• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 //  This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===/
11 
12 #include "TreeTransform.h"
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TypeVisitor.h"
21 #include "clang/Basic/Builtins.h"
22 #include "clang/Basic/LangOptions.h"
23 #include "clang/Basic/PartialDiagnostic.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "clang/Sema/Lookup.h"
27 #include "clang/Sema/ParsedTemplate.h"
28 #include "clang/Sema/Scope.h"
29 #include "clang/Sema/SemaInternal.h"
30 #include "clang/Sema/Template.h"
31 #include "clang/Sema/TemplateDeduction.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/SmallString.h"
34 #include "llvm/ADT/StringExtras.h"
35 using namespace clang;
36 using namespace sema;
37 
38 // Exported for use by Parser.
39 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)40 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
41                               unsigned N) {
42   if (!N) return SourceRange();
43   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
44 }
45 
46 /// \brief Determine whether the declaration found is acceptable as the name
47 /// of a template and, if so, return that template declaration. Otherwise,
48 /// returns NULL.
isAcceptableTemplateName(ASTContext & Context,NamedDecl * Orig,bool AllowFunctionTemplates)49 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
50                                            NamedDecl *Orig,
51                                            bool AllowFunctionTemplates) {
52   NamedDecl *D = Orig->getUnderlyingDecl();
53 
54   if (isa<TemplateDecl>(D)) {
55     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
56       return nullptr;
57 
58     return Orig;
59   }
60 
61   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
62     // C++ [temp.local]p1:
63     //   Like normal (non-template) classes, class templates have an
64     //   injected-class-name (Clause 9). The injected-class-name
65     //   can be used with or without a template-argument-list. When
66     //   it is used without a template-argument-list, it is
67     //   equivalent to the injected-class-name followed by the
68     //   template-parameters of the class template enclosed in
69     //   <>. When it is used with a template-argument-list, it
70     //   refers to the specified class template specialization,
71     //   which could be the current specialization or another
72     //   specialization.
73     if (Record->isInjectedClassName()) {
74       Record = cast<CXXRecordDecl>(Record->getDeclContext());
75       if (Record->getDescribedClassTemplate())
76         return Record->getDescribedClassTemplate();
77 
78       if (ClassTemplateSpecializationDecl *Spec
79             = dyn_cast<ClassTemplateSpecializationDecl>(Record))
80         return Spec->getSpecializedTemplate();
81     }
82 
83     return nullptr;
84   }
85 
86   return nullptr;
87 }
88 
FilterAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)89 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
90                                          bool AllowFunctionTemplates) {
91   // The set of class templates we've already seen.
92   llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
93   LookupResult::Filter filter = R.makeFilter();
94   while (filter.hasNext()) {
95     NamedDecl *Orig = filter.next();
96     NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
97                                                AllowFunctionTemplates);
98     if (!Repl)
99       filter.erase();
100     else if (Repl != Orig) {
101 
102       // C++ [temp.local]p3:
103       //   A lookup that finds an injected-class-name (10.2) can result in an
104       //   ambiguity in certain cases (for example, if it is found in more than
105       //   one base class). If all of the injected-class-names that are found
106       //   refer to specializations of the same class template, and if the name
107       //   is used as a template-name, the reference refers to the class
108       //   template itself and not a specialization thereof, and is not
109       //   ambiguous.
110       if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
111         if (!ClassTemplates.insert(ClassTmpl).second) {
112           filter.erase();
113           continue;
114         }
115 
116       // FIXME: we promote access to public here as a workaround to
117       // the fact that LookupResult doesn't let us remember that we
118       // found this template through a particular injected class name,
119       // which means we end up doing nasty things to the invariants.
120       // Pretending that access is public is *much* safer.
121       filter.replace(Repl, AS_public);
122     }
123   }
124   filter.done();
125 }
126 
hasAnyAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)127 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
128                                          bool AllowFunctionTemplates) {
129   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
130     if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
131       return true;
132 
133   return false;
134 }
135 
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization)136 TemplateNameKind Sema::isTemplateName(Scope *S,
137                                       CXXScopeSpec &SS,
138                                       bool hasTemplateKeyword,
139                                       UnqualifiedId &Name,
140                                       ParsedType ObjectTypePtr,
141                                       bool EnteringContext,
142                                       TemplateTy &TemplateResult,
143                                       bool &MemberOfUnknownSpecialization) {
144   assert(getLangOpts().CPlusPlus && "No template names in C!");
145 
146   DeclarationName TName;
147   MemberOfUnknownSpecialization = false;
148 
149   switch (Name.getKind()) {
150   case UnqualifiedId::IK_Identifier:
151     TName = DeclarationName(Name.Identifier);
152     break;
153 
154   case UnqualifiedId::IK_OperatorFunctionId:
155     TName = Context.DeclarationNames.getCXXOperatorName(
156                                               Name.OperatorFunctionId.Operator);
157     break;
158 
159   case UnqualifiedId::IK_LiteralOperatorId:
160     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
161     break;
162 
163   default:
164     return TNK_Non_template;
165   }
166 
167   QualType ObjectType = ObjectTypePtr.get();
168 
169   LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
170   LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
171                      MemberOfUnknownSpecialization);
172   if (R.empty()) return TNK_Non_template;
173   if (R.isAmbiguous()) {
174     // Suppress diagnostics;  we'll redo this lookup later.
175     R.suppressDiagnostics();
176 
177     // FIXME: we might have ambiguous templates, in which case we
178     // should at least parse them properly!
179     return TNK_Non_template;
180   }
181 
182   TemplateName Template;
183   TemplateNameKind TemplateKind;
184 
185   unsigned ResultCount = R.end() - R.begin();
186   if (ResultCount > 1) {
187     // We assume that we'll preserve the qualifier from a function
188     // template name in other ways.
189     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
190     TemplateKind = TNK_Function_template;
191 
192     // We'll do this lookup again later.
193     R.suppressDiagnostics();
194   } else {
195     TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
196 
197     if (SS.isSet() && !SS.isInvalid()) {
198       NestedNameSpecifier *Qualifier = SS.getScopeRep();
199       Template = Context.getQualifiedTemplateName(Qualifier,
200                                                   hasTemplateKeyword, TD);
201     } else {
202       Template = TemplateName(TD);
203     }
204 
205     if (isa<FunctionTemplateDecl>(TD)) {
206       TemplateKind = TNK_Function_template;
207 
208       // We'll do this lookup again later.
209       R.suppressDiagnostics();
210     } else {
211       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
212              isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
213              isa<BuiltinTemplateDecl>(TD));
214       TemplateKind =
215           isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
216     }
217   }
218 
219   TemplateResult = TemplateTy::make(Template);
220   return TemplateKind;
221 }
222 
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)223 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
224                                        SourceLocation IILoc,
225                                        Scope *S,
226                                        const CXXScopeSpec *SS,
227                                        TemplateTy &SuggestedTemplate,
228                                        TemplateNameKind &SuggestedKind) {
229   // We can't recover unless there's a dependent scope specifier preceding the
230   // template name.
231   // FIXME: Typo correction?
232   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
233       computeDeclContext(*SS))
234     return false;
235 
236   // The code is missing a 'template' keyword prior to the dependent template
237   // name.
238   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
239   Diag(IILoc, diag::err_template_kw_missing)
240     << Qualifier << II.getName()
241     << FixItHint::CreateInsertion(IILoc, "template ");
242   SuggestedTemplate
243     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
244   SuggestedKind = TNK_Dependent_template_name;
245   return true;
246 }
247 
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,bool & MemberOfUnknownSpecialization)248 void Sema::LookupTemplateName(LookupResult &Found,
249                               Scope *S, CXXScopeSpec &SS,
250                               QualType ObjectType,
251                               bool EnteringContext,
252                               bool &MemberOfUnknownSpecialization) {
253   // Determine where to perform name lookup
254   MemberOfUnknownSpecialization = false;
255   DeclContext *LookupCtx = nullptr;
256   bool isDependent = false;
257   if (!ObjectType.isNull()) {
258     // This nested-name-specifier occurs in a member access expression, e.g.,
259     // x->B::f, and we are looking into the type of the object.
260     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
261     LookupCtx = computeDeclContext(ObjectType);
262     isDependent = ObjectType->isDependentType();
263     assert((isDependent || !ObjectType->isIncompleteType() ||
264             ObjectType->castAs<TagType>()->isBeingDefined()) &&
265            "Caller should have completed object type");
266 
267     // Template names cannot appear inside an Objective-C class or object type.
268     if (ObjectType->isObjCObjectOrInterfaceType()) {
269       Found.clear();
270       return;
271     }
272   } else if (SS.isSet()) {
273     // This nested-name-specifier occurs after another nested-name-specifier,
274     // so long into the context associated with the prior nested-name-specifier.
275     LookupCtx = computeDeclContext(SS, EnteringContext);
276     isDependent = isDependentScopeSpecifier(SS);
277 
278     // The declaration context must be complete.
279     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
280       return;
281   }
282 
283   bool ObjectTypeSearchedInScope = false;
284   bool AllowFunctionTemplatesInLookup = true;
285   if (LookupCtx) {
286     // Perform "qualified" name lookup into the declaration context we
287     // computed, which is either the type of the base of a member access
288     // expression or the declaration context associated with a prior
289     // nested-name-specifier.
290     LookupQualifiedName(Found, LookupCtx);
291     if (!ObjectType.isNull() && Found.empty()) {
292       // C++ [basic.lookup.classref]p1:
293       //   In a class member access expression (5.2.5), if the . or -> token is
294       //   immediately followed by an identifier followed by a <, the
295       //   identifier must be looked up to determine whether the < is the
296       //   beginning of a template argument list (14.2) or a less-than operator.
297       //   The identifier is first looked up in the class of the object
298       //   expression. If the identifier is not found, it is then looked up in
299       //   the context of the entire postfix-expression and shall name a class
300       //   or function template.
301       if (S) LookupName(Found, S);
302       ObjectTypeSearchedInScope = true;
303       AllowFunctionTemplatesInLookup = false;
304     }
305   } else if (isDependent && (!S || ObjectType.isNull())) {
306     // We cannot look into a dependent object type or nested nme
307     // specifier.
308     MemberOfUnknownSpecialization = true;
309     return;
310   } else {
311     // Perform unqualified name lookup in the current scope.
312     LookupName(Found, S);
313 
314     if (!ObjectType.isNull())
315       AllowFunctionTemplatesInLookup = false;
316   }
317 
318   if (Found.empty() && !isDependent) {
319     // If we did not find any names, attempt to correct any typos.
320     DeclarationName Name = Found.getLookupName();
321     Found.clear();
322     // Simple filter callback that, for keywords, only accepts the C++ *_cast
323     auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>();
324     FilterCCC->WantTypeSpecifiers = false;
325     FilterCCC->WantExpressionKeywords = false;
326     FilterCCC->WantRemainingKeywords = false;
327     FilterCCC->WantCXXNamedCasts = true;
328     if (TypoCorrection Corrected = CorrectTypo(
329             Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
330             std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) {
331       Found.setLookupName(Corrected.getCorrection());
332       if (Corrected.getCorrectionDecl())
333         Found.addDecl(Corrected.getCorrectionDecl());
334       FilterAcceptableTemplateNames(Found);
335       if (!Found.empty()) {
336         if (LookupCtx) {
337           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
338           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
339                                   Name.getAsString() == CorrectedStr;
340           diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
341                                     << Name << LookupCtx << DroppedSpecifier
342                                     << SS.getRange());
343         } else {
344           diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
345         }
346       }
347     } else {
348       Found.setLookupName(Name);
349     }
350   }
351 
352   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
353   if (Found.empty()) {
354     if (isDependent)
355       MemberOfUnknownSpecialization = true;
356     return;
357   }
358 
359   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
360       !getLangOpts().CPlusPlus11) {
361     // C++03 [basic.lookup.classref]p1:
362     //   [...] If the lookup in the class of the object expression finds a
363     //   template, the name is also looked up in the context of the entire
364     //   postfix-expression and [...]
365     //
366     // Note: C++11 does not perform this second lookup.
367     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
368                             LookupOrdinaryName);
369     LookupName(FoundOuter, S);
370     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
371 
372     if (FoundOuter.empty()) {
373       //   - if the name is not found, the name found in the class of the
374       //     object expression is used, otherwise
375     } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
376                FoundOuter.isAmbiguous()) {
377       //   - if the name is found in the context of the entire
378       //     postfix-expression and does not name a class template, the name
379       //     found in the class of the object expression is used, otherwise
380       FoundOuter.clear();
381     } else if (!Found.isSuppressingDiagnostics()) {
382       //   - if the name found is a class template, it must refer to the same
383       //     entity as the one found in the class of the object expression,
384       //     otherwise the program is ill-formed.
385       if (!Found.isSingleResult() ||
386           Found.getFoundDecl()->getCanonicalDecl()
387             != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
388         Diag(Found.getNameLoc(),
389              diag::ext_nested_name_member_ref_lookup_ambiguous)
390           << Found.getLookupName()
391           << ObjectType;
392         Diag(Found.getRepresentativeDecl()->getLocation(),
393              diag::note_ambig_member_ref_object_type)
394           << ObjectType;
395         Diag(FoundOuter.getFoundDecl()->getLocation(),
396              diag::note_ambig_member_ref_scope);
397 
398         // Recover by taking the template that we found in the object
399         // expression's type.
400       }
401     }
402   }
403 }
404 
405 /// ActOnDependentIdExpression - Handle a dependent id-expression that
406 /// was just parsed.  This is only possible with an explicit scope
407 /// specifier naming a dependent type.
408 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)409 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
410                                  SourceLocation TemplateKWLoc,
411                                  const DeclarationNameInfo &NameInfo,
412                                  bool isAddressOfOperand,
413                            const TemplateArgumentListInfo *TemplateArgs) {
414   DeclContext *DC = getFunctionLevelDeclContext();
415 
416   if (!isAddressOfOperand &&
417       isa<CXXMethodDecl>(DC) &&
418       cast<CXXMethodDecl>(DC)->isInstance()) {
419     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
420 
421     // Since the 'this' expression is synthesized, we don't need to
422     // perform the double-lookup check.
423     NamedDecl *FirstQualifierInScope = nullptr;
424 
425     return CXXDependentScopeMemberExpr::Create(
426         Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
427         /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
428         FirstQualifierInScope, NameInfo, TemplateArgs);
429   }
430 
431   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
432 }
433 
434 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)435 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
436                                 SourceLocation TemplateKWLoc,
437                                 const DeclarationNameInfo &NameInfo,
438                                 const TemplateArgumentListInfo *TemplateArgs) {
439   return DependentScopeDeclRefExpr::Create(
440       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
441       TemplateArgs);
442 }
443 
444 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
445 /// that the template parameter 'PrevDecl' is being shadowed by a new
446 /// declaration at location Loc. Returns true to indicate that this is
447 /// an error, and false otherwise.
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl)448 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
449   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
450 
451   // Microsoft Visual C++ permits template parameters to be shadowed.
452   if (getLangOpts().MicrosoftExt)
453     return;
454 
455   // C++ [temp.local]p4:
456   //   A template-parameter shall not be redeclared within its
457   //   scope (including nested scopes).
458   Diag(Loc, diag::err_template_param_shadow)
459     << cast<NamedDecl>(PrevDecl)->getDeclName();
460   Diag(PrevDecl->getLocation(), diag::note_template_param_here);
461   return;
462 }
463 
464 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
465 /// the parameter D to reference the templated declaration and return a pointer
466 /// to the template declaration. Otherwise, do nothing to D and return null.
AdjustDeclIfTemplate(Decl * & D)467 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
468   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
469     D = Temp->getTemplatedDecl();
470     return Temp;
471   }
472   return nullptr;
473 }
474 
getTemplatePackExpansion(SourceLocation EllipsisLoc) const475 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
476                                              SourceLocation EllipsisLoc) const {
477   assert(Kind == Template &&
478          "Only template template arguments can be pack expansions here");
479   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
480          "Template template argument pack expansion without packs");
481   ParsedTemplateArgument Result(*this);
482   Result.EllipsisLoc = EllipsisLoc;
483   return Result;
484 }
485 
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)486 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
487                                             const ParsedTemplateArgument &Arg) {
488 
489   switch (Arg.getKind()) {
490   case ParsedTemplateArgument::Type: {
491     TypeSourceInfo *DI;
492     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
493     if (!DI)
494       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
495     return TemplateArgumentLoc(TemplateArgument(T), DI);
496   }
497 
498   case ParsedTemplateArgument::NonType: {
499     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
500     return TemplateArgumentLoc(TemplateArgument(E), E);
501   }
502 
503   case ParsedTemplateArgument::Template: {
504     TemplateName Template = Arg.getAsTemplate().get();
505     TemplateArgument TArg;
506     if (Arg.getEllipsisLoc().isValid())
507       TArg = TemplateArgument(Template, Optional<unsigned int>());
508     else
509       TArg = Template;
510     return TemplateArgumentLoc(TArg,
511                                Arg.getScopeSpec().getWithLocInContext(
512                                                               SemaRef.Context),
513                                Arg.getLocation(),
514                                Arg.getEllipsisLoc());
515   }
516   }
517 
518   llvm_unreachable("Unhandled parsed template argument");
519 }
520 
521 /// \brief Translates template arguments as provided by the parser
522 /// into template arguments used by semantic analysis.
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)523 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
524                                       TemplateArgumentListInfo &TemplateArgs) {
525  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
526    TemplateArgs.addArgument(translateTemplateArgument(*this,
527                                                       TemplateArgsIn[I]));
528 }
529 
maybeDiagnoseTemplateParameterShadow(Sema & SemaRef,Scope * S,SourceLocation Loc,IdentifierInfo * Name)530 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
531                                                  SourceLocation Loc,
532                                                  IdentifierInfo *Name) {
533   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
534       S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
535   if (PrevDecl && PrevDecl->isTemplateParameter())
536     SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
537 }
538 
539 /// ActOnTypeParameter - Called when a C++ template type parameter
540 /// (e.g., "typename T") has been parsed. Typename specifies whether
541 /// the keyword "typename" was used to declare the type parameter
542 /// (otherwise, "class" was used), and KeyLoc is the location of the
543 /// "class" or "typename" keyword. ParamName is the name of the
544 /// parameter (NULL indicates an unnamed template parameter) and
545 /// ParamNameLoc is the location of the parameter name (if any).
546 /// If the type parameter has a default argument, it will be added
547 /// later via ActOnTypeParameterDefault.
ActOnTypeParameter(Scope * S,bool Typename,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg)548 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
549                                SourceLocation EllipsisLoc,
550                                SourceLocation KeyLoc,
551                                IdentifierInfo *ParamName,
552                                SourceLocation ParamNameLoc,
553                                unsigned Depth, unsigned Position,
554                                SourceLocation EqualLoc,
555                                ParsedType DefaultArg) {
556   assert(S->isTemplateParamScope() &&
557          "Template type parameter not in template parameter scope!");
558   bool Invalid = false;
559 
560   SourceLocation Loc = ParamNameLoc;
561   if (!ParamName)
562     Loc = KeyLoc;
563 
564   bool IsParameterPack = EllipsisLoc.isValid();
565   TemplateTypeParmDecl *Param
566     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
567                                    KeyLoc, Loc, Depth, Position, ParamName,
568                                    Typename, IsParameterPack);
569   Param->setAccess(AS_public);
570   if (Invalid)
571     Param->setInvalidDecl();
572 
573   if (ParamName) {
574     maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
575 
576     // Add the template parameter into the current scope.
577     S->AddDecl(Param);
578     IdResolver.AddDecl(Param);
579   }
580 
581   // C++0x [temp.param]p9:
582   //   A default template-argument may be specified for any kind of
583   //   template-parameter that is not a template parameter pack.
584   if (DefaultArg && IsParameterPack) {
585     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
586     DefaultArg = ParsedType();
587   }
588 
589   // Handle the default argument, if provided.
590   if (DefaultArg) {
591     TypeSourceInfo *DefaultTInfo;
592     GetTypeFromParser(DefaultArg, &DefaultTInfo);
593 
594     assert(DefaultTInfo && "expected source information for type");
595 
596     // Check for unexpanded parameter packs.
597     if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
598                                         UPPC_DefaultArgument))
599       return Param;
600 
601     // Check the template argument itself.
602     if (CheckTemplateArgument(Param, DefaultTInfo)) {
603       Param->setInvalidDecl();
604       return Param;
605     }
606 
607     Param->setDefaultArgument(DefaultTInfo);
608   }
609 
610   return Param;
611 }
612 
613 /// \brief Check that the type of a non-type template parameter is
614 /// well-formed.
615 ///
616 /// \returns the (possibly-promoted) parameter type if valid;
617 /// otherwise, produces a diagnostic and returns a NULL type.
618 QualType
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)619 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
620   // We don't allow variably-modified types as the type of non-type template
621   // parameters.
622   if (T->isVariablyModifiedType()) {
623     Diag(Loc, diag::err_variably_modified_nontype_template_param)
624       << T;
625     return QualType();
626   }
627 
628   // C++ [temp.param]p4:
629   //
630   // A non-type template-parameter shall have one of the following
631   // (optionally cv-qualified) types:
632   //
633   //       -- integral or enumeration type,
634   if (T->isIntegralOrEnumerationType() ||
635       //   -- pointer to object or pointer to function,
636       T->isPointerType() ||
637       //   -- reference to object or reference to function,
638       T->isReferenceType() ||
639       //   -- pointer to member,
640       T->isMemberPointerType() ||
641       //   -- std::nullptr_t.
642       T->isNullPtrType() ||
643       // If T is a dependent type, we can't do the check now, so we
644       // assume that it is well-formed.
645       T->isDependentType()) {
646     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
647     // are ignored when determining its type.
648     return T.getUnqualifiedType();
649   }
650 
651   // C++ [temp.param]p8:
652   //
653   //   A non-type template-parameter of type "array of T" or
654   //   "function returning T" is adjusted to be of type "pointer to
655   //   T" or "pointer to function returning T", respectively.
656   else if (T->isArrayType() || T->isFunctionType())
657     return Context.getDecayedType(T);
658 
659   Diag(Loc, diag::err_template_nontype_parm_bad_type)
660     << T;
661 
662   return QualType();
663 }
664 
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)665 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
666                                           unsigned Depth,
667                                           unsigned Position,
668                                           SourceLocation EqualLoc,
669                                           Expr *Default) {
670   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
671   QualType T = TInfo->getType();
672 
673   assert(S->isTemplateParamScope() &&
674          "Non-type template parameter not in template parameter scope!");
675   bool Invalid = false;
676 
677   T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
678   if (T.isNull()) {
679     T = Context.IntTy; // Recover with an 'int' type.
680     Invalid = true;
681   }
682 
683   IdentifierInfo *ParamName = D.getIdentifier();
684   bool IsParameterPack = D.hasEllipsis();
685   NonTypeTemplateParmDecl *Param
686     = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
687                                       D.getLocStart(),
688                                       D.getIdentifierLoc(),
689                                       Depth, Position, ParamName, T,
690                                       IsParameterPack, TInfo);
691   Param->setAccess(AS_public);
692 
693   if (Invalid)
694     Param->setInvalidDecl();
695 
696   if (ParamName) {
697     maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
698                                          ParamName);
699 
700     // Add the template parameter into the current scope.
701     S->AddDecl(Param);
702     IdResolver.AddDecl(Param);
703   }
704 
705   // C++0x [temp.param]p9:
706   //   A default template-argument may be specified for any kind of
707   //   template-parameter that is not a template parameter pack.
708   if (Default && IsParameterPack) {
709     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
710     Default = nullptr;
711   }
712 
713   // Check the well-formedness of the default template argument, if provided.
714   if (Default) {
715     // Check for unexpanded parameter packs.
716     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
717       return Param;
718 
719     TemplateArgument Converted;
720     ExprResult DefaultRes =
721         CheckTemplateArgument(Param, Param->getType(), Default, Converted);
722     if (DefaultRes.isInvalid()) {
723       Param->setInvalidDecl();
724       return Param;
725     }
726     Default = DefaultRes.get();
727 
728     Param->setDefaultArgument(Default);
729   }
730 
731   return Param;
732 }
733 
734 /// ActOnTemplateTemplateParameter - Called when a C++ template template
735 /// parameter (e.g. T in template <template \<typename> class T> class array)
736 /// has been parsed. S is the current scope.
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParameterList * Params,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)737 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
738                                            SourceLocation TmpLoc,
739                                            TemplateParameterList *Params,
740                                            SourceLocation EllipsisLoc,
741                                            IdentifierInfo *Name,
742                                            SourceLocation NameLoc,
743                                            unsigned Depth,
744                                            unsigned Position,
745                                            SourceLocation EqualLoc,
746                                            ParsedTemplateArgument Default) {
747   assert(S->isTemplateParamScope() &&
748          "Template template parameter not in template parameter scope!");
749 
750   // Construct the parameter object.
751   bool IsParameterPack = EllipsisLoc.isValid();
752   TemplateTemplateParmDecl *Param =
753     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
754                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
755                                      Depth, Position, IsParameterPack,
756                                      Name, Params);
757   Param->setAccess(AS_public);
758 
759   // If the template template parameter has a name, then link the identifier
760   // into the scope and lookup mechanisms.
761   if (Name) {
762     maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
763 
764     S->AddDecl(Param);
765     IdResolver.AddDecl(Param);
766   }
767 
768   if (Params->size() == 0) {
769     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
770     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
771     Param->setInvalidDecl();
772   }
773 
774   // C++0x [temp.param]p9:
775   //   A default template-argument may be specified for any kind of
776   //   template-parameter that is not a template parameter pack.
777   if (IsParameterPack && !Default.isInvalid()) {
778     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
779     Default = ParsedTemplateArgument();
780   }
781 
782   if (!Default.isInvalid()) {
783     // Check only that we have a template template argument. We don't want to
784     // try to check well-formedness now, because our template template parameter
785     // might have dependent types in its template parameters, which we wouldn't
786     // be able to match now.
787     //
788     // If none of the template template parameter's template arguments mention
789     // other template parameters, we could actually perform more checking here.
790     // However, it isn't worth doing.
791     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
792     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
793       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
794         << DefaultArg.getSourceRange();
795       return Param;
796     }
797 
798     // Check for unexpanded parameter packs.
799     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
800                                         DefaultArg.getArgument().getAsTemplate(),
801                                         UPPC_DefaultArgument))
802       return Param;
803 
804     Param->setDefaultArgument(Context, DefaultArg);
805   }
806 
807   return Param;
808 }
809 
810 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
811 /// contains the template parameters in Params/NumParams.
