when v8 needs a source
6077  * of entropy.
6078  */
6079 typedef bool (*EntropySource)(unsigned char* buffer, size_t length);
6080 
6081 
6082 /**
6083  * ReturnAddressLocationResolver is used as a callback function when v8 is
6084  * resolving the location of a return address on the stack. Profilers that
6085  * change the return address on the stack can use this to resolve the stack
6086  * location to whereever the profiler stashed the original return address.
6087  *
6088  * \param return_addr_location points to a location on stack where a machine
6089  *    return address resides.
6090  * \returns either return_addr_location, or else a pointer to the profiler's
6091  *    copy of the original return address.
6092  *
6093  * \note the resolver function must not cause garbage collection.
6094  */
6095 typedef uintptr_t (*ReturnAddressLocationResolver)(
6096     uintptr_t return_addr_location);
6097 
6098 
6099 /**
6100  * Container class for static utility functions.
6101  */
6102 class V8_EXPORT V8 {
6103  public:
6104   /** Set the callback to invoke in case of fatal errors. */
6105   V8_INLINE static V8_DEPRECATED(
6106       "Use isolate version",
6107       void SetFatalErrorHandler(FatalErrorCallback that));
6108 
6109   /**
6110    * Set the callback to invoke to check if code generation from
6111    * strings should be allowed.
6112    */
6113   V8_INLINE static V8_DEPRECATED(
6114       "Use isolate version", void SetAllowCodeGenerationFromStringsCallback(
6115                                  AllowCodeGenerationFromStringsCallback that));
6116 
6117   /**
6118   * Check if V8 is dead and therefore unusable.  This is the case after
6119   * fatal errors such as out-of-memory situations.
6120   */
6121   V8_INLINE static V8_DEPRECATED("Use isolate version", bool IsDead());
6122 
6123   /**
6124    * Hand startup data to V8, in case the embedder has chosen to build
6125    * V8 with external startup data.
6126    *
6127    * Note:
6128    * - By default the startup data is linked into the V8 library, in which
6129    *   case this function is not meaningful.
6130    * - If this needs to be called, it needs to be called before V8
6131    *   tries to make use of its built-ins.
6132    * - To avoid unnecessary copies of data, V8 will point directly into the
6133    *   given data blob, so pretty please keep it around until V8 exit.
6134    * - Compression of the startup blob might be useful, but needs to
6135    *   handled entirely on the embedders' side.
6136    * - The call will abort if the data is invalid.
6137    */
6138   static void SetNativesDataBlob(StartupData* startup_blob);
6139   static void SetSnapshotDataBlob(StartupData* startup_blob);
6140 
6141   /**
6142    * Create a new isolate and context for the purpose of capturing a snapshot
6143    * Returns { NULL, 0 } on failure.
6144    * The caller owns the data array in the return value.
6145    */
6146   static StartupData CreateSnapshotDataBlob(const char* custom_source = NULL);
6147 
6148   /**
6149    * Adds a message listener.
6150    *
6151    * The same message listener can be added more than once and in that
6152    * case it will be called more than once for each message.
6153    *
6154    * If data is specified, it will be passed to the callback when it is called.
6155    * Otherwise, the exception object will be passed to the callback instead.
6156    */
6157   V8_INLINE static V8_DEPRECATED(
6158       "Use isolate version",
6159       bool AddMessageListener(MessageCallback that,
6160                               Local<Value> data = Local<Value>()));
6161 
6162   /**
6163    * Remove all message listeners from the specified callback function.
6164    */
6165   V8_INLINE static V8_DEPRECATED(
6166       "Use isolate version", void RemoveMessageListeners(MessageCallback that));
6167 
6168   /**
6169    * Tells V8 to capture current stack trace when uncaught exception occurs
6170    * and report it to the message listeners. The option is off by default.
6171    */
6172   V8_INLINE static V8_DEPRECATED(
6173       "Use isolate version",
6174       void SetCaptureStackTraceForUncaughtExceptions(
6175           bool capture, int frame_limit = 10,
6176           StackTrace::StackTraceOptions options = StackTrace::kOverview));
6177 
6178   /**
6179    * Sets V8 flags from a string.
6180    */
6181   static void SetFlagsFromString(const char* str, int length);
6182 
6183   /**
6184    * Sets V8 flags from the command line.
6185    */
6186   static void SetFlagsFromCommandLine(int* argc,
6187                                       char** argv,
6188                                       bool remove_flags);
6189 
6190   /** Get the version string. */
6191   static const char* GetVersion();
6192 
6193   /** Callback function for reporting failed access checks.*/
6194   V8_INLINE static V8_DEPRECATED(
6195       "Use isolate version",
6196       void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback));
6197 
6198   /**
6199    * Enables the host application to receive a notification before a
6200    * garbage collection.  Allocations are not allowed in the
6201    * callback function, you therefore cannot manipulate objects (set
6202    * or delete properties for example) since it is possible such
6203    * operations will result in the allocation of objects. It is possible
6204    * to specify the GCType filter for your callback. But it is not possible to
6205    * register the same callback function two times with different
6206    * GCType filters.
6207    */
6208   static V8_DEPRECATED(
6209       "Use isolate version",
6210       void AddGCPrologueCallback(GCCallback callback,
6211                                  GCType gc_type_filter = kGCTypeAll));
6212 
6213   /**
6214    * This function removes callback which was installed by
6215    * AddGCPrologueCallback function.
6216    */
6217   V8_INLINE static V8_DEPRECATED(
6218       "Use isolate version",
6219       void RemoveGCPrologueCallback(GCCallback callback));
6220 
6221   /**
6222    * Enables the host application to receive a notification after a
6223    * garbage collection.  Allocations are not allowed in the
6224    * callback function, you therefore cannot manipulate objects (set
6225    * or delete properties for example) since it is possible such
6226    * operations will result in the allocation of objects. It is possible
6227    * to specify the GCType filter for your callback. But it is not possible to
6228    * register the same callback function two times with different
6229    * GCType filters.
6230    */
6231   static V8_DEPRECATED(
6232       "Use isolate version",
6233       void AddGCEpilogueCallback(GCCallback callback,
6234                                  GCType gc_type_filter = kGCTypeAll));
6235 
6236   /**
6237    * This function removes callback which was installed by
6238    * AddGCEpilogueCallback function.
6239    */
6240   V8_INLINE static V8_DEPRECATED(
6241       "Use isolate version",
6242       void RemoveGCEpilogueCallback(GCCallback callback));
6243 
6244   /**
6245    * Enables the host application to provide a mechanism to be notified
6246    * and perform custom logging when V8 Allocates Executable Memory.
6247    */
6248   V8_INLINE static V8_DEPRECATED(
6249       "Use isolate version",
6250       void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
6251                                        ObjectSpace space,
6252                                        AllocationAction action));
6253 
6254   /**
6255    * Removes callback that was installed by AddMemoryAllocationCallback.
6256    */
6257   V8_INLINE static V8_DEPRECATED(
6258       "Use isolate version",
6259       void RemoveMemoryAllocationCallback(MemoryAllocationCallback callback));
6260 
6261   /**
6262    * Initializes V8. This function needs to be called before the first Isolate
6263    * is created. It always returns true.
6264    */
6265   static bool Initialize();
6266 
6267   /**
6268    * Allows the host application to provide a callback which can be used
6269    * as a source of entropy for random number generators.
6270    */
6271   static void SetEntropySource(EntropySource source);
6272 
6273   /**
6274    * Allows the host application to provide a callback that allows v8 to
6275    * cooperate with a profiler that rewrites return addresses on stack.
6276    */
6277   static void SetReturnAddressLocationResolver(
6278       ReturnAddressLocationResolver return_address_resolver);
6279 
6280   /**
6281    * Forcefully terminate the current thread of JavaScript execution
6282    * in the given isolate.
6283    *
6284    * This method can be used by any thread even if that thread has not
6285    * acquired the V8 lock with a Locker object.
6286    *
6287    * \param isolate The isolate in which to terminate the current JS execution.
6288    */
6289   V8_INLINE static V8_DEPRECATED("Use isolate version",
6290                                  void TerminateExecution(Isolate* isolate));
6291 
6292   /**
6293    * Is V8 terminating JavaScript execution.
6294    *
6295    * Returns true if JavaScript execution is currently terminating
6296    * because of a call to TerminateExecution.  In that case there are
6297    * still JavaScript frames on the stack and the termination
6298    * exception is still active.
6299    *
6300    * \param isolate The isolate in which to check.
6301    */
6302   V8_INLINE static V8_DEPRECATED(
6303       "Use isolate version",
6304       bool IsExecutionTerminating(Isolate* isolate = NULL));
6305 
6306   /**
6307    * Resume execution capability in the given isolate, whose execution
6308    * was previously forcefully terminated using TerminateExecution().
6309    *
6310    * When execution is forcefully terminated using TerminateExecution(),
6311    * the isolate can not resume execution until all JavaScript frames
6312    * have propagated the uncatchable exception which is generated.  This
6313    * method allows the program embedding the engine to handle the
6314    * termination event and resume execution capability, even if
6315    * JavaScript frames remain on the stack.
6316    *
6317    * This method can be used by any thread even if that thread has not
6318    * acquired the V8 lock with a Locker object.
6319    *
6320    * \param isolate The isolate in which to resume execution capability.
6321    */
6322   V8_INLINE static V8_DEPRECATED(
6323       "Use isolate version", void CancelTerminateExecution(Isolate* isolate));
6324 
6325   /**
6326    * Releases any resources used by v8 and stops any utility threads
6327    * that may be running.  Note that disposing v8 is permanent, it
6328    * cannot be reinitialized.
6329    *
6330    * It should generally not be necessary to dispose v8 before exiting
6331    * a process, this should happen automatically.  It is only necessary
6332    * to use if the process needs the resources taken up by v8.
6333    */
6334   static bool Dispose();
6335 
6336   /**
6337    * Iterates through all external resources referenced from current isolate
6338    * heap.  GC is not invoked prior to iterating, therefore there is no
6339    * guarantee that visited objects are still alive.
6340    */
6341   V8_INLINE static V8_DEPRECATED(
6342       "Use isolate version",
6343       void VisitExternalResources(ExternalResourceVisitor* visitor));
6344 
6345   /**
6346    * Iterates through all the persistent handles in the current isolate's heap
6347    * that have class_ids.
6348    */
6349   V8_INLINE static V8_DEPRECATED(
6350       "Use isolate version",
6351       void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor));
6352 
6353   /**
6354    * Iterates through all the persistent handles in isolate's heap that have
6355    * class_ids.
6356    */
6357   V8_INLINE static V8_DEPRECATED(
6358       "Use isolate version",
6359       void VisitHandlesWithClassIds(Isolate* isolate,
6360                                     PersistentHandleVisitor* visitor));
6361 
6362   /**
6363    * Iterates through all the persistent handles in the current isolate's heap
6364    * that have class_ids and are candidates to be marked as partially dependent
6365    * handles. This will visit handles to young objects created since the last
6366    * garbage collection but is free to visit an arbitrary superset of these
6367    * objects.
