1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #ifndef VP9_COMMON_VP9_ONYXC_INT_H_
12 #define VP9_COMMON_VP9_ONYXC_INT_H_
13
14 #include "./vpx_config.h"
15 #include "vpx/internal/vpx_codec_internal.h"
16 #include "vpx_util/vpx_thread.h"
17 #include "./vp9_rtcd.h"
18 #include "vp9/common/vp9_alloccommon.h"
19 #include "vp9/common/vp9_loopfilter.h"
20 #include "vp9/common/vp9_entropymv.h"
21 #include "vp9/common/vp9_entropy.h"
22 #include "vp9/common/vp9_entropymode.h"
23 #include "vp9/common/vp9_frame_buffers.h"
24 #include "vp9/common/vp9_quant_common.h"
25 #include "vp9/common/vp9_tile_common.h"
26
27 #if CONFIG_VP9_POSTPROC
28 #include "vp9/common/vp9_postproc.h"
29 #endif
30
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34
35 #define REFS_PER_FRAME 3
36
37 #define REF_FRAMES_LOG2 3
38 #define REF_FRAMES (1 << REF_FRAMES_LOG2)
39
40 // 4 scratch frames for the new frames to support a maximum of 4 cores decoding
41 // in parallel, 3 for scaled references on the encoder.
42 // TODO(hkuang): Add ondemand frame buffers instead of hardcoding the number
43 // of framebuffers.
44 // TODO(jkoleszar): These 3 extra references could probably come from the
45 // normal reference pool.
46 #define FRAME_BUFFERS (REF_FRAMES + 7)
47
48 #define FRAME_CONTEXTS_LOG2 2
49 #define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2)
50
51 #define NUM_PING_PONG_BUFFERS 2
52
53 extern const struct {
54 PARTITION_CONTEXT above;
55 PARTITION_CONTEXT left;
56 } partition_context_lookup[BLOCK_SIZES];
57
58
59 typedef enum {
60 SINGLE_REFERENCE = 0,
61 COMPOUND_REFERENCE = 1,
62 REFERENCE_MODE_SELECT = 2,
63 REFERENCE_MODES = 3,
64 } REFERENCE_MODE;
65
66 typedef struct {
67 int_mv mv[2];
68 MV_REFERENCE_FRAME ref_frame[2];
69 } MV_REF;
70
71 typedef struct {
72 int ref_count;
73 MV_REF *mvs;
74 int mi_rows;
75 int mi_cols;
76 vpx_codec_frame_buffer_t raw_frame_buffer;
77 YV12_BUFFER_CONFIG buf;
78
79 // The Following variables will only be used in frame parallel decode.
80
81 // frame_worker_owner indicates which FrameWorker owns this buffer. NULL means
82 // that no FrameWorker owns, or is decoding, this buffer.
83 VPxWorker *frame_worker_owner;
84
85 // row and col indicate which position frame has been decoded to in real
86 // pixel unit. They are reset to -1 when decoding begins and set to INT_MAX
87 // when the frame is fully decoded.
88 int row;
89 int col;
90 } RefCntBuffer;
91
92 typedef struct BufferPool {
93 // Protect BufferPool from being accessed by several FrameWorkers at
94 // the same time during frame parallel decode.
95 // TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
96 #if CONFIG_MULTITHREAD
97 pthread_mutex_t pool_mutex;
98 #endif
99
100 // Private data associated with the frame buffer callbacks.
101 void *cb_priv;
102
103 vpx_get_frame_buffer_cb_fn_t get_fb_cb;
104 vpx_release_frame_buffer_cb_fn_t release_fb_cb;
105
106 RefCntBuffer frame_bufs[FRAME_BUFFERS];
107
108 // Frame buffers allocated internally by the codec.
109 InternalFrameBufferList int_frame_buffers;
110 } BufferPool;
111
112 typedef struct VP9Common {
113 struct vpx_internal_error_info error;
114 vpx_color_space_t color_space;
115 vpx_color_range_t color_range;
116 int width;
117 int height;
118 int render_width;
119 int render_height;
120 int last_width;
121 int last_height;
122
123 // TODO(jkoleszar): this implies chroma ss right now, but could vary per
124 // plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to
125 // support additional planes.
126 int subsampling_x;
127 int subsampling_y;
128
129 #if CONFIG_VP9_HIGHBITDEPTH
130 int use_highbitdepth; // Marks if we need to use 16bit frame buffers.