812 TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,Decl ** Params,unsigned NumParams,SourceLocation RAngleLoc)813 Sema::ActOnTemplateParameterList(unsigned Depth,
814                                  SourceLocation ExportLoc,
815                                  SourceLocation TemplateLoc,
816                                  SourceLocation LAngleLoc,
817                                  Decl **Params, unsigned NumParams,
818                                  SourceLocation RAngleLoc) {
819   if (ExportLoc.isValid())
820     Diag(ExportLoc, diag::warn_template_export_unsupported);
821 
822   return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
823                                        (NamedDecl**)Params, NumParams,
824                                        RAngleLoc);
825 }
826 
SetNestedNameSpecifier(TagDecl * T,const CXXScopeSpec & SS)827 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
828   if (SS.isSet())
829     T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
830 }
831 
832 DeclResult
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,SourceLocation ModulePrivateLoc,SourceLocation FriendLoc,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists,SkipBodyInfo * SkipBody)833 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
834                          SourceLocation KWLoc, CXXScopeSpec &SS,
835                          IdentifierInfo *Name, SourceLocation NameLoc,
836                          AttributeList *Attr,
837                          TemplateParameterList *TemplateParams,
838                          AccessSpecifier AS, SourceLocation ModulePrivateLoc,
839                          SourceLocation FriendLoc,
840                          unsigned NumOuterTemplateParamLists,
841                          TemplateParameterList** OuterTemplateParamLists,
842                          SkipBodyInfo *SkipBody) {
843   assert(TemplateParams && TemplateParams->size() > 0 &&
844          "No template parameters");
845   assert(TUK != TUK_Reference && "Can only declare or define class templates");
846   bool Invalid = false;
847 
848   // Check that we can declare a template here.
849   if (CheckTemplateDeclScope(S, TemplateParams))
850     return true;
851 
852   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
853   assert(Kind != TTK_Enum && "can't build template of enumerated type");
854 
855   // There is no such thing as an unnamed class template.
856   if (!Name) {
857     Diag(KWLoc, diag::err_template_unnamed_class);
858     return true;
859   }
860 
861   // Find any previous declaration with this name. For a friend with no
862   // scope explicitly specified, we only look for tag declarations (per
863   // C++11 [basic.lookup.elab]p2).
864   DeclContext *SemanticContext;
865   LookupResult Previous(*this, Name, NameLoc,
866                         (SS.isEmpty() && TUK == TUK_Friend)
867                           ? LookupTagName : LookupOrdinaryName,
868                         ForRedeclaration);
869   if (SS.isNotEmpty() && !SS.isInvalid()) {
870     SemanticContext = computeDeclContext(SS, true);
871     if (!SemanticContext) {
872       // FIXME: Horrible, horrible hack! We can't currently represent this
873       // in the AST, and historically we have just ignored such friend
874       // class templates, so don't complain here.
875       Diag(NameLoc, TUK == TUK_Friend
876                         ? diag::warn_template_qualified_friend_ignored
877                         : diag::err_template_qualified_declarator_no_match)
878           << SS.getScopeRep() << SS.getRange();
879       return TUK != TUK_Friend;
880     }
881 
882     if (RequireCompleteDeclContext(SS, SemanticContext))
883       return true;
884 
885     // If we're adding a template to a dependent context, we may need to
886     // rebuilding some of the types used within the template parameter list,
887     // now that we know what the current instantiation is.
888     if (SemanticContext->isDependentContext()) {
889       ContextRAII SavedContext(*this, SemanticContext);
890       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
891         Invalid = true;
892     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
893       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
894 
895     LookupQualifiedName(Previous, SemanticContext);
896   } else {
897     SemanticContext = CurContext;
898 
899     // C++14 [class.mem]p14:
900     //   If T is the name of a class, then each of the following shall have a
901     //   name different from T:
902     //    -- every member template of class T
903     if (TUK != TUK_Friend &&
904         DiagnoseClassNameShadow(SemanticContext,
905                                 DeclarationNameInfo(Name, NameLoc)))
906       return true;
907 
908     LookupName(Previous, S);
909   }
910 
911   if (Previous.isAmbiguous())
912     return true;
913 
914   NamedDecl *PrevDecl = nullptr;
915   if (Previous.begin() != Previous.end())
916     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
917 
918   // If there is a previous declaration with the same name, check
919   // whether this is a valid redeclaration.
920   ClassTemplateDecl *PrevClassTemplate
921     = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
922 
923   // We may have found the injected-class-name of a class template,
924   // class template partial specialization, or class template specialization.
925   // In these cases, grab the template that is being defined or specialized.
926   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
927       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
928     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
929     PrevClassTemplate
930       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
931     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
932       PrevClassTemplate
933         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
934             ->getSpecializedTemplate();
935     }
936   }
937 
938   if (TUK == TUK_Friend) {
939     // C++ [namespace.memdef]p3:
940     //   [...] When looking for a prior declaration of a class or a function
941     //   declared as a friend, and when the name of the friend class or
942     //   function is neither a qualified name nor a template-id, scopes outside
943     //   the innermost enclosing namespace scope are not considered.
944     if (!SS.isSet()) {
945       DeclContext *OutermostContext = CurContext;
946       while (!OutermostContext->isFileContext())
947         OutermostContext = OutermostContext->getLookupParent();
948 
949       if (PrevDecl &&
950           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
951            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
952         SemanticContext = PrevDecl->getDeclContext();
953       } else {
954         // Declarations in outer scopes don't matter. However, the outermost
955         // context we computed is the semantic context for our new
956         // declaration.
957         PrevDecl = PrevClassTemplate = nullptr;
958         SemanticContext = OutermostContext;
959 
960         // Check that the chosen semantic context doesn't already contain a
961         // declaration of this name as a non-tag type.
962         Previous.clear(LookupOrdinaryName);
963         DeclContext *LookupContext = SemanticContext;
964         while (LookupContext->isTransparentContext())
965           LookupContext = LookupContext->getLookupParent();
966         LookupQualifiedName(Previous, LookupContext);
967 
968         if (Previous.isAmbiguous())
969           return true;
970 
971         if (Previous.begin() != Previous.end())
972           PrevDecl = (*Previous.begin())->getUnderlyingDecl();
973       }
974     }
975   } else if (PrevDecl &&
976              !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
977                             S, SS.isValid()))
978     PrevDecl = PrevClassTemplate = nullptr;
979 
980   if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
981           PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
982     if (SS.isEmpty() &&
983         !(PrevClassTemplate &&
984           PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
985               SemanticContext->getRedeclContext()))) {
986       Diag(KWLoc, diag::err_using_decl_conflict_reverse);
987       Diag(Shadow->getTargetDecl()->getLocation(),
988            diag::note_using_decl_target);
989       Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
990       // Recover by ignoring the old declaration.
991       PrevDecl = PrevClassTemplate = nullptr;
992     }
993   }
994 
995   if (PrevClassTemplate) {
996     // Ensure that the template parameter lists are compatible. Skip this check
997     // for a friend in a dependent context: the template parameter list itself
998     // could be dependent.
999     if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1000         !TemplateParameterListsAreEqual(TemplateParams,
1001                                    PrevClassTemplate->getTemplateParameters(),
1002                                         /*Complain=*/true,
1003                                         TPL_TemplateMatch))
1004       return true;
1005 
1006     // C++ [temp.class]p4:
1007     //   In a redeclaration, partial specialization, explicit
1008     //   specialization or explicit instantiation of a class template,
1009     //   the class-key shall agree in kind with the original class
1010     //   template declaration (7.1.5.3).
1011     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1012     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1013                                       TUK == TUK_Definition,  KWLoc, Name)) {
1014       Diag(KWLoc, diag::err_use_with_wrong_tag)
1015         << Name
1016         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1017       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1018       Kind = PrevRecordDecl->getTagKind();
1019     }
1020 
1021     // Check for redefinition of this class template.
1022     if (TUK == TUK_Definition) {
1023       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1024         // If we have a prior definition that is not visible, treat this as
1025         // simply making that previous definition visible.
1026         NamedDecl *Hidden = nullptr;
1027         if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1028           SkipBody->ShouldSkip = true;
1029           auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1030           assert(Tmpl && "original definition of a class template is not a "
1031                          "class template?");
1032           makeMergedDefinitionVisible(Hidden, KWLoc);
1033           makeMergedDefinitionVisible(Tmpl, KWLoc);
1034           return Def;
1035         }
1036 
1037         Diag(NameLoc, diag::err_redefinition) << Name;
1038         Diag(Def->getLocation(), diag::note_previous_definition);
1039         // FIXME: Would it make sense to try to "forget" the previous
1040         // definition, as part of error recovery?
1041         return true;
1042       }
1043     }
1044   } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1045     // Maybe we will complain about the shadowed template parameter.
1046     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1047     // Just pretend that we didn't see the previous declaration.
1048     PrevDecl = nullptr;
1049   } else if (PrevDecl) {
1050     // C++ [temp]p5:
1051     //   A class template shall not have the same name as any other
1052     //   template, class, function, object, enumeration, enumerator,
1053     //   namespace, or type in the same scope (3.3), except as specified
1054     //   in (14.5.4).
1055     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1056     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1057     return true;
1058   }
1059 
1060   // Check the template parameter list of this declaration, possibly
1061   // merging in the template parameter list from the previous class
1062   // template declaration. Skip this check for a friend in a dependent
1063   // context, because the template parameter list might be dependent.
1064   if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1065       CheckTemplateParameterList(
1066           TemplateParams,
1067           PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
1068                             : nullptr,
1069           (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1070            SemanticContext->isDependentContext())
1071               ? TPC_ClassTemplateMember
1072               : TUK == TUK_Friend ? TPC_FriendClassTemplate
1073                                   : TPC_ClassTemplate))
1074     Invalid = true;
1075 
1076   if (SS.isSet()) {
1077     // If the name of the template was qualified, we must be defining the
1078     // template out-of-line.
1079     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1080       Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1081                                       : diag::err_member_decl_does_not_match)
1082         << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1083       Invalid = true;
1084     }
1085   }
1086 
1087   CXXRecordDecl *NewClass =
1088     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1089                           PrevClassTemplate?
1090                             PrevClassTemplate->getTemplatedDecl() : nullptr,
1091                           /*DelayTypeCreation=*/true);
1092   SetNestedNameSpecifier(NewClass, SS);
1093   if (NumOuterTemplateParamLists > 0)
1094     NewClass->setTemplateParameterListsInfo(
1095         Context, llvm::makeArrayRef(OuterTemplateParamLists,
1096                                     NumOuterTemplateParamLists));
1097 
1098   // Add alignment attributes if necessary; these attributes are checked when
1099   // the ASTContext lays out the structure.
1100   if (TUK == TUK_Definition) {
1101     AddAlignmentAttributesForRecord(NewClass);
1102     AddMsStructLayoutForRecord(NewClass);
1103   }
1104 
1105   ClassTemplateDecl *NewTemplate
1106     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1107                                 DeclarationName(Name), TemplateParams,
1108                                 NewClass, PrevClassTemplate);
1109   NewClass->setDescribedClassTemplate(NewTemplate);
1110 
1111   if (ModulePrivateLoc.isValid())
1112     NewTemplate->setModulePrivate();
1113 
1114   // Build the type for the class template declaration now.
1115   QualType T = NewTemplate->getInjectedClassNameSpecialization();
1116   T = Context.getInjectedClassNameType(NewClass, T);
1117   assert(T->isDependentType() && "Class template type is not dependent?");
1118   (void)T;
1119 
1120   // If we are providing an explicit specialization of a member that is a
1121   // class template, make a note of that.
1122   if (PrevClassTemplate &&
1123       PrevClassTemplate->getInstantiatedFromMemberTemplate())
1124     PrevClassTemplate->setMemberSpecialization();
1125 
1126   // Set the access specifier.
1127   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1128     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1129 
1130   // Set the lexical context of these templates
1131   NewClass->setLexicalDeclContext(CurContext);
1132   NewTemplate->setLexicalDeclContext(CurContext);
1133 
1134   if (TUK == TUK_Definition)
1135     NewClass->startDefinition();
1136 
1137   if (Attr)
1138     ProcessDeclAttributeList(S, NewClass, Attr);
1139 
1140   if (PrevClassTemplate)
1141     mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1142 
1143   AddPushedVisibilityAttribute(NewClass);
1144 
1145   if (TUK != TUK_Friend) {
1146     // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
1147     Scope *Outer = S;
1148     while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
1149       Outer = Outer->getParent();
1150     PushOnScopeChains(NewTemplate, Outer);
1151   } else {
1152     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1153       NewTemplate->setAccess(PrevClassTemplate->getAccess());
1154       NewClass->setAccess(PrevClassTemplate->getAccess());
1155     }
1156 
1157     NewTemplate->setObjectOfFriendDecl();
1158 
1159     // Friend templates are visible in fairly strange ways.
1160     if (!CurContext->isDependentContext()) {
1161       DeclContext *DC = SemanticContext->getRedeclContext();
1162       DC->makeDeclVisibleInContext(NewTemplate);
1163       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1164         PushOnScopeChains(NewTemplate, EnclosingScope,
1165                           /* AddToContext = */ false);
1166     }
1167 
1168     FriendDecl *Friend = FriendDecl::Create(
1169         Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
1170     Friend->setAccess(AS_public);
1171     CurContext->addDecl(Friend);
1172   }
1173 
1174   if (Invalid) {
1175     NewTemplate->setInvalidDecl();
1176     NewClass->setInvalidDecl();
1177   }
1178 
1179   ActOnDocumentableDecl(NewTemplate);
1180 
1181   return NewTemplate;
1182 }
1183 
1184 /// \brief Diagnose the presence of a default template argument on a
1185 /// template parameter, which is ill-formed in certain contexts.
1186 ///
1187 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)1188 static bool DiagnoseDefaultTemplateArgument(Sema &S,
1189                                             Sema::TemplateParamListContext TPC,
1190                                             SourceLocation ParamLoc,
1191                                             SourceRange DefArgRange) {
1192   switch (TPC) {
1193   case Sema::TPC_ClassTemplate:
1194   case Sema::TPC_VarTemplate:
1195   case Sema::TPC_TypeAliasTemplate:
1196     return false;
1197 
1198   case Sema::TPC_FunctionTemplate:
1199   case Sema::TPC_FriendFunctionTemplateDefinition:
1200     // C++ [temp.param]p9:
1201     //   A default template-argument shall not be specified in a
1202     //   function template declaration or a function template
1203     //   definition [...]
1204     //   If a friend function template declaration specifies a default
1205     //   template-argument, that declaration shall be a definition and shall be
1206     //   the only declaration of the function template in the translation unit.
1207     // (C++98/03 doesn't have this wording; see DR226).
1208     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1209          diag::warn_cxx98_compat_template_parameter_default_in_function_template
1210            : diag::ext_template_parameter_default_in_function_template)
1211       << DefArgRange;
1212     return false;
1213 
1214   case Sema::TPC_ClassTemplateMember:
1215     // C++0x [temp.param]p9:
1216     //   A default template-argument shall not be specified in the
1217     //   template-parameter-lists of the definition of a member of a
1218     //   class template that appears outside of the member's class.
1219     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1220       << DefArgRange;
1221     return true;
1222 
1223   case Sema::TPC_FriendClassTemplate:
1224   case Sema::TPC_FriendFunctionTemplate:
1225     // C++ [temp.param]p9:
1226     //   A default template-argument shall not be specified in a
1227     //   friend template declaration.
1228     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1229       << DefArgRange;
1230     return true;
1231 
1232     // FIXME: C++0x [temp.param]p9 allows default template-arguments
1233     // for friend function templates if there is only a single
1234     // declaration (and it is a definition). Strange!
1235   }
1236 
1237   llvm_unreachable("Invalid TemplateParamListContext!");
1238 }
1239 
1240 /// \brief Check for unexpanded parameter packs within the template parameters
1241 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)1242 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1243                                              TemplateTemplateParmDecl *TTP) {
1244   // A template template parameter which is a parameter pack is also a pack
1245   // expansion.
1246   if (TTP->isParameterPack())
1247     return false;
1248 
1249   TemplateParameterList *Params = TTP->getTemplateParameters();
1250   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1251     NamedDecl *P = Params->getParam(I);
1252     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1253       if (!NTTP->isParameterPack() &&
1254           S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1255                                             NTTP->getTypeSourceInfo(),
1256                                       Sema::UPPC_NonTypeTemplateParameterType))
1257         return true;
1258 
1259       continue;
1260     }
1261 
1262     if (TemplateTemplateParmDecl *InnerTTP
1263                                         = dyn_cast<TemplateTemplateParmDecl>(P))
1264       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1265         return true;
1266   }
1267 
1268   return false;
1269 }
1270 
1271 /// \brief Checks the validity of a template parameter list, possibly
1272 /// considering the template parameter list from a previous
1273 /// declaration.
1274 ///
1275 /// If an "old" template parameter list is provided, it must be
1276 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1277 /// template parameter list.
1278 ///
1279 /// \param NewParams Template parameter list for a new template
1280 /// declaration. This template parameter list will be updated with any
1281 /// default arguments that are carried through from the previous
1282 /// template parameter list.
1283 ///
1284 /// \param OldParams If provided, template parameter list from a
1285 /// previous declaration of the same template. Default template
1286 /// arguments will be merged from the old template parameter list to
1287 /// the new template parameter list.
1288 ///
1289 /// \param TPC Describes the context in which we are checking the given
1290 /// template parameter list.
1291 ///
1292 /// \returns true if an error occurred, false otherwise.
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC)1293 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1294                                       TemplateParameterList *OldParams,
1295                                       TemplateParamListContext TPC) {
1296   bool Invalid = false;
1297 
1298   // C++ [temp.param]p10:
1299   //   The set of default template-arguments available for use with a
1300   //   template declaration or definition is obtained by merging the
1301   //   default arguments from the definition (if in scope) and all
1302   //   declarations in scope in the same way default function
1303   //   arguments are (8.3.6).
1304   bool SawDefaultArgument = false;
1305   SourceLocation PreviousDefaultArgLoc;
1306 
1307   // Dummy initialization to avoid warnings.
1308   TemplateParameterList::iterator OldParam = NewParams->end();
1309   if (OldParams)
1310     OldParam = OldParams->begin();
1311 
1312   bool RemoveDefaultArguments = false;
1313   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1314                                     NewParamEnd = NewParams->end();
1315        NewParam != NewParamEnd; ++NewParam) {
1316     // Variables used to diagnose redundant default arguments
1317     bool RedundantDefaultArg = false;
1318     SourceLocation OldDefaultLoc;
1319     SourceLocation NewDefaultLoc;
1320 
1321     // Variable used to diagnose missing default arguments
1322     bool MissingDefaultArg = false;
1323 
1324     // Variable used to diagnose non-final parameter packs
1325     bool SawParameterPack = false;
1326 
1327     if (TemplateTypeParmDecl *NewTypeParm
1328           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1329       // Check the presence of a default argument here.
1330       if (NewTypeParm->hasDefaultArgument() &&
1331           DiagnoseDefaultTemplateArgument(*this, TPC,
1332                                           NewTypeParm->getLocation(),
1333                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1334                                                        .getSourceRange()))
1335         NewTypeParm->removeDefaultArgument();
1336 
1337       // Merge default arguments for template type parameters.
1338       TemplateTypeParmDecl *OldTypeParm
1339           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
1340       if (NewTypeParm->isParameterPack()) {
1341         assert(!NewTypeParm->hasDefaultArgument() &&
1342                "Parameter packs can't have a default argument!");
1343         SawParameterPack = true;
1344       } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
1345                  NewTypeParm->hasDefaultArgument()) {
1346         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1347         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1348         SawDefaultArgument = true;
1349         RedundantDefaultArg = true;
1350         PreviousDefaultArgLoc = NewDefaultLoc;
1351       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1352         // Merge the default argument from the old declaration to the
1353         // new declaration.
1354         NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
1355         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1356       } else if (NewTypeParm->hasDefaultArgument()) {
1357         SawDefaultArgument = true;
1358         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1359       } else if (SawDefaultArgument)
1360         MissingDefaultArg = true;
1361     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1362                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1363       // Check for unexpanded parameter packs.
1364       if (!NewNonTypeParm->isParameterPack() &&
1365           DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1366                                           NewNonTypeParm->getTypeSourceInfo(),
1367                                           UPPC_NonTypeTemplateParameterType)) {
1368         Invalid = true;
1369         continue;
1370       }
1371 
1372       // Check the presence of a default argument here.
1373       if (NewNonTypeParm->hasDefaultArgument() &&
1374           DiagnoseDefaultTemplateArgument(*this, TPC,
1375                                           NewNonTypeParm->getLocation(),
1376                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1377         NewNonTypeParm->removeDefaultArgument();
1378       }
1379 
1380       // Merge default arguments for non-type template parameters
1381       NonTypeTemplateParmDecl *OldNonTypeParm
1382         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
1383       if (NewNonTypeParm->isParameterPack()) {
1384         assert(!NewNonTypeParm->hasDefaultArgument() &&
1385                "Parameter packs can't have a default argument!");
1386         if (!NewNonTypeParm->isPackExpansion())
1387           SawParameterPack = true;
1388       } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
1389                  NewNonTypeParm->hasDefaultArgument()) {
1390         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1391         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1392         SawDefaultArgument = true;
1393         RedundantDefaultArg = true;
1394         PreviousDefaultArgLoc = NewDefaultLoc;
1395       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1396         // Merge the default argument from the old declaration to the
1397         // new declaration.
1398         NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
1399         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1400       } else if (NewNonTypeParm->hasDefaultArgument()) {
1401         SawDefaultArgument = true;
1402         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1403       } else if (SawDefaultArgument)
1404         MissingDefaultArg = true;
1405     } else {
1406       TemplateTemplateParmDecl *NewTemplateParm
1407         = cast<TemplateTemplateParmDecl>(*NewParam);
1408 
1409       // Check for unexpanded parameter packs, recursively.
1410       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1411         Invalid = true;
1412         continue;
1413       }
1414 
1415       // Check the presence of a default argument here.
1416       if (NewTemplateParm->hasDefaultArgument() &&
1417           DiagnoseDefaultTemplateArgument(*this, TPC,
1418                                           NewTemplateParm->getLocation(),
1419                      NewTemplateParm->getDefaultArgument().getSourceRange()))
1420         NewTemplateParm->removeDefaultArgument();
1421 
1422       // Merge default arguments for template template parameters
1423       TemplateTemplateParmDecl *OldTemplateParm
1424         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
1425       if (NewTemplateParm->isParameterPack()) {
1426         assert(!NewTemplateParm->hasDefaultArgument() &&
1427                "Parameter packs can't have a default argument!");
1428         if (!NewTemplateParm->isPackExpansion())
1429           SawParameterPack = true;
1430       } else if (OldTemplateParm &&
1431                  hasVisibleDefaultArgument(OldTemplateParm) &&
1432                  NewTemplateParm->hasDefaultArgument()) {
1433         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1434         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1435         SawDefaultArgument = true;
1436         RedundantDefaultArg = true;
1437         PreviousDefaultArgLoc = NewDefaultLoc;
1438       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1439         // Merge the default argument from the old declaration to the
1440         // new declaration.
1441         NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
1442         PreviousDefaultArgLoc
1443           = OldTemplateParm->getDefaultArgument().getLocation();
1444       } else if (NewTemplateParm->hasDefaultArgument()) {
1445         SawDefaultArgument = true;
1446         PreviousDefaultArgLoc
1447           = NewTemplateParm->getDefaultArgument().getLocation();
1448       } else if (SawDefaultArgument)
1449         MissingDefaultArg = true;
1450     }
1451 
1452     // C++11 [temp.param]p11:
1453     //   If a template parameter of a primary class template or alias template
1454     //   is a template parameter pack, it shall be the last template parameter.
1455     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1456         (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
1457          TPC == TPC_TypeAliasTemplate)) {
1458       Diag((*NewParam)->getLocation(),
1459            diag::err_template_param_pack_must_be_last_template_parameter);
1460       Invalid = true;
1461     }
1462 
1463     if (RedundantDefaultArg) {
1464       // C++ [temp.param]p12:
1465       //   A template-parameter shall not be given default arguments
1466       //   by two different declarations in the same scope.
1467       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1468       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1469       Invalid = true;
1470     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1471       // C++ [temp.param]p11:
1472       //   If a template-parameter of a class template has a default
1473       //   template-argument, each subsequent template-parameter shall either
1474       //   have a default template-argument supplied or be a template parameter
1475       //   pack.
1476       Diag((*NewParam)->getLocation(),
1477            diag::err_template_param_default_arg_missing);
1478       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1479       Invalid = true;
1480       RemoveDefaultArguments = true;
1481     }
1482 
1483     // If we have an old template parameter list that we're merging
1484     // in, move on to the next parameter.
1485     if (OldParams)
1486       ++OldParam;
1487   }
1488 
1489   // We were missing some default arguments at the end of the list, so remove
1490   // all of the default arguments.
1491   if (RemoveDefaultArguments) {
1492     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1493                                       NewParamEnd = NewParams->end();
1494          NewParam != NewParamEnd; ++NewParam) {
1495       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1496         TTP->removeDefaultArgument();
1497       else if (NonTypeTemplateParmDecl *NTTP
1498                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1499         NTTP->removeDefaultArgument();
1500       else
1501         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1502     }
1503   }
1504 
1505   return Invalid;
1506 }
1507 
1508 namespace {
1509 
1510 /// A class which looks for a use of a certain level of template
1511 /// parameter.
1512 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1513   typedef RecursiveASTVisitor<DependencyChecker> super;
1514 
1515   unsigned Depth;
1516   bool Match;
1517   SourceLocation MatchLoc;
1518 
DependencyChecker__anonbaa21ab80111::DependencyChecker1519   DependencyChecker(unsigned Depth) : Depth(Depth), Match(false) {}
1520 
DependencyChecker__anonbaa21ab80111::DependencyChecker1521   DependencyChecker(TemplateParameterList *Params) : Match(false) {
1522     NamedDecl *ND = Params->getParam(0);
1523     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1524       Depth = PD->getDepth();
1525     } else if (NonTypeTemplateParmDecl *PD =
1526                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1527       Depth = PD->getDepth();
1528     } else {
1529       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1530     }
1531   }
1532 
Matches__anonbaa21ab80111::DependencyChecker1533   bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
1534     if (ParmDepth >= Depth) {
1535       Match = true;
1536       MatchLoc = Loc;
1537       return true;
1538     }
1539     return false;
1540   }
1541 
VisitTemplateTypeParmTypeLoc__anonbaa21ab80111::DependencyChecker1542   bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
1543     return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
1544   }
1545 
VisitTemplateTypeParmType__anonbaa21ab80111::DependencyChecker1546   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1547     return !Matches(T->getDepth());
1548   }
1549 
TraverseTemplateName__anonbaa21ab80111::DependencyChecker1550   bool TraverseTemplateName(TemplateName N) {
1551     if (TemplateTemplateParmDecl *PD =
1552           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1553       if (Matches(PD->getDepth()))
1554         return false;
1555     return super::TraverseTemplateName(N);
1556   }
1557 
VisitDeclRefExpr__anonbaa21ab80111::DependencyChecker1558   bool VisitDeclRefExpr(DeclRefExpr *E) {
1559     if (NonTypeTemplateParmDecl *PD =
1560           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
1561       if (Matches(PD->getDepth(), E->getExprLoc()))
1562         return false;
1563     return super::VisitDeclRefExpr(E);
1564   }
1565 
VisitSubstTemplateTypeParmType__anonbaa21ab80111::DependencyChecker1566   bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1567     return TraverseType(T->getReplacementType());
1568   }
1569 
1570   bool
VisitSubstTemplateTypeParmPackType__anonbaa21ab80111::DependencyChecker1571   VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
1572     return TraverseTemplateArgument(T->getArgumentPack());
1573   }
1574 
TraverseInjectedClassNameType__anonbaa21ab80111::DependencyChecker1575   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1576     return TraverseType(T->getInjectedSpecializationType());
1577   }
1578 };
1579 }
1580 
1581 /// Determines whether a given type depends on the given parameter
1582 /// list.