6368    */
6369   V8_INLINE static V8_DEPRECATED(
6370       "Use isolate version",
6371       void VisitHandlesForPartialDependence(Isolate* isolate,
6372                                             PersistentHandleVisitor* visitor));
6373 
6374   /**
6375    * Initialize the ICU library bundled with V8. The embedder should only
6376    * invoke this method when using the bundled ICU. Returns true on success.
6377    *
6378    * If V8 was compiled with the ICU data in an external file, the location
6379    * of the data file has to be provided.
6380    */
6381   static bool InitializeICU(const char* icu_data_file = NULL);
6382 
6383   /**
6384    * Initialize the external startup data. The embedder only needs to
6385    * invoke this method when external startup data was enabled in a build.
6386    *
6387    * If V8 was compiled with the startup data in an external file, then
6388    * V8 needs to be given those external files during startup. There are
6389    * three ways to do this:
6390    * - InitializeExternalStartupData(const char*)
6391    *   This will look in the given directory for files "natives_blob.bin"
6392    *   and "snapshot_blob.bin" - which is what the default build calls them.
6393    * - InitializeExternalStartupData(const char*, const char*)
6394    *   As above, but will directly use the two given file names.
6395    * - Call SetNativesDataBlob, SetNativesDataBlob.
6396    *   This will read the blobs from the given data structures and will
6397    *   not perform any file IO.
6398    */
6399   static void InitializeExternalStartupData(const char* directory_path);
6400   static void InitializeExternalStartupData(const char* natives_blob,
6401                                             const char* snapshot_blob);
6402   /**
6403    * Sets the v8::Platform to use. This should be invoked before V8 is
6404    * initialized.
6405    */
6406   static void InitializePlatform(Platform* platform);
6407 
6408   /**
6409    * Clears all references to the v8::Platform. This should be invoked after
6410    * V8 was disposed.
6411    */
6412   static void ShutdownPlatform();
6413 
6414  private:
6415   V8();
6416 
6417   static internal::Object** GlobalizeReference(internal::Isolate* isolate,
6418                                                internal::Object** handle);
6419   static internal::Object** CopyPersistent(internal::Object** handle);
6420   static void DisposeGlobal(internal::Object** global_handle);
6421   typedef WeakCallbackData<Value, void>::Callback WeakCallback;
6422   static void MakeWeak(internal::Object** global_handle, void* data,
6423                        WeakCallback weak_callback);
6424   static void MakeWeak(internal::Object** global_handle, void* data,
6425                        WeakCallbackInfo<void>::Callback weak_callback,
6426                        WeakCallbackType type);
6427   static void MakeWeak(internal::Object** global_handle, void* data,
6428                        // Must be 0 or -1.
6429                        int internal_field_index1,
6430                        // Must be 1 or -1.
6431                        int internal_field_index2,
6432                        WeakCallbackInfo<void>::Callback weak_callback);
6433   static void* ClearWeak(internal::Object** global_handle);
6434   static void Eternalize(Isolate* isolate,
6435                          Value* handle,
6436                          int* index);
6437   static Local<Value> GetEternal(Isolate* isolate, int index);
6438 
6439   static void FromJustIsNothing();
6440   static void ToLocalEmpty();
6441   static void InternalFieldOutOfBounds(int index);
6442   template <class T> friend class Local;
6443   template <class T>
6444   friend class MaybeLocal;
6445   template <class T>
6446   friend class Maybe;
6447   template <class T>
6448   friend class WeakCallbackInfo;
6449   template <class T> friend class Eternal;
6450   template <class T> friend class PersistentBase;
6451   template <class T, class M> friend class Persistent;
6452   friend class Context;
6453 };
6454 
6455 
6456 /**
6457  * A simple Maybe type, representing an object which may or may not have a
6458  * value, see https://hackage.haskell.org/package/base/docs/Data-Maybe.html.
6459  *
6460  * If an API method returns a Maybe<>, the API method can potentially fail
6461  * either because an exception is thrown, or because an exception is pending,
6462  * e.g. because a previous API call threw an exception that hasn't been caught
6463  * yet, or because a TerminateExecution exception was thrown. In that case, a
6464  * "Nothing" value is returned.
6465  */
6466 template <class T>
6467 class Maybe {
6468  public:
IsNothing()6469   V8_INLINE bool IsNothing() const { return !has_value; }
IsJust()6470   V8_INLINE bool IsJust() const { return has_value; }
6471 
6472   // Will crash if the Maybe<> is nothing.
FromJust()6473   V8_INLINE T FromJust() const {
6474     if (V8_UNLIKELY(!IsJust())) V8::FromJustIsNothing();
6475     return value;
6476   }
6477 
FromMaybe(const T & default_value)6478   V8_INLINE T FromMaybe(const T& default_value) const {
6479     return has_value ? value : default_value;
6480   }
6481 
6482   V8_INLINE bool operator==(const Maybe& other) const {
6483     return (IsJust() == other.IsJust()) &&
6484            (!IsJust() || FromJust() == other.FromJust());
6485   }
6486 
6487   V8_INLINE bool operator!=(const Maybe& other) const {
6488     return !operator==(other);
6489   }
6490 
6491  private:
Maybe()6492   Maybe() : has_value(false) {}
Maybe(const T & t)6493   explicit Maybe(const T& t) : has_value(true), value(t) {}
6494 
6495   bool has_value;
6496   T value;
6497 
6498   template <class U>
6499   friend Maybe<U> Nothing();
6500   template <class U>
6501   friend Maybe<U> Just(const U& u);
6502 };
6503 
6504 
6505 template <class T>
Nothing()6506 inline Maybe<T> Nothing() {
6507   return Maybe<T>();
6508 }
6509 
6510 
6511 template <class T>
Just(const T & t)6512 inline Maybe<T> Just(const T& t) {
6513   return Maybe<T>(t);
6514 }
6515 
6516 
6517 /**
6518  * An external exception handler.
6519  */
6520 class V8_EXPORT TryCatch {
6521  public:
6522   /**
6523    * Creates a new try/catch block and registers it with v8.  Note that
6524    * all TryCatch blocks should be stack allocated because the memory
6525    * location itself is compared against JavaScript try/catch blocks.
6526    */
6527   V8_DEPRECATED("Use isolate version", TryCatch());
6528 
6529   /**
6530    * Creates a new try/catch block and registers it with v8.  Note that
6531    * all TryCatch blocks should be stack allocated because the memory
6532    * location itself is compared against JavaScript try/catch blocks.
6533    */
6534   TryCatch(Isolate* isolate);
6535 
6536   /**
6537    * Unregisters and deletes this try/catch block.
6538    */
6539   ~TryCatch();
6540 
6541   /**
6542    * Returns true if an exception has been caught by this try/catch block.
6543    */
6544   bool HasCaught() const;
6545 
6546   /**
6547    * For certain types of exceptions, it makes no sense to continue execution.
6548    *
6549    * If CanContinue returns false, the correct action is to perform any C++
6550    * cleanup needed and then return.  If CanContinue returns false and
6551    * HasTerminated returns true, it is possible to call
6552    * CancelTerminateExecution in order to continue calling into the engine.
6553    */
6554   bool CanContinue() const;
6555 
6556   /**
6557    * Returns true if an exception has been caught due to script execution
6558    * being terminated.
6559    *
6560    * There is no JavaScript representation of an execution termination
6561    * exception.  Such exceptions are thrown when the TerminateExecution
6562    * methods are called to terminate a long-running script.
6563    *
6564    * If such an exception has been thrown, HasTerminated will return true,
6565    * indicating that it is possible to call CancelTerminateExecution in order
6566    * to continue calling into the engine.
6567    */
6568   bool HasTerminated() const;
6569 
6570   /**
6571    * Throws the exception caught by this TryCatch in a way that avoids
6572    * it being caught again by this same TryCatch.  As with ThrowException
6573    * it is illegal to execute any JavaScript operations after calling
6574    * ReThrow; the caller must return immediately to where the exception
6575    * is caught.
6576    */
6577   Local<Value> ReThrow();
6578 
6579   /**
6580    * Returns the exception caught by this try/catch block.  If no exception has
6581    * been caught an empty handle is returned.
6582    *
6583    * The returned handle is valid until this TryCatch block has been destroyed.
6584    */
6585   Local<Value> Exception() const;
6586 
6587   /**
6588    * Returns the .stack property of the thrown object.  If no .stack
6589    * property is present an empty handle is returned.
6590    */
6591   V8_DEPRECATE_SOON("Use maybe version.", Local<Value> StackTrace() const);
6592   V8_WARN_UNUSED_RESULT MaybeLocal<Value> StackTrace(
6593       Local<Context> context) const;
6594 
6595   /**
6596    * Returns the message associated with this exception.  If there is
6597    * no message associated an empty handle is returned.
6598    *
6599    * The returned handle is valid until this TryCatch block has been
6600    * destroyed.
6601    */
6602   Local<v8::Message> Message() const;
6603 
6604   /**
6605    * Clears any exceptions that may have been caught by this try/catch block.
6606    * After this method has been called, HasCaught() will return false. Cancels
6607    * the scheduled exception if it is caught and ReThrow() is not called before.
6608    *
6609    * It is not necessary to clear a try/catch block before using it again; if
6610    * another exception is thrown the previously caught exception will just be
6611    * overwritten.  However, it is often a good idea since it makes it easier
6612    * to determine which operation threw a given exception.
6613    */
6614   void Reset();
6615 
6616   /**
6617    * Set verbosity of the external exception handler.
6618    *
6619    * By default, exceptions that are caught by an external exception
6620    * handler are not reported.  Call SetVerbose with true on an
6621    * external exception handler to have exceptions caught by the
6622    * handler reported as if they were not caught.
6623    */
6624   void SetVerbose(bool value);
6625 
6626   /**
6627    * Set whether or not this TryCatch should capture a Message object
6628    * which holds source information about where the exception
6629    * occurred.  True by default.
6630    */
6631   void SetCaptureMessage(bool value);
6632 
6633   /**
6634    * There are cases when the raw address of C++ TryCatch object cannot be
6635    * used for comparisons with addresses into the JS stack. The cases are:
6636    * 1) ARM, ARM64 and MIPS simulators which have separate JS stack.
6637    * 2) Address sanitizer allocates local C++ object in the heap when
6638    *    UseAfterReturn mode is enabled.
6639    * This method returns address that can be used for comparisons with
6640    * addresses into the JS stack. When neither simulator nor ASAN's
6641    * UseAfterReturn is enabled, then the address returned will be the address
6642    * of the C++ try catch handler itself.
6643    */
JSStackComparableAddress(v8::TryCatch * handler)6644   static void* JSStackComparableAddress(v8::TryCatch* handler) {
6645     if (handler == NULL) return NULL;
6646     return handler->js_stack_comparable_address_;
6647   }
6648 
6649  private:
6650   void ResetInternal();
6651 
6652   // Make it hard to create heap-allocated TryCatch blocks.