131 #endif
132
133 YV12_BUFFER_CONFIG *frame_to_show;
134 RefCntBuffer *prev_frame;
135
136 // TODO(hkuang): Combine this with cur_buf in macroblockd.
137 RefCntBuffer *cur_frame;
138
139 int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */
140
141 // Prepare ref_frame_map for the next frame.
142 // Only used in frame parallel decode.
143 int next_ref_frame_map[REF_FRAMES];
144
145 // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and
146 // roll new_fb_idx into it.
147
148 // Each frame can reference REFS_PER_FRAME buffers
149 RefBuffer frame_refs[REFS_PER_FRAME];
150
151 int new_fb_idx;
152
153 #if CONFIG_VP9_POSTPROC
154 YV12_BUFFER_CONFIG post_proc_buffer;
155 YV12_BUFFER_CONFIG post_proc_buffer_int;
156 #endif
157
158 FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/
159 FRAME_TYPE frame_type;
160
161 int show_frame;
162 int last_show_frame;
163 int show_existing_frame;
164
165 // Flag signaling that the frame is encoded using only INTRA modes.
166 uint8_t intra_only;
167 uint8_t last_intra_only;
168
169 int allow_high_precision_mv;
170
171 // Flag signaling that the frame context should be reset to default values.
172 // 0 or 1 implies don't reset, 2 reset just the context specified in the
173 // frame header, 3 reset all contexts.
174 int reset_frame_context;
175
176 // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in
177 // MODE_INFO (8-pixel) units.
178 int MBs;
179 int mb_rows, mi_rows;
180 int mb_cols, mi_cols;
181 int mi_stride;
182
183 /* profile settings */
184 TX_MODE tx_mode;
185
186 int base_qindex;
187 int y_dc_delta_q;
188 int uv_dc_delta_q;
189 int uv_ac_delta_q;
190 int16_t y_dequant[MAX_SEGMENTS][2];
191 int16_t uv_dequant[MAX_SEGMENTS][2];
192
193 /* We allocate a MODE_INFO struct for each macroblock, together with
194 an extra row on top and column on the left to simplify prediction. */
195 int mi_alloc_size;
196 MODE_INFO *mip; /* Base of allocated array */
197 MODE_INFO *mi; /* Corresponds to upper left visible macroblock */
198
199 // TODO(agrange): Move prev_mi into encoder structure.
200 // prev_mip and prev_mi will only be allocated in VP9 encoder.
201 MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */
202 MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */
203
204 // Separate mi functions between encoder and decoder.
205 int (*alloc_mi)(struct VP9Common *cm, int mi_size);
206 void (*free_mi)(struct VP9Common *cm);
207 void (*setup_mi)(struct VP9Common *cm);
208
209 // Grid of pointers to 8x8 MODE_INFO structs. Any 8x8 not in the visible
210 // area will be NULL.
211 MODE_INFO **mi_grid_base;
212 MODE_INFO **mi_grid_visible;
213 MODE_INFO **prev_mi_grid_base;
214 MODE_INFO **prev_mi_grid_visible;
215
216 // Whether to use previous frame's motion vectors for prediction.
217 int use_prev_frame_mvs;
218
219 // Persistent mb segment id map used in prediction.
220 int seg_map_idx;
221 int prev_seg_map_idx;
222
223 uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS];
224 uint8_t *last_frame_seg_map;
225 uint8_t *current_frame_seg_map;
226 int seg_map_alloc_size;
227
228 INTERP_FILTER interp_filter;
229
230 loop_filter_info_n lf_info;
231
232 int refresh_frame_context; /* Two state 0 = NO, 1 = YES */
233
234 int ref_frame_sign_bias[MAX_REF_FRAMES]; /* Two state 0, 1 */
235
236 struct loopfilter lf;
237 struct segmentation seg;
238
239 // TODO(hkuang): Remove this as it is the same as frame_parallel_decode
240 // in pbi.
241 int frame_parallel_decode; // frame-based threading.