1583 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)1584 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1585   DependencyChecker Checker(Params);
1586   Checker.TraverseType(T);
1587   return Checker.Match;
1588 }
1589 
1590 // Find the source range corresponding to the named type in the given
1591 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)1592 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1593                                                        QualType T,
1594                                                        const CXXScopeSpec &SS) {
1595   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1596   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1597     if (const Type *CurType = NNS->getAsType()) {
1598       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1599         return NNSLoc.getTypeLoc().getSourceRange();
1600     } else
1601       break;
1602 
1603     NNSLoc = NNSLoc.getPrefix();
1604   }
1605 
1606   return SourceRange();
1607 }
1608 
1609 /// \brief Match the given template parameter lists to the given scope
1610 /// specifier, returning the template parameter list that applies to the
1611 /// name.
1612 ///
1613 /// \param DeclStartLoc the start of the declaration that has a scope
1614 /// specifier or a template parameter list.
1615 ///
1616 /// \param DeclLoc The location of the declaration itself.
1617 ///
1618 /// \param SS the scope specifier that will be matched to the given template
1619 /// parameter lists. This scope specifier precedes a qualified name that is
1620 /// being declared.
1621 ///
1622 /// \param TemplateId The template-id following the scope specifier, if there
1623 /// is one. Used to check for a missing 'template<>'.
1624 ///
1625 /// \param ParamLists the template parameter lists, from the outermost to the
1626 /// innermost template parameter lists.
1627 ///
1628 /// \param IsFriend Whether to apply the slightly different rules for
1629 /// matching template parameters to scope specifiers in friend
1630 /// declarations.
1631 ///
1632 /// \param IsExplicitSpecialization will be set true if the entity being
1633 /// declared is an explicit specialization, false otherwise.
1634 ///
1635 /// \returns the template parameter list, if any, that corresponds to the
1636 /// name that is preceded by the scope specifier @p SS. This template
1637 /// parameter list may have template parameters (if we're declaring a
1638 /// template) or may have no template parameters (if we're declaring a
1639 /// template specialization), or may be NULL (if what we're declaring isn't
1640 /// itself a template).
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,TemplateIdAnnotation * TemplateId,ArrayRef<TemplateParameterList * > ParamLists,bool IsFriend,bool & IsExplicitSpecialization,bool & Invalid)1641 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
1642     SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
1643     TemplateIdAnnotation *TemplateId,
1644     ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
1645     bool &IsExplicitSpecialization, bool &Invalid) {
1646   IsExplicitSpecialization = false;
1647   Invalid = false;
1648 
1649   // The sequence of nested types to which we will match up the template
1650   // parameter lists. We first build this list by starting with the type named
1651   // by the nested-name-specifier and walking out until we run out of types.
1652   SmallVector<QualType, 4> NestedTypes;
1653   QualType T;
1654   if (SS.getScopeRep()) {
1655     if (CXXRecordDecl *Record
1656               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1657       T = Context.getTypeDeclType(Record);
1658     else
1659       T = QualType(SS.getScopeRep()->getAsType(), 0);
1660   }
1661 
1662   // If we found an explicit specialization that prevents us from needing
1663   // 'template<>' headers, this will be set to the location of that
1664   // explicit specialization.
1665   SourceLocation ExplicitSpecLoc;
1666 
1667   while (!T.isNull()) {
1668     NestedTypes.push_back(T);
1669 
1670     // Retrieve the parent of a record type.
1671     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1672       // If this type is an explicit specialization, we're done.
1673       if (ClassTemplateSpecializationDecl *Spec
1674           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1675         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1676             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1677           ExplicitSpecLoc = Spec->getLocation();
1678           break;
1679         }
1680       } else if (Record->getTemplateSpecializationKind()
1681                                                 == TSK_ExplicitSpecialization) {
1682         ExplicitSpecLoc = Record->getLocation();
1683         break;
1684       }
1685 
1686       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1687         T = Context.getTypeDeclType(Parent);
1688       else
1689         T = QualType();
1690       continue;
1691     }
1692 
1693     if (const TemplateSpecializationType *TST
1694                                      = T->getAs<TemplateSpecializationType>()) {
1695       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1696         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1697           T = Context.getTypeDeclType(Parent);
1698         else
1699           T = QualType();
1700         continue;
1701       }
1702     }
1703 
1704     // Look one step prior in a dependent template specialization type.
1705     if (const DependentTemplateSpecializationType *DependentTST
1706                           = T->getAs<DependentTemplateSpecializationType>()) {
1707       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1708         T = QualType(NNS->getAsType(), 0);
1709       else
1710         T = QualType();
1711       continue;
1712     }
1713 
1714     // Look one step prior in a dependent name type.
1715     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1716       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1717         T = QualType(NNS->getAsType(), 0);
1718       else
1719         T = QualType();
1720       continue;
1721     }
1722 
1723     // Retrieve the parent of an enumeration type.
1724     if (const EnumType *EnumT = T->getAs<EnumType>()) {
1725       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1726       // check here.
1727       EnumDecl *Enum = EnumT->getDecl();
1728 
1729       // Get to the parent type.
1730       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1731         T = Context.getTypeDeclType(Parent);
1732       else
1733         T = QualType();
1734       continue;
1735     }
1736 
1737     T = QualType();
1738   }
1739   // Reverse the nested types list, since we want to traverse from the outermost
1740   // to the innermost while checking template-parameter-lists.
1741   std::reverse(NestedTypes.begin(), NestedTypes.end());
1742 
1743   // C++0x [temp.expl.spec]p17:
1744   //   A member or a member template may be nested within many
1745   //   enclosing class templates. In an explicit specialization for
1746   //   such a member, the member declaration shall be preceded by a
1747   //   template<> for each enclosing class template that is
1748   //   explicitly specialized.
1749   bool SawNonEmptyTemplateParameterList = false;
1750 
1751   auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
1752     if (SawNonEmptyTemplateParameterList) {
1753       Diag(DeclLoc, diag::err_specialize_member_of_template)
1754         << !Recovery << Range;
1755       Invalid = true;
1756       IsExplicitSpecialization = false;
1757       return true;
1758     }
1759 
1760     return false;
1761   };
1762 
1763   auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
1764     // Check that we can have an explicit specialization here.
1765     if (CheckExplicitSpecialization(Range, true))
1766       return true;
1767 
1768     // We don't have a template header, but we should.
1769     SourceLocation ExpectedTemplateLoc;
1770     if (!ParamLists.empty())
1771       ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1772     else
1773       ExpectedTemplateLoc = DeclStartLoc;
1774 
1775     Diag(DeclLoc, diag::err_template_spec_needs_header)
1776       << Range
1777       << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1778     return false;
1779   };
1780 
1781   unsigned ParamIdx = 0;
1782   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1783        ++TypeIdx) {
1784     T = NestedTypes[TypeIdx];
1785 
1786     // Whether we expect a 'template<>' header.
1787     bool NeedEmptyTemplateHeader = false;
1788 
1789     // Whether we expect a template header with parameters.
1790     bool NeedNonemptyTemplateHeader = false;
1791 
1792     // For a dependent type, the set of template parameters that we
1793     // expect to see.
1794     TemplateParameterList *ExpectedTemplateParams = nullptr;
1795 
1796     // C++0x [temp.expl.spec]p15:
1797     //   A member or a member template may be nested within many enclosing
1798     //   class templates. In an explicit specialization for such a member, the
1799     //   member declaration shall be preceded by a template<> for each
1800     //   enclosing class template that is explicitly specialized.
1801     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1802       if (ClassTemplatePartialSpecializationDecl *Partial
1803             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1804         ExpectedTemplateParams = Partial->getTemplateParameters();
1805         NeedNonemptyTemplateHeader = true;
1806       } else if (Record->isDependentType()) {
1807         if (Record->getDescribedClassTemplate()) {
1808           ExpectedTemplateParams = Record->getDescribedClassTemplate()
1809                                                       ->getTemplateParameters();
1810           NeedNonemptyTemplateHeader = true;
1811         }
1812       } else if (ClassTemplateSpecializationDecl *Spec
1813                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1814         // C++0x [temp.expl.spec]p4:
1815         //   Members of an explicitly specialized class template are defined
1816         //   in the same manner as members of normal classes, and not using
1817         //   the template<> syntax.
1818         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1819           NeedEmptyTemplateHeader = true;
1820         else
1821           continue;
1822       } else if (Record->getTemplateSpecializationKind()) {
1823         if (Record->getTemplateSpecializationKind()
1824                                                 != TSK_ExplicitSpecialization &&
1825             TypeIdx == NumTypes - 1)
1826           IsExplicitSpecialization = true;
1827 
1828         continue;
1829       }
1830     } else if (const TemplateSpecializationType *TST
1831                                      = T->getAs<TemplateSpecializationType>()) {
1832       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1833         ExpectedTemplateParams = Template->getTemplateParameters();
1834         NeedNonemptyTemplateHeader = true;
1835       }
1836     } else if (T->getAs<DependentTemplateSpecializationType>()) {
1837       // FIXME:  We actually could/should check the template arguments here
1838       // against the corresponding template parameter list.
1839       NeedNonemptyTemplateHeader = false;
1840     }
1841 
1842     // C++ [temp.expl.spec]p16:
1843     //   In an explicit specialization declaration for a member of a class
1844     //   template or a member template that ap- pears in namespace scope, the
1845     //   member template and some of its enclosing class templates may remain
1846     //   unspecialized, except that the declaration shall not explicitly
1847     //   specialize a class member template if its en- closing class templates
1848     //   are not explicitly specialized as well.
1849     if (ParamIdx < ParamLists.size()) {
1850       if (ParamLists[ParamIdx]->size() == 0) {
1851         if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
1852                                         false))
1853           return nullptr;
1854       } else
1855         SawNonEmptyTemplateParameterList = true;
1856     }
1857 
1858     if (NeedEmptyTemplateHeader) {
1859       // If we're on the last of the types, and we need a 'template<>' header
1860       // here, then it's an explicit specialization.
1861       if (TypeIdx == NumTypes - 1)
1862         IsExplicitSpecialization = true;
1863 
1864       if (ParamIdx < ParamLists.size()) {
1865         if (ParamLists[ParamIdx]->size() > 0) {
1866           // The header has template parameters when it shouldn't. Complain.
1867           Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1868                diag::err_template_param_list_matches_nontemplate)
1869             << T
1870             << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1871                            ParamLists[ParamIdx]->getRAngleLoc())
1872             << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1873           Invalid = true;
1874           return nullptr;
1875         }
1876 
1877         // Consume this template header.
1878         ++ParamIdx;
1879         continue;
1880       }
1881 
1882       if (!IsFriend)
1883         if (DiagnoseMissingExplicitSpecialization(
1884                 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
1885           return nullptr;
1886 
1887       continue;
1888     }
1889 
1890     if (NeedNonemptyTemplateHeader) {
1891       // In friend declarations we can have template-ids which don't
1892       // depend on the corresponding template parameter lists.  But
1893       // assume that empty parameter lists are supposed to match this
1894       // template-id.
1895       if (IsFriend && T->isDependentType()) {
1896         if (ParamIdx < ParamLists.size() &&
1897             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1898           ExpectedTemplateParams = nullptr;
1899         else
1900           continue;
1901       }
1902 
1903       if (ParamIdx < ParamLists.size()) {
1904         // Check the template parameter list, if we can.
1905         if (ExpectedTemplateParams &&
1906             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1907                                             ExpectedTemplateParams,
1908                                             true, TPL_TemplateMatch))
1909           Invalid = true;
1910 
1911         if (!Invalid &&
1912             CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
1913                                        TPC_ClassTemplateMember))
1914           Invalid = true;
1915 
1916         ++ParamIdx;
1917         continue;
1918       }
1919 
1920       Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1921         << T
1922         << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1923       Invalid = true;
1924       continue;
1925     }
1926   }
1927 
1928   // If there were at least as many template-ids as there were template
1929   // parameter lists, then there are no template parameter lists remaining for
1930   // the declaration itself.
1931   if (ParamIdx >= ParamLists.size()) {
1932     if (TemplateId && !IsFriend) {
1933       // We don't have a template header for the declaration itself, but we
1934       // should.
1935       IsExplicitSpecialization = true;
1936       DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
1937                                                         TemplateId->RAngleLoc));
1938 
1939       // Fabricate an empty template parameter list for the invented header.
1940       return TemplateParameterList::Create(Context, SourceLocation(),
1941                                            SourceLocation(), nullptr, 0,
1942                                            SourceLocation());
1943     }
1944 
1945     return nullptr;
1946   }
1947 
1948   // If there were too many template parameter lists, complain about that now.
1949   if (ParamIdx < ParamLists.size() - 1) {
1950     bool HasAnyExplicitSpecHeader = false;
1951     bool AllExplicitSpecHeaders = true;
1952     for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
1953       if (ParamLists[I]->size() == 0)
1954         HasAnyExplicitSpecHeader = true;
1955       else
1956         AllExplicitSpecHeaders = false;
1957     }
1958 
1959     Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1960          AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
1961                                 : diag::err_template_spec_extra_headers)
1962         << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1963                        ParamLists[ParamLists.size() - 2]->getRAngleLoc());
1964 
1965     // If there was a specialization somewhere, such that 'template<>' is
1966     // not required, and there were any 'template<>' headers, note where the
1967     // specialization occurred.
1968     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1969       Diag(ExplicitSpecLoc,
1970            diag::note_explicit_template_spec_does_not_need_header)
1971         << NestedTypes.back();
1972 
1973     // We have a template parameter list with no corresponding scope, which
1974     // means that the resulting template declaration can't be instantiated
1975     // properly (we'll end up with dependent nodes when we shouldn't).
1976     if (!AllExplicitSpecHeaders)
1977       Invalid = true;
1978   }
1979 
1980   // C++ [temp.expl.spec]p16:
1981   //   In an explicit specialization declaration for a member of a class
1982   //   template or a member template that ap- pears in namespace scope, the
1983   //   member template and some of its enclosing class templates may remain
1984   //   unspecialized, except that the declaration shall not explicitly
1985   //   specialize a class member template if its en- closing class templates
1986   //   are not explicitly specialized as well.
1987   if (ParamLists.back()->size() == 0 &&
1988       CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
1989                                   false))
1990     return nullptr;
1991 
1992   // Return the last template parameter list, which corresponds to the
1993   // entity being declared.
1994   return ParamLists.back();
1995 }
1996 
NoteAllFoundTemplates(TemplateName Name)1997 void Sema::NoteAllFoundTemplates(TemplateName Name) {
1998   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1999     Diag(Template->getLocation(), diag::note_template_declared_here)
2000         << (isa<FunctionTemplateDecl>(Template)
2001                 ? 0
2002                 : isa<ClassTemplateDecl>(Template)
2003                       ? 1
2004                       : isa<VarTemplateDecl>(Template)
2005                             ? 2
2006                             : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
2007         << Template->getDeclName();
2008     return;
2009   }
2010 
2011   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
2012     for (OverloadedTemplateStorage::iterator I = OST->begin(),
2013                                           IEnd = OST->end();
2014          I != IEnd; ++I)
2015       Diag((*I)->getLocation(), diag::note_template_declared_here)
2016         << 0 << (*I)->getDeclName();
2017 
2018     return;
2019   }
2020 }
2021 
2022 static QualType
checkBuiltinTemplateIdType(Sema & SemaRef,BuiltinTemplateDecl * BTD,const SmallVectorImpl<TemplateArgument> & Converted,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)2023 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
2024                            const SmallVectorImpl<TemplateArgument> &Converted,
2025                            SourceLocation TemplateLoc,
2026                            TemplateArgumentListInfo &TemplateArgs) {
2027   ASTContext &Context = SemaRef.getASTContext();
2028   switch (BTD->getBuiltinTemplateKind()) {
2029   case BTK__make_integer_seq:
2030     // Specializations of __make_integer_seq<S, T, N> are treated like
2031     // S<T, 0, ..., N-1>.
2032 
2033     // C++14 [inteseq.intseq]p1:
2034     //   T shall be an integer type.
2035     if (!Converted[1].getAsType()->isIntegralType(Context)) {
2036       SemaRef.Diag(TemplateArgs[1].getLocation(),
2037                    diag::err_integer_sequence_integral_element_type);
2038       return QualType();
2039     }
2040 
2041     // C++14 [inteseq.make]p1:
2042     //   If N is negative the program is ill-formed.
2043     TemplateArgument NumArgsArg = Converted[2];
2044     llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
2045     if (NumArgs < 0) {
2046       SemaRef.Diag(TemplateArgs[2].getLocation(),
2047                    diag::err_integer_sequence_negative_length);
2048       return QualType();
2049     }
2050 
2051     QualType ArgTy = NumArgsArg.getIntegralType();
2052     TemplateArgumentListInfo SyntheticTemplateArgs;
2053     // The type argument gets reused as the first template argument in the
2054     // synthetic template argument list.
2055     SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
2056     // Expand N into 0 ... N-1.
2057     for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
2058          I < NumArgs; ++I) {
2059       TemplateArgument TA(Context, I, ArgTy);
2060       Expr *E = SemaRef.BuildExpressionFromIntegralTemplateArgument(
2061                            TA, TemplateArgs[2].getLocation())
2062                     .getAs<Expr>();
2063       SyntheticTemplateArgs.addArgument(
2064           TemplateArgumentLoc(TemplateArgument(E), E));
2065     }
2066     // The first template argument will be reused as the template decl that
2067     // our synthetic template arguments will be applied to.
2068     return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
2069                                        TemplateLoc, SyntheticTemplateArgs);
2070   }
2071   llvm_unreachable("unexpected BuiltinTemplateDecl!");
2072 }
2073 
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)2074 QualType Sema::CheckTemplateIdType(TemplateName Name,
2075                                    SourceLocation TemplateLoc,
2076                                    TemplateArgumentListInfo &TemplateArgs) {
2077   DependentTemplateName *DTN
2078     = Name.getUnderlying().getAsDependentTemplateName();
2079   if (DTN && DTN->isIdentifier())
2080     // When building a template-id where the template-name is dependent,
2081     // assume the template is a type template. Either our assumption is
2082     // correct, or the code is ill-formed and will be diagnosed when the
2083     // dependent name is substituted.
2084     return Context.getDependentTemplateSpecializationType(ETK_None,
2085                                                           DTN->getQualifier(),
2086                                                           DTN->getIdentifier(),
2087                                                           TemplateArgs);
2088 
2089   TemplateDecl *Template = Name.getAsTemplateDecl();
2090   if (!Template || isa<FunctionTemplateDecl>(Template) ||
2091       isa<VarTemplateDecl>(Template)) {
2092     // We might have a substituted template template parameter pack. If so,
2093     // build a template specialization type for it.
2094     if (Name.getAsSubstTemplateTemplateParmPack())
2095       return Context.getTemplateSpecializationType(Name, TemplateArgs);
2096 
2097     Diag(TemplateLoc, diag::err_template_id_not_a_type)
2098       << Name;
2099     NoteAllFoundTemplates(Name);
2100     return QualType();
2101   }
2102 
2103   // Check that the template argument list is well-formed for this
2104   // template.
2105   SmallVector<TemplateArgument, 4> Converted;
2106   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
2107                                 false, Converted))
2108     return QualType();
2109 
2110   QualType CanonType;
2111 
2112   bool InstantiationDependent = false;
2113   if (TypeAliasTemplateDecl *AliasTemplate =
2114           dyn_cast<TypeAliasTemplateDecl>(Template)) {
2115     // Find the canonical type for this type alias template specialization.
2116     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
2117     if (Pattern->isInvalidDecl())
2118       return QualType();
2119 
2120     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2121                                       Converted.data(), Converted.size());
2122 
2123     // Only substitute for the innermost template argument list.
2124     MultiLevelTemplateArgumentList TemplateArgLists;
2125     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2126     unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2127     for (unsigned I = 0; I < Depth; ++I)
2128       TemplateArgLists.addOuterTemplateArguments(None);
2129 
2130     LocalInstantiationScope Scope(*this);
2131     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2132     if (Inst.isInvalid())
2133       return QualType();
2134 
2135     CanonType = SubstType(Pattern->getUnderlyingType(),
2136                           TemplateArgLists, AliasTemplate->getLocation(),
2137                           AliasTemplate->getDeclName());
2138     if (CanonType.isNull())
2139       return QualType();
2140   } else if (Name.isDependent() ||
2141              TemplateSpecializationType::anyDependentTemplateArguments(
2142                TemplateArgs, InstantiationDependent)) {
2143     // This class template specialization is a dependent
2144     // type. Therefore, its canonical type is another class template
2145     // specialization type that contains all of the converted
2146     // arguments in canonical form. This ensures that, e.g., A<T> and
2147     // A<T, T> have identical types when A is declared as:
2148     //
2149     //   template<typename T, typename U = T> struct A;
2150     TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2151     CanonType = Context.getTemplateSpecializationType(CanonName,
2152                                                       Converted.data(),
2153                                                       Converted.size());
2154 
2155     // FIXME: CanonType is not actually the canonical type, and unfortunately
2156     // it is a TemplateSpecializationType that we will never use again.
2157     // In the future, we need to teach getTemplateSpecializationType to only
2158     // build the canonical type and return that to us.
2159     CanonType = Context.getCanonicalType(CanonType);
2160 
2161     // This might work out to be a current instantiation, in which
2162     // case the canonical type needs to be the InjectedClassNameType.
2163     //
2164     // TODO: in theory this could be a simple hashtable lookup; most
2165     // changes to CurContext don't change the set of current
2166     // instantiations.
2167     if (isa<ClassTemplateDecl>(Template)) {
2168       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2169         // If we get out to a namespace, we're done.
2170         if (Ctx->isFileContext()) break;
2171 
2172         // If this isn't a record, keep looking.
2173         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2174         if (!Record) continue;
2175 
2176         // Look for one of the two cases with InjectedClassNameTypes
2177         // and check whether it's the same template.
2178         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2179             !Record->getDescribedClassTemplate())
2180           continue;
2181 
2182         // Fetch the injected class name type and check whether its
2183         // injected type is equal to the type we just built.
2184         QualType ICNT = Context.getTypeDeclType(Record);
2185         QualType Injected = cast<InjectedClassNameType>(ICNT)
2186           ->getInjectedSpecializationType();
2187 
2188         if (CanonType != Injected->getCanonicalTypeInternal())
2189           continue;
2190 
2191         // If so, the canonical type of this TST is the injected
2192         // class name type of the record we just found.
2193         assert(ICNT.isCanonical());
2194         CanonType = ICNT;
2195         break;
2196       }
2197     }
2198   } else if (ClassTemplateDecl *ClassTemplate
2199                = dyn_cast<ClassTemplateDecl>(Template)) {
2200     // Find the class template specialization declaration that
2201     // corresponds to these arguments.
2202     void *InsertPos = nullptr;
2203     ClassTemplateSpecializationDecl *Decl
2204       = ClassTemplate->findSpecialization(Converted, InsertPos);
2205     if (!Decl) {
2206       // This is the first time we have referenced this class template
2207       // specialization. Create the canonical declaration and add it to
2208       // the set of specializations.
2209       Decl = ClassTemplateSpecializationDecl::Create(Context,
2210                             ClassTemplate->getTemplatedDecl()->getTagKind(),
2211                                                 ClassTemplate->getDeclContext(),
2212                             ClassTemplate->getTemplatedDecl()->getLocStart(),
2213                                                 ClassTemplate->getLocation(),
2214                                                      ClassTemplate,
2215                                                      Converted.data(),
2216                                                      Converted.size(), nullptr);
2217       ClassTemplate->AddSpecialization(Decl, InsertPos);
2218       if (ClassTemplate->isOutOfLine())
2219         Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2220     }
2221 
2222     // Diagnose uses of this specialization.
2223     (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
2224 
2225     CanonType = Context.getTypeDeclType(Decl);
2226     assert(isa<RecordType>(CanonType) &&
2227            "type of non-dependent specialization is not a RecordType");
2228   } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
2229     CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
2230                                            TemplateArgs);
2231   }
2232 
2233   // Build the fully-sugared type for this class template
2234   // specialization, which refers back to the class template
2235   // specialization we created or found.
2236   return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2237 }
2238 
2239 TypeResult
ActOnTemplateIdType(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,bool IsCtorOrDtorName)2240 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2241                           TemplateTy TemplateD, SourceLocation TemplateLoc,
2242                           SourceLocation LAngleLoc,
2243                           ASTTemplateArgsPtr TemplateArgsIn,
2244                           SourceLocation RAngleLoc,
2245                           bool IsCtorOrDtorName) {
2246   if (SS.isInvalid())
2247     return true;
2248 
2249   TemplateName Template = TemplateD.get();
2250 
2251   // Translate the parser's template argument list in our AST format.
2252   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2253   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2254 
2255   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2256     QualType T
2257       = Context.getDependentTemplateSpecializationType(ETK_None,
2258                                                        DTN->getQualifier(),
2259                                                        DTN->getIdentifier(),
2260                                                        TemplateArgs);
2261     // Build type-source information.
2262     TypeLocBuilder TLB;
2263     DependentTemplateSpecializationTypeLoc SpecTL
2264       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2265     SpecTL.setElaboratedKeywordLoc(SourceLocation());
2266     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2267     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2268     SpecTL.setTemplateNameLoc(TemplateLoc);
2269     SpecTL.setLAngleLoc(LAngleLoc);
2270     SpecTL.setRAngleLoc(RAngleLoc);
2271     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2272       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2273     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2274   }
2275 
2276   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2277 
2278   if (Result.isNull())
2279     return true;
2280 
2281   // Build type-source information.