6653   TryCatch(const TryCatch&);
6654   void operator=(const TryCatch&);
6655   void* operator new(size_t size);
6656   void operator delete(void*, size_t);
6657 
6658   v8::internal::Isolate* isolate_;
6659   v8::TryCatch* next_;
6660   void* exception_;
6661   void* message_obj_;
6662   void* js_stack_comparable_address_;
6663   bool is_verbose_ : 1;
6664   bool can_continue_ : 1;
6665   bool capture_message_ : 1;
6666   bool rethrow_ : 1;
6667   bool has_terminated_ : 1;
6668 
6669   friend class v8::internal::Isolate;
6670 };
6671 
6672 
6673 // --- Context ---
6674 
6675 
6676 /**
6677  * A container for extension names.
6678  */
6679 class V8_EXPORT ExtensionConfiguration {
6680  public:
ExtensionConfiguration()6681   ExtensionConfiguration() : name_count_(0), names_(NULL) { }
ExtensionConfiguration(int name_count,const char * names[])6682   ExtensionConfiguration(int name_count, const char* names[])
6683       : name_count_(name_count), names_(names) { }
6684 
begin()6685   const char** begin() const { return &names_[0]; }
end()6686   const char** end()  const { return &names_[name_count_]; }
6687 
6688  private:
6689   const int name_count_;
6690   const char** names_;
6691 };
6692 
6693 
6694 /**
6695  * A sandboxed execution context with its own set of built-in objects
6696  * and functions.
6697  */
6698 class V8_EXPORT Context {
6699  public:
6700   /**
6701    * Returns the global proxy object.
6702    *
6703    * Global proxy object is a thin wrapper whose prototype points to actual
6704    * context's global object with the properties like Object, etc. This is done
6705    * that way for security reasons (for more details see
6706    * https://wiki.mozilla.org/Gecko:SplitWindow).
6707    *
6708    * Please note that changes to global proxy object prototype most probably
6709    * would break VM---v8 expects only global object as a prototype of global
6710    * proxy object.
6711    */
6712   Local<Object> Global();
6713 
6714   /**
6715    * Detaches the global object from its context before
6716    * the global object can be reused to create a new context.
6717    */
6718   void DetachGlobal();
6719 
6720   /**
6721    * Creates a new context and returns a handle to the newly allocated
6722    * context.
6723    *
6724    * \param isolate The isolate in which to create the context.
6725    *
6726    * \param extensions An optional extension configuration containing
6727    * the extensions to be installed in the newly created context.
6728    *
6729    * \param global_template An optional object template from which the
6730    * global object for the newly created context will be created.
6731    *
6732    * \param global_object An optional global object to be reused for
6733    * the newly created context. This global object must have been
6734    * created by a previous call to Context::New with the same global
6735    * template. The state of the global object will be completely reset
6736    * and only object identify will remain.
6737    */
6738   static Local<Context> New(
6739       Isolate* isolate, ExtensionConfiguration* extensions = NULL,
6740       Local<ObjectTemplate> global_template = Local<ObjectTemplate>(),
6741       Local<Value> global_object = Local<Value>());
6742 
6743   /**
6744    * Sets the security token for the context.  To access an object in
6745    * another context, the security tokens must match.
6746    */
6747   void SetSecurityToken(Local<Value> token);
6748 
6749   /** Restores the security token to the default value. */
6750   void UseDefaultSecurityToken();
6751 
6752   /** Returns the security token of this context.*/
6753   Local<Value> GetSecurityToken();
6754 
6755   /**
6756    * Enter this context.  After entering a context, all code compiled
6757    * and run is compiled and run in this context.  If another context
6758    * is already entered, this old context is saved so it can be
6759    * restored when the new context is exited.
6760    */
6761   void Enter();
6762 
6763   /**
6764    * Exit this context.  Exiting the current context restores the
6765    * context that was in place when entering the current context.
6766    */
6767   void Exit();
6768 
6769   /** Returns an isolate associated with a current context. */
6770   v8::Isolate* GetIsolate();
6771 
6772   /**
6773    * The field at kDebugIdIndex is reserved for V8 debugger implementation.
6774    * The value is propagated to the scripts compiled in given Context and
6775    * can be used for filtering scripts.
6776    */
6777   enum EmbedderDataFields { kDebugIdIndex = 0 };
6778 
6779   /**
6780    * Gets the embedder data with the given index, which must have been set by a
6781    * previous call to SetEmbedderData with the same index. Note that index 0
6782    * currently has a special meaning for Chrome's debugger.
6783    */
6784   V8_INLINE Local<Value> GetEmbedderData(int index);
6785 
6786   /**
6787    * Gets the binding object used by V8 extras. Extra natives get a reference
6788    * to this object and can use it to "export" functionality by adding
6789    * properties. Extra natives can also "import" functionality by accessing
6790    * properties added by the embedder using the V8 API.
6791    */
6792   Local<Object> GetExtrasBindingObject();
6793 
6794   /**
6795    * Sets the embedder data with the given index, growing the data as
6796    * needed. Note that index 0 currently has a special meaning for Chrome's
6797    * debugger.
6798    */
6799   void SetEmbedderData(int index, Local<Value> value);
6800 
6801   /**
6802    * Gets a 2-byte-aligned native pointer from the embedder data with the given
6803    * index, which must have bees set by a previous call to
6804    * SetAlignedPointerInEmbedderData with the same index. Note that index 0
6805    * currently has a special meaning for Chrome's debugger.
6806    */
6807   V8_INLINE void* GetAlignedPointerFromEmbedderData(int index);
6808 
6809   /**
6810    * Sets a 2-byte-aligned native pointer in the embedder data with the given
6811    * index, growing the data as needed. Note that index 0 currently has a
6812    * special meaning for Chrome's debugger.
6813    */
6814   void SetAlignedPointerInEmbedderData(int index, void* value);
6815 
6816   /**
6817    * Control whether code generation from strings is allowed. Calling
6818    * this method with false will disable 'eval' and the 'Function'
6819    * constructor for code running in this context. If 'eval' or the
6820    * 'Function' constructor are used an exception will be thrown.
6821    *
6822    * If code generation from strings is not allowed the
6823    * V8::AllowCodeGenerationFromStrings callback will be invoked if
6824    * set before blocking the call to 'eval' or the 'Function'
6825    * constructor. If that callback returns true, the call will be
6826    * allowed, otherwise an exception will be thrown. If no callback is
6827    * set an exception will be thrown.
6828    */
6829   void AllowCodeGenerationFromStrings(bool allow);
6830 
6831   /**
6832    * Returns true if code generation from strings is allowed for the context.
6833    * For more details see AllowCodeGenerationFromStrings(bool) documentation.
6834    */
6835   bool IsCodeGenerationFromStringsAllowed();
6836 
6837   /**
6838    * Sets the error description for the exception that is thrown when
6839    * code generation from strings is not allowed and 'eval' or the 'Function'
6840    * constructor are called.
6841    */
6842   void SetErrorMessageForCodeGenerationFromStrings(Local<String> message);
6843 
6844   /**
6845    * Estimate the memory in bytes retained by this context.
6846    */
6847   size_t EstimatedSize();
6848 
6849   /**
6850    * Stack-allocated class which sets the execution context for all
6851    * operations executed within a local scope.
6852    */
6853   class Scope {
6854    public:
Scope(Local<Context> context)6855     explicit V8_INLINE Scope(Local<Context> context) : context_(context) {
6856       context_->Enter();
6857     }
~Scope()6858     V8_INLINE ~Scope() { context_->Exit(); }
6859 
6860    private:
6861     Local<Context> context_;
6862   };
6863 
6864  private:
6865   friend class Value;
6866   friend class Script;
6867   friend class Object;
6868   friend class Function;
6869 
6870   Local<Value> SlowGetEmbedderData(int index);
6871   void* SlowGetAlignedPointerFromEmbedderData(int index);
6872 };
6873 
6874 
6875 /**
6876  * Multiple threads in V8 are allowed, but only one thread at a time is allowed
6877  * to use any given V8 isolate, see the comments in the Isolate class. The
6878  * definition of 'using a V8 isolate' includes accessing handles or holding onto
6879  * object pointers obtained from V8 handles while in the particular V8 isolate.
6880  * It is up to the user of V8 to ensure, perhaps with locking, that this
6881  * constraint is not violated. In addition to any other synchronization
6882  * mechanism that may be used, the v8::Locker and v8::Unlocker classes must be
6883  * used to signal thead switches to V8.
6884  *
6885  * v8::Locker is a scoped lock object. While it's active, i.e. between its
6886  * construction and destruction, the current thread is allowed to use the locked
6887  * isolate. V8 guarantees that an isolate can be locked by at most one thread at
6888  * any time. In other words, the scope of a v8::Locker is a critical section.
6889  *
6890  * Sample usage:
6891 * \code
6892  * ...
6893  * {
6894  *   v8::Locker locker(isolate);
6895  *   v8::Isolate::Scope isolate_scope(isolate);
6896  *   ...
6897  *   // Code using V8 and isolate goes here.
6898  *   ...
6899  * } // Destructor called here
6900  * \endcode
6901  *
6902  * If you wish to stop using V8 in a thread A you can do this either by
6903  * destroying the v8::Locker object as above or by constructing a v8::Unlocker
6904  * object:
6905  *
6906  * \code
6907  * {
6908  *   isolate->Exit();
6909  *   v8::Unlocker unlocker(isolate);
6910  *   ...
6911  *   // Code not using V8 goes here while V8 can run in another thread.
6912  *   ...
6913  * } // Destructor called here.
6914  * isolate->Enter();
6915  * \endcode
6916  *
6917  * The Unlocker object is intended for use in a long-running callback from V8,
6918  * where you want to release the V8 lock for other threads to use.
6919  *
6920  * The v8::Locker is a recursive lock, i.e. you can lock more than once in a
6921  * given thread. This can be useful if you have code that can be called either
6922  * from code that holds the lock or from code that does not. The Unlocker is
6923  * not recursive so you can not have several Unlockers on the stack at once, and
6924  * you can not use an Unlocker in a thread that is not inside a Locker's scope.
6925  *
6926  * An unlocker will unlock several lockers if it has to and reinstate the
6927  * correct depth of locking on its destruction, e.g.:
6928  *
6929  * \code
6930  * // V8 not locked.
6931  * {
6932  *   v8::Locker locker(isolate);
6933  *   Isolate::Scope isolate_scope(isolate);
6934  *   // V8 locked.
6935  *   {
6936  *     v8::Locker another_locker(isolate);
6937  *     // V8 still locked (2 levels).
6938  *     {
6939  *       isolate->Exit();
6940  *       v8::Unlocker unlocker(isolate);
6941  *       // V8 not locked.
6942  *     }
6943  *     isolate->Enter();
6944  *     // V8 locked again (2 levels).
6945  *   }
6946  *   // V8 still locked (1 level).
6947  * }
6948  * // V8 Now no longer locked.
6949  * \endcode
6950  */
6951 class V8_EXPORT Unlocker {
6952  public:
6953   /**
6954    * Initialize Unlocker for a given Isolate.