242
243 // Context probabilities for reference frame prediction
244 MV_REFERENCE_FRAME comp_fixed_ref;
245 MV_REFERENCE_FRAME comp_var_ref[2];
246 REFERENCE_MODE reference_mode;
247
248 FRAME_CONTEXT *fc; /* this frame entropy */
249 FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS
250 unsigned int frame_context_idx; /* Context to use/update */
251 FRAME_COUNTS counts;
252
253 unsigned int current_video_frame;
254 BITSTREAM_PROFILE profile;
255
256 // VPX_BITS_8 in profile 0 or 1, VPX_BITS_10 or VPX_BITS_12 in profile 2 or 3.
257 vpx_bit_depth_t bit_depth;
258 vpx_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer
259
260 #if CONFIG_VP9_POSTPROC
261 struct postproc_state postproc_state;
262 #endif
263
264 int error_resilient_mode;
265 int frame_parallel_decoding_mode;
266
267 int log2_tile_cols, log2_tile_rows;
268 int byte_alignment;
269 int skip_loop_filter;
270
271 // Private data associated with the frame buffer callbacks.
272 void *cb_priv;
273 vpx_get_frame_buffer_cb_fn_t get_fb_cb;
274 vpx_release_frame_buffer_cb_fn_t release_fb_cb;
275
276 // Handles memory for the codec.
277 InternalFrameBufferList int_frame_buffers;
278
279 // External BufferPool passed from outside.
280 BufferPool *buffer_pool;
281
282 PARTITION_CONTEXT *above_seg_context;
283 ENTROPY_CONTEXT *above_context;
284 int above_context_alloc_cols;
285 } VP9_COMMON;
286
287 // TODO(hkuang): Don't need to lock the whole pool after implementing atomic
288 // frame reference count.
289 void lock_buffer_pool(BufferPool *const pool);
290 void unlock_buffer_pool(BufferPool *const pool);
291
get_ref_frame(VP9_COMMON * cm,int index)292 static INLINE YV12_BUFFER_CONFIG *get_ref_frame(VP9_COMMON *cm, int index) {
293 if (index < 0 || index >= REF_FRAMES)
294 return NULL;
295 if (cm->ref_frame_map[index] < 0)
296 return NULL;
297 assert(cm->ref_frame_map[index] < FRAME_BUFFERS);
298 return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf;
299 }
300
get_frame_new_buffer(VP9_COMMON * cm)301 static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(VP9_COMMON *cm) {
302 return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf;
303 }
304
get_free_fb(VP9_COMMON * cm)305 static INLINE int get_free_fb(VP9_COMMON *cm) {
306 RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
307 int i;
308
309 lock_buffer_pool(cm->buffer_pool);
310 for (i = 0; i < FRAME_BUFFERS; ++i)
311 if (frame_bufs[i].ref_count == 0)
312 break;
313
314 if (i != FRAME_BUFFERS) {
315 frame_bufs[i].ref_count = 1;
316 } else {
317 // Reset i to be INVALID_IDX to indicate no free buffer found.
318 i = INVALID_IDX;
319 }
320
321 unlock_buffer_pool(cm->buffer_pool);
322 return i;
323 }
324
ref_cnt_fb(RefCntBuffer * bufs,int * idx,int new_idx)325 static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) {
326 const int ref_index = *idx;
327
328 if (ref_index >= 0 && bufs[ref_index].ref_count > 0)
329 bufs[ref_index].ref_count--;
330
331 *idx = new_idx;
332
333 bufs[new_idx].ref_count++;
334 }
335
mi_cols_aligned_to_sb(int n_mis)336 static INLINE int mi_cols_aligned_to_sb(int n_mis) {
337 return ALIGN_POWER_OF_TWO(n_mis, MI_BLOCK_SIZE_LOG2);
338 }
339
frame_is_intra_only(const VP9_COMMON * const cm)340 static INLINE int frame_is_intra_only(const VP9_COMMON *const cm) {
341 return cm->frame_type == KEY_FRAME || cm->intra_only;
342 }
343
set_partition_probs(const VP9_COMMON * const cm,MACROBLOCKD * const xd)344 static INLINE void set_partition_probs(const VP9_COMMON *const cm,
345 MACROBLOCKD *const xd) {
346 xd->partition_probs =
347 frame_is_intra_only(cm) ?