2282   TypeLocBuilder TLB;
2283   TemplateSpecializationTypeLoc SpecTL
2284     = TLB.push<TemplateSpecializationTypeLoc>(Result);
2285   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2286   SpecTL.setTemplateNameLoc(TemplateLoc);
2287   SpecTL.setLAngleLoc(LAngleLoc);
2288   SpecTL.setRAngleLoc(RAngleLoc);
2289   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2290     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2291 
2292   // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2293   // constructor or destructor name (in such a case, the scope specifier
2294   // will be attached to the enclosing Decl or Expr node).
2295   if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2296     // Create an elaborated-type-specifier containing the nested-name-specifier.
2297     Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2298     ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2299     ElabTL.setElaboratedKeywordLoc(SourceLocation());
2300     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2301   }
2302 
2303   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2304 }
2305 
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)2306 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2307                                         TypeSpecifierType TagSpec,
2308                                         SourceLocation TagLoc,
2309                                         CXXScopeSpec &SS,
2310                                         SourceLocation TemplateKWLoc,
2311                                         TemplateTy TemplateD,
2312                                         SourceLocation TemplateLoc,
2313                                         SourceLocation LAngleLoc,
2314                                         ASTTemplateArgsPtr TemplateArgsIn,
2315                                         SourceLocation RAngleLoc) {
2316   TemplateName Template = TemplateD.get();
2317 
2318   // Translate the parser's template argument list in our AST format.
2319   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2320   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2321 
2322   // Determine the tag kind
2323   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2324   ElaboratedTypeKeyword Keyword
2325     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2326 
2327   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2328     QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2329                                                           DTN->getQualifier(),
2330                                                           DTN->getIdentifier(),
2331                                                                 TemplateArgs);
2332 
2333     // Build type-source information.
2334     TypeLocBuilder TLB;
2335     DependentTemplateSpecializationTypeLoc SpecTL
2336       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2337     SpecTL.setElaboratedKeywordLoc(TagLoc);
2338     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2339     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2340     SpecTL.setTemplateNameLoc(TemplateLoc);
2341     SpecTL.setLAngleLoc(LAngleLoc);
2342     SpecTL.setRAngleLoc(RAngleLoc);
2343     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2344       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2345     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2346   }
2347 
2348   if (TypeAliasTemplateDecl *TAT =
2349         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2350     // C++0x [dcl.type.elab]p2:
2351     //   If the identifier resolves to a typedef-name or the simple-template-id
2352     //   resolves to an alias template specialization, the
2353     //   elaborated-type-specifier is ill-formed.
2354     Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2355     Diag(TAT->getLocation(), diag::note_declared_at);
2356   }
2357 
2358   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2359   if (Result.isNull())
2360     return TypeResult(true);
2361 
2362   // Check the tag kind
2363   if (const RecordType *RT = Result->getAs<RecordType>()) {
2364     RecordDecl *D = RT->getDecl();
2365 
2366     IdentifierInfo *Id = D->getIdentifier();
2367     assert(Id && "templated class must have an identifier");
2368 
2369     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2370                                       TagLoc, Id)) {
2371       Diag(TagLoc, diag::err_use_with_wrong_tag)
2372         << Result
2373         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2374       Diag(D->getLocation(), diag::note_previous_use);
2375     }
2376   }
2377 
2378   // Provide source-location information for the template specialization.
2379   TypeLocBuilder TLB;
2380   TemplateSpecializationTypeLoc SpecTL
2381     = TLB.push<TemplateSpecializationTypeLoc>(Result);
2382   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2383   SpecTL.setTemplateNameLoc(TemplateLoc);
2384   SpecTL.setLAngleLoc(LAngleLoc);
2385   SpecTL.setRAngleLoc(RAngleLoc);
2386   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2387     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2388 
2389   // Construct an elaborated type containing the nested-name-specifier (if any)
2390   // and tag keyword.
2391   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2392   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2393   ElabTL.setElaboratedKeywordLoc(TagLoc);
2394   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2395   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2396 }
2397 
2398 static bool CheckTemplatePartialSpecializationArgs(
2399     Sema &S, SourceLocation NameLoc, TemplateParameterList *TemplateParams,
2400     unsigned ExplicitArgs, SmallVectorImpl<TemplateArgument> &TemplateArgs);
2401 
2402 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
2403                                              NamedDecl *PrevDecl,
2404                                              SourceLocation Loc,
2405                                              bool IsPartialSpecialization);
2406 
2407 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
2408 
isTemplateArgumentTemplateParameter(const TemplateArgument & Arg,unsigned Depth,unsigned Index)2409 static bool isTemplateArgumentTemplateParameter(
2410     const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
2411   switch (Arg.getKind()) {
2412   case TemplateArgument::Null:
2413   case TemplateArgument::NullPtr:
2414   case TemplateArgument::Integral:
2415   case TemplateArgument::Declaration:
2416   case TemplateArgument::Pack:
2417   case TemplateArgument::TemplateExpansion:
2418     return false;
2419 
2420   case TemplateArgument::Type: {
2421     QualType Type = Arg.getAsType();
2422     const TemplateTypeParmType *TPT =
2423         Arg.getAsType()->getAs<TemplateTypeParmType>();
2424     return TPT && !Type.hasQualifiers() &&
2425            TPT->getDepth() == Depth && TPT->getIndex() == Index;
2426   }
2427 
2428   case TemplateArgument::Expression: {
2429     DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
2430     if (!DRE || !DRE->getDecl())
2431       return false;
2432     const NonTypeTemplateParmDecl *NTTP =
2433         dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2434     return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
2435   }
2436 
2437   case TemplateArgument::Template:
2438     const TemplateTemplateParmDecl *TTP =
2439         dyn_cast_or_null<TemplateTemplateParmDecl>(
2440             Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
2441     return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
2442   }
2443   llvm_unreachable("unexpected kind of template argument");
2444 }
2445 
isSameAsPrimaryTemplate(TemplateParameterList * Params,ArrayRef<TemplateArgument> Args)2446 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
2447                                     ArrayRef<TemplateArgument> Args) {
2448   if (Params->size() != Args.size())
2449     return false;
2450 
2451   unsigned Depth = Params->getDepth();
2452 
2453   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2454     TemplateArgument Arg = Args[I];
2455 
2456     // If the parameter is a pack expansion, the argument must be a pack
2457     // whose only element is a pack expansion.
2458     if (Params->getParam(I)->isParameterPack()) {
2459       if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
2460           !Arg.pack_begin()->isPackExpansion())
2461         return false;
2462       Arg = Arg.pack_begin()->getPackExpansionPattern();
2463     }
2464 
2465     if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
2466       return false;
2467   }
2468 
2469   return true;
2470 }
2471 
2472 /// Convert the parser's template argument list representation into our form.
2473 static TemplateArgumentListInfo
makeTemplateArgumentListInfo(Sema & S,TemplateIdAnnotation & TemplateId)2474 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
2475   TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
2476                                         TemplateId.RAngleLoc);
2477   ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
2478                                      TemplateId.NumArgs);
2479   S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2480   return TemplateArgs;
2481 }
2482 
ActOnVarTemplateSpecialization(Scope * S,Declarator & D,TypeSourceInfo * DI,SourceLocation TemplateKWLoc,TemplateParameterList * TemplateParams,StorageClass SC,bool IsPartialSpecialization)2483 DeclResult Sema::ActOnVarTemplateSpecialization(
2484     Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
2485     TemplateParameterList *TemplateParams, StorageClass SC,
2486     bool IsPartialSpecialization) {
2487   // D must be variable template id.
2488   assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
2489          "Variable template specialization is declared with a template it.");
2490 
2491   TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2492   TemplateArgumentListInfo TemplateArgs =
2493       makeTemplateArgumentListInfo(*this, *TemplateId);
2494   SourceLocation TemplateNameLoc = D.getIdentifierLoc();
2495   SourceLocation LAngleLoc = TemplateId->LAngleLoc;
2496   SourceLocation RAngleLoc = TemplateId->RAngleLoc;
2497 
2498   TemplateName Name = TemplateId->Template.get();
2499 
2500   // The template-id must name a variable template.
2501   VarTemplateDecl *VarTemplate =
2502       dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
2503   if (!VarTemplate) {
2504     NamedDecl *FnTemplate;
2505     if (auto *OTS = Name.getAsOverloadedTemplate())
2506       FnTemplate = *OTS->begin();
2507     else
2508       FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
2509     if (FnTemplate)
2510       return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
2511                << FnTemplate->getDeclName();
2512     return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
2513              << IsPartialSpecialization;
2514   }
2515 
2516   // Check for unexpanded parameter packs in any of the template arguments.
2517   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2518     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
2519                                         UPPC_PartialSpecialization))
2520       return true;
2521 
2522   // Check that the template argument list is well-formed for this
2523   // template.
2524   SmallVector<TemplateArgument, 4> Converted;
2525   if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
2526                                 false, Converted))
2527     return true;
2528 
2529   // Find the variable template (partial) specialization declaration that
2530   // corresponds to these arguments.
2531   if (IsPartialSpecialization) {
2532     if (CheckTemplatePartialSpecializationArgs(
2533             *this, TemplateNameLoc, VarTemplate->getTemplateParameters(),
2534             TemplateArgs.size(), Converted))
2535       return true;
2536 
2537     bool InstantiationDependent;
2538     if (!Name.isDependent() &&
2539         !TemplateSpecializationType::anyDependentTemplateArguments(
2540             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
2541             InstantiationDependent)) {
2542       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
2543           << VarTemplate->getDeclName();
2544       IsPartialSpecialization = false;
2545     }
2546 
2547     if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
2548                                 Converted)) {
2549       // C++ [temp.class.spec]p9b3:
2550       //
2551       //   -- The argument list of the specialization shall not be identical
2552       //      to the implicit argument list of the primary template.
2553       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2554         << /*variable template*/ 1
2555         << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
2556         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
2557       // FIXME: Recover from this by treating the declaration as a redeclaration
2558       // of the primary template.
2559       return true;
2560     }
2561   }
2562 
2563   void *InsertPos = nullptr;
2564   VarTemplateSpecializationDecl *PrevDecl = nullptr;
2565 
2566   if (IsPartialSpecialization)
2567     // FIXME: Template parameter list matters too
2568     PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
2569   else
2570     PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
2571 
2572   VarTemplateSpecializationDecl *Specialization = nullptr;
2573 
2574   // Check whether we can declare a variable template specialization in
2575   // the current scope.
2576   if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
2577                                        TemplateNameLoc,
2578                                        IsPartialSpecialization))
2579     return true;
2580 
2581   if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2582     // Since the only prior variable template specialization with these
2583     // arguments was referenced but not declared,  reuse that
2584     // declaration node as our own, updating its source location and
2585     // the list of outer template parameters to reflect our new declaration.
2586     Specialization = PrevDecl;
2587     Specialization->setLocation(TemplateNameLoc);
2588     PrevDecl = nullptr;
2589   } else if (IsPartialSpecialization) {
2590     // Create a new class template partial specialization declaration node.
2591     VarTemplatePartialSpecializationDecl *PrevPartial =
2592         cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
2593     VarTemplatePartialSpecializationDecl *Partial =
2594         VarTemplatePartialSpecializationDecl::Create(
2595             Context, VarTemplate->getDeclContext(), TemplateKWLoc,
2596             TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
2597             Converted.data(), Converted.size(), TemplateArgs);
2598 
2599     if (!PrevPartial)
2600       VarTemplate->AddPartialSpecialization(Partial, InsertPos);
2601     Specialization = Partial;
2602 
2603     // If we are providing an explicit specialization of a member variable
2604     // template specialization, make a note of that.
2605     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2606       PrevPartial->setMemberSpecialization();
2607 
2608     // Check that all of the template parameters of the variable template
2609     // partial specialization are deducible from the template
2610     // arguments. If not, this variable template partial specialization
2611     // will never be used.
2612     llvm::SmallBitVector DeducibleParams(TemplateParams->size());
2613     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2614                                TemplateParams->getDepth(), DeducibleParams);
2615 
2616     if (!DeducibleParams.all()) {
2617       unsigned NumNonDeducible =
2618           DeducibleParams.size() - DeducibleParams.count();
2619       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2620         << /*variable template*/ 1 << (NumNonDeducible > 1)
2621         << SourceRange(TemplateNameLoc, RAngleLoc);
2622       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2623         if (!DeducibleParams[I]) {
2624           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2625           if (Param->getDeclName())
2626             Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2627                 << Param->getDeclName();
2628           else
2629             Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2630                 << "(anonymous)";
2631         }
2632       }
2633     }
2634   } else {
2635     // Create a new class template specialization declaration node for
2636     // this explicit specialization or friend declaration.
2637     Specialization = VarTemplateSpecializationDecl::Create(
2638         Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
2639         VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size());
2640     Specialization->setTemplateArgsInfo(TemplateArgs);
2641 
2642     if (!PrevDecl)
2643       VarTemplate->AddSpecialization(Specialization, InsertPos);
2644   }
2645 
2646   // C++ [temp.expl.spec]p6:
2647   //   If a template, a member template or the member of a class template is
2648   //   explicitly specialized then that specialization shall be declared
2649   //   before the first use of that specialization that would cause an implicit
2650   //   instantiation to take place, in every translation unit in which such a
2651   //   use occurs; no diagnostic is required.
2652   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
2653     bool Okay = false;
2654     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
2655       // Is there any previous explicit specialization declaration?
2656       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
2657         Okay = true;
2658         break;
2659       }
2660     }
2661 
2662     if (!Okay) {
2663       SourceRange Range(TemplateNameLoc, RAngleLoc);
2664       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
2665           << Name << Range;
2666 
2667       Diag(PrevDecl->getPointOfInstantiation(),
2668            diag::note_instantiation_required_here)
2669           << (PrevDecl->getTemplateSpecializationKind() !=
2670               TSK_ImplicitInstantiation);
2671       return true;
2672     }
2673   }
2674 
2675   Specialization->setTemplateKeywordLoc(TemplateKWLoc);
2676   Specialization->setLexicalDeclContext(CurContext);
2677 
2678   // Add the specialization into its lexical context, so that it can
2679   // be seen when iterating through the list of declarations in that
2680   // context. However, specializations are not found by name lookup.
2681   CurContext->addDecl(Specialization);
2682 
2683   // Note that this is an explicit specialization.
2684   Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2685 
2686   if (PrevDecl) {
2687     // Check that this isn't a redefinition of this specialization,
2688     // merging with previous declarations.
2689     LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
2690                           ForRedeclaration);
2691     PrevSpec.addDecl(PrevDecl);
2692     D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
2693   } else if (Specialization->isStaticDataMember() &&
2694              Specialization->isOutOfLine()) {
2695     Specialization->setAccess(VarTemplate->getAccess());
2696   }
2697 
2698   // Link instantiations of static data members back to the template from
2699   // which they were instantiated.
2700   if (Specialization->isStaticDataMember())
2701     Specialization->setInstantiationOfStaticDataMember(
2702         VarTemplate->getTemplatedDecl(),
2703         Specialization->getSpecializationKind());
2704 
2705   return Specialization;
2706 }
2707 
2708 namespace {
2709 /// \brief A partial specialization whose template arguments have matched
2710 /// a given template-id.
2711 struct PartialSpecMatchResult {
2712   VarTemplatePartialSpecializationDecl *Partial;
2713   TemplateArgumentList *Args;
2714 };
2715 }
2716 
2717 DeclResult
CheckVarTemplateId(VarTemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation TemplateNameLoc,const TemplateArgumentListInfo & TemplateArgs)2718 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
2719                          SourceLocation TemplateNameLoc,
2720                          const TemplateArgumentListInfo &TemplateArgs) {
2721   assert(Template && "A variable template id without template?");
2722 
2723   // Check that the template argument list is well-formed for this template.
2724   SmallVector<TemplateArgument, 4> Converted;
2725   if (CheckTemplateArgumentList(
2726           Template, TemplateNameLoc,
2727           const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
2728           Converted))
2729     return true;
2730 
2731   // Find the variable template specialization declaration that
2732   // corresponds to these arguments.
2733   void *InsertPos = nullptr;
2734   if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
2735           Converted, InsertPos))
2736     // If we already have a variable template specialization, return it.
2737     return Spec;
2738 
2739   // This is the first time we have referenced this variable template
2740   // specialization. Create the canonical declaration and add it to
2741   // the set of specializations, based on the closest partial specialization
2742   // that it represents. That is,
2743   VarDecl *InstantiationPattern = Template->getTemplatedDecl();
2744   TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2745                                        Converted.data(), Converted.size());
2746   TemplateArgumentList *InstantiationArgs = &TemplateArgList;
2747   bool AmbiguousPartialSpec = false;
2748   typedef PartialSpecMatchResult MatchResult;
2749   SmallVector<MatchResult, 4> Matched;
2750   SourceLocation PointOfInstantiation = TemplateNameLoc;
2751   TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
2752                                             /*ForTakingAddress=*/false);
2753 
2754   // 1. Attempt to find the closest partial specialization that this
2755   // specializes, if any.
2756   // If any of the template arguments is dependent, then this is probably
2757   // a placeholder for an incomplete declarative context; which must be
2758   // complete by instantiation time. Thus, do not search through the partial
2759   // specializations yet.
2760   // TODO: Unify with InstantiateClassTemplateSpecialization()?
2761   //       Perhaps better after unification of DeduceTemplateArguments() and
2762   //       getMoreSpecializedPartialSpecialization().
2763   bool InstantiationDependent = false;
2764   if (!TemplateSpecializationType::anyDependentTemplateArguments(
2765           TemplateArgs, InstantiationDependent)) {
2766 
2767     SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
2768     Template->getPartialSpecializations(PartialSpecs);
2769 
2770     for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
2771       VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
2772       TemplateDeductionInfo Info(FailedCandidates.getLocation());
2773 
2774       if (TemplateDeductionResult Result =
2775               DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
2776         // Store the failed-deduction information for use in diagnostics, later.
2777         // TODO: Actually use the failed-deduction info?
2778         FailedCandidates.addCandidate()
2779             .set(Partial, MakeDeductionFailureInfo(Context, Result, Info));
2780         (void)Result;
2781       } else {
2782         Matched.push_back(PartialSpecMatchResult());
2783         Matched.back().Partial = Partial;
2784         Matched.back().Args = Info.take();
2785       }
2786     }
2787 
2788     if (Matched.size() >= 1) {
2789       SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
2790       if (Matched.size() == 1) {
2791         //   -- If exactly one matching specialization is found, the
2792         //      instantiation is generated from that specialization.
2793         // We don't need to do anything for this.
2794       } else {
2795         //   -- If more than one matching specialization is found, the
2796         //      partial order rules (14.5.4.2) are used to determine
2797         //      whether one of the specializations is more specialized
2798         //      than the others. If none of the specializations is more
2799         //      specialized than all of the other matching
2800         //      specializations, then the use of the variable template is
2801         //      ambiguous and the program is ill-formed.
2802         for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
2803                                                    PEnd = Matched.end();
2804              P != PEnd; ++P) {
2805           if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
2806                                                       PointOfInstantiation) ==
2807               P->Partial)
2808             Best = P;
2809         }
2810 
2811         // Determine if the best partial specialization is more specialized than
2812         // the others.
2813         for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2814                                                    PEnd = Matched.end();
2815              P != PEnd; ++P) {
2816           if (P != Best && getMoreSpecializedPartialSpecialization(
2817                                P->Partial, Best->Partial,
2818                                PointOfInstantiation) != Best->Partial) {
2819             AmbiguousPartialSpec = true;
2820             break;
2821           }
2822         }
2823       }
2824 
2825       // Instantiate using the best variable template partial specialization.
2826       InstantiationPattern = Best->Partial;
2827       InstantiationArgs = Best->Args;
2828     } else {
2829       //   -- If no match is found, the instantiation is generated
2830       //      from the primary template.
2831       // InstantiationPattern = Template->getTemplatedDecl();
2832     }
2833   }
2834 
2835   // 2. Create the canonical declaration.
2836   // Note that we do not instantiate the variable just yet, since
2837   // instantiation is handled in DoMarkVarDeclReferenced().
2838   // FIXME: LateAttrs et al.?
2839   VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
2840       Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
2841       Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
2842   if (!Decl)
2843     return true;
2844 
2845   if (AmbiguousPartialSpec) {
2846     // Partial ordering did not produce a clear winner. Complain.
2847     Decl->setInvalidDecl();
2848     Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
2849         << Decl;
2850 
2851     // Print the matching partial specializations.
2852     for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2853                                                PEnd = Matched.end();
2854          P != PEnd; ++P)
2855       Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
2856           << getTemplateArgumentBindingsText(
2857                  P->Partial->getTemplateParameters(), *P->Args);
2858     return true;
2859   }
2860 
2861   if (VarTemplatePartialSpecializationDecl *D =
2862           dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
2863     Decl->setInstantiationOf(D, InstantiationArgs);
2864 
2865   assert(Decl && "No variable template specialization?");
2866   return Decl;
2867 }
2868 
2869 ExprResult
CheckVarTemplateId(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,VarTemplateDecl * Template,SourceLocation TemplateLoc,const TemplateArgumentListInfo * TemplateArgs)2870 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
2871                          const DeclarationNameInfo &NameInfo,
2872                          VarTemplateDecl *Template, SourceLocation TemplateLoc,
2873                          const TemplateArgumentListInfo *TemplateArgs) {
2874 
2875   DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
2876                                        *TemplateArgs);
2877   if (Decl.isInvalid())
2878     return ExprError();
2879 
2880   VarDecl *Var = cast<VarDecl>(Decl.get());
2881   if (!Var->getTemplateSpecializationKind())
2882     Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
2883                                        NameInfo.getLoc());
2884 
2885   // Build an ordinary singleton decl ref.
2886   return BuildDeclarationNameExpr(SS, NameInfo, Var,
2887                                   /*FoundD=*/nullptr, TemplateArgs);
2888 }
2889 
BuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)2890 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2891                                      SourceLocation TemplateKWLoc,
2892                                      LookupResult &R,
2893                                      bool RequiresADL,
2894                                  const TemplateArgumentListInfo *TemplateArgs) {
2895   // FIXME: Can we do any checking at this point? I guess we could check the
2896   // template arguments that we have against the template name, if the template
2897   // name refers to a single template. That's not a terribly common case,
2898   // though.
2899   // foo<int> could identify a single function unambiguously
2900   // This approach does NOT work, since f<int>(1);
2901   // gets resolved prior to resorting to overload resolution
2902   // i.e., template<class T> void f(double);
2903   //       vs template<class T, class U> void f(U);
2904 
2905   // These should be filtered out by our callers.
2906   assert(!R.empty() && "empty lookup results when building templateid");
2907   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2908 
2909   // In C++1y, check variable template ids.
2910   bool InstantiationDependent;
2911   if (R.getAsSingle<VarTemplateDecl>() &&
2912       !TemplateSpecializationType::anyDependentTemplateArguments(
2913            *TemplateArgs, InstantiationDependent)) {
2914     return CheckVarTemplateId(SS, R.getLookupNameInfo(),
2915                               R.getAsSingle<VarTemplateDecl>(),
2916                               TemplateKWLoc, TemplateArgs);
2917   }
2918 
2919   // We don't want lookup warnings at this point.
2920   R.suppressDiagnostics();
2921 
2922   UnresolvedLookupExpr *ULE
2923     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2924                                    SS.getWithLocInContext(Context),
2925                                    TemplateKWLoc,
2926                                    R.getLookupNameInfo(),
2927                                    RequiresADL, TemplateArgs,
2928                                    R.begin(), R.end());
2929 
2930   return ULE;
2931 }
2932 
2933 // We actually only call this from template instantiation.
2934 ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)2935 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2936                                    SourceLocation TemplateKWLoc,
2937                                    const DeclarationNameInfo &NameInfo,
2938                              const TemplateArgumentListInfo *TemplateArgs) {
2939 
2940   assert(TemplateArgs || TemplateKWLoc.isValid());
2941   DeclContext *DC;
2942   if (!(DC = computeDeclContext(SS, false)) ||
2943       DC->isDependentContext() ||
2944       RequireCompleteDeclContext(SS, DC))
2945     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2946 
2947   bool MemberOfUnknownSpecialization;
2948   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2949   LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
2950                      MemberOfUnknownSpecialization);
2951 
2952   if (R.isAmbiguous())
2953     return ExprError();
2954 
2955   if (R.empty()) {
2956     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2957       << NameInfo.getName() << SS.getRange();
2958     return ExprError();
2959   }
2960 
2961   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2962     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2963       << SS.getScopeRep()
2964       << NameInfo.getName().getAsString() << SS.getRange();
2965     Diag(Temp->getLocation(), diag::note_referenced_class_template);
2966     return ExprError();
2967   }
2968 
2969   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2970 }
2971 
2972 /// \brief Form a dependent template name.
2973 ///
2974 /// This action forms a dependent template name given the template
2975 /// name and its (presumably dependent) scope specifier. For
2976 /// example, given "MetaFun::template apply", the scope specifier \p
2977 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2978 /// of the "template" keyword, and "apply" is the \p Name.
ActOnDependentTemplateName(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result)2979 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2980                                                   CXXScopeSpec &SS,
2981                                                   SourceLocation TemplateKWLoc,
2982                                                   UnqualifiedId &Name,
2983                                                   ParsedType ObjectType,
2984                                                   bool EnteringContext,
2985                                                   TemplateTy &Result) {
2986   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2987     Diag(TemplateKWLoc,
2988          getLangOpts().CPlusPlus11 ?
2989            diag::warn_cxx98_compat_template_outside_of_template :
2990            diag::ext_template_outside_of_template)
2991       << FixItHint::CreateRemoval(TemplateKWLoc);
2992 
2993   DeclContext *LookupCtx = nullptr;
2994   if (SS.isSet())
2995     LookupCtx = computeDeclContext(SS, EnteringContext);
2996   if (!LookupCtx && ObjectType)
2997     LookupCtx = computeDeclContext(ObjectType.get());
2998   if (LookupCtx) {
2999     // C++0x [temp.names]p5:
3000     //   If a name prefixed by the keyword template is not the name of
3001     //   a template, the program is ill-formed. [Note: the keyword
3002     //   template may not be applied to non-template members of class
3003     //   templates. -end note ] [ Note: as is the case with the
3004     //   typename prefix, the template prefix is allowed in cases
3005     //   where it is not strictly necessary; i.e., when the
3006     //   nested-name-specifier or the expression on the left of the ->
3007     //   or . is not dependent on a template-parameter, or the use
3008     //   does not appear in the scope of a template. -end note]
3009     //
3010     // Note: C++03 was more strict here, because it banned the use of
3011     // the "template" keyword prior to a template-name that was not a
3012     // dependent name. C++ DR468 relaxed this requirement (the
3013     // "template" keyword is now permitted). We follow the C++0x
3014     // rules, even in C++03 mode with a warning, retroactively applying the DR.
3015     bool MemberOfUnknownSpecialization;
3016     TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
3017                                           ObjectType, EnteringContext, Result,
3018                                           MemberOfUnknownSpecialization);
3019     if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
3020         isa<CXXRecordDecl>(LookupCtx) &&
3021         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
3022          cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
3023       // This is a dependent template. Handle it below.