6955    */
Unlocker(Isolate * isolate)6956   V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); }
6957 
6958   ~Unlocker();
6959  private:
6960   void Initialize(Isolate* isolate);
6961 
6962   internal::Isolate* isolate_;
6963 };
6964 
6965 
6966 class V8_EXPORT Locker {
6967  public:
6968   /**
6969    * Initialize Locker for a given Isolate.
6970    */
Locker(Isolate * isolate)6971   V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); }
6972 
6973   ~Locker();
6974 
6975   /**
6976    * Returns whether or not the locker for a given isolate, is locked by the
6977    * current thread.
6978    */
6979   static bool IsLocked(Isolate* isolate);
6980 
6981   /**
6982    * Returns whether v8::Locker is being used by this V8 instance.
6983    */
6984   static bool IsActive();
6985 
6986  private:
6987   void Initialize(Isolate* isolate);
6988 
6989   bool has_lock_;
6990   bool top_level_;
6991   internal::Isolate* isolate_;
6992 
6993   // Disallow copying and assigning.
6994   Locker(const Locker&);
6995   void operator=(const Locker&);
6996 };
6997 
6998 
6999 // --- Implementation ---
7000 
7001 
7002 namespace internal {
7003 
7004 const int kApiPointerSize = sizeof(void*);  // NOLINT
7005 const int kApiIntSize = sizeof(int);  // NOLINT
7006 const int kApiInt64Size = sizeof(int64_t);  // NOLINT
7007 
7008 // Tag information for HeapObject.
7009 const int kHeapObjectTag = 1;
7010 const int kHeapObjectTagSize = 2;
7011 const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
7012 
7013 // Tag information for Smi.
7014 const int kSmiTag = 0;
7015 const int kSmiTagSize = 1;
7016 const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
7017 
7018 template <size_t ptr_size> struct SmiTagging;
7019 
7020 template<int kSmiShiftSize>
IntToSmi(int value)7021 V8_INLINE internal::Object* IntToSmi(int value) {
7022   int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
7023   uintptr_t tagged_value =
7024       (static_cast<uintptr_t>(value) << smi_shift_bits) | kSmiTag;
7025   return reinterpret_cast<internal::Object*>(tagged_value);
7026 }
7027 
7028 // Smi constants for 32-bit systems.
7029 template <> struct SmiTagging<4> {
7030   enum { kSmiShiftSize = 0, kSmiValueSize = 31 };
7031   static int SmiShiftSize() { return kSmiShiftSize; }
7032   static int SmiValueSize() { return kSmiValueSize; }
7033   V8_INLINE static int SmiToInt(const internal::Object* value) {
7034     int shift_bits = kSmiTagSize + kSmiShiftSize;
7035     // Throw away top 32 bits and shift down (requires >> to be sign extending).
7036     return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
7037   }
7038   V8_INLINE static internal::Object* IntToSmi(int value) {
7039     return internal::IntToSmi<kSmiShiftSize>(value);
7040   }
7041   V8_INLINE static bool IsValidSmi(intptr_t value) {
7042     // To be representable as an tagged small integer, the two
7043     // most-significant bits of 'value' must be either 00 or 11 due to
7044     // sign-extension. To check this we add 01 to the two
7045     // most-significant bits, and check if the most-significant bit is 0
7046     //
7047     // CAUTION: The original code below:
7048     // bool result = ((value + 0x40000000) & 0x80000000) == 0;
7049     // may lead to incorrect results according to the C language spec, and
7050     // in fact doesn't work correctly with gcc4.1.1 in some cases: The
7051     // compiler may produce undefined results in case of signed integer
7052     // overflow. The computation must be done w/ unsigned ints.
7053     return static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U;
7054   }
7055 };
7056 
7057 // Smi constants for 64-bit systems.
7058 template <> struct SmiTagging<8> {
7059   enum { kSmiShiftSize = 31, kSmiValueSize = 32 };
7060   static int SmiShiftSize() { return kSmiShiftSize; }
7061   static int SmiValueSize() { return kSmiValueSize; }
7062   V8_INLINE static int SmiToInt(const internal::Object* value) {
7063     int shift_bits = kSmiTagSize + kSmiShiftSize;
7064     // Shift down and throw away top 32 bits.
7065     return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
7066   }
7067   V8_INLINE static internal::Object* IntToSmi(int value) {
7068     return internal::IntToSmi<kSmiShiftSize>(value);
7069   }
7070   V8_INLINE static bool IsValidSmi(intptr_t value) {
7071     // To be representable as a long smi, the value must be a 32-bit integer.
7072     return (value == static_cast<int32_t>(value));
7073   }
7074 };
7075 
7076 typedef SmiTagging<kApiPointerSize> PlatformSmiTagging;
7077 const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
7078 const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
7079 V8_INLINE static bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
7080 V8_INLINE static bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
7081 
7082 /**
7083  * This class exports constants and functionality from within v8 that
7084  * is necessary to implement inline functions in the v8 api.  Don't
7085  * depend on functions and constants defined here.
7086  */
7087 class Internals {
7088  public:
7089   // These values match non-compiler-dependent values defined within
7090   // the implementation of v8.
7091   static const int kHeapObjectMapOffset = 0;
7092   static const int kMapInstanceTypeAndBitFieldOffset =
7093       1 * kApiPointerSize + kApiIntSize;
7094   static const int kStringResourceOffset = 3 * kApiPointerSize;
7095 
7096   static const int kOddballKindOffset = 4 * kApiPointerSize;
7097   static const int kForeignAddressOffset = kApiPointerSize;
7098   static const int kJSObjectHeaderSize = 3 * kApiPointerSize;
7099   static const int kFixedArrayHeaderSize = 2 * kApiPointerSize;
7100   static const int kContextHeaderSize = 2 * kApiPointerSize;
7101   static const int kContextEmbedderDataIndex = 5;
7102   static const int kFullStringRepresentationMask = 0x07;
7103   static const int kStringEncodingMask = 0x4;
7104   static const int kExternalTwoByteRepresentationTag = 0x02;
7105   static const int kExternalOneByteRepresentationTag = 0x06;
7106 
7107   static const int kIsolateEmbedderDataOffset = 0 * kApiPointerSize;
7108   static const int kAmountOfExternalAllocatedMemoryOffset =
7109       4 * kApiPointerSize;
7110   static const int kAmountOfExternalAllocatedMemoryAtLastGlobalGCOffset =
7111       kAmountOfExternalAllocatedMemoryOffset + kApiInt64Size;
7112   static const int kIsolateRootsOffset =
7113       kAmountOfExternalAllocatedMemoryAtLastGlobalGCOffset + kApiInt64Size +
7114       kApiPointerSize;
7115   static const int kUndefinedValueRootIndex = 5;
7116   static const int kNullValueRootIndex = 7;
7117   static const int kTrueValueRootIndex = 8;
7118   static const int kFalseValueRootIndex = 9;
7119   static const int kEmptyStringRootIndex = 10;
7120 
7121   // The external allocation limit should be below 256 MB on all architectures
7122   // to avoid that resource-constrained embedders run low on memory.
7123   static const int kExternalAllocationLimit = 192 * 1024 * 1024;
7124 
7125   static const int kNodeClassIdOffset = 1 * kApiPointerSize;
7126   static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3;
7127   static const int kNodeStateMask = 0x7;
7128   static const int kNodeStateIsWeakValue = 2;
7129   static const int kNodeStateIsPendingValue = 3;
7130   static const int kNodeStateIsNearDeathValue = 4;
7131   static const int kNodeIsIndependentShift = 3;
7132   static const int kNodeIsPartiallyDependentShift = 4;
7133   static const int kNodeIsActiveShift = 4;
7134 
7135   static const int kJSObjectType = 0xb7;
7136   static const int kFirstNonstringType = 0x80;
7137   static const int kOddballType = 0x83;
7138   static const int kForeignType = 0x87;
7139 
7140   static const int kUndefinedOddballKind = 5;
7141   static const int kNullOddballKind = 3;
7142 
7143   static const uint32_t kNumIsolateDataSlots = 4;
7144 
7145   V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
7146   V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
7147 #ifdef V8_ENABLE_CHECKS
7148     CheckInitializedImpl(isolate);
7149 #endif
7150   }
7151 
7152   V8_INLINE static bool HasHeapObjectTag(const internal::Object* value) {
7153     return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
7154             kHeapObjectTag);
7155   }
7156 
7157   V8_INLINE static int SmiValue(const internal::Object* value) {
7158     return PlatformSmiTagging::SmiToInt(value);
7159   }
7160 
7161   V8_INLINE static internal::Object* IntToSmi(int value) {
7162     return PlatformSmiTagging::IntToSmi(value);
7163   }
7164 
7165   V8_INLINE static bool IsValidSmi(intptr_t value) {
7166     return PlatformSmiTagging::IsValidSmi(value);
7167   }
7168 
7169   V8_INLINE static int GetInstanceType(const internal::Object* obj) {
7170     typedef internal::Object O;
7171     O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
7172     // Map::InstanceType is defined so that it will always be loaded into
7173     // the LS 8 bits of one 16-bit word, regardless of endianess.