348 &vp9_kf_partition_probs[0] :
349 (const vpx_prob (*)[PARTITION_TYPES - 1])cm->fc->partition_prob;
350 }
351
vp9_init_macroblockd(VP9_COMMON * cm,MACROBLOCKD * xd,tran_low_t * dqcoeff)352 static INLINE void vp9_init_macroblockd(VP9_COMMON *cm, MACROBLOCKD *xd,
353 tran_low_t *dqcoeff) {
354 int i;
355
356 for (i = 0; i < MAX_MB_PLANE; ++i) {
357 xd->plane[i].dqcoeff = dqcoeff;
358 xd->above_context[i] = cm->above_context +
359 i * sizeof(*cm->above_context) * 2 * mi_cols_aligned_to_sb(cm->mi_cols);
360
361 if (get_plane_type(i) == PLANE_TYPE_Y) {
362 memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant));
363 } else {
364 memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant));
365 }
366 xd->fc = cm->fc;
367 }
368
369 xd->above_seg_context = cm->above_seg_context;
370 xd->mi_stride = cm->mi_stride;
371 xd->error_info = &cm->error;
372
373 set_partition_probs(cm, xd);
374 }
375
get_partition_probs(const MACROBLOCKD * xd,int ctx)376 static INLINE const vpx_prob* get_partition_probs(const MACROBLOCKD *xd,
377 int ctx) {
378 return xd->partition_probs[ctx];
379 }
380
set_skip_context(MACROBLOCKD * xd,int mi_row,int mi_col)381 static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) {
382 const int above_idx = mi_col * 2;
383 const int left_idx = (mi_row * 2) & 15;
384 int i;
385 for (i = 0; i < MAX_MB_PLANE; ++i) {
386 struct macroblockd_plane *const pd = &xd->plane[i];
387 pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x];
388 pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y];
389 }
390 }
391
calc_mi_size(int len)392 static INLINE int calc_mi_size(int len) {
393 // len is in mi units.
394 return len + MI_BLOCK_SIZE;
395 }
396
set_mi_row_col(MACROBLOCKD * xd,const TileInfo * const tile,int mi_row,int bh,int mi_col,int bw,int mi_rows,int mi_cols)397 static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
398 int mi_row, int bh,
399 int mi_col, int bw,
400 int mi_rows, int mi_cols) {
401 xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
402 xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
403 xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
404 xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
405
406 // Are edges available for intra prediction?
407 xd->up_available = (mi_row != 0);
408 xd->left_available = (mi_col > tile->mi_col_start);
409 if (xd->up_available) {
410 xd->above_mi = xd->mi[-xd->mi_stride];
411 // above_mi may be NULL in VP9 encoder's first pass.
412 xd->above_mbmi = xd->above_mi ? &xd->above_mi->mbmi : NULL;
413 } else {
414 xd->above_mi = NULL;
415 xd->above_mbmi = NULL;
416 }
417
418 if (xd->left_available) {
419 xd->left_mi = xd->mi[-1];
420 // left_mi may be NULL in VP9 encoder's first pass.
421 xd->left_mbmi = xd->left_mi ? &xd->left_mi->mbmi : NULL;
422 } else {
423 xd->left_mi = NULL;
424 xd->left_mbmi = NULL;
425 }
426 }
427
update_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize)428 static INLINE void update_partition_context(MACROBLOCKD *xd,
429 int mi_row, int mi_col,
430 BLOCK_SIZE subsize,
431 BLOCK_SIZE bsize) {
432 PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
433 PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MI_MASK);
434
435 // num_4x4_blocks_wide_lookup[bsize] / 2
436 const int bs = num_8x8_blocks_wide_lookup[bsize];
437
438 // update the partition context at the end notes. set partition bits
439 // of block sizes larger than the current one to be one, and partition
440 // bits of smaller block sizes to be zero.
441 memset(above_ctx, partition_context_lookup[subsize].above, bs);
442 memset(left_ctx, partition_context_lookup[subsize].left, bs);
443 }
444
partition_plane_context(const MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)445 static INLINE int partition_plane_context(const MACROBLOCKD *xd,
446 int mi_row, int mi_col,
447 BLOCK_SIZE bsize) {
448 const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
449 const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MI_MASK);
450 const int bsl = mi_width_log2_lookup[bsize];
451 int above = (*above_ctx >> bsl) & 1 , left = (*left_ctx >> bsl) & 1;
452
453 assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
454 assert(bsl >= 0);
455
456 return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
457 }
458
459 #ifdef __cplusplus
460 } // extern "C"
461 #endif
462
463 #endif // VP9_COMMON_VP9_ONYXC_INT_H_
464