3024     } else if (TNK == TNK_Non_template) {
3025       Diag(Name.getLocStart(),
3026            diag::err_template_kw_refers_to_non_template)
3027         << GetNameFromUnqualifiedId(Name).getName()
3028         << Name.getSourceRange()
3029         << TemplateKWLoc;
3030       return TNK_Non_template;
3031     } else {
3032       // We found something; return it.
3033       return TNK;
3034     }
3035   }
3036 
3037   NestedNameSpecifier *Qualifier = SS.getScopeRep();
3038 
3039   switch (Name.getKind()) {
3040   case UnqualifiedId::IK_Identifier:
3041     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
3042                                                               Name.Identifier));
3043     return TNK_Dependent_template_name;
3044 
3045   case UnqualifiedId::IK_OperatorFunctionId:
3046     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
3047                                              Name.OperatorFunctionId.Operator));
3048     return TNK_Function_template;
3049 
3050   case UnqualifiedId::IK_LiteralOperatorId:
3051     llvm_unreachable("literal operator id cannot have a dependent scope");
3052 
3053   default:
3054     break;
3055   }
3056 
3057   Diag(Name.getLocStart(),
3058        diag::err_template_kw_refers_to_non_template)
3059     << GetNameFromUnqualifiedId(Name).getName()
3060     << Name.getSourceRange()
3061     << TemplateKWLoc;
3062   return TNK_Non_template;
3063 }
3064 
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,TemplateArgumentLoc & AL,SmallVectorImpl<TemplateArgument> & Converted)3065 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
3066                                      TemplateArgumentLoc &AL,
3067                           SmallVectorImpl<TemplateArgument> &Converted) {
3068   const TemplateArgument &Arg = AL.getArgument();
3069   QualType ArgType;
3070   TypeSourceInfo *TSI = nullptr;
3071 
3072   // Check template type parameter.
3073   switch(Arg.getKind()) {
3074   case TemplateArgument::Type:
3075     // C++ [temp.arg.type]p1:
3076     //   A template-argument for a template-parameter which is a
3077     //   type shall be a type-id.
3078     ArgType = Arg.getAsType();
3079     TSI = AL.getTypeSourceInfo();
3080     break;
3081   case TemplateArgument::Template: {
3082     // We have a template type parameter but the template argument
3083     // is a template without any arguments.
3084     SourceRange SR = AL.getSourceRange();
3085     TemplateName Name = Arg.getAsTemplate();
3086     Diag(SR.getBegin(), diag::err_template_missing_args)
3087       << Name << SR;
3088     if (TemplateDecl *Decl = Name.getAsTemplateDecl())
3089       Diag(Decl->getLocation(), diag::note_template_decl_here);
3090 
3091     return true;
3092   }
3093   case TemplateArgument::Expression: {
3094     // We have a template type parameter but the template argument is an
3095     // expression; see if maybe it is missing the "typename" keyword.
3096     CXXScopeSpec SS;
3097     DeclarationNameInfo NameInfo;
3098 
3099     if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
3100       SS.Adopt(ArgExpr->getQualifierLoc());
3101       NameInfo = ArgExpr->getNameInfo();
3102     } else if (DependentScopeDeclRefExpr *ArgExpr =
3103                dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
3104       SS.Adopt(ArgExpr->getQualifierLoc());
3105       NameInfo = ArgExpr->getNameInfo();
3106     } else if (CXXDependentScopeMemberExpr *ArgExpr =
3107                dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
3108       if (ArgExpr->isImplicitAccess()) {
3109         SS.Adopt(ArgExpr->getQualifierLoc());
3110         NameInfo = ArgExpr->getMemberNameInfo();
3111       }
3112     }
3113 
3114     if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
3115       LookupResult Result(*this, NameInfo, LookupOrdinaryName);
3116       LookupParsedName(Result, CurScope, &SS);
3117 
3118       if (Result.getAsSingle<TypeDecl>() ||
3119           Result.getResultKind() ==
3120               LookupResult::NotFoundInCurrentInstantiation) {
3121         // Suggest that the user add 'typename' before the NNS.
3122         SourceLocation Loc = AL.getSourceRange().getBegin();
3123         Diag(Loc, getLangOpts().MSVCCompat
3124                       ? diag::ext_ms_template_type_arg_missing_typename
3125                       : diag::err_template_arg_must_be_type_suggest)
3126             << FixItHint::CreateInsertion(Loc, "typename ");
3127         Diag(Param->getLocation(), diag::note_template_param_here);
3128 
3129         // Recover by synthesizing a type using the location information that we
3130         // already have.
3131         ArgType =
3132             Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
3133         TypeLocBuilder TLB;
3134         DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
3135         TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
3136         TL.setQualifierLoc(SS.getWithLocInContext(Context));
3137         TL.setNameLoc(NameInfo.getLoc());
3138         TSI = TLB.getTypeSourceInfo(Context, ArgType);
3139 
3140         // Overwrite our input TemplateArgumentLoc so that we can recover
3141         // properly.
3142         AL = TemplateArgumentLoc(TemplateArgument(ArgType),
3143                                  TemplateArgumentLocInfo(TSI));
3144 
3145         break;
3146       }
3147     }
3148     // fallthrough
3149   }
3150   default: {
3151     // We have a template type parameter but the template argument
3152     // is not a type.
3153     SourceRange SR = AL.getSourceRange();
3154     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
3155     Diag(Param->getLocation(), diag::note_template_param_here);
3156 
3157     return true;
3158   }
3159   }
3160 
3161   if (CheckTemplateArgument(Param, TSI))
3162     return true;
3163 
3164   // Add the converted template type argument.
3165   ArgType = Context.getCanonicalType(ArgType);
3166 
3167   // Objective-C ARC:
3168   //   If an explicitly-specified template argument type is a lifetime type
3169   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
3170   if (getLangOpts().ObjCAutoRefCount &&
3171       ArgType->isObjCLifetimeType() &&
3172       !ArgType.getObjCLifetime()) {
3173     Qualifiers Qs;
3174     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
3175     ArgType = Context.getQualifiedType(ArgType, Qs);
3176   }
3177 
3178   Converted.push_back(TemplateArgument(ArgType));
3179   return false;
3180 }
3181 
3182 /// \brief Substitute template arguments into the default template argument for
3183 /// the given template type parameter.
3184 ///
3185 /// \param SemaRef the semantic analysis object for which we are performing
3186 /// the substitution.
3187 ///
3188 /// \param Template the template that we are synthesizing template arguments
3189 /// for.
3190 ///
3191 /// \param TemplateLoc the location of the template name that started the
3192 /// template-id we are checking.
3193 ///
3194 /// \param RAngleLoc the location of the right angle bracket ('>') that
3195 /// terminates the template-id.
3196 ///
3197 /// \param Param the template template parameter whose default we are
3198 /// substituting into.
3199 ///
3200 /// \param Converted the list of template arguments provided for template
3201 /// parameters that precede \p Param in the template parameter list.
3202 /// \returns the substituted template argument, or NULL if an error occurred.
3203 static TypeSourceInfo *
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3204 SubstDefaultTemplateArgument(Sema &SemaRef,
3205                              TemplateDecl *Template,
3206                              SourceLocation TemplateLoc,
3207                              SourceLocation RAngleLoc,
3208                              TemplateTypeParmDecl *Param,
3209                          SmallVectorImpl<TemplateArgument> &Converted) {
3210   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
3211 
3212   // If the argument type is dependent, instantiate it now based
3213   // on the previously-computed template arguments.
3214   if (ArgType->getType()->isDependentType()) {
3215     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3216                                      Template, Converted,
3217                                      SourceRange(TemplateLoc, RAngleLoc));
3218     if (Inst.isInvalid())
3219       return nullptr;
3220 
3221     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3222                                       Converted.data(), Converted.size());
3223 
3224     // Only substitute for the innermost template argument list.
3225     MultiLevelTemplateArgumentList TemplateArgLists;
3226     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3227     for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3228       TemplateArgLists.addOuterTemplateArguments(None);
3229 
3230     Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3231     ArgType =
3232         SemaRef.SubstType(ArgType, TemplateArgLists,
3233                           Param->getDefaultArgumentLoc(), Param->getDeclName());
3234   }
3235 
3236   return ArgType;
3237 }
3238 
3239 /// \brief Substitute template arguments into the default template argument for
3240 /// the given non-type template parameter.
3241 ///
3242 /// \param SemaRef the semantic analysis object for which we are performing
3243 /// the substitution.
3244 ///
3245 /// \param Template the template that we are synthesizing template arguments
3246 /// for.
3247 ///
3248 /// \param TemplateLoc the location of the template name that started the
3249 /// template-id we are checking.
3250 ///
3251 /// \param RAngleLoc the location of the right angle bracket ('>') that
3252 /// terminates the template-id.
3253 ///
3254 /// \param Param the non-type template parameter whose default we are
3255 /// substituting into.
3256 ///
3257 /// \param Converted the list of template arguments provided for template
3258 /// parameters that precede \p Param in the template parameter list.
3259 ///
3260 /// \returns the substituted template argument, or NULL if an error occurred.
3261 static ExprResult
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3262 SubstDefaultTemplateArgument(Sema &SemaRef,
3263                              TemplateDecl *Template,
3264                              SourceLocation TemplateLoc,
3265                              SourceLocation RAngleLoc,
3266                              NonTypeTemplateParmDecl *Param,
3267                         SmallVectorImpl<TemplateArgument> &Converted) {
3268   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3269                                    Template, Converted,
3270                                    SourceRange(TemplateLoc, RAngleLoc));
3271   if (Inst.isInvalid())
3272     return ExprError();
3273 
3274   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3275                                     Converted.data(), Converted.size());
3276 
3277   // Only substitute for the innermost template argument list.
3278   MultiLevelTemplateArgumentList TemplateArgLists;
3279   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3280   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3281     TemplateArgLists.addOuterTemplateArguments(None);
3282 
3283   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3284   EnterExpressionEvaluationContext ConstantEvaluated(SemaRef,
3285                                                      Sema::ConstantEvaluated);
3286   return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
3287 }
3288 
3289 /// \brief Substitute template arguments into the default template argument for
3290 /// the given template template parameter.
3291 ///
3292 /// \param SemaRef the semantic analysis object for which we are performing
3293 /// the substitution.
3294 ///
3295 /// \param Template the template that we are synthesizing template arguments
3296 /// for.
3297 ///
3298 /// \param TemplateLoc the location of the template name that started the
3299 /// template-id we are checking.
3300 ///
3301 /// \param RAngleLoc the location of the right angle bracket ('>') that
3302 /// terminates the template-id.
3303 ///
3304 /// \param Param the template template parameter whose default we are
3305 /// substituting into.
3306 ///
3307 /// \param Converted the list of template arguments provided for template
3308 /// parameters that precede \p Param in the template parameter list.
3309 ///
3310 /// \param QualifierLoc Will be set to the nested-name-specifier (with
3311 /// source-location information) that precedes the template name.
3312 ///
3313 /// \returns the substituted template argument, or NULL if an error occurred.
3314 static TemplateName
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted,NestedNameSpecifierLoc & QualifierLoc)3315 SubstDefaultTemplateArgument(Sema &SemaRef,
3316                              TemplateDecl *Template,
3317                              SourceLocation TemplateLoc,
3318                              SourceLocation RAngleLoc,
3319                              TemplateTemplateParmDecl *Param,
3320                        SmallVectorImpl<TemplateArgument> &Converted,
3321                              NestedNameSpecifierLoc &QualifierLoc) {
3322   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted,
3323                                    SourceRange(TemplateLoc, RAngleLoc));
3324   if (Inst.isInvalid())
3325     return TemplateName();
3326 
3327   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3328                                     Converted.data(), Converted.size());
3329 
3330   // Only substitute for the innermost template argument list.
3331   MultiLevelTemplateArgumentList TemplateArgLists;
3332   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3333   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3334     TemplateArgLists.addOuterTemplateArguments(None);
3335 
3336   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3337   // Substitute into the nested-name-specifier first,
3338   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
3339   if (QualifierLoc) {
3340     QualifierLoc =
3341         SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
3342     if (!QualifierLoc)
3343       return TemplateName();
3344   }
3345 
3346   return SemaRef.SubstTemplateName(
3347              QualifierLoc,
3348              Param->getDefaultArgument().getArgument().getAsTemplate(),
3349              Param->getDefaultArgument().getTemplateNameLoc(),
3350              TemplateArgLists);
3351 }
3352 
3353 /// \brief If the given template parameter has a default template
3354 /// argument, substitute into that default template argument and
3355 /// return the corresponding template argument.
3356 TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,SmallVectorImpl<TemplateArgument> & Converted,bool & HasDefaultArg)3357 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
3358                                               SourceLocation TemplateLoc,
3359                                               SourceLocation RAngleLoc,
3360                                               Decl *Param,
3361                                               SmallVectorImpl<TemplateArgument>
3362                                                 &Converted,
3363                                               bool &HasDefaultArg) {
3364   HasDefaultArg = false;
3365 
3366   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
3367     if (!hasVisibleDefaultArgument(TypeParm))
3368       return TemplateArgumentLoc();
3369 
3370     HasDefaultArg = true;
3371     TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
3372                                                       TemplateLoc,
3373                                                       RAngleLoc,
3374                                                       TypeParm,
3375                                                       Converted);
3376     if (DI)
3377       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3378 
3379     return TemplateArgumentLoc();
3380   }
3381 
3382   if (NonTypeTemplateParmDecl *NonTypeParm
3383         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3384     if (!hasVisibleDefaultArgument(NonTypeParm))
3385       return TemplateArgumentLoc();
3386 
3387     HasDefaultArg = true;
3388     ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
3389                                                   TemplateLoc,
3390                                                   RAngleLoc,
3391                                                   NonTypeParm,
3392                                                   Converted);
3393     if (Arg.isInvalid())
3394       return TemplateArgumentLoc();
3395 
3396     Expr *ArgE = Arg.getAs<Expr>();
3397     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
3398   }
3399 
3400   TemplateTemplateParmDecl *TempTempParm
3401     = cast<TemplateTemplateParmDecl>(Param);
3402   if (!hasVisibleDefaultArgument(TempTempParm))
3403     return TemplateArgumentLoc();
3404 
3405   HasDefaultArg = true;
3406   NestedNameSpecifierLoc QualifierLoc;
3407   TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
3408                                                     TemplateLoc,
3409                                                     RAngleLoc,
3410                                                     TempTempParm,
3411                                                     Converted,
3412                                                     QualifierLoc);
3413   if (TName.isNull())
3414     return TemplateArgumentLoc();
3415 
3416   return TemplateArgumentLoc(TemplateArgument(TName),
3417                 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
3418                 TempTempParm->getDefaultArgument().getTemplateNameLoc());
3419 }
3420 
3421 /// \brief Check that the given template argument corresponds to the given
3422 /// template parameter.
3423 ///
3424 /// \param Param The template parameter against which the argument will be
3425 /// checked.
3426 ///
3427 /// \param Arg The template argument, which may be updated due to conversions.
3428 ///
3429 /// \param Template The template in which the template argument resides.
3430 ///
3431 /// \param TemplateLoc The location of the template name for the template
3432 /// whose argument list we're matching.
3433 ///
3434 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
3435 /// the template argument list.
3436 ///
3437 /// \param ArgumentPackIndex The index into the argument pack where this
3438 /// argument will be placed. Only valid if the parameter is a parameter pack.
3439 ///
3440 /// \param Converted The checked, converted argument will be added to the
3441 /// end of this small vector.
3442 ///
3443 /// \param CTAK Describes how we arrived at this particular template argument:
3444 /// explicitly written, deduced, etc.
3445 ///
3446 /// \returns true on error, false otherwise.
CheckTemplateArgument(NamedDecl * Param,TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,SmallVectorImpl<TemplateArgument> & Converted,CheckTemplateArgumentKind CTAK)3447 bool Sema::CheckTemplateArgument(NamedDecl *Param,
3448                                  TemplateArgumentLoc &Arg,
3449                                  NamedDecl *Template,
3450                                  SourceLocation TemplateLoc,
3451                                  SourceLocation RAngleLoc,
3452                                  unsigned ArgumentPackIndex,
3453                             SmallVectorImpl<TemplateArgument> &Converted,
3454                                  CheckTemplateArgumentKind CTAK) {
3455   // Check template type parameters.
3456   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
3457     return CheckTemplateTypeArgument(TTP, Arg, Converted);
3458 
3459   // Check non-type template parameters.
3460   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3461     // Do substitution on the type of the non-type template parameter
3462     // with the template arguments we've seen thus far.  But if the
3463     // template has a dependent context then we cannot substitute yet.
3464     QualType NTTPType = NTTP->getType();
3465     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
3466       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
3467 
3468     if (NTTPType->isDependentType() &&
3469         !isa<TemplateTemplateParmDecl>(Template) &&
3470         !Template->getDeclContext()->isDependentContext()) {
3471       // Do substitution on the type of the non-type template parameter.
3472       InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3473                                  NTTP, Converted,
3474                                  SourceRange(TemplateLoc, RAngleLoc));
3475       if (Inst.isInvalid())
3476         return true;
3477 
3478       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3479                                         Converted.data(), Converted.size());
3480       NTTPType = SubstType(NTTPType,
3481                            MultiLevelTemplateArgumentList(TemplateArgs),
3482                            NTTP->getLocation(),
3483                            NTTP->getDeclName());
3484       // If that worked, check the non-type template parameter type
3485       // for validity.
3486       if (!NTTPType.isNull())
3487         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
3488                                                      NTTP->getLocation());
3489       if (NTTPType.isNull())
3490         return true;
3491     }
3492 
3493     switch (Arg.getArgument().getKind()) {
3494     case TemplateArgument::Null:
3495       llvm_unreachable("Should never see a NULL template argument here");
3496 
3497     case TemplateArgument::Expression: {
3498       TemplateArgument Result;
3499       ExprResult Res =
3500         CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
3501                               Result, CTAK);
3502       if (Res.isInvalid())
3503         return true;
3504 
3505       // If the resulting expression is new, then use it in place of the
3506       // old expression in the template argument.
3507       if (Res.get() != Arg.getArgument().getAsExpr()) {
3508         TemplateArgument TA(Res.get());
3509         Arg = TemplateArgumentLoc(TA, Res.get());
3510       }
3511 
3512       Converted.push_back(Result);
3513       break;
3514     }
3515 
3516     case TemplateArgument::Declaration:
3517     case TemplateArgument::Integral:
3518     case TemplateArgument::NullPtr:
3519       // We've already checked this template argument, so just copy
3520       // it to the list of converted arguments.
3521       Converted.push_back(Arg.getArgument());
3522       break;
3523 
3524     case TemplateArgument::Template:
3525     case TemplateArgument::TemplateExpansion:
3526       // We were given a template template argument. It may not be ill-formed;
3527       // see below.
3528       if (DependentTemplateName *DTN
3529             = Arg.getArgument().getAsTemplateOrTemplatePattern()
3530                                               .getAsDependentTemplateName()) {
3531         // We have a template argument such as \c T::template X, which we
3532         // parsed as a template template argument. However, since we now
3533         // know that we need a non-type template argument, convert this
3534         // template name into an expression.
3535 
3536         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
3537                                      Arg.getTemplateNameLoc());
3538 
3539         CXXScopeSpec SS;
3540         SS.Adopt(Arg.getTemplateQualifierLoc());
3541         // FIXME: the template-template arg was a DependentTemplateName,
3542         // so it was provided with a template keyword. However, its source
3543         // location is not stored in the template argument structure.
3544         SourceLocation TemplateKWLoc;
3545         ExprResult E = DependentScopeDeclRefExpr::Create(
3546             Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
3547             nullptr);
3548 
3549         // If we parsed the template argument as a pack expansion, create a
3550         // pack expansion expression.
3551         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
3552           E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
3553           if (E.isInvalid())
3554             return true;
3555         }
3556 
3557         TemplateArgument Result;
3558         E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
3559         if (E.isInvalid())
3560           return true;
3561 
3562         Converted.push_back(Result);
3563         break;
3564       }
3565 
3566       // We have a template argument that actually does refer to a class
3567       // template, alias template, or template template parameter, and
3568       // therefore cannot be a non-type template argument.
3569       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
3570         << Arg.getSourceRange();
3571 
3572       Diag(Param->getLocation(), diag::note_template_param_here);
3573       return true;
3574 
3575     case TemplateArgument::Type: {
3576       // We have a non-type template parameter but the template
3577       // argument is a type.
3578 
3579       // C++ [temp.arg]p2:
3580       //   In a template-argument, an ambiguity between a type-id and
3581       //   an expression is resolved to a type-id, regardless of the
3582       //   form of the corresponding template-parameter.
3583       //
3584       // We warn specifically about this case, since it can be rather
3585       // confusing for users.
3586       QualType T = Arg.getArgument().getAsType();
3587       SourceRange SR = Arg.getSourceRange();
3588       if (T->isFunctionType())
3589         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
3590       else
3591         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
3592       Diag(Param->getLocation(), diag::note_template_param_here);
3593       return true;
3594     }
3595 
3596     case TemplateArgument::Pack:
3597       llvm_unreachable("Caller must expand template argument packs");
3598     }
3599 
3600     return false;
3601   }
3602 
3603 
3604   // Check template template parameters.
3605   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
3606 
3607   // Substitute into the template parameter list of the template
3608   // template parameter, since previously-supplied template arguments
3609   // may appear within the template template parameter.
3610   {
3611     // Set up a template instantiation context.
3612     LocalInstantiationScope Scope(*this);
3613     InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3614                                TempParm, Converted,
3615                                SourceRange(TemplateLoc, RAngleLoc));
3616     if (Inst.isInvalid())
3617       return true;
3618 
3619     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3620                                       Converted.data(), Converted.size());
3621     TempParm = cast_or_null<TemplateTemplateParmDecl>(
3622                       SubstDecl(TempParm, CurContext,
3623                                 MultiLevelTemplateArgumentList(TemplateArgs)));
3624     if (!TempParm)
3625       return true;
3626   }
3627 
3628   switch (Arg.getArgument().getKind()) {
3629   case TemplateArgument::Null:
3630     llvm_unreachable("Should never see a NULL template argument here");
3631 
3632   case TemplateArgument::Template:
3633   case TemplateArgument::TemplateExpansion:
3634     if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
3635       return true;
3636 
3637     Converted.push_back(Arg.getArgument());
3638     break;
3639 
3640   case TemplateArgument::Expression:
3641   case TemplateArgument::Type:
3642     // We have a template template parameter but the template
3643     // argument does not refer to a template.
3644     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
3645       << getLangOpts().CPlusPlus11;
3646     return true;
3647 
3648   case TemplateArgument::Declaration:
3649     llvm_unreachable("Declaration argument with template template parameter");
3650   case TemplateArgument::Integral:
3651     llvm_unreachable("Integral argument with template template parameter");
3652   case TemplateArgument::NullPtr:
3653     llvm_unreachable("Null pointer argument with template template parameter");
3654 
3655   case TemplateArgument::Pack:
3656     llvm_unreachable("Caller must expand template argument packs");
3657   }
3658 
3659   return false;
3660 }
3661 
3662 /// \brief Diagnose an arity mismatch in the
diagnoseArityMismatch(Sema & S,TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3663 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
3664                                   SourceLocation TemplateLoc,
3665                                   TemplateArgumentListInfo &TemplateArgs) {
3666   TemplateParameterList *Params = Template->getTemplateParameters();
3667   unsigned NumParams = Params->size();
3668   unsigned NumArgs = TemplateArgs.size();
3669 
3670   SourceRange Range;
3671   if (NumArgs > NumParams)
3672     Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3673                         TemplateArgs.getRAngleLoc());
3674   S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3675     << (NumArgs > NumParams)
3676     << (isa<ClassTemplateDecl>(Template)? 0 :
3677         isa<FunctionTemplateDecl>(Template)? 1 :
3678         isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3679     << Template << Range;
3680   S.Diag(Template->getLocation(), diag::note_template_decl_here)
3681     << Params->getSourceRange();
3682   return true;
3683 }
3684 
3685 /// \brief Check whether the template parameter is a pack expansion, and if so,
3686 /// determine the number of parameters produced by that expansion. For instance:
3687 ///
3688 /// \code
3689 /// template<typename ...Ts> struct A {
3690 ///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3691 /// };
3692 /// \endcode
3693 ///
3694 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3695 /// is not a pack expansion, so returns an empty Optional.
getExpandedPackSize(NamedDecl * Param)3696 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3697   if (NonTypeTemplateParmDecl *NTTP
3698         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3699     if (NTTP->isExpandedParameterPack())
3700       return NTTP->getNumExpansionTypes();
3701   }
3702 
3703   if (TemplateTemplateParmDecl *TTP
3704         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3705     if (TTP->isExpandedParameterPack())
3706       return TTP->getNumExpansionTemplateParameters();
3707   }
3708 
3709   return None;
3710 }
3711 
3712 /// Diagnose a missing template argument.
3713 template<typename TemplateParmDecl>
diagnoseMissingArgument(Sema & S,SourceLocation Loc,TemplateDecl * TD,const TemplateParmDecl * D,TemplateArgumentListInfo & Args)3714 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
3715                                     TemplateDecl *TD,
3716                                     const TemplateParmDecl *D,
3717                                     TemplateArgumentListInfo &Args) {
3718   // Dig out the most recent declaration of the template parameter; there may be
3719   // declarations of the template that are more recent than TD.
3720   D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
3721                                  ->getTemplateParameters()
3722                                  ->getParam(D->getIndex()));
3723 
3724   // If there's a default argument that's not visible, diagnose that we're
3725   // missing a module import.
3726   llvm::SmallVector<Module*, 8> Modules;
3727   if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
3728     S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
3729                             D->getDefaultArgumentLoc(), Modules,
3730                             Sema::MissingImportKind::DefaultArgument,
3731                             /*Recover*/ true);
3732     return true;
3733   }
3734 
3735   // FIXME: If there's a more recent default argument that *is* visible,
3736   // diagnose that it was declared too late.
3737 
3738   return diagnoseArityMismatch(S, TD, Loc, Args);
3739 }
3740 
3741 /// \brief Check that the given template argument list is well-formed
3742 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,SmallVectorImpl<TemplateArgument> & Converted)3743 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3744                                      SourceLocation TemplateLoc,
3745                                      TemplateArgumentListInfo &TemplateArgs,
3746                                      bool PartialTemplateArgs,
3747                           SmallVectorImpl<TemplateArgument> &Converted) {
3748   // Make a copy of the template arguments for processing.  Only make the
3749   // changes at the end when successful in matching the arguments to the
3750   // template.