7174     return ReadField<uint16_t>(map, kMapInstanceTypeAndBitFieldOffset) & 0xff;
7175   }
7176 
7177   V8_INLINE static int GetOddballKind(const internal::Object* obj) {
7178     typedef internal::Object O;
7179     return SmiValue(ReadField<O*>(obj, kOddballKindOffset));
7180   }
7181 
7182   V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
7183     int representation = (instance_type & kFullStringRepresentationMask);
7184     return representation == kExternalTwoByteRepresentationTag;
7185   }
7186 
7187   V8_INLINE static uint8_t GetNodeFlag(internal::Object** obj, int shift) {
7188       uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
7189       return *addr & static_cast<uint8_t>(1U << shift);
7190   }
7191 
7192   V8_INLINE static void UpdateNodeFlag(internal::Object** obj,
7193                                        bool value, int shift) {
7194       uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
7195       uint8_t mask = static_cast<uint8_t>(1U << shift);
7196       *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
7197   }
7198 
7199   V8_INLINE static uint8_t GetNodeState(internal::Object** obj) {
7200     uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
7201     return *addr & kNodeStateMask;
7202   }
7203 
7204   V8_INLINE static void UpdateNodeState(internal::Object** obj,
7205                                         uint8_t value) {
7206     uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
7207     *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
7208   }
7209 
7210   V8_INLINE static void SetEmbedderData(v8::Isolate* isolate,
7211                                         uint32_t slot,
7212                                         void* data) {
7213     uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) +
7214                     kIsolateEmbedderDataOffset + slot * kApiPointerSize;
7215     *reinterpret_cast<void**>(addr) = data;
7216   }
7217 
7218   V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate,
7219                                          uint32_t slot) {
7220     const uint8_t* addr = reinterpret_cast<const uint8_t*>(isolate) +
7221         kIsolateEmbedderDataOffset + slot * kApiPointerSize;
7222     return *reinterpret_cast<void* const*>(addr);
7223   }
7224 
7225   V8_INLINE static internal::Object** GetRoot(v8::Isolate* isolate,
7226                                               int index) {
7227     uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset;
7228     return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize);
7229   }
7230 
7231   template <typename T>
7232   V8_INLINE static T ReadField(const internal::Object* ptr, int offset) {
7233     const uint8_t* addr =
7234         reinterpret_cast<const uint8_t*>(ptr) + offset - kHeapObjectTag;
7235     return *reinterpret_cast<const T*>(addr);
7236   }
7237 
7238   template <typename T>
7239   V8_INLINE static T ReadEmbedderData(const v8::Context* context, int index) {
7240     typedef internal::Object O;
7241     typedef internal::Internals I;
7242     O* ctx = *reinterpret_cast<O* const*>(context);
7243     int embedder_data_offset = I::kContextHeaderSize +
7244         (internal::kApiPointerSize * I::kContextEmbedderDataIndex);
7245     O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset);
7246     int value_offset =
7247         I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index);
7248     return I::ReadField<T>(embedder_data, value_offset);
7249   }
7250 };
7251 
7252 }  // namespace internal
7253 
7254 
7255 template <class T>
7256 Local<T> Local<T>::New(Isolate* isolate, Local<T> that) {
7257   return New(isolate, that.val_);
7258 }
7259 
7260 template <class T>
7261 Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) {
7262   return New(isolate, that.val_);
7263 }
7264 
7265 
7266 template <class T>
7267 Local<T> Local<T>::New(Isolate* isolate, T* that) {
7268   if (that == NULL) return Local<T>();
7269   T* that_ptr = that;
7270   internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
7271   return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
7272       reinterpret_cast<internal::Isolate*>(isolate), *p)));
7273 }
7274 
7275 
7276 template<class T>
7277 template<class S>
7278 void Eternal<T>::Set(Isolate* isolate, Local<S> handle) {
7279   TYPE_CHECK(T, S);
7280   V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle), &this->index_);
7281 }
7282 
7283 
7284 template<class T>
7285 Local<T> Eternal<T>::Get(Isolate* isolate) {
7286   return Local<T>(reinterpret_cast<T*>(*V8::GetEternal(isolate, index_)));
7287 }
7288 
7289 
7290 template <class T>
7291 Local<T> MaybeLocal<T>::ToLocalChecked() {
7292   if (V8_UNLIKELY(val_ == nullptr)) V8::ToLocalEmpty();
7293   return Local<T>(val_);
7294 }
7295 
7296 
7297 template <class T>
7298 void* WeakCallbackInfo<T>::GetInternalField(int index) const {
7299 #ifdef V8_ENABLE_CHECKS
7300   if (index < 0 || index >= kInternalFieldsInWeakCallback) {
7301     V8::InternalFieldOutOfBounds(index);
7302   }
7303 #endif
7304   return internal_fields_[index];
7305 }
7306 
7307 
7308 template <class T>
7309 T* PersistentBase<T>::New(Isolate* isolate, T* that) {
7310   if (that == NULL) return NULL;
7311   internal::Object** p = reinterpret_cast<internal::Object**>(that);
7312   return reinterpret_cast<T*>(
7313       V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate),
7314                              p));
7315 }
7316 
7317 
7318 template <class T, class M>
7319 template <class S, class M2>
7320 void Persistent<T, M>::Copy(const Persistent<S, M2>& that) {
7321   TYPE_CHECK(T, S);
7322   this->Reset();
7323   if (that.IsEmpty()) return;
7324   internal::Object** p = reinterpret_cast<internal::Object**>(that.val_);
7325   this->val_ = reinterpret_cast<T*>(V8::CopyPersistent(p));
7326   M::Copy(that, this);
7327 }
7328 
7329 
7330 template <class T>
7331 bool PersistentBase<T>::IsIndependent() const {
7332   typedef internal::Internals I;
7333   if (this->IsEmpty()) return false;
7334   return I::GetNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
7335                         I::kNodeIsIndependentShift);
7336 }
7337 
7338 
7339 template <class T>
7340 bool PersistentBase<T>::IsNearDeath() const {
7341   typedef internal::Internals I;
7342   if (this->IsEmpty()) return false;
7343   uint8_t node_state =
7344       I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_));
7345   return node_state == I::kNodeStateIsNearDeathValue ||
7346       node_state == I::kNodeStateIsPendingValue;
7347 }
7348 
7349 
7350 template <class T>
7351 bool PersistentBase<T>::IsWeak() const {
7352   typedef internal::Internals I;
7353   if (this->IsEmpty()) return false;
7354   return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) ==
7355       I::kNodeStateIsWeakValue;
7356 }
7357 
7358 
7359 template <class T>
7360 void PersistentBase<T>::Reset() {
7361   if (this->IsEmpty()) return;
7362   V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_));
7363   val_ = 0;
7364 }
7365 
7366 
7367 template <class T>
7368 template <class S>
7369 void PersistentBase<T>::Reset(Isolate* isolate, const Local<S>& other) {
7370   TYPE_CHECK(T, S);
7371   Reset();
7372   if (other.IsEmpty()) return;
7373   this->val_ = New(isolate, other.val_);
7374 }
7375 
7376 
7377 template <class T>
7378 template <class S>
7379 void PersistentBase<T>::Reset(Isolate* isolate,
7380                               const PersistentBase<S>& other) {
7381   TYPE_CHECK(T, S);
7382   Reset();
7383   if (other.IsEmpty()) return;
7384   this->val_ = New(isolate, other.val_);
7385 }
7386 
7387 
7388 template <class T>
7389 template <typename S, typename P>
7390 void PersistentBase<T>::SetWeak(
7391     P* parameter,
7392     typename WeakCallbackData<S, P>::Callback callback) {
7393   TYPE_CHECK(S, T);
7394   typedef typename WeakCallbackData<Value, void>::Callback Callback;
7395   V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_), parameter,
7396                reinterpret_cast<Callback>(callback));
7397 }
7398 
7399 
7400 template <class T>
7401 template <typename P>
7402 void PersistentBase<T>::SetWeak(
7403     P* parameter,
7404     typename WeakCallbackData<T, P>::Callback callback) {
7405   SetWeak<T, P>(parameter, callback);
7406 }
7407 
7408 
7409 template <class T>
7410 template <typename P>
7411 void PersistentBase<T>::SetPhantom(
7412     P* parameter, typename WeakCallbackInfo<P>::Callback callback,
7413     int internal_field_index1, int internal_field_index2) {
7414   typedef typename WeakCallbackInfo<void>::Callback Callback;
7415   V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_), parameter,
7416                internal_field_index1, internal_field_index2,
7417                reinterpret_cast<Callback>(callback));
7418 }
7419 
7420 
7421 template <class T>
7422 template <typename P>
7423 V8_INLINE void PersistentBase<T>::SetWeak(
7424     P* parameter, typename WeakCallbackInfo<P>::Callback callback,
7425     WeakCallbackType type) {
7426   typedef typename WeakCallbackInfo<void>::Callback Callback;
7427   V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_), parameter,
7428                reinterpret_cast<Callback>(callback), type);
7429 }
7430 
7431 
7432 template <class T>
7433 template <typename P>
7434 P* PersistentBase<T>::ClearWeak() {
7435   return reinterpret_cast<P*>(
7436     V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_)));
7437 }
7438 
7439 
7440 template <class T>
7441 void PersistentBase<T>::MarkIndependent() {
7442   typedef internal::Internals I;
7443   if (this->IsEmpty()) return;
7444   I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
7445                     true,
7446                     I::kNodeIsIndependentShift);
7447 }
7448 
7449 
7450 template <class T>
7451 void PersistentBase<T>::MarkPartiallyDependent() {
7452   typedef internal::Internals I;
7453   if (this->IsEmpty()) return;
7454   I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
7455                     true,
7456                     I::kNodeIsPartiallyDependentShift);
7457 }
7458 
7459 
7460 template <class T>
7461 void PersistentBase<T>::MarkActive() {
7462   typedef internal::Internals I;
7463   if (this->IsEmpty()) return;
7464   I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_), true,
7465                     I::kNodeIsActiveShift);
7466 }
7467 
7468 
7469 template <class T>
7470 void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) {
7471   typedef internal::Internals I;
7472   if (this->IsEmpty()) return;
7473   internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
7474   uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
7475   *reinterpret_cast<uint16_t*>(addr) = class_id;
7476 }
7477 
7478 
7479 template <class T>
7480 uint16_t PersistentBase<T>::WrapperClassId() const {
7481   typedef internal::Internals I;
7482   if (this->IsEmpty()) return 0;
7483   internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
7484   uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
7485   return *reinterpret_cast<uint16_t*>(addr);
7486 }
7487 
7488 
7489 template<typename T>
7490 ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {}
7491 
7492 template<typename T>
7493 template<typename S>
7494 void ReturnValue<T>::Set(const Persistent<S>& handle) {
7495   TYPE_CHECK(T, S);
7496   if (V8_UNLIKELY(handle.IsEmpty())) {
7497     *value_ = GetDefaultValue();
7498   } else {
7499     *value_ = *reinterpret_cast<internal::Object**>(*handle);
7500   }
7501 }
7502 
7503 template <typename T>
7504 template <typename S>
7505 void ReturnValue<T>::Set(const Global<S>& handle) {
7506   TYPE_CHECK(T, S);
7507   if (V8_UNLIKELY(handle.IsEmpty())) {
7508     *value_ = GetDefaultValue();
7509   } else {
7510     *value_ = *reinterpret_cast<internal::Object**>(*handle);
7511   }
7512 }
7513 
7514 template <typename T>
7515 template <typename S>
7516 void ReturnValue<T>::Set(const Local<S> handle) {
7517   TYPE_CHECK(T, S);
7518   if (V8_UNLIKELY(handle.IsEmpty())) {
7519     *value_ = GetDefaultValue();
7520   } else {
7521     *value_ = *reinterpret_cast<internal::Object**>(*handle);
7522   }
7523 }
7524 
7525 template<typename T>
7526 void ReturnValue<T>::Set(double i) {
7527   TYPE_CHECK(T, Number);
7528   Set(Number::New(GetIsolate(), i));
7529 }
7530 
7531 template<typename T>
7532 void ReturnValue<T>::Set(int32_t i) {
7533   TYPE_CHECK(T, Integer);
7534   typedef internal::Internals I;
7535   if (V8_LIKELY(I::IsValidSmi(i))) {
7536     *value_ = I::IntToSmi(i);
7537     return;
7538   }
7539   Set(Integer::New(GetIsolate(), i));
7540 }
7541 
7542 template<typename T>
7543 void ReturnValue<T>::Set(uint32_t i) {
7544   TYPE_CHECK(T, Integer);
7545   // Can't simply use INT32_MAX here for whatever reason.
7546   bool fits_into_int32_t = (i & (1U << 31)) == 0;
7547   if (V8_LIKELY(fits_into_int32_t)) {
7548     Set(static_cast<int32_t>(i));
7549     return;
7550   }
7551   Set(Integer::NewFromUnsigned(GetIsolate(), i));
7552 }
7553 
7554 template<typename T>
7555 void ReturnValue<T>::Set(bool value) {
7556   TYPE_CHECK(T, Boolean);
7557   typedef internal::Internals I;
7558   int root_index;
7559   if (value) {
7560     root_index = I::kTrueValueRootIndex;
7561   } else {
7562     root_index = I::kFalseValueRootIndex;
7563   }
7564   *value_ = *I::GetRoot(GetIsolate(), root_index);
7565 }
7566 
7567 template<typename T>
7568 void ReturnValue<T>::SetNull() {
7569   TYPE_CHECK(T, Primitive);
7570   typedef internal::Internals I;
7571   *value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex);
7572 }
7573 
7574 template<typename T>
7575 void ReturnValue<T>::SetUndefined() {
7576   TYPE_CHECK(T, Primitive);
7577   typedef internal::Internals I;
7578   *value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex);
7579 }
7580 
7581 template<typename T>
7582 void ReturnValue<T>::SetEmptyString() {
7583   TYPE_CHECK(T, String);
7584   typedef internal::Internals I;
7585   *value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex);
7586 }
7587 
7588 template<typename T>
7589 Isolate* ReturnValue<T>::GetIsolate() {
7590   // Isolate is always the pointer below the default value on the stack.
7591   return *reinterpret_cast<Isolate**>(&value_[-2]);
7592 }
7593 
7594 template<typename T>
7595 template<typename S>
7596 void ReturnValue<T>::Set(S* whatever) {
7597   // Uncompilable to prevent inadvertent misuse.
7598   TYPE_CHECK(S*, Primitive);
7599 }
7600 
7601 template<typename T>
7602 internal::Object* ReturnValue<T>::GetDefaultValue() {
7603   // Default value is always the pointer below value_ on the stack.
7604   return value_[-1];
7605 }
7606 
7607 
7608 template<typename T>
7609 FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args,
7610                                               internal::Object** values,
7611                                               int length,
7612                                               bool is_construct_call)
7613     : implicit_args_(implicit_args),
7614       values_(values),
7615       length_(length),
7616       is_construct_call_(is_construct_call) { }
7617 
7618 
7619 template<typename T>
7620 Local<Value> FunctionCallbackInfo<T>::operator[](int i) const {
7621   if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate()));
7622   return Local<Value>(reinterpret_cast<Value*>(values_ - i));
7623 }
7624 
7625 
7626 template<typename T>
7627 Local<Function> FunctionCallbackInfo<T>::Callee() const {
7628   return Local<Function>(reinterpret_cast<Function*>(
7629       &implicit_args_[kCalleeIndex]));
7630 }
7631 
7632 
7633 template<typename T>
7634 Local<Object> FunctionCallbackInfo<T>::This() const {
7635   return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
7636 }
7637 
7638 
7639 template<typename T>
7640 Local<Object> FunctionCallbackInfo<T>::Holder() const {
7641   return Local<Object>(reinterpret_cast<Object*>(
7642       &implicit_args_[kHolderIndex]));
7643 }
7644 
7645 
7646 template<typename T>
7647 Local<Value> FunctionCallbackInfo<T>::Data() const {
7648   return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex]));
7649 }
7650 
7651 
7652 template<typename T>
7653 Isolate* FunctionCallbackInfo<T>::GetIsolate() const {
7654   return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]);
7655 }
7656 
7657 
7658 template<typename T>
7659 ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const {
7660   return ReturnValue<T>(&implicit_args_[kReturnValueIndex]);
7661 }
7662 
7663 
7664 template<typename T>
7665 bool FunctionCallbackInfo<T>::IsConstructCall() const {
7666   return is_construct_call_ & 0x1;
7667 }
7668 
7669 
7670 template<typename T>
7671 int FunctionCallbackInfo<T>::Length() const {
7672   return length_;
7673 }
7674 
7675 ScriptOrigin::ScriptOrigin(Local<Value> resource_name,
7676                            Local<Integer> resource_line_offset,
7677                            Local<Integer> resource_column_offset,
7678                            Local<Boolean> resource_is_shared_cross_origin,
7679                            Local<Integer> script_id,
7680                            Local<Boolean> resource_is_embedder_debug_script,
7681                            Local<Value> source_map_url,
7682                            Local<Boolean> resource_is_opaque)
7683     : resource_name_(resource_name),
7684       resource_line_offset_(resource_line_offset),
7685       resource_column_offset_(resource_column_offset),
7686       options_(!resource_is_embedder_debug_script.IsEmpty() &&
7687                    resource_is_embedder_debug_script->IsTrue(),
7688                !resource_is_shared_cross_origin.IsEmpty() &&
7689                    resource_is_shared_cross_origin->IsTrue(),
7690                !resource_is_opaque.IsEmpty() && resource_is_opaque->IsTrue()),
7691       script_id_(script_id),
7692       source_map_url_(source_map_url) {}
7693 
7694 Local<Value> ScriptOrigin::ResourceName() const { return resource_name_; }
7695 
7696 
7697 Local<Integer> ScriptOrigin::ResourceLineOffset() const {
7698   return resource_line_offset_;
7699 }
7700 
7701 
7702 Local<Integer> ScriptOrigin::ResourceColumnOffset() const {
7703   return resource_column_offset_;
7704 }
7705 
7706 
7707 Local<Integer> ScriptOrigin::ScriptID() const { return script_id_; }
7708 
7709 
7710 Local<Value> ScriptOrigin::SourceMapUrl() const { return source_map_url_; }
7711 
7712 
7713 ScriptCompiler::Source::Source(Local<String> string, const ScriptOrigin& origin,
7714                                CachedData* data)
7715     : source_string(string),
7716       resource_name(origin.ResourceName()),
7717       resource_line_offset(origin.ResourceLineOffset()),
7718       resource_column_offset(origin.ResourceColumnOffset()),
7719       resource_options(origin.Options()),
7720       source_map_url(origin.SourceMapUrl()),
7721       cached_data(data) {}
7722 
7723 
7724 ScriptCompiler::Source::Source(Local<String> string,
7725                                CachedData* data)
7726     : source_string(string), cached_data(data) {}
7727 
7728 
7729 ScriptCompiler::Source::~Source() {
7730   delete cached_data;
7731 }
7732 
7733 
7734 const ScriptCompiler::CachedData* ScriptCompiler::Source::GetCachedData()
7735     const {
7736   return cached_data;
7737 }
7738 
7739 
7740 Local<Boolean> Boolean::New(Isolate* isolate, bool value) {
7741   return value ? True(isolate) : False(isolate);
7742 }
7743 
7744 
7745 void Template::Set(Isolate* isolate, const char* name, v8::Local<Data> value) {
7746   Set(v8::String::NewFromUtf8(isolate, name, NewStringType::kNormal)
7747           .ToLocalChecked(),
7748       value);
7749 }
7750 
7751 
7752 Local<Value> Object::GetInternalField(int index) {
7753 #ifndef V8_ENABLE_CHECKS
7754   typedef internal::Object O;
7755   typedef internal::HeapObject HO;
7756   typedef internal::Internals I;
7757   O* obj = *reinterpret_cast<O**>(this);
7758   // Fast path: If the object is a plain JSObject, which is the common case, we
7759   // know where to find the internal fields and can return the value directly.
7760   if (I::GetInstanceType(obj) == I::kJSObjectType) {
7761     int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
7762     O* value = I::ReadField<O*>(obj, offset);
7763     O** result = HandleScope::CreateHandle(reinterpret_cast<HO*>(obj), value);
7764     return Local<Value>(reinterpret_cast<Value*>(result));
7765   }
7766 #endif
7767   return SlowGetInternalField(index);
7768 }
7769 
7770 
7771 void* Object::GetAlignedPointerFromInternalField(int index) {
7772 #ifndef V8_ENABLE_CHECKS
7773   typedef internal::Object O;
7774   typedef internal::Internals I;
7775   O* obj = *reinterpret_cast<O**>(this);
7776   // Fast path: If the object is a plain JSObject, which is the common case, we
7777   // know where to find the internal fields and can return the value directly.