3751   TemplateArgumentListInfo NewArgs = TemplateArgs;
3752 
3753   TemplateParameterList *Params = Template->getTemplateParameters();
3754 
3755   SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
3756 
3757   // C++ [temp.arg]p1:
3758   //   [...] The type and form of each template-argument specified in
3759   //   a template-id shall match the type and form specified for the
3760   //   corresponding parameter declared by the template in its
3761   //   template-parameter-list.
3762   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3763   SmallVector<TemplateArgument, 2> ArgumentPack;
3764   unsigned ArgIdx = 0, NumArgs = NewArgs.size();
3765   LocalInstantiationScope InstScope(*this, true);
3766   for (TemplateParameterList::iterator Param = Params->begin(),
3767                                        ParamEnd = Params->end();
3768        Param != ParamEnd; /* increment in loop */) {
3769     // If we have an expanded parameter pack, make sure we don't have too
3770     // many arguments.
3771     if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3772       if (*Expansions == ArgumentPack.size()) {
3773         // We're done with this parameter pack. Pack up its arguments and add
3774         // them to the list.
3775         Converted.push_back(
3776             TemplateArgument::CreatePackCopy(Context, ArgumentPack));
3777         ArgumentPack.clear();
3778 
3779         // This argument is assigned to the next parameter.
3780         ++Param;
3781         continue;
3782       } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3783         // Not enough arguments for this parameter pack.
3784         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3785           << false
3786           << (isa<ClassTemplateDecl>(Template)? 0 :
3787               isa<FunctionTemplateDecl>(Template)? 1 :
3788               isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3789           << Template;
3790         Diag(Template->getLocation(), diag::note_template_decl_here)
3791           << Params->getSourceRange();
3792         return true;
3793       }
3794     }
3795 
3796     if (ArgIdx < NumArgs) {
3797       // Check the template argument we were given.
3798       if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
3799                                 TemplateLoc, RAngleLoc,
3800                                 ArgumentPack.size(), Converted))
3801         return true;
3802 
3803       bool PackExpansionIntoNonPack =
3804           NewArgs[ArgIdx].getArgument().isPackExpansion() &&
3805           (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
3806       if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) {
3807         // Core issue 1430: we have a pack expansion as an argument to an
3808         // alias template, and it's not part of a parameter pack. This
3809         // can't be canonicalized, so reject it now.
3810         Diag(NewArgs[ArgIdx].getLocation(),
3811              diag::err_alias_template_expansion_into_fixed_list)
3812           << NewArgs[ArgIdx].getSourceRange();
3813         Diag((*Param)->getLocation(), diag::note_template_param_here);
3814         return true;
3815       }
3816 
3817       // We're now done with this argument.
3818       ++ArgIdx;
3819 
3820       if ((*Param)->isTemplateParameterPack()) {
3821         // The template parameter was a template parameter pack, so take the
3822         // deduced argument and place it on the argument pack. Note that we
3823         // stay on the same template parameter so that we can deduce more
3824         // arguments.
3825         ArgumentPack.push_back(Converted.pop_back_val());
3826       } else {
3827         // Move to the next template parameter.
3828         ++Param;
3829       }
3830 
3831       // If we just saw a pack expansion into a non-pack, then directly convert
3832       // the remaining arguments, because we don't know what parameters they'll
3833       // match up with.
3834       if (PackExpansionIntoNonPack) {
3835         if (!ArgumentPack.empty()) {
3836           // If we were part way through filling in an expanded parameter pack,
3837           // fall back to just producing individual arguments.
3838           Converted.insert(Converted.end(),
3839                            ArgumentPack.begin(), ArgumentPack.end());
3840           ArgumentPack.clear();
3841         }
3842 
3843         while (ArgIdx < NumArgs) {
3844           Converted.push_back(NewArgs[ArgIdx].getArgument());
3845           ++ArgIdx;
3846         }
3847 
3848         return false;
3849       }
3850 
3851       continue;
3852     }
3853 
3854     // If we're checking a partial template argument list, we're done.
3855     if (PartialTemplateArgs) {
3856       if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3857         Converted.push_back(
3858             TemplateArgument::CreatePackCopy(Context, ArgumentPack));
3859 
3860       return false;
3861     }
3862 
3863     // If we have a template parameter pack with no more corresponding
3864     // arguments, just break out now and we'll fill in the argument pack below.
3865     if ((*Param)->isTemplateParameterPack()) {
3866       assert(!getExpandedPackSize(*Param) &&
3867              "Should have dealt with this already");
3868 
3869       // A non-expanded parameter pack before the end of the parameter list
3870       // only occurs for an ill-formed template parameter list, unless we've
3871       // got a partial argument list for a function template, so just bail out.
3872       if (Param + 1 != ParamEnd)
3873         return true;
3874 
3875       Converted.push_back(
3876           TemplateArgument::CreatePackCopy(Context, ArgumentPack));
3877       ArgumentPack.clear();
3878 
3879       ++Param;
3880       continue;
3881     }
3882 
3883     // Check whether we have a default argument.
3884     TemplateArgumentLoc Arg;
3885 
3886     // Retrieve the default template argument from the template
3887     // parameter. For each kind of template parameter, we substitute the
3888     // template arguments provided thus far and any "outer" template arguments
3889     // (when the template parameter was part of a nested template) into
3890     // the default argument.
3891     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3892       if (!hasVisibleDefaultArgument(TTP))
3893         return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
3894                                        NewArgs);
3895 
3896       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3897                                                              Template,
3898                                                              TemplateLoc,
3899                                                              RAngleLoc,
3900                                                              TTP,
3901                                                              Converted);
3902       if (!ArgType)
3903         return true;
3904 
3905       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3906                                 ArgType);
3907     } else if (NonTypeTemplateParmDecl *NTTP
3908                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3909       if (!hasVisibleDefaultArgument(NTTP))
3910         return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
3911                                        NewArgs);
3912 
3913       ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3914                                                               TemplateLoc,
3915                                                               RAngleLoc,
3916                                                               NTTP,
3917                                                               Converted);
3918       if (E.isInvalid())
3919         return true;
3920 
3921       Expr *Ex = E.getAs<Expr>();
3922       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3923     } else {
3924       TemplateTemplateParmDecl *TempParm
3925         = cast<TemplateTemplateParmDecl>(*Param);
3926 
3927       if (!hasVisibleDefaultArgument(TempParm))
3928         return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
3929                                        NewArgs);
3930 
3931       NestedNameSpecifierLoc QualifierLoc;
3932       TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3933                                                        TemplateLoc,
3934                                                        RAngleLoc,
3935                                                        TempParm,
3936                                                        Converted,
3937                                                        QualifierLoc);
3938       if (Name.isNull())
3939         return true;
3940 
3941       Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3942                            TempParm->getDefaultArgument().getTemplateNameLoc());
3943     }
3944 
3945     // Introduce an instantiation record that describes where we are using
3946     // the default template argument.
3947     InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
3948                                SourceRange(TemplateLoc, RAngleLoc));
3949     if (Inst.isInvalid())
3950       return true;
3951 
3952     // Check the default template argument.
3953     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3954                               RAngleLoc, 0, Converted))
3955       return true;
3956 
3957     // Core issue 150 (assumed resolution): if this is a template template
3958     // parameter, keep track of the default template arguments from the
3959     // template definition.
3960     if (isTemplateTemplateParameter)
3961       NewArgs.addArgument(Arg);
3962 
3963     // Move to the next template parameter and argument.
3964     ++Param;
3965     ++ArgIdx;
3966   }
3967 
3968   // If we're performing a partial argument substitution, allow any trailing
3969   // pack expansions; they might be empty. This can happen even if
3970   // PartialTemplateArgs is false (the list of arguments is complete but
3971   // still dependent).
3972   if (ArgIdx < NumArgs && CurrentInstantiationScope &&
3973       CurrentInstantiationScope->getPartiallySubstitutedPack()) {
3974     while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
3975       Converted.push_back(NewArgs[ArgIdx++].getArgument());
3976   }
3977 
3978   // If we have any leftover arguments, then there were too many arguments.
3979   // Complain and fail.
3980   if (ArgIdx < NumArgs)
3981     return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
3982 
3983   // No problems found with the new argument list, propagate changes back
3984   // to caller.
3985   TemplateArgs = std::move(NewArgs);
3986 
3987   return false;
3988 }
3989 
3990 namespace {
3991   class UnnamedLocalNoLinkageFinder
3992     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3993   {
3994     Sema &S;
3995     SourceRange SR;
3996 
3997     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3998 
3999   public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)4000     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
4001 
Visit(QualType T)4002     bool Visit(QualType T) {
4003       return inherited::Visit(T.getTypePtr());
4004     }
4005 
4006 #define TYPE(Class, Parent) \
4007     bool Visit##Class##Type(const Class##Type *);
4008 #define ABSTRACT_TYPE(Class, Parent) \
4009     bool Visit##Class##Type(const Class##Type *) { return false; }
4010 #define NON_CANONICAL_TYPE(Class, Parent) \
4011     bool Visit##Class##Type(const Class##Type *) { return false; }
4012 #include "clang/AST/TypeNodes.def"
4013 
4014     bool VisitTagDecl(const TagDecl *Tag);
4015     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
4016   };
4017 }
4018 
VisitBuiltinType(const BuiltinType *)4019 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
4020   return false;
4021 }
4022 
VisitComplexType(const ComplexType * T)4023 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
4024   return Visit(T->getElementType());
4025 }
4026 
VisitPointerType(const PointerType * T)4027 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
4028   return Visit(T->getPointeeType());
4029 }
4030 
VisitBlockPointerType(const BlockPointerType * T)4031 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
4032                                                     const BlockPointerType* T) {
4033   return Visit(T->getPointeeType());
4034 }
4035 
VisitLValueReferenceType(const LValueReferenceType * T)4036 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
4037                                                 const LValueReferenceType* T) {
4038   return Visit(T->getPointeeType());
4039 }
4040 
VisitRValueReferenceType(const RValueReferenceType * T)4041 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
4042                                                 const RValueReferenceType* T) {
4043   return Visit(T->getPointeeType());
4044 }
4045 
VisitMemberPointerType(const MemberPointerType * T)4046 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
4047                                                   const MemberPointerType* T) {
4048   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
4049 }
4050 
VisitConstantArrayType(const ConstantArrayType * T)4051 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
4052                                                   const ConstantArrayType* T) {
4053   return Visit(T->getElementType());
4054 }
4055 
VisitIncompleteArrayType(const IncompleteArrayType * T)4056 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
4057                                                  const IncompleteArrayType* T) {
4058   return Visit(T->getElementType());
4059 }
4060 
VisitVariableArrayType(const VariableArrayType * T)4061 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
4062                                                    const VariableArrayType* T) {
4063   return Visit(T->getElementType());
4064 }
4065 
VisitDependentSizedArrayType(const DependentSizedArrayType * T)4066 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
4067                                             const DependentSizedArrayType* T) {
4068   return Visit(T->getElementType());
4069 }
4070 
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)4071 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
4072                                          const DependentSizedExtVectorType* T) {
4073   return Visit(T->getElementType());
4074 }
4075 
VisitVectorType(const VectorType * T)4076 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
4077   return Visit(T->getElementType());
4078 }
4079 
VisitExtVectorType(const ExtVectorType * T)4080 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
4081   return Visit(T->getElementType());
4082 }
4083 
VisitFunctionProtoType(const FunctionProtoType * T)4084 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
4085                                                   const FunctionProtoType* T) {
4086   for (const auto &A : T->param_types()) {
4087     if (Visit(A))
4088       return true;
4089   }
4090 
4091   return Visit(T->getReturnType());
4092 }
4093 
VisitFunctionNoProtoType(const FunctionNoProtoType * T)4094 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
4095                                                const FunctionNoProtoType* T) {
4096   return Visit(T->getReturnType());
4097 }
4098 
VisitUnresolvedUsingType(const UnresolvedUsingType *)4099 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
4100                                                   const UnresolvedUsingType*) {
4101   return false;
4102 }
4103 
VisitTypeOfExprType(const TypeOfExprType *)4104 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
4105   return false;
4106 }
4107 
VisitTypeOfType(const TypeOfType * T)4108 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
4109   return Visit(T->getUnderlyingType());
4110 }
4111 
VisitDecltypeType(const DecltypeType *)4112 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
4113   return false;
4114 }
4115 
VisitUnaryTransformType(const UnaryTransformType *)4116 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
4117                                                     const UnaryTransformType*) {
4118   return false;
4119 }
4120 
VisitAutoType(const AutoType * T)4121 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
4122   return Visit(T->getDeducedType());
4123 }
4124 
VisitRecordType(const RecordType * T)4125 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
4126   return VisitTagDecl(T->getDecl());
4127 }
4128 
VisitEnumType(const EnumType * T)4129 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
4130   return VisitTagDecl(T->getDecl());
4131 }
4132 
VisitTemplateTypeParmType(const TemplateTypeParmType *)4133 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
4134                                                  const TemplateTypeParmType*) {
4135   return false;
4136 }
4137 
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)4138 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
4139                                         const SubstTemplateTypeParmPackType *) {
4140   return false;
4141 }
4142 
VisitTemplateSpecializationType(const TemplateSpecializationType *)4143 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
4144                                             const TemplateSpecializationType*) {
4145   return false;
4146 }
4147 
VisitInjectedClassNameType(const InjectedClassNameType * T)4148 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
4149                                               const InjectedClassNameType* T) {
4150   return VisitTagDecl(T->getDecl());
4151 }
4152 
VisitDependentNameType(const DependentNameType * T)4153 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
4154                                                    const DependentNameType* T) {
4155   return VisitNestedNameSpecifier(T->getQualifier());
4156 }
4157 
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)4158 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
4159                                  const DependentTemplateSpecializationType* T) {
4160   return VisitNestedNameSpecifier(T->getQualifier());
4161 }
4162 
VisitPackExpansionType(const PackExpansionType * T)4163 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
4164                                                    const PackExpansionType* T) {
4165   return Visit(T->getPattern());
4166 }
4167 
VisitObjCObjectType(const ObjCObjectType *)4168 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
4169   return false;
4170 }
4171 
VisitObjCInterfaceType(const ObjCInterfaceType *)4172 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
4173                                                    const ObjCInterfaceType *) {
4174   return false;
4175 }
4176 
VisitObjCObjectPointerType(const ObjCObjectPointerType *)4177 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
4178                                                 const ObjCObjectPointerType *) {
4179   return false;
4180 }
4181 
VisitAtomicType(const AtomicType * T)4182 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
4183   return Visit(T->getValueType());
4184 }
4185 
VisitTagDecl(const TagDecl * Tag)4186 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
4187   if (Tag->getDeclContext()->isFunctionOrMethod()) {
4188     S.Diag(SR.getBegin(),
4189            S.getLangOpts().CPlusPlus11 ?
4190              diag::warn_cxx98_compat_template_arg_local_type :
4191              diag::ext_template_arg_local_type)
4192       << S.Context.getTypeDeclType(Tag) << SR;
4193     return true;
4194   }
4195 
4196   if (!Tag->hasNameForLinkage()) {
4197     S.Diag(SR.getBegin(),
4198            S.getLangOpts().CPlusPlus11 ?
4199              diag::warn_cxx98_compat_template_arg_unnamed_type :
4200              diag::ext_template_arg_unnamed_type) << SR;
4201     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
4202     return true;
4203   }
4204 
4205   return false;
4206 }
4207 
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)4208 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
4209                                                     NestedNameSpecifier *NNS) {
4210   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
4211     return true;
4212 
4213   switch (NNS->getKind()) {
4214   case NestedNameSpecifier::Identifier:
4215   case NestedNameSpecifier::Namespace:
4216   case NestedNameSpecifier::NamespaceAlias:
4217   case NestedNameSpecifier::Global:
4218   case NestedNameSpecifier::Super:
4219     return false;
4220 
4221   case NestedNameSpecifier::TypeSpec:
4222   case NestedNameSpecifier::TypeSpecWithTemplate:
4223     return Visit(QualType(NNS->getAsType(), 0));
4224   }
4225   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4226 }
4227 
4228 
4229 /// \brief Check a template argument against its corresponding
4230 /// template type parameter.
4231 ///
4232 /// This routine implements the semantics of C++ [temp.arg.type]. It
4233 /// returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTypeParmDecl * Param,TypeSourceInfo * ArgInfo)4234 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
4235                                  TypeSourceInfo *ArgInfo) {
4236   assert(ArgInfo && "invalid TypeSourceInfo");
4237   QualType Arg = ArgInfo->getType();
4238   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
4239 
4240   if (Arg->isVariablyModifiedType()) {
4241     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
4242   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
4243     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
4244   }
4245 
4246   // C++03 [temp.arg.type]p2:
4247   //   A local type, a type with no linkage, an unnamed type or a type
4248   //   compounded from any of these types shall not be used as a
4249   //   template-argument for a template type-parameter.
4250   //
4251   // C++11 allows these, and even in C++03 we allow them as an extension with
4252   // a warning.
4253   bool NeedsCheck;
4254   if (LangOpts.CPlusPlus11)
4255     NeedsCheck =
4256         !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_unnamed_type,
4257                          SR.getBegin()) ||
4258         !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_local_type,
4259                          SR.getBegin());
4260   else
4261     NeedsCheck = Arg->hasUnnamedOrLocalType();
4262 
4263   if (NeedsCheck) {
4264     UnnamedLocalNoLinkageFinder Finder(*this, SR);
4265     (void)Finder.Visit(Context.getCanonicalType(Arg));
4266   }
4267 
4268   return false;
4269 }
4270 
4271 enum NullPointerValueKind {
4272   NPV_NotNullPointer,
4273   NPV_NullPointer,
4274   NPV_Error
4275 };
4276 
4277 /// \brief Determine whether the given template argument is a null pointer
4278 /// value of the appropriate type.
4279 static NullPointerValueKind
isNullPointerValueTemplateArgument(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg)4280 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
4281                                    QualType ParamType, Expr *Arg) {
4282   if (Arg->isValueDependent() || Arg->isTypeDependent())
4283     return NPV_NotNullPointer;
4284 
4285   if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
4286     llvm_unreachable(
4287         "Incomplete parameter type in isNullPointerValueTemplateArgument!");
4288 
4289   if (!S.getLangOpts().CPlusPlus11)
4290     return NPV_NotNullPointer;
4291 
4292   // Determine whether we have a constant expression.
4293   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
4294   if (ArgRV.isInvalid())
4295     return NPV_Error;
4296   Arg = ArgRV.get();
4297 
4298   Expr::EvalResult EvalResult;
4299   SmallVector<PartialDiagnosticAt, 8> Notes;
4300   EvalResult.Diag = &Notes;
4301   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
4302       EvalResult.HasSideEffects) {
4303     SourceLocation DiagLoc = Arg->getExprLoc();
4304 
4305     // If our only note is the usual "invalid subexpression" note, just point
4306     // the caret at its location rather than producing an essentially
4307     // redundant note.
4308     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
4309         diag::note_invalid_subexpr_in_const_expr) {
4310       DiagLoc = Notes[0].first;
4311       Notes.clear();
4312     }
4313 
4314     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
4315       << Arg->getType() << Arg->getSourceRange();
4316     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
4317       S.Diag(Notes[I].first, Notes[I].second);
4318 
4319     S.Diag(Param->getLocation(), diag::note_template_param_here);
4320     return NPV_Error;
4321   }
4322 
4323   // C++11 [temp.arg.nontype]p1:
4324   //   - an address constant expression of type std::nullptr_t
4325   if (Arg->getType()->isNullPtrType())
4326     return NPV_NullPointer;
4327 
4328   //   - a constant expression that evaluates to a null pointer value (4.10); or
4329   //   - a constant expression that evaluates to a null member pointer value
4330   //     (4.11); or
4331   if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
4332       (EvalResult.Val.isMemberPointer() &&
4333        !EvalResult.Val.getMemberPointerDecl())) {
4334     // If our expression has an appropriate type, we've succeeded.
4335     bool ObjCLifetimeConversion;
4336     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
4337         S.IsQualificationConversion(Arg->getType(), ParamType, false,
4338                                      ObjCLifetimeConversion))
4339       return NPV_NullPointer;
4340 
4341     // The types didn't match, but we know we got a null pointer; complain,
4342     // then recover as if the types were correct.
4343     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
4344       << Arg->getType() << ParamType << Arg->getSourceRange();
4345     S.Diag(Param->getLocation(), diag::note_template_param_here);
4346     return NPV_NullPointer;
4347   }
4348 
4349   // If we don't have a null pointer value, but we do have a NULL pointer
4350   // constant, suggest a cast to the appropriate type.
4351   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
4352     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
4353     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
4354         << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
4355         << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
4356                                       ")");
4357     S.Diag(Param->getLocation(), diag::note_template_param_here);
4358     return NPV_NullPointer;
4359   }
4360 
4361   // FIXME: If we ever want to support general, address-constant expressions
4362   // as non-type template arguments, we should return the ExprResult here to
4363   // be interpreted by the caller.
4364   return NPV_NotNullPointer;
4365 }
4366 
4367 /// \brief Checks whether the given template argument is compatible with its
4368 /// template parameter.
CheckTemplateArgumentIsCompatibleWithParameter(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,Expr * Arg,QualType ArgType)4369 static bool CheckTemplateArgumentIsCompatibleWithParameter(
4370     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
4371     Expr *Arg, QualType ArgType) {
4372   bool ObjCLifetimeConversion;
4373   if (ParamType->isPointerType() &&
4374       !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
4375       S.IsQualificationConversion(ArgType, ParamType, false,
4376                                   ObjCLifetimeConversion)) {
4377     // For pointer-to-object types, qualification conversions are
4378     // permitted.
4379   } else {
4380     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
4381       if (!ParamRef->getPointeeType()->isFunctionType()) {
4382         // C++ [temp.arg.nontype]p5b3:
4383         //   For a non-type template-parameter of type reference to
4384         //   object, no conversions apply. The type referred to by the
4385         //   reference may be more cv-qualified than the (otherwise
4386         //   identical) type of the template- argument. The
4387         //   template-parameter is bound directly to the
4388         //   template-argument, which shall be an lvalue.
4389 
4390         // FIXME: Other qualifiers?
4391         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
4392         unsigned ArgQuals = ArgType.getCVRQualifiers();
4393 
4394         if ((ParamQuals | ArgQuals) != ParamQuals) {
4395           S.Diag(Arg->getLocStart(),
4396                  diag::err_template_arg_ref_bind_ignores_quals)
4397             << ParamType << Arg->getType() << Arg->getSourceRange();
4398           S.Diag(Param->getLocation(), diag::note_template_param_here);
4399           return true;
4400         }
4401       }
4402     }
4403 
4404     // At this point, the template argument refers to an object or
4405     // function with external linkage. We now need to check whether the
4406     // argument and parameter types are compatible.
4407     if (!S.Context.hasSameUnqualifiedType(ArgType,
4408                                           ParamType.getNonReferenceType())) {
4409       // We can't perform this conversion or binding.
4410       if (ParamType->isReferenceType())
4411         S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
4412           << ParamType << ArgIn->getType() << Arg->getSourceRange();
4413       else
4414         S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
4415           << ArgIn->getType() << ParamType << Arg->getSourceRange();
4416       S.Diag(Param->getLocation(), diag::note_template_param_here);
4417       return true;
4418     }
4419   }
4420 
4421   return false;
4422 }
4423 
4424 /// \brief Checks whether the given template argument is the address
4425 /// of an object or function according to C++ [temp.arg.nontype]p1.
4426 static bool
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & Converted)4427 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
4428                                                NonTypeTemplateParmDecl *Param,
4429                                                QualType ParamType,
4430                                                Expr *ArgIn,
4431                                                TemplateArgument &Converted) {
4432   bool Invalid = false;
4433   Expr *Arg = ArgIn;
4434   QualType ArgType = Arg->getType();
4435 
4436   bool AddressTaken = false;
4437   SourceLocation AddrOpLoc;
4438   if (S.getLangOpts().MicrosoftExt) {
4439     // Microsoft Visual C++ strips all casts, allows an arbitrary number of
4440     // dereference and address-of operators.
4441     Arg = Arg->IgnoreParenCasts();
4442 
4443     bool ExtWarnMSTemplateArg = false;
4444     UnaryOperatorKind FirstOpKind;
4445     SourceLocation FirstOpLoc;
4446     while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4447       UnaryOperatorKind UnOpKind = UnOp->getOpcode();
4448       if (UnOpKind == UO_Deref)
4449         ExtWarnMSTemplateArg = true;
4450       if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
4451         Arg = UnOp->getSubExpr()->IgnoreParenCasts();
4452         if (!AddrOpLoc.isValid()) {
4453           FirstOpKind = UnOpKind;
4454           FirstOpLoc = UnOp->getOperatorLoc();
4455         }
4456       } else
4457         break;
4458     }
4459     if (FirstOpLoc.isValid()) {
4460       if (ExtWarnMSTemplateArg)
4461         S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
4462           << ArgIn->getSourceRange();
4463 
4464       if (FirstOpKind == UO_AddrOf)
4465         AddressTaken = true;
4466       else if (Arg->getType()->isPointerType()) {
4467         // We cannot let pointers get dereferenced here, that is obviously not a
4468         // constant expression.
4469         assert(FirstOpKind == UO_Deref);
4470         S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4471           << Arg->getSourceRange();
4472       }
4473     }
4474   } else {
4475     // See through any implicit casts we added to fix the type.
4476     Arg = Arg->IgnoreImpCasts();
4477 
4478     // C++ [temp.arg.nontype]p1:
4479     //
4480     //   A template-argument for a non-type, non-template
4481     //   template-parameter shall be one of: [...]
4482     //
4483     //     -- the address of an object or function with external
4484     //        linkage, including function templates and function
4485     //        template-ids but excluding non-static class members,
4486     //        expressed as & id-expression where the & is optional if
4487     //        the name refers to a function or array, or if the
4488     //        corresponding template-parameter is a reference; or
4489 
4490     // In C++98/03 mode, give an extension warning on any extra parentheses.
4491     // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4492     bool ExtraParens = false;
4493     while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4494       if (!Invalid && !ExtraParens) {
4495         S.Diag(Arg->getLocStart(),
4496                S.getLangOpts().CPlusPlus11
4497                    ? diag::warn_cxx98_compat_template_arg_extra_parens
4498                    : diag::ext_template_arg_extra_parens)
4499             << Arg->getSourceRange();
4500         ExtraParens = true;
4501       }
4502 
4503       Arg = Parens->getSubExpr();
4504     }
4505 
4506     while (SubstNonTypeTemplateParmExpr *subst =
4507                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4508       Arg = subst->getReplacement()->IgnoreImpCasts();
4509 
4510     if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4511       if (UnOp->getOpcode() == UO_AddrOf) {
4512         Arg = UnOp->getSubExpr();
4513         AddressTaken = true;
4514         AddrOpLoc = UnOp->getOperatorLoc();
4515       }
4516     }
4517 
4518     while (SubstNonTypeTemplateParmExpr *subst =
4519                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4520       Arg = subst->getReplacement()->IgnoreImpCasts();
4521   }
4522 
4523   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
4524   ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
4525 
4526   // If our parameter has pointer type, check for a null template value.