7778   if (V8_LIKELY(I::GetInstanceType(obj) == I::kJSObjectType)) {
7779     int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
7780     return I::ReadField<void*>(obj, offset);
7781   }
7782 #endif
7783   return SlowGetAlignedPointerFromInternalField(index);
7784 }
7785 
7786 
7787 String* String::Cast(v8::Value* value) {
7788 #ifdef V8_ENABLE_CHECKS
7789   CheckCast(value);
7790 #endif
7791   return static_cast<String*>(value);
7792 }
7793 
7794 
7795 Local<String> String::Empty(Isolate* isolate) {
7796   typedef internal::Object* S;
7797   typedef internal::Internals I;
7798   I::CheckInitialized(isolate);
7799   S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex);
7800   return Local<String>(reinterpret_cast<String*>(slot));
7801 }
7802 
7803 
7804 String::ExternalStringResource* String::GetExternalStringResource() const {
7805   typedef internal::Object O;
7806   typedef internal::Internals I;
7807   O* obj = *reinterpret_cast<O* const*>(this);
7808   String::ExternalStringResource* result;
7809   if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
7810     void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
7811     result = reinterpret_cast<String::ExternalStringResource*>(value);
7812   } else {
7813     result = NULL;
7814   }
7815 #ifdef V8_ENABLE_CHECKS
7816   VerifyExternalStringResource(result);
7817 #endif
7818   return result;
7819 }
7820 
7821 
7822 String::ExternalStringResourceBase* String::GetExternalStringResourceBase(
7823     String::Encoding* encoding_out) const {
7824   typedef internal::Object O;
7825   typedef internal::Internals I;
7826   O* obj = *reinterpret_cast<O* const*>(this);
7827   int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask;
7828   *encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask);
7829   ExternalStringResourceBase* resource = NULL;
7830   if (type == I::kExternalOneByteRepresentationTag ||
7831       type == I::kExternalTwoByteRepresentationTag) {
7832     void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
7833     resource = static_cast<ExternalStringResourceBase*>(value);
7834   }
7835 #ifdef V8_ENABLE_CHECKS
7836     VerifyExternalStringResourceBase(resource, *encoding_out);
7837 #endif
7838   return resource;
7839 }
7840 
7841 
7842 bool Value::IsUndefined() const {
7843 #ifdef V8_ENABLE_CHECKS
7844   return FullIsUndefined();
7845 #else
7846   return QuickIsUndefined();
7847 #endif
7848 }
7849 
7850 bool Value::QuickIsUndefined() const {
7851   typedef internal::Object O;
7852   typedef internal::Internals I;
7853   O* obj = *reinterpret_cast<O* const*>(this);
7854   if (!I::HasHeapObjectTag(obj)) return false;
7855   if (I::GetInstanceType(obj) != I::kOddballType) return false;
7856   return (I::GetOddballKind(obj) == I::kUndefinedOddballKind);
7857 }
7858 
7859 
7860 bool Value::IsNull() const {
7861 #ifdef V8_ENABLE_CHECKS
7862   return FullIsNull();
7863 #else
7864   return QuickIsNull();
7865 #endif
7866 }
7867 
7868 bool Value::QuickIsNull() const {
7869   typedef internal::Object O;
7870   typedef internal::Internals I;
7871   O* obj = *reinterpret_cast<O* const*>(this);
7872   if (!I::HasHeapObjectTag(obj)) return false;
7873   if (I::GetInstanceType(obj) != I::kOddballType) return false;
7874   return (I::GetOddballKind(obj) == I::kNullOddballKind);
7875 }
7876 
7877 
7878 bool Value::IsString() const {
7879 #ifdef V8_ENABLE_CHECKS
7880   return FullIsString();
7881 #else
7882   return QuickIsString();
7883 #endif
7884 }
7885 
7886 bool Value::QuickIsString() const {
7887   typedef internal::Object O;
7888   typedef internal::Internals I;
7889   O* obj = *reinterpret_cast<O* const*>(this);
7890   if (!I::HasHeapObjectTag(obj)) return false;
7891   return (I::GetInstanceType(obj) < I::kFirstNonstringType);
7892 }
7893 
7894 
7895 template <class T> Value* Value::Cast(T* value) {
7896   return static_cast<Value*>(value);
7897 }
7898 
7899 
7900 Local<Boolean> Value::ToBoolean() const {
7901   return ToBoolean(Isolate::GetCurrent()->GetCurrentContext())
7902       .FromMaybe(Local<Boolean>());
7903 }
7904 
7905 
7906 Local<Number> Value::ToNumber() const {
7907   return ToNumber(Isolate::GetCurrent()->GetCurrentContext())
7908       .FromMaybe(Local<Number>());
7909 }
7910 
7911 
7912 Local<String> Value::ToString() const {
7913   return ToString(Isolate::GetCurrent()->GetCurrentContext())
7914       .FromMaybe(Local<String>());
7915 }
7916 
7917 
7918 Local<String> Value::ToDetailString() const {
7919   return ToDetailString(Isolate::GetCurrent()->GetCurrentContext())
7920       .FromMaybe(Local<String>());
7921 }
7922 
7923 
7924 Local<Object> Value::ToObject() const {
7925   return ToObject(Isolate::GetCurrent()->GetCurrentContext())
7926       .FromMaybe(Local<Object>());
7927 }
7928 
7929 
7930 Local<Integer> Value::ToInteger() const {
7931   return ToInteger(Isolate::GetCurrent()->GetCurrentContext())
7932       .FromMaybe(Local<Integer>());
7933 }
7934 
7935 
7936 Local<Uint32> Value::ToUint32() const {
7937   return ToUint32(Isolate::GetCurrent()->GetCurrentContext())
7938       .FromMaybe(Local<Uint32>());
7939 }
7940 
7941 
7942 Local<Int32> Value::ToInt32() const {
7943   return ToInt32(Isolate::GetCurrent()->GetCurrentContext())
7944       .FromMaybe(Local<Int32>());
7945 }
7946 
7947 
7948 Boolean* Boolean::Cast(v8::Value* value) {
7949 #ifdef V8_ENABLE_CHECKS
7950   CheckCast(value);
7951 #endif
7952   return static_cast<Boolean*>(value);
7953 }
7954 
7955 
7956 Name* Name::Cast(v8::Value* value) {
7957 #ifdef V8_ENABLE_CHECKS
7958   CheckCast(value);
7959 #endif
7960   return static_cast<Name*>(value);
7961 }
7962 
7963 
7964 Symbol* Symbol::Cast(v8::Value* value) {
7965 #ifdef V8_ENABLE_CHECKS
7966   CheckCast(value);
7967 #endif
7968   return static_cast<Symbol*>(value);
7969 }
7970 
7971 
7972 Number* Number::Cast(v8::Value* value) {
7973 #ifdef V8_ENABLE_CHECKS
7974   CheckCast(value);
7975 #endif
7976   return static_cast<Number*>(value);
7977 }
7978 
7979 
7980 Integer* Integer::Cast(v8::Value* value) {
7981 #ifdef V8_ENABLE_CHECKS
7982   CheckCast(value);
7983 #endif
7984   return static_cast<Integer*>(value);
7985 }
7986 
7987 
7988 Int32* Int32::Cast(v8::Value* value) {
7989 #ifdef V8_ENABLE_CHECKS
7990   CheckCast(value);
7991 #endif
7992   return static_cast<Int32*>(value);
7993 }
7994 
7995 
7996 Uint32* Uint32::Cast(v8::Value* value) {
7997 #ifdef V8_ENABLE_CHECKS
7998   CheckCast(value);
7999 #endif
8000   return static_cast<Uint32*>(value);
8001 }
8002 
8003 
8004 Date* Date::Cast(v8::Value* value) {
8005 #ifdef V8_ENABLE_CHECKS
8006   CheckCast(value);
8007 #endif
8008   return static_cast<Date*>(value);
8009 }
8010 
8011 
8012 StringObject* StringObject::Cast(v8::Value* value) {
8013 #ifdef V8_ENABLE_CHECKS
8014   CheckCast(value);
8015 #endif
8016   return static_cast<StringObject*>(value);
8017 }
8018 
8019 
8020 SymbolObject* SymbolObject::Cast(v8::Value* value) {
8021 #ifdef V8_ENABLE_CHECKS
8022   CheckCast(value);
8023 #endif
8024   return static_cast<SymbolObject*>(value);
8025 }
8026 
8027 
8028 NumberObject* NumberObject::Cast(v8::Value* value) {
8029 #ifdef V8_ENABLE_CHECKS
8030   CheckCast(value);
8031 #endif
8032   return static_cast<NumberObject*>(value);
8033 }
8034 
8035 
8036 BooleanObject* BooleanObject::Cast(v8::Value* value) {
8037 #ifdef V8_ENABLE_CHECKS
8038   CheckCast(value);
8039 #endif
8040   return static_cast<BooleanObject*>(value);
8041 }
8042 
8043 
8044 RegExp* RegExp::Cast(v8::Value* value) {
8045 #ifdef V8_ENABLE_CHECKS
8046   CheckCast(value);
8047 #endif
8048   return static_cast<RegExp*>(value);
8049 }
8050 
8051 
8052 Object* Object::Cast(v8::Value* value) {
8053 #ifdef V8_ENABLE_CHECKS
8054   CheckCast(value);
8055 #endif
8056   return static_cast<Object*>(value);
8057 }
8058 
8059 
8060 Array* Array::Cast(v8::Value* value) {
8061 #ifdef V8_ENABLE_CHECKS
8062   CheckCast(value);
8063 #endif
8064   return static_cast<Array*>(value);
8065 }
8066 
8067 
8068 Map* Map::Cast(v8::Value* value) {
8069 #ifdef V8_ENABLE_CHECKS
8070   CheckCast(value);
8071 #endif
8072   return static_cast<Map*>(value);
8073 }
8074 
8075 
8076 Set* Set::Cast(v8::Value* value) {
8077 #ifdef V8_ENABLE_CHECKS
8078   CheckCast(value);
8079 #endif
8080   return static_cast<Set*>(value);
8081 }
8082 
8083 
8084 Promise* Promise::Cast(v8::Value* value) {
8085 #ifdef V8_ENABLE_CHECKS
8086   CheckCast(value);
8087 #endif
8088   return static_cast<Promise*>(value);
8089 }
8090 
8091 
8092 Proxy* Proxy::Cast(v8::Value* value) {
8093 #ifdef V8_ENABLE_CHECKS
8094   CheckCast(value);
8095 #endif
8096   return static_cast<Proxy*>(value);
8097 }
8098 
8099 
8100 Promise::Resolver* Promise::Resolver::Cast(v8::Value* value) {
8101 #ifdef V8_ENABLE_CHECKS
8102   CheckCast(value);
8103 #endif
8104   return static_cast<Promise::Resolver*>(value);
8105 }
8106 
8107 
8108 ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) {
8109 #ifdef V8_ENABLE_CHECKS
8110   CheckCast(value);
8111 #endif
8112   return static_cast<ArrayBuffer*>(value);
8113 }
8114 
8115 
8116 ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) {
8117 #ifdef V8_ENABLE_CHECKS
8118   CheckCast(value);
8119 #endif
8120   return static_cast<ArrayBufferView*>(value);
8121 }
8122 
8123 
8124 TypedArray* TypedArray::Cast(v8::Value* value) {
8125 #ifdef V8_ENABLE_CHECKS
8126   CheckCast(value);
8127 #endif
8128   return static_cast<TypedArray*>(value);
8129 }
8130 
8131 
8132 Uint8Array* Uint8Array::Cast(v8::Value* value) {
8133 #ifdef V8_ENABLE_CHECKS
8134   CheckCast(value);
8135 #endif
8136   return static_cast<Uint8Array*>(value);
8137 }
8138 
8139 
8140 Int8Array* Int8Array::Cast(v8::Value* value) {
8141 #ifdef V8_ENABLE_CHECKS
8142   CheckCast(value);
8143 #endif
8144   return static_cast<Int8Array*>(value);
8145 }
8146 
8147 
8148 Uint16Array* Uint16Array::Cast(v8::Value* value) {
8149 #ifdef V8_ENABLE_CHECKS
8150   CheckCast(value);
8151 #endif
8152   return static_cast<Uint16Array*>(value);
8153 }
8154 
8155 
8156 Int16Array* Int16Array::Cast(v8::Value* value) {
8157 #ifdef V8_ENABLE_CHECKS
8158   CheckCast(value);
8159 #endif
8160   return static_cast<Int16Array*>(value);
8161 }
8162 
8163 
8164 Uint32Array* Uint32Array::Cast(v8::Value* value) {
8165 #ifdef V8_ENABLE_CHECKS
8166   CheckCast(value);
8167 #endif
8168   return static_cast<Uint32Array*>(value);
8169 }
8170 
8171 
8172 Int32Array* Int32Array::Cast(v8::Value* value) {
8173 #ifdef V8_ENABLE_CHECKS
8174   CheckCast(value);
8175 #endif
8176   return static_cast<Int32Array*>(value);
8177 }
8178 
8179 
8180 Float32Array* Float32Array::Cast(v8::Value* value) {
8181 #ifdef V8_ENABLE_CHECKS
8182   CheckCast(value);