4527   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
4528     NullPointerValueKind NPV;
4529     // dllimport'd entities aren't constant but are available inside of template
4530     // arguments.
4531     if (Entity && Entity->hasAttr<DLLImportAttr>())
4532       NPV = NPV_NotNullPointer;
4533     else
4534       NPV = isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn);
4535     switch (NPV) {
4536     case NPV_NullPointer:
4537       S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4538       Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
4539                                    /*isNullPtr=*/true);
4540       return false;
4541 
4542     case NPV_Error:
4543       return true;
4544 
4545     case NPV_NotNullPointer:
4546       break;
4547     }
4548   }
4549 
4550   // Stop checking the precise nature of the argument if it is value dependent,
4551   // it should be checked when instantiated.
4552   if (Arg->isValueDependent()) {
4553     Converted = TemplateArgument(ArgIn);
4554     return false;
4555   }
4556 
4557   if (isa<CXXUuidofExpr>(Arg)) {
4558     if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
4559                                                        ArgIn, Arg, ArgType))
4560       return true;
4561 
4562     Converted = TemplateArgument(ArgIn);
4563     return false;
4564   }
4565 
4566   if (!DRE) {
4567     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4568     << Arg->getSourceRange();
4569     S.Diag(Param->getLocation(), diag::note_template_param_here);
4570     return true;
4571   }
4572 
4573   // Cannot refer to non-static data members
4574   if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
4575     S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
4576       << Entity << Arg->getSourceRange();
4577     S.Diag(Param->getLocation(), diag::note_template_param_here);
4578     return true;
4579   }
4580 
4581   // Cannot refer to non-static member functions
4582   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
4583     if (!Method->isStatic()) {
4584       S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
4585         << Method << Arg->getSourceRange();
4586       S.Diag(Param->getLocation(), diag::note_template_param_here);
4587       return true;
4588     }
4589   }
4590 
4591   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
4592   VarDecl *Var = dyn_cast<VarDecl>(Entity);
4593 
4594   // A non-type template argument must refer to an object or function.
4595   if (!Func && !Var) {
4596     // We found something, but we don't know specifically what it is.
4597     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
4598       << Arg->getSourceRange();
4599     S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4600     return true;
4601   }
4602 
4603   // Address / reference template args must have external linkage in C++98.
4604   if (Entity->getFormalLinkage() == InternalLinkage) {
4605     S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
4606              diag::warn_cxx98_compat_template_arg_object_internal :
4607              diag::ext_template_arg_object_internal)
4608       << !Func << Entity << Arg->getSourceRange();
4609     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4610       << !Func;
4611   } else if (!Entity->hasLinkage()) {
4612     S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
4613       << !Func << Entity << Arg->getSourceRange();
4614     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4615       << !Func;
4616     return true;
4617   }
4618 
4619   if (Func) {
4620     // If the template parameter has pointer type, the function decays.
4621     if (ParamType->isPointerType() && !AddressTaken)
4622       ArgType = S.Context.getPointerType(Func->getType());
4623     else if (AddressTaken && ParamType->isReferenceType()) {
4624       // If we originally had an address-of operator, but the
4625       // parameter has reference type, complain and (if things look
4626       // like they will work) drop the address-of operator.
4627       if (!S.Context.hasSameUnqualifiedType(Func->getType(),
4628                                             ParamType.getNonReferenceType())) {
4629         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4630           << ParamType;
4631         S.Diag(Param->getLocation(), diag::note_template_param_here);
4632         return true;
4633       }
4634 
4635       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4636         << ParamType
4637         << FixItHint::CreateRemoval(AddrOpLoc);
4638       S.Diag(Param->getLocation(), diag::note_template_param_here);
4639 
4640       ArgType = Func->getType();
4641     }
4642   } else {
4643     // A value of reference type is not an object.
4644     if (Var->getType()->isReferenceType()) {
4645       S.Diag(Arg->getLocStart(),
4646              diag::err_template_arg_reference_var)
4647         << Var->getType() << Arg->getSourceRange();
4648       S.Diag(Param->getLocation(), diag::note_template_param_here);
4649       return true;
4650     }
4651 
4652     // A template argument must have static storage duration.
4653     if (Var->getTLSKind()) {
4654       S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
4655         << Arg->getSourceRange();
4656       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
4657       return true;
4658     }
4659 
4660     // If the template parameter has pointer type, we must have taken
4661     // the address of this object.
4662     if (ParamType->isReferenceType()) {
4663       if (AddressTaken) {
4664         // If we originally had an address-of operator, but the
4665         // parameter has reference type, complain and (if things look
4666         // like they will work) drop the address-of operator.
4667         if (!S.Context.hasSameUnqualifiedType(Var->getType(),
4668                                             ParamType.getNonReferenceType())) {
4669           S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4670             << ParamType;
4671           S.Diag(Param->getLocation(), diag::note_template_param_here);
4672           return true;
4673         }
4674 
4675         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4676           << ParamType
4677           << FixItHint::CreateRemoval(AddrOpLoc);
4678         S.Diag(Param->getLocation(), diag::note_template_param_here);
4679 
4680         ArgType = Var->getType();
4681       }
4682     } else if (!AddressTaken && ParamType->isPointerType()) {
4683       if (Var->getType()->isArrayType()) {
4684         // Array-to-pointer decay.
4685         ArgType = S.Context.getArrayDecayedType(Var->getType());
4686       } else {
4687         // If the template parameter has pointer type but the address of
4688         // this object was not taken, complain and (possibly) recover by
4689         // taking the address of the entity.
4690         ArgType = S.Context.getPointerType(Var->getType());
4691         if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
4692           S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4693             << ParamType;
4694           S.Diag(Param->getLocation(), diag::note_template_param_here);
4695           return true;
4696         }
4697 
4698         S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4699           << ParamType
4700           << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
4701 
4702         S.Diag(Param->getLocation(), diag::note_template_param_here);
4703       }
4704     }
4705   }
4706 
4707   if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
4708                                                      Arg, ArgType))
4709     return true;
4710 
4711   // Create the template argument.
4712   Converted =
4713       TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
4714   S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
4715   return false;
4716 }
4717 
4718 /// \brief Checks whether the given template argument is a pointer to
4719 /// member constant according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentPointerToMember(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * & ResultArg,TemplateArgument & Converted)4720 static bool CheckTemplateArgumentPointerToMember(Sema &S,
4721                                                  NonTypeTemplateParmDecl *Param,
4722                                                  QualType ParamType,
4723                                                  Expr *&ResultArg,
4724                                                  TemplateArgument &Converted) {
4725   bool Invalid = false;
4726 
4727   // Check for a null pointer value.
4728   Expr *Arg = ResultArg;
4729   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4730   case NPV_Error:
4731     return true;
4732   case NPV_NullPointer:
4733     S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4734     Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
4735                                  /*isNullPtr*/true);
4736     return false;
4737   case NPV_NotNullPointer:
4738     break;
4739   }
4740 
4741   bool ObjCLifetimeConversion;
4742   if (S.IsQualificationConversion(Arg->getType(),
4743                                   ParamType.getNonReferenceType(),
4744                                   false, ObjCLifetimeConversion)) {
4745     Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
4746                               Arg->getValueKind()).get();
4747     ResultArg = Arg;
4748   } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
4749                 ParamType.getNonReferenceType())) {
4750     // We can't perform this conversion.
4751     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4752       << Arg->getType() << ParamType << Arg->getSourceRange();
4753     S.Diag(Param->getLocation(), diag::note_template_param_here);
4754     return true;
4755   }
4756 
4757   // See through any implicit casts we added to fix the type.
4758   while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4759     Arg = Cast->getSubExpr();
4760 
4761   // C++ [temp.arg.nontype]p1:
4762   //
4763   //   A template-argument for a non-type, non-template
4764   //   template-parameter shall be one of: [...]
4765   //
4766   //     -- a pointer to member expressed as described in 5.3.1.
4767   DeclRefExpr *DRE = nullptr;
4768 
4769   // In C++98/03 mode, give an extension warning on any extra parentheses.
4770   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4771   bool ExtraParens = false;
4772   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4773     if (!Invalid && !ExtraParens) {
4774       S.Diag(Arg->getLocStart(),
4775              S.getLangOpts().CPlusPlus11 ?
4776                diag::warn_cxx98_compat_template_arg_extra_parens :
4777                diag::ext_template_arg_extra_parens)
4778         << Arg->getSourceRange();
4779       ExtraParens = true;
4780     }
4781 
4782     Arg = Parens->getSubExpr();
4783   }
4784 
4785   while (SubstNonTypeTemplateParmExpr *subst =
4786            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4787     Arg = subst->getReplacement()->IgnoreImpCasts();
4788 
4789   // A pointer-to-member constant written &Class::member.
4790   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4791     if (UnOp->getOpcode() == UO_AddrOf) {
4792       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4793       if (DRE && !DRE->getQualifier())
4794         DRE = nullptr;
4795     }
4796   }
4797   // A constant of pointer-to-member type.
4798   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4799     if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4800       if (VD->getType()->isMemberPointerType()) {
4801         if (isa<NonTypeTemplateParmDecl>(VD)) {
4802           if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4803             Converted = TemplateArgument(Arg);
4804           } else {
4805             VD = cast<ValueDecl>(VD->getCanonicalDecl());
4806             Converted = TemplateArgument(VD, ParamType);
4807           }
4808           return Invalid;
4809         }
4810       }
4811     }
4812 
4813     DRE = nullptr;
4814   }
4815 
4816   if (!DRE)
4817     return S.Diag(Arg->getLocStart(),
4818                   diag::err_template_arg_not_pointer_to_member_form)
4819       << Arg->getSourceRange();
4820 
4821   if (isa<FieldDecl>(DRE->getDecl()) ||
4822       isa<IndirectFieldDecl>(DRE->getDecl()) ||
4823       isa<CXXMethodDecl>(DRE->getDecl())) {
4824     assert((isa<FieldDecl>(DRE->getDecl()) ||
4825             isa<IndirectFieldDecl>(DRE->getDecl()) ||
4826             !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4827            "Only non-static member pointers can make it here");
4828 
4829     // Okay: this is the address of a non-static member, and therefore
4830     // a member pointer constant.
4831     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4832       Converted = TemplateArgument(Arg);
4833     } else {
4834       ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4835       Converted = TemplateArgument(D, ParamType);
4836     }
4837     return Invalid;
4838   }
4839 
4840   // We found something else, but we don't know specifically what it is.
4841   S.Diag(Arg->getLocStart(),
4842          diag::err_template_arg_not_pointer_to_member_form)
4843     << Arg->getSourceRange();
4844   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4845   return true;
4846 }
4847 
4848 /// \brief Check a template argument against its corresponding
4849 /// non-type template parameter.
4850 ///
4851 /// This routine implements the semantics of C++ [temp.arg.nontype].
4852 /// If an error occurred, it returns ExprError(); otherwise, it
4853 /// returns the converted template argument. \p ParamType is the
4854 /// type of the non-type template parameter after it has been instantiated.
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg,TemplateArgument & Converted,CheckTemplateArgumentKind CTAK)4855 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4856                                        QualType ParamType, Expr *Arg,
4857                                        TemplateArgument &Converted,
4858                                        CheckTemplateArgumentKind CTAK) {
4859   SourceLocation StartLoc = Arg->getLocStart();
4860 
4861   // If either the parameter has a dependent type or the argument is
4862   // type-dependent, there's nothing we can check now.
4863   if (ParamType->isDependentType() || Arg->isTypeDependent()) {
4864     // FIXME: Produce a cloned, canonical expression?
4865     Converted = TemplateArgument(Arg);
4866     return Arg;
4867   }
4868 
4869   // We should have already dropped all cv-qualifiers by now.
4870   assert(!ParamType.hasQualifiers() &&
4871          "non-type template parameter type cannot be qualified");
4872 
4873   if (CTAK == CTAK_Deduced &&
4874       !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4875     // C++ [temp.deduct.type]p17:
4876     //   If, in the declaration of a function template with a non-type
4877     //   template-parameter, the non-type template-parameter is used
4878     //   in an expression in the function parameter-list and, if the
4879     //   corresponding template-argument is deduced, the
4880     //   template-argument type shall match the type of the
4881     //   template-parameter exactly, except that a template-argument
4882     //   deduced from an array bound may be of any integral type.
4883     Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4884       << Arg->getType().getUnqualifiedType()
4885       << ParamType.getUnqualifiedType();
4886     Diag(Param->getLocation(), diag::note_template_param_here);
4887     return ExprError();
4888   }
4889 
4890   if (getLangOpts().CPlusPlus1z) {
4891     // FIXME: We can do some limited checking for a value-dependent but not
4892     // type-dependent argument.
4893     if (Arg->isValueDependent()) {
4894       Converted = TemplateArgument(Arg);
4895       return Arg;
4896     }
4897 
4898     // C++1z [temp.arg.nontype]p1:
4899     //   A template-argument for a non-type template parameter shall be
4900     //   a converted constant expression of the type of the template-parameter.
4901     APValue Value;
4902     ExprResult ArgResult = CheckConvertedConstantExpression(
4903         Arg, ParamType, Value, CCEK_TemplateArg);
4904     if (ArgResult.isInvalid())
4905       return ExprError();
4906 
4907     QualType CanonParamType = Context.getCanonicalType(ParamType);
4908 
4909     // Convert the APValue to a TemplateArgument.
4910     switch (Value.getKind()) {
4911     case APValue::Uninitialized:
4912       assert(ParamType->isNullPtrType());
4913       Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
4914       break;
4915     case APValue::Int:
4916       assert(ParamType->isIntegralOrEnumerationType());
4917       Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
4918       break;
4919     case APValue::MemberPointer: {
4920       assert(ParamType->isMemberPointerType());
4921 
4922       // FIXME: We need TemplateArgument representation and mangling for these.
4923       if (!Value.getMemberPointerPath().empty()) {
4924         Diag(Arg->getLocStart(),
4925              diag::err_template_arg_member_ptr_base_derived_not_supported)
4926             << Value.getMemberPointerDecl() << ParamType
4927             << Arg->getSourceRange();
4928         return ExprError();
4929       }
4930 
4931       auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
4932       Converted = VD ? TemplateArgument(VD, CanonParamType)
4933                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
4934       break;
4935     }
4936     case APValue::LValue: {
4937       //   For a non-type template-parameter of pointer or reference type,
4938       //   the value of the constant expression shall not refer to
4939       assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
4940              ParamType->isNullPtrType());
4941       // -- a temporary object
4942       // -- a string literal
4943       // -- the result of a typeid expression, or
4944       // -- a predefind __func__ variable
4945       if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) {
4946         if (isa<CXXUuidofExpr>(E)) {
4947           Converted = TemplateArgument(const_cast<Expr*>(E));
4948           break;
4949         }
4950         Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4951           << Arg->getSourceRange();
4952         return ExprError();
4953       }
4954       auto *VD = const_cast<ValueDecl *>(
4955           Value.getLValueBase().dyn_cast<const ValueDecl *>());
4956       // -- a subobject
4957       if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
4958           VD && VD->getType()->isArrayType() &&
4959           Value.getLValuePath()[0].ArrayIndex == 0 &&
4960           !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
4961         // Per defect report (no number yet):
4962         //   ... other than a pointer to the first element of a complete array
4963         //       object.
4964       } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
4965                  Value.isLValueOnePastTheEnd()) {
4966         Diag(StartLoc, diag::err_non_type_template_arg_subobject)
4967           << Value.getAsString(Context, ParamType);
4968         return ExprError();
4969       }
4970       assert((VD || !ParamType->isReferenceType()) &&
4971              "null reference should not be a constant expression");
4972       assert((!VD || !ParamType->isNullPtrType()) &&
4973              "non-null value of type nullptr_t?");
4974       Converted = VD ? TemplateArgument(VD, CanonParamType)
4975                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
4976       break;
4977     }
4978     case APValue::AddrLabelDiff:
4979       return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
4980     case APValue::Float:
4981     case APValue::ComplexInt:
4982     case APValue::ComplexFloat:
4983     case APValue::Vector:
4984     case APValue::Array:
4985     case APValue::Struct:
4986     case APValue::Union:
4987       llvm_unreachable("invalid kind for template argument");
4988     }
4989 
4990     return ArgResult.get();
4991   }
4992 
4993   // C++ [temp.arg.nontype]p5:
4994   //   The following conversions are performed on each expression used
4995   //   as a non-type template-argument. If a non-type
4996   //   template-argument cannot be converted to the type of the
4997   //   corresponding template-parameter then the program is
4998   //   ill-formed.
4999   if (ParamType->isIntegralOrEnumerationType()) {
5000     // C++11:
5001     //   -- for a non-type template-parameter of integral or
5002     //      enumeration type, conversions permitted in a converted
5003     //      constant expression are applied.
5004     //
5005     // C++98:
5006     //   -- for a non-type template-parameter of integral or
5007     //      enumeration type, integral promotions (4.5) and integral
5008     //      conversions (4.7) are applied.
5009 
5010     if (getLangOpts().CPlusPlus11) {
5011       // We can't check arbitrary value-dependent arguments.
5012       // FIXME: If there's no viable conversion to the template parameter type,
5013       // we should be able to diagnose that prior to instantiation.
5014       if (Arg->isValueDependent()) {
5015         Converted = TemplateArgument(Arg);
5016         return Arg;
5017       }
5018 
5019       // C++ [temp.arg.nontype]p1:
5020       //   A template-argument for a non-type, non-template template-parameter
5021       //   shall be one of:
5022       //
5023       //     -- for a non-type template-parameter of integral or enumeration
5024       //        type, a converted constant expression of the type of the
5025       //        template-parameter; or
5026       llvm::APSInt Value;
5027       ExprResult ArgResult =
5028         CheckConvertedConstantExpression(Arg, ParamType, Value,
5029                                          CCEK_TemplateArg);
5030       if (ArgResult.isInvalid())
5031         return ExprError();
5032 
5033       // Widen the argument value to sizeof(parameter type). This is almost
5034       // always a no-op, except when the parameter type is bool. In
5035       // that case, this may extend the argument from 1 bit to 8 bits.
5036       QualType IntegerType = ParamType;
5037       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
5038         IntegerType = Enum->getDecl()->getIntegerType();
5039       Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
5040 
5041       Converted = TemplateArgument(Context, Value,
5042                                    Context.getCanonicalType(ParamType));
5043       return ArgResult;
5044     }
5045 
5046     ExprResult ArgResult = DefaultLvalueConversion(Arg);
5047     if (ArgResult.isInvalid())
5048       return ExprError();
5049     Arg = ArgResult.get();
5050 
5051     QualType ArgType = Arg->getType();
5052 
5053     // C++ [temp.arg.nontype]p1:
5054     //   A template-argument for a non-type, non-template
5055     //   template-parameter shall be one of:
5056     //
5057     //     -- an integral constant-expression of integral or enumeration
5058     //        type; or
5059     //     -- the name of a non-type template-parameter; or
5060     SourceLocation NonConstantLoc;
5061     llvm::APSInt Value;
5062     if (!ArgType->isIntegralOrEnumerationType()) {
5063       Diag(Arg->getLocStart(),
5064            diag::err_template_arg_not_integral_or_enumeral)
5065         << ArgType << Arg->getSourceRange();
5066       Diag(Param->getLocation(), diag::note_template_param_here);
5067       return ExprError();
5068     } else if (!Arg->isValueDependent()) {
5069       class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
5070         QualType T;
5071 
5072       public:
5073         TmplArgICEDiagnoser(QualType T) : T(T) { }
5074 
5075         void diagnoseNotICE(Sema &S, SourceLocation Loc,
5076                             SourceRange SR) override {
5077           S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
5078         }
5079       } Diagnoser(ArgType);
5080 
5081       Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
5082                                             false).get();
5083       if (!Arg)
5084         return ExprError();
5085     }
5086 
5087     // From here on out, all we care about is the unqualified form
5088     // of the argument type.
5089     ArgType = ArgType.getUnqualifiedType();
5090 
5091     // Try to convert the argument to the parameter's type.
5092     if (Context.hasSameType(ParamType, ArgType)) {
5093       // Okay: no conversion necessary
5094     } else if (ParamType->isBooleanType()) {
5095       // This is an integral-to-boolean conversion.
5096       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
5097     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
5098                !ParamType->isEnumeralType()) {
5099       // This is an integral promotion or conversion.
5100       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
5101     } else {
5102       // We can't perform this conversion.
5103       Diag(Arg->getLocStart(),
5104            diag::err_template_arg_not_convertible)
5105         << Arg->getType() << ParamType << Arg->getSourceRange();
5106       Diag(Param->getLocation(), diag::note_template_param_here);
5107       return ExprError();
5108     }
5109 
5110     // Add the value of this argument to the list of converted
5111     // arguments. We use the bitwidth and signedness of the template
5112     // parameter.
5113     if (Arg->isValueDependent()) {
5114       // The argument is value-dependent. Create a new
5115       // TemplateArgument with the converted expression.
5116       Converted = TemplateArgument(Arg);
5117       return Arg;
5118     }
5119 
5120     QualType IntegerType = Context.getCanonicalType(ParamType);
5121     if (const EnumType *Enum = IntegerType->getAs<EnumType>())
5122       IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
5123 
5124     if (ParamType->isBooleanType()) {
5125       // Value must be zero or one.
5126       Value = Value != 0;
5127       unsigned AllowedBits = Context.getTypeSize(IntegerType);
5128       if (Value.getBitWidth() != AllowedBits)
5129         Value = Value.extOrTrunc(AllowedBits);
5130       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
5131     } else {
5132       llvm::APSInt OldValue = Value;
5133 
5134       // Coerce the template argument's value to the value it will have
5135       // based on the template parameter's type.
5136       unsigned AllowedBits = Context.getTypeSize(IntegerType);
5137       if (Value.getBitWidth() != AllowedBits)
5138         Value = Value.extOrTrunc(AllowedBits);
5139       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
5140 
5141       // Complain if an unsigned parameter received a negative value.
5142       if (IntegerType->isUnsignedIntegerOrEnumerationType()
5143                && (OldValue.isSigned() && OldValue.isNegative())) {
5144         Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
5145           << OldValue.toString(10) << Value.toString(10) << Param->getType()
5146           << Arg->getSourceRange();
5147         Diag(Param->getLocation(), diag::note_template_param_here);
5148       }
5149 
5150       // Complain if we overflowed the template parameter's type.
5151       unsigned RequiredBits;
5152       if (IntegerType->isUnsignedIntegerOrEnumerationType())
5153         RequiredBits = OldValue.getActiveBits();
5154       else if (OldValue.isUnsigned())
5155         RequiredBits = OldValue.getActiveBits() + 1;
5156       else
5157         RequiredBits = OldValue.getMinSignedBits();
5158       if (RequiredBits > AllowedBits) {
5159         Diag(Arg->getLocStart(),
5160              diag::warn_template_arg_too_large)
5161           << OldValue.toString(10) << Value.toString(10) << Param->getType()
5162           << Arg->getSourceRange();
5163         Diag(Param->getLocation(), diag::note_template_param_here);
5164       }
5165     }
5166 
5167     Converted = TemplateArgument(Context, Value,
5168                                  ParamType->isEnumeralType()
5169                                    ? Context.getCanonicalType(ParamType)
5170                                    : IntegerType);
5171     return Arg;
5172   }
5173 
5174   QualType ArgType = Arg->getType();
5175   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
5176 
5177   // Handle pointer-to-function, reference-to-function, and
5178   // pointer-to-member-function all in (roughly) the same way.
5179   if (// -- For a non-type template-parameter of type pointer to
5180       //    function, only the function-to-pointer conversion (4.3) is
5181       //    applied. If the template-argument represents a set of
5182       //    overloaded functions (or a pointer to such), the matching
5183       //    function is selected from the set (13.4).
5184       (ParamType->isPointerType() &&
5185        ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
5186       // -- For a non-type template-parameter of type reference to
5187       //    function, no conversions apply. If the template-argument
5188       //    represents a set of overloaded functions, the matching
5189       //    function is selected from the set (13.4).
5190       (ParamType->isReferenceType() &&
5191        ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
5192       // -- For a non-type template-parameter of type pointer to
5193       //    member function, no conversions apply. If the
5194       //    template-argument represents a set of overloaded member
5195       //    functions, the matching member function is selected from
5196       //    the set (13.4).
5197       (ParamType->isMemberPointerType() &&
5198        ParamType->getAs<MemberPointerType>()->getPointeeType()
5199          ->isFunctionType())) {
5200 
5201     if (Arg->getType() == Context.OverloadTy) {
5202       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
5203                                                                 true,
5204                                                                 FoundResult)) {
5205         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
5206           return ExprError();
5207 
5208         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
5209         ArgType = Arg->getType();
5210       } else
5211         return ExprError();
5212     }
5213 
5214     if (!ParamType->isMemberPointerType()) {
5215       if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5216                                                          ParamType,
5217                                                          Arg, Converted))
5218         return ExprError();
5219       return Arg;
5220     }
5221 
5222     if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
5223                                              Converted))
5224       return ExprError();
5225     return Arg;
5226   }
5227 
5228   if (ParamType->isPointerType()) {
5229     //   -- for a non-type template-parameter of type pointer to
5230     //      object, qualification conversions (4.4) and the
5231     //      array-to-pointer conversion (4.2) are applied.
5232     // C++0x also allows a value of std::nullptr_t.
5233     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
5234            "Only object pointers allowed here");
5235 
5236     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5237                                                        ParamType,
5238                                                        Arg, Converted))
5239       return ExprError();
5240     return Arg;
5241   }
5242 
5243   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
5244     //   -- For a non-type template-parameter of type reference to
5245     //      object, no conversions apply. The type referred to by the
5246     //      reference may be more cv-qualified than the (otherwise
5247     //      identical) type of the template-argument. The
5248     //      template-parameter is bound directly to the
5249     //      template-argument, which must be an lvalue.
5250     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
5251            "Only object references allowed here");
5252 
5253     if (Arg->getType() == Context.OverloadTy) {
5254       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
5255                                                  ParamRefType->getPointeeType(),
5256                                                                 true,
5257                                                                 FoundResult)) {
5258         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
5259           return ExprError();
5260 
5261         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
5262         ArgType = Arg->getType();
5263       } else
5264         return ExprError();
5265     }
5266 
5267     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5268                                                        ParamType,
5269                                                        Arg, Converted))
5270       return ExprError();
5271     return Arg;
5272   }
5273 
5274   // Deal with parameters of type std::nullptr_t.