8183 #endif
8184   return static_cast<Float32Array*>(value);
8185 }
8186 
8187 
8188 Float64Array* Float64Array::Cast(v8::Value* value) {
8189 #ifdef V8_ENABLE_CHECKS
8190   CheckCast(value);
8191 #endif
8192   return static_cast<Float64Array*>(value);
8193 }
8194 
8195 
8196 Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) {
8197 #ifdef V8_ENABLE_CHECKS
8198   CheckCast(value);
8199 #endif
8200   return static_cast<Uint8ClampedArray*>(value);
8201 }
8202 
8203 
8204 DataView* DataView::Cast(v8::Value* value) {
8205 #ifdef V8_ENABLE_CHECKS
8206   CheckCast(value);
8207 #endif
8208   return static_cast<DataView*>(value);
8209 }
8210 
8211 
8212 SharedArrayBuffer* SharedArrayBuffer::Cast(v8::Value* value) {
8213 #ifdef V8_ENABLE_CHECKS
8214   CheckCast(value);
8215 #endif
8216   return static_cast<SharedArrayBuffer*>(value);
8217 }
8218 
8219 
8220 Function* Function::Cast(v8::Value* value) {
8221 #ifdef V8_ENABLE_CHECKS
8222   CheckCast(value);
8223 #endif
8224   return static_cast<Function*>(value);
8225 }
8226 
8227 
8228 External* External::Cast(v8::Value* value) {
8229 #ifdef V8_ENABLE_CHECKS
8230   CheckCast(value);
8231 #endif
8232   return static_cast<External*>(value);
8233 }
8234 
8235 
8236 template<typename T>
8237 Isolate* PropertyCallbackInfo<T>::GetIsolate() const {
8238   return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]);
8239 }
8240 
8241 
8242 template<typename T>
8243 Local<Value> PropertyCallbackInfo<T>::Data() const {
8244   return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex]));
8245 }
8246 
8247 
8248 template<typename T>
8249 Local<Object> PropertyCallbackInfo<T>::This() const {
8250   return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex]));
8251 }
8252 
8253 
8254 template<typename T>
8255 Local<Object> PropertyCallbackInfo<T>::Holder() const {
8256   return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex]));
8257 }
8258 
8259 
8260 template<typename T>
8261 ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const {
8262   return ReturnValue<T>(&args_[kReturnValueIndex]);
8263 }
8264 
8265 
8266 Local<Primitive> Undefined(Isolate* isolate) {
8267   typedef internal::Object* S;
8268   typedef internal::Internals I;
8269   I::CheckInitialized(isolate);
8270   S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex);
8271   return Local<Primitive>(reinterpret_cast<Primitive*>(slot));
8272 }
8273 
8274 
8275 Local<Primitive> Null(Isolate* isolate) {
8276   typedef internal::Object* S;
8277   typedef internal::Internals I;
8278   I::CheckInitialized(isolate);
8279   S* slot = I::GetRoot(isolate, I::kNullValueRootIndex);
8280   return Local<Primitive>(reinterpret_cast<Primitive*>(slot));
8281 }
8282 
8283 
8284 Local<Boolean> True(Isolate* isolate) {
8285   typedef internal::Object* S;
8286   typedef internal::Internals I;
8287   I::CheckInitialized(isolate);
8288   S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex);
8289   return Local<Boolean>(reinterpret_cast<Boolean*>(slot));
8290 }
8291 
8292 
8293 Local<Boolean> False(Isolate* isolate) {
8294   typedef internal::Object* S;
8295   typedef internal::Internals I;
8296   I::CheckInitialized(isolate);
8297   S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex);
8298   return Local<Boolean>(reinterpret_cast<Boolean*>(slot));
8299 }
8300 
8301 
8302 void Isolate::SetData(uint32_t slot, void* data) {
8303   typedef internal::Internals I;
8304   I::SetEmbedderData(this, slot, data);
8305 }
8306 
8307 
8308 void* Isolate::GetData(uint32_t slot) {
8309   typedef internal::Internals I;
8310   return I::GetEmbedderData(this, slot);
8311 }
8312 
8313 
8314 uint32_t Isolate::GetNumberOfDataSlots() {
8315   typedef internal::Internals I;
8316   return I::kNumIsolateDataSlots;
8317 }
8318 
8319 
8320 int64_t Isolate::AdjustAmountOfExternalAllocatedMemory(
8321     int64_t change_in_bytes) {
8322   typedef internal::Internals I;
8323   int64_t* amount_of_external_allocated_memory =
8324       reinterpret_cast<int64_t*>(reinterpret_cast<uint8_t*>(this) +
8325                                  I::kAmountOfExternalAllocatedMemoryOffset);
8326   int64_t* amount_of_external_allocated_memory_at_last_global_gc =
8327       reinterpret_cast<int64_t*>(
8328           reinterpret_cast<uint8_t*>(this) +
8329           I::kAmountOfExternalAllocatedMemoryAtLastGlobalGCOffset);
8330   int64_t amount = *amount_of_external_allocated_memory + change_in_bytes;
8331   if (change_in_bytes > 0 &&
8332       amount - *amount_of_external_allocated_memory_at_last_global_gc >
8333           I::kExternalAllocationLimit) {
8334     ReportExternalAllocationLimitReached();
8335   }
8336   *amount_of_external_allocated_memory = amount;
8337   return *amount_of_external_allocated_memory;
8338 }
8339 
8340 
8341 template<typename T>
8342 void Isolate::SetObjectGroupId(const Persistent<T>& object,
8343                                UniqueId id) {
8344   TYPE_CHECK(Value, T);
8345   SetObjectGroupId(reinterpret_cast<v8::internal::Object**>(object.val_), id);
8346 }
8347 
8348 
8349 template<typename T>
8350 void Isolate::SetReferenceFromGroup(UniqueId id,
8351                                     const Persistent<T>& object) {
8352   TYPE_CHECK(Value, T);
8353   SetReferenceFromGroup(id,
8354                         reinterpret_cast<v8::internal::Object**>(object.val_));
8355 }
8356 
8357 
8358 template<typename T, typename S>
8359 void Isolate::SetReference(const Persistent<T>& parent,
8360                            const Persistent<S>& child) {
8361   TYPE_CHECK(Object, T);
8362   TYPE_CHECK(Value, S);
8363   SetReference(reinterpret_cast<v8::internal::Object**>(parent.val_),
8364                reinterpret_cast<v8::internal::Object**>(child.val_));
8365 }
8366 
8367 
8368 Local<Value> Context::GetEmbedderData(int index) {
8369 #ifndef V8_ENABLE_CHECKS
8370   typedef internal::Object O;
8371   typedef internal::HeapObject HO;
8372   typedef internal::Internals I;
8373   HO* context = *reinterpret_cast<HO**>(this);
8374   O** result =
8375       HandleScope::CreateHandle(context, I::ReadEmbedderData<O*>(this, index));
8376   return Local<Value>(reinterpret_cast<Value*>(result));
8377 #else
8378   return SlowGetEmbedderData(index);
8379 #endif
8380 }
8381 
8382 
8383 void* Context::GetAlignedPointerFromEmbedderData(int index) {
8384 #ifndef V8_ENABLE_CHECKS
8385   typedef internal::Internals I;
8386   return I::ReadEmbedderData<void*>(this, index);
8387 #else
8388   return SlowGetAlignedPointerFromEmbedderData(index);
8389 #endif
8390 }
8391 
8392 
8393 void V8::SetAllowCodeGenerationFromStringsCallback(
8394     AllowCodeGenerationFromStringsCallback callback) {
8395   Isolate* isolate = Isolate::GetCurrent();
8396   isolate->SetAllowCodeGenerationFromStringsCallback(callback);
8397 }
8398 
8399 
8400 bool V8::IsDead() {
8401   Isolate* isolate = Isolate::GetCurrent();
8402   return isolate->IsDead();
8403 }
8404 
8405 
8406 bool V8::AddMessageListener(MessageCallback that, Local<Value> data) {
8407   Isolate* isolate = Isolate::GetCurrent();
8408   return isolate->AddMessageListener(that, data);
8409 }
8410 
8411 
8412 void V8::RemoveMessageListeners(MessageCallback that) {
8413   Isolate* isolate = Isolate::GetCurrent();
8414   isolate->RemoveMessageListeners(that);
8415 }
8416 
8417 
8418 void V8::SetFailedAccessCheckCallbackFunction(
8419     FailedAccessCheckCallback callback) {
8420   Isolate* isolate = Isolate::GetCurrent();
8421   isolate->SetFailedAccessCheckCallbackFunction(callback);
8422 }
8423 
8424 
8425 void V8::SetCaptureStackTraceForUncaughtExceptions(
8426     bool capture, int frame_limit, StackTrace::StackTraceOptions options) {
8427   Isolate* isolate = Isolate::GetCurrent();
8428   isolate->SetCaptureStackTraceForUncaughtExceptions(capture, frame_limit,
8429                                                      options);
8430 }
8431 
8432 
8433 void V8::SetFatalErrorHandler(FatalErrorCallback callback) {
8434   Isolate* isolate = Isolate::GetCurrent();
8435   isolate->SetFatalErrorHandler(callback);
8436 }
8437 
8438 
8439 void V8::RemoveGCPrologueCallback(GCCallback callback) {
8440   Isolate* isolate = Isolate::GetCurrent();
8441   isolate->RemoveGCPrologueCallback(
8442       reinterpret_cast<v8::Isolate::GCCallback>(callback));
8443 }
8444 
8445 
8446 void V8::RemoveGCEpilogueCallback(GCCallback callback) {
8447   Isolate* isolate = Isolate::GetCurrent();
8448   isolate->RemoveGCEpilogueCallback(
8449       reinterpret_cast<v8::Isolate::GCCallback>(callback));
8450 }
8451 
8452 
8453 void V8::AddMemoryAllocationCallback(MemoryAllocationCallback callback,
8454                                      ObjectSpace space,
8455                                      AllocationAction action) {
8456   Isolate* isolate = Isolate::GetCurrent();
8457   isolate->AddMemoryAllocationCallback(callback, space, action);
8458 }
8459 
8460 
8461 void V8::RemoveMemoryAllocationCallback(MemoryAllocationCallback callback) {
8462   Isolate* isolate = Isolate::GetCurrent();
8463   isolate->RemoveMemoryAllocationCallback(callback);
8464 }
8465 
8466 
8467 void V8::TerminateExecution(Isolate* isolate) { isolate->TerminateExecution(); }
8468 
8469 
8470 bool V8::IsExecutionTerminating(Isolate* isolate) {
8471   if (isolate == NULL) {
8472     isolate = Isolate::GetCurrent();
8473   }
8474   return isolate->IsExecutionTerminating();
8475 }
8476 
8477 
8478 void V8::CancelTerminateExecution(Isolate* isolate) {
8479   isolate->CancelTerminateExecution();
8480 }
8481 
8482 
8483 void V8::VisitExternalResources(ExternalResourceVisitor* visitor) {
8484   Isolate* isolate = Isolate::GetCurrent();
8485   isolate->VisitExternalResources(visitor);
8486 }
8487 
8488 
8489 void V8::VisitHandlesWithClassIds(PersistentHandleVisitor* visitor) {
8490   Isolate* isolate = Isolate::GetCurrent();
8491   isolate->VisitHandlesWithClassIds(visitor);
8492 }
8493 
8494 
8495 void V8::VisitHandlesWithClassIds(Isolate* isolate,
8496                                   PersistentHandleVisitor* visitor) {
8497   isolate->VisitHandlesWithClassIds(visitor);
8498 }
8499 
8500 
8501 void V8::VisitHandlesForPartialDependence(Isolate* isolate,
8502                                           PersistentHandleVisitor* visitor) {
8503   isolate->VisitHandlesForPartialDependence(visitor);
8504 }
8505 
8506 /**
8507  * \example shell.cc
8508  * A simple shell that takes a list of expressions on the
8509  * command-line and executes them.
8510  */
8511 
8512 
8513 /**
8514  * \example process.cc
8515  */
8516 
8517 
8518 }  // namespace v8
8519 
8520 
8521 #undef TYPE_CHECK
8522 
8523 
8524 #endif  // INCLUDE_V8_H_
8525