5275   if (ParamType->isNullPtrType()) {
5276     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
5277       Converted = TemplateArgument(Arg);
5278       return Arg;
5279     }
5280 
5281     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
5282     case NPV_NotNullPointer:
5283       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
5284         << Arg->getType() << ParamType;
5285       Diag(Param->getLocation(), diag::note_template_param_here);
5286       return ExprError();
5287 
5288     case NPV_Error:
5289       return ExprError();
5290 
5291     case NPV_NullPointer:
5292       Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5293       Converted = TemplateArgument(Context.getCanonicalType(ParamType),
5294                                    /*isNullPtr*/true);
5295       return Arg;
5296     }
5297   }
5298 
5299   //     -- For a non-type template-parameter of type pointer to data
5300   //        member, qualification conversions (4.4) are applied.
5301   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
5302 
5303   if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
5304                                            Converted))
5305     return ExprError();
5306   return Arg;
5307 }
5308 
5309 /// \brief Check a template argument against its corresponding
5310 /// template template parameter.
5311 ///
5312 /// This routine implements the semantics of C++ [temp.arg.template].
5313 /// It returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTemplateParmDecl * Param,TemplateArgumentLoc & Arg,unsigned ArgumentPackIndex)5314 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
5315                                  TemplateArgumentLoc &Arg,
5316                                  unsigned ArgumentPackIndex) {
5317   TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
5318   TemplateDecl *Template = Name.getAsTemplateDecl();
5319   if (!Template) {
5320     // Any dependent template name is fine.
5321     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
5322     return false;
5323   }
5324 
5325   // C++0x [temp.arg.template]p1:
5326   //   A template-argument for a template template-parameter shall be
5327   //   the name of a class template or an alias template, expressed as an
5328   //   id-expression. When the template-argument names a class template, only
5329   //   primary class templates are considered when matching the
5330   //   template template argument with the corresponding parameter;
5331   //   partial specializations are not considered even if their
5332   //   parameter lists match that of the template template parameter.
5333   //
5334   // Note that we also allow template template parameters here, which
5335   // will happen when we are dealing with, e.g., class template
5336   // partial specializations.
5337   if (!isa<ClassTemplateDecl>(Template) &&
5338       !isa<TemplateTemplateParmDecl>(Template) &&
5339       !isa<TypeAliasTemplateDecl>(Template)) {
5340     assert(isa<FunctionTemplateDecl>(Template) &&
5341            "Only function templates are possible here");
5342     Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
5343     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
5344       << Template;
5345   }
5346 
5347   TemplateParameterList *Params = Param->getTemplateParameters();
5348   if (Param->isExpandedParameterPack())
5349     Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
5350 
5351   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
5352                                          Params,
5353                                          true,
5354                                          TPL_TemplateTemplateArgumentMatch,
5355                                          Arg.getLocation());
5356 }
5357 
5358 /// \brief Given a non-type template argument that refers to a
5359 /// declaration and the type of its corresponding non-type template
5360 /// parameter, produce an expression that properly refers to that
5361 /// declaration.
5362 ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc)5363 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
5364                                               QualType ParamType,
5365                                               SourceLocation Loc) {
5366   // C++ [temp.param]p8:
5367   //
5368   //   A non-type template-parameter of type "array of T" or
5369   //   "function returning T" is adjusted to be of type "pointer to
5370   //   T" or "pointer to function returning T", respectively.
5371   if (ParamType->isArrayType())
5372     ParamType = Context.getArrayDecayedType(ParamType);
5373   else if (ParamType->isFunctionType())
5374     ParamType = Context.getPointerType(ParamType);
5375 
5376   // For a NULL non-type template argument, return nullptr casted to the
5377   // parameter's type.
5378   if (Arg.getKind() == TemplateArgument::NullPtr) {
5379     return ImpCastExprToType(
5380              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
5381                              ParamType,
5382                              ParamType->getAs<MemberPointerType>()
5383                                ? CK_NullToMemberPointer
5384                                : CK_NullToPointer);
5385   }
5386   assert(Arg.getKind() == TemplateArgument::Declaration &&
5387          "Only declaration template arguments permitted here");
5388 
5389   ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
5390 
5391   if (VD->getDeclContext()->isRecord() &&
5392       (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
5393        isa<IndirectFieldDecl>(VD))) {
5394     // If the value is a class member, we might have a pointer-to-member.
5395     // Determine whether the non-type template template parameter is of
5396     // pointer-to-member type. If so, we need to build an appropriate
5397     // expression for a pointer-to-member, since a "normal" DeclRefExpr
5398     // would refer to the member itself.
5399     if (ParamType->isMemberPointerType()) {
5400       QualType ClassType
5401         = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
5402       NestedNameSpecifier *Qualifier
5403         = NestedNameSpecifier::Create(Context, nullptr, false,
5404                                       ClassType.getTypePtr());
5405       CXXScopeSpec SS;
5406       SS.MakeTrivial(Context, Qualifier, Loc);
5407 
5408       // The actual value-ness of this is unimportant, but for
5409       // internal consistency's sake, references to instance methods
5410       // are r-values.
5411       ExprValueKind VK = VK_LValue;
5412       if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
5413         VK = VK_RValue;
5414 
5415       ExprResult RefExpr = BuildDeclRefExpr(VD,
5416                                             VD->getType().getNonReferenceType(),
5417                                             VK,
5418                                             Loc,
5419                                             &SS);
5420       if (RefExpr.isInvalid())
5421         return ExprError();
5422 
5423       RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5424 
5425       // We might need to perform a trailing qualification conversion, since
5426       // the element type on the parameter could be more qualified than the
5427       // element type in the expression we constructed.
5428       bool ObjCLifetimeConversion;
5429       if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
5430                                     ParamType.getUnqualifiedType(), false,
5431                                     ObjCLifetimeConversion))
5432         RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
5433 
5434       assert(!RefExpr.isInvalid() &&
5435              Context.hasSameType(((Expr*) RefExpr.get())->getType(),
5436                                  ParamType.getUnqualifiedType()));
5437       return RefExpr;
5438     }
5439   }
5440 
5441   QualType T = VD->getType().getNonReferenceType();
5442 
5443   if (ParamType->isPointerType()) {
5444     // When the non-type template parameter is a pointer, take the
5445     // address of the declaration.
5446     ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
5447     if (RefExpr.isInvalid())
5448       return ExprError();
5449 
5450     if (T->isFunctionType() || T->isArrayType()) {
5451       // Decay functions and arrays.
5452       RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
5453       if (RefExpr.isInvalid())
5454         return ExprError();
5455 
5456       return RefExpr;
5457     }
5458 
5459     // Take the address of everything else
5460     return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5461   }
5462 
5463   ExprValueKind VK = VK_RValue;
5464 
5465   // If the non-type template parameter has reference type, qualify the
5466   // resulting declaration reference with the extra qualifiers on the
5467   // type that the reference refers to.
5468   if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
5469     VK = VK_LValue;
5470     T = Context.getQualifiedType(T,
5471                               TargetRef->getPointeeType().getQualifiers());
5472   } else if (isa<FunctionDecl>(VD)) {
5473     // References to functions are always lvalues.
5474     VK = VK_LValue;
5475   }
5476 
5477   return BuildDeclRefExpr(VD, T, VK, Loc);
5478 }
5479 
5480 /// \brief Construct a new expression that refers to the given
5481 /// integral template argument with the given source-location
5482 /// information.
5483 ///
5484 /// This routine takes care of the mapping from an integral template
5485 /// argument (which may have any integral type) to the appropriate
5486 /// literal value.
5487 ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)5488 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
5489                                                   SourceLocation Loc) {
5490   assert(Arg.getKind() == TemplateArgument::Integral &&
5491          "Operation is only valid for integral template arguments");
5492   QualType OrigT = Arg.getIntegralType();
5493 
5494   // If this is an enum type that we're instantiating, we need to use an integer
5495   // type the same size as the enumerator.  We don't want to build an
5496   // IntegerLiteral with enum type.  The integer type of an enum type can be of
5497   // any integral type with C++11 enum classes, make sure we create the right
5498   // type of literal for it.
5499   QualType T = OrigT;
5500   if (const EnumType *ET = OrigT->getAs<EnumType>())
5501     T = ET->getDecl()->getIntegerType();
5502 
5503   Expr *E;
5504   if (T->isAnyCharacterType()) {
5505     CharacterLiteral::CharacterKind Kind;
5506     if (T->isWideCharType())
5507       Kind = CharacterLiteral::Wide;
5508     else if (T->isChar16Type())
5509       Kind = CharacterLiteral::UTF16;
5510     else if (T->isChar32Type())
5511       Kind = CharacterLiteral::UTF32;
5512     else
5513       Kind = CharacterLiteral::Ascii;
5514 
5515     E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
5516                                        Kind, T, Loc);
5517   } else if (T->isBooleanType()) {
5518     E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
5519                                          T, Loc);
5520   } else if (T->isNullPtrType()) {
5521     E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
5522   } else {
5523     E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
5524   }
5525 
5526   if (OrigT->isEnumeralType()) {
5527     // FIXME: This is a hack. We need a better way to handle substituted
5528     // non-type template parameters.
5529     E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
5530                                nullptr,
5531                                Context.getTrivialTypeSourceInfo(OrigT, Loc),
5532                                Loc, Loc);
5533   }
5534 
5535   return E;
5536 }
5537 
5538 /// \brief Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,NamedDecl * Old,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5539 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
5540                                        bool Complain,
5541                                      Sema::TemplateParameterListEqualKind Kind,
5542                                        SourceLocation TemplateArgLoc) {
5543   // Check the actual kind (type, non-type, template).
5544   if (Old->getKind() != New->getKind()) {
5545     if (Complain) {
5546       unsigned NextDiag = diag::err_template_param_different_kind;
5547       if (TemplateArgLoc.isValid()) {
5548         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5549         NextDiag = diag::note_template_param_different_kind;
5550       }
5551       S.Diag(New->getLocation(), NextDiag)
5552         << (Kind != Sema::TPL_TemplateMatch);
5553       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
5554         << (Kind != Sema::TPL_TemplateMatch);
5555     }
5556 
5557     return false;
5558   }
5559 
5560   // Check that both are parameter packs are neither are parameter packs.
5561   // However, if we are matching a template template argument to a
5562   // template template parameter, the template template parameter can have
5563   // a parameter pack where the template template argument does not.
5564   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
5565       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5566         Old->isTemplateParameterPack())) {
5567     if (Complain) {
5568       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
5569       if (TemplateArgLoc.isValid()) {
5570         S.Diag(TemplateArgLoc,
5571              diag::err_template_arg_template_params_mismatch);
5572         NextDiag = diag::note_template_parameter_pack_non_pack;
5573       }
5574 
5575       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
5576                       : isa<NonTypeTemplateParmDecl>(New)? 1
5577                       : 2;
5578       S.Diag(New->getLocation(), NextDiag)
5579         << ParamKind << New->isParameterPack();
5580       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
5581         << ParamKind << Old->isParameterPack();
5582     }
5583 
5584     return false;
5585   }
5586 
5587   // For non-type template parameters, check the type of the parameter.
5588   if (NonTypeTemplateParmDecl *OldNTTP
5589                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
5590     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
5591 
5592     // If we are matching a template template argument to a template
5593     // template parameter and one of the non-type template parameter types
5594     // is dependent, then we must wait until template instantiation time
5595     // to actually compare the arguments.
5596     if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5597         (OldNTTP->getType()->isDependentType() ||
5598          NewNTTP->getType()->isDependentType()))
5599       return true;
5600 
5601     if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
5602       if (Complain) {
5603         unsigned NextDiag = diag::err_template_nontype_parm_different_type;
5604         if (TemplateArgLoc.isValid()) {
5605           S.Diag(TemplateArgLoc,
5606                  diag::err_template_arg_template_params_mismatch);
5607           NextDiag = diag::note_template_nontype_parm_different_type;
5608         }
5609         S.Diag(NewNTTP->getLocation(), NextDiag)
5610           << NewNTTP->getType()
5611           << (Kind != Sema::TPL_TemplateMatch);
5612         S.Diag(OldNTTP->getLocation(),
5613                diag::note_template_nontype_parm_prev_declaration)
5614           << OldNTTP->getType();
5615       }
5616 
5617       return false;
5618     }
5619 
5620     return true;
5621   }
5622 
5623   // For template template parameters, check the template parameter types.
5624   // The template parameter lists of template template
5625   // parameters must agree.
5626   if (TemplateTemplateParmDecl *OldTTP
5627                                     = dyn_cast<TemplateTemplateParmDecl>(Old)) {
5628     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
5629     return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
5630                                             OldTTP->getTemplateParameters(),
5631                                             Complain,
5632                                         (Kind == Sema::TPL_TemplateMatch
5633                                            ? Sema::TPL_TemplateTemplateParmMatch
5634                                            : Kind),
5635                                             TemplateArgLoc);
5636   }
5637 
5638   return true;
5639 }
5640 
5641 /// \brief Diagnose a known arity mismatch when comparing template argument
5642 /// lists.
5643 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5644 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
5645                                                 TemplateParameterList *New,
5646                                                 TemplateParameterList *Old,
5647                                       Sema::TemplateParameterListEqualKind Kind,
5648                                                 SourceLocation TemplateArgLoc) {
5649   unsigned NextDiag = diag::err_template_param_list_different_arity;
5650   if (TemplateArgLoc.isValid()) {
5651     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5652     NextDiag = diag::note_template_param_list_different_arity;
5653   }
5654   S.Diag(New->getTemplateLoc(), NextDiag)
5655     << (New->size() > Old->size())
5656     << (Kind != Sema::TPL_TemplateMatch)
5657     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
5658   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
5659     << (Kind != Sema::TPL_TemplateMatch)
5660     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
5661 }
5662 
5663 /// \brief Determine whether the given template parameter lists are
5664 /// equivalent.
5665 ///
5666 /// \param New  The new template parameter list, typically written in the
5667 /// source code as part of a new template declaration.
5668 ///
5669 /// \param Old  The old template parameter list, typically found via
5670 /// name lookup of the template declared with this template parameter
5671 /// list.
5672 ///
5673 /// \param Complain  If true, this routine will produce a diagnostic if
5674 /// the template parameter lists are not equivalent.
5675 ///
5676 /// \param Kind describes how we are to match the template parameter lists.
5677 ///
5678 /// \param TemplateArgLoc If this source location is valid, then we
5679 /// are actually checking the template parameter list of a template
5680 /// argument (New) against the template parameter list of its
5681 /// corresponding template template parameter (Old). We produce
5682 /// slightly different diagnostics in this scenario.
5683 ///
5684 /// \returns True if the template parameter lists are equal, false
5685 /// otherwise.
5686 bool
TemplateParameterListsAreEqual(TemplateParameterList * New,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5687 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
5688                                      TemplateParameterList *Old,
5689                                      bool Complain,
5690                                      TemplateParameterListEqualKind Kind,
5691                                      SourceLocation TemplateArgLoc) {
5692   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
5693     if (Complain)
5694       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5695                                                  TemplateArgLoc);
5696 
5697     return false;
5698   }
5699 
5700   // C++0x [temp.arg.template]p3:
5701   //   A template-argument matches a template template-parameter (call it P)
5702   //   when each of the template parameters in the template-parameter-list of
5703   //   the template-argument's corresponding class template or alias template
5704   //   (call it A) matches the corresponding template parameter in the
5705   //   template-parameter-list of P. [...]
5706   TemplateParameterList::iterator NewParm = New->begin();
5707   TemplateParameterList::iterator NewParmEnd = New->end();
5708   for (TemplateParameterList::iterator OldParm = Old->begin(),
5709                                     OldParmEnd = Old->end();
5710        OldParm != OldParmEnd; ++OldParm) {
5711     if (Kind != TPL_TemplateTemplateArgumentMatch ||
5712         !(*OldParm)->isTemplateParameterPack()) {
5713       if (NewParm == NewParmEnd) {
5714         if (Complain)
5715           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5716                                                      TemplateArgLoc);
5717 
5718         return false;
5719       }
5720 
5721       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5722                                       Kind, TemplateArgLoc))
5723         return false;
5724 
5725       ++NewParm;
5726       continue;
5727     }
5728 
5729     // C++0x [temp.arg.template]p3:
5730     //   [...] When P's template- parameter-list contains a template parameter
5731     //   pack (14.5.3), the template parameter pack will match zero or more
5732     //   template parameters or template parameter packs in the
5733     //   template-parameter-list of A with the same type and form as the
5734     //   template parameter pack in P (ignoring whether those template
5735     //   parameters are template parameter packs).
5736     for (; NewParm != NewParmEnd; ++NewParm) {
5737       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5738                                       Kind, TemplateArgLoc))
5739         return false;
5740     }
5741   }
5742 
5743   // Make sure we exhausted all of the arguments.
5744   if (NewParm != NewParmEnd) {
5745     if (Complain)
5746       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5747                                                  TemplateArgLoc);
5748 
5749     return false;
5750   }
5751 
5752   return true;
5753 }
5754 
5755 /// \brief Check whether a template can be declared within this scope.
5756 ///
5757 /// If the template declaration is valid in this scope, returns
5758 /// false. Otherwise, issues a diagnostic and returns true.
5759 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)5760 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
5761   if (!S)
5762     return false;
5763 
5764   // Find the nearest enclosing declaration scope.
5765   while ((S->getFlags() & Scope::DeclScope) == 0 ||
5766          (S->getFlags() & Scope::TemplateParamScope) != 0)
5767     S = S->getParent();
5768 
5769   // C++ [temp]p4:
5770   //   A template [...] shall not have C linkage.
5771   DeclContext *Ctx = S->getEntity();
5772   if (Ctx && Ctx->isExternCContext())
5773     return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
5774              << TemplateParams->getSourceRange();
5775 
5776   while (Ctx && isa<LinkageSpecDecl>(Ctx))
5777     Ctx = Ctx->getParent();
5778 
5779   // C++ [temp]p2:
5780   //   A template-declaration can appear only as a namespace scope or
5781   //   class scope declaration.
5782   if (Ctx) {
5783     if (Ctx->isFileContext())
5784       return false;
5785     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
5786       // C++ [temp.mem]p2:
5787       //   A local class shall not have member templates.
5788       if (RD->isLocalClass())
5789         return Diag(TemplateParams->getTemplateLoc(),
5790                     diag::err_template_inside_local_class)
5791           << TemplateParams->getSourceRange();
5792       else
5793         return false;
5794     }
5795   }
5796 
5797   return Diag(TemplateParams->getTemplateLoc(),
5798               diag::err_template_outside_namespace_or_class_scope)
5799     << TemplateParams->getSourceRange();
5800 }
5801 
5802 /// \brief Determine what kind of template specialization the given declaration
5803 /// is.
getTemplateSpecializationKind(Decl * D)5804 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
5805   if (!D)
5806     return TSK_Undeclared;
5807 
5808   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
5809     return Record->getTemplateSpecializationKind();
5810   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
5811     return Function->getTemplateSpecializationKind();
5812   if (VarDecl *Var = dyn_cast<VarDecl>(D))
5813     return Var->getTemplateSpecializationKind();
5814 
5815   return TSK_Undeclared;
5816 }
5817 
5818 /// \brief Check whether a specialization is well-formed in the current
5819 /// context.
5820 ///
5821 /// This routine determines whether a template specialization can be declared
5822 /// in the current context (C++ [temp.expl.spec]p2).
5823 ///
5824 /// \param S the semantic analysis object for which this check is being
5825 /// performed.
5826 ///
5827 /// \param Specialized the entity being specialized or instantiated, which
5828 /// may be a kind of template (class template, function template, etc.) or
5829 /// a member of a class template (member function, static data member,
5830 /// member class).
5831 ///
5832 /// \param PrevDecl the previous declaration of this entity, if any.
5833 ///
5834 /// \param Loc the location of the explicit specialization or instantiation of
5835 /// this entity.
5836 ///
5837 /// \param IsPartialSpecialization whether this is a partial specialization of
5838 /// a class template.
5839 ///
5840 /// \returns true if there was an error that we cannot recover from, false
5841 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)5842 static bool CheckTemplateSpecializationScope(Sema &S,
5843                                              NamedDecl *Specialized,
5844                                              NamedDecl *PrevDecl,
5845                                              SourceLocation Loc,
5846                                              bool IsPartialSpecialization) {
5847   // Keep these "kind" numbers in sync with the %select statements in the
5848   // various diagnostics emitted by this routine.
5849   int EntityKind = 0;
5850   if (isa<ClassTemplateDecl>(Specialized))
5851     EntityKind = IsPartialSpecialization? 1 : 0;
5852   else if (isa<VarTemplateDecl>(Specialized))
5853     EntityKind = IsPartialSpecialization ? 3 : 2;
5854   else if (isa<FunctionTemplateDecl>(Specialized))
5855     EntityKind = 4;
5856   else if (isa<CXXMethodDecl>(Specialized))
5857     EntityKind = 5;
5858   else if (isa<VarDecl>(Specialized))
5859     EntityKind = 6;
5860   else if (isa<RecordDecl>(Specialized))
5861     EntityKind = 7;
5862   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
5863     EntityKind = 8;
5864   else {
5865     S.Diag(Loc, diag::err_template_spec_unknown_kind)
5866       << S.getLangOpts().CPlusPlus11;
5867     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5868     return true;
5869   }
5870 
5871   // C++ [temp.expl.spec]p2:
5872   //   An explicit specialization shall be declared in the namespace
5873   //   of which the template is a member, or, for member templates, in
5874   //   the namespace of which the enclosing class or enclosing class
5875   //   template is a member. An explicit specialization of a member
5876   //   function, member class or static data member of a class
5877   //   template shall be declared in the namespace of which the class
5878   //   template is a member. Such a declaration may also be a
5879   //   definition. If the declaration is not a definition, the
5880   //   specialization may be defined later in the name- space in which
5881   //   the explicit specialization was declared, or in a namespace
5882   //   that encloses the one in which the explicit specialization was
5883   //   declared.
5884   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5885     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
5886       << Specialized;
5887     return true;
5888   }
5889 
5890   if (S.CurContext->isRecord() && !IsPartialSpecialization) {
5891     if (S.getLangOpts().MicrosoftExt) {
5892       // Do not warn for class scope explicit specialization during
5893       // instantiation, warning was already emitted during pattern
5894       // semantic analysis.
5895       if (!S.ActiveTemplateInstantiations.size())
5896         S.Diag(Loc, diag::ext_function_specialization_in_class)
5897           << Specialized;
5898     } else {
5899       S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5900         << Specialized;
5901       return true;
5902     }
5903   }
5904 
5905   if (S.CurContext->isRecord() &&
5906       !S.CurContext->Equals(Specialized->getDeclContext())) {
5907     // Make sure that we're specializing in the right record context.
5908     // Otherwise, things can go horribly wrong.
5909     S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5910       << Specialized;
5911     return true;
5912   }
5913 
5914   // C++ [temp.class.spec]p6:
5915   //   A class template partial specialization may be declared or redeclared
5916   //   in any namespace scope in which its definition may be defined (14.5.1
5917   //   and 14.5.2).
5918   DeclContext *SpecializedContext
5919     = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5920   DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5921 
5922   // Make sure that this redeclaration (or definition) occurs in an enclosing
5923   // namespace.
5924   // Note that HandleDeclarator() performs this check for explicit
5925   // specializations of function templates, static data members, and member
5926   // functions, so we skip the check here for those kinds of entities.
5927   // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5928   // Should we refactor that check, so that it occurs later?
5929   if (!DC->Encloses(SpecializedContext) &&
5930       !(isa<FunctionTemplateDecl>(Specialized) ||
5931         isa<FunctionDecl>(Specialized) ||
5932         isa<VarTemplateDecl>(Specialized) ||
5933         isa<VarDecl>(Specialized))) {
5934     if (isa<TranslationUnitDecl>(SpecializedContext))
5935       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5936         << EntityKind << Specialized;
5937     else if (isa<NamespaceDecl>(SpecializedContext)) {
5938       int Diag = diag::err_template_spec_redecl_out_of_scope;
5939       if (S.getLangOpts().MicrosoftExt)
5940         Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
5941       S.Diag(Loc, Diag) << EntityKind << Specialized
5942                         << cast<NamedDecl>(SpecializedContext);
5943     } else
5944       llvm_unreachable("unexpected namespace context for specialization");
5945 
5946     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5947   } else if ((!PrevDecl ||
5948               getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5949               getTemplateSpecializationKind(PrevDecl) ==
5950                   TSK_ImplicitInstantiation)) {
5951     // C++ [temp.exp.spec]p2:
5952     //   An explicit specialization shall be declared in the namespace of which
5953     //   the template is a member, or, for member templates, in the namespace
5954     //   of which the enclosing class or enclosing class template is a member.
5955     //   An explicit specialization of a member function, member class or
5956     //   static data member of a class template shall be declared in the
5957     //   namespace of which the class template is a member.
5958     //
5959     // C++11 [temp.expl.spec]p2:
5960     //   An explicit specialization shall be declared in a namespace enclosing
5961     //   the specialized template.
5962     // C++11 [temp.explicit]p3:
5963     //   An explicit instantiation shall appear in an enclosing namespace of its
5964     //   template.
5965     if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5966       bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
5967       if (isa<TranslationUnitDecl>(SpecializedContext)) {
5968         assert(!IsCPlusPlus11Extension &&
5969                "DC encloses TU but isn't in enclosing namespace set");
5970         S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5971           << EntityKind << Specialized;
5972       } else if (isa<NamespaceDecl>(SpecializedContext)) {
5973         int Diag;
5974         if (!IsCPlusPlus11Extension)
5975           Diag = diag::err_template_spec_decl_out_of_scope;
5976         else if (!S.getLangOpts().CPlusPlus11)
5977           Diag = diag::ext_template_spec_decl_out_of_scope;
5978         else
5979           Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5980         S.Diag(Loc, Diag)
5981           << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5982       }
5983 
5984       S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5985     }
5986   }
5987 
5988   return false;
5989 }
5990 
findTemplateParameter(unsigned Depth,Expr * E)5991 static SourceRange findTemplateParameter(unsigned Depth, Expr *E) {
5992   if (!E->isInstantiationDependent())
5993     return SourceLocation();
5994   DependencyChecker Checker(Depth);
5995   Checker.TraverseStmt(E);
5996   if (Checker.Match && Checker.MatchLoc.isInvalid())
5997     return E->getSourceRange();
5998   return Checker.MatchLoc;
5999 }
6000 
findTemplateParameter(unsigned Depth,TypeLoc TL)6001 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
6002   if (!TL.getType()->isDependentType())
6003     return SourceLocation();
6004   DependencyChecker Checker(Depth);
6005   Checker.TraverseTypeLoc(TL);
6006   if (Checker.Match && Checker.MatchLoc.isInvalid())
6007     return TL.getSourceRange();
6008   return Checker.MatchLoc;
6009 }
6010 
6011 /// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
6012 /// that checks non-type template partial specialization arguments.
CheckNonTypeTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs,bool IsDefaultArgument)6013 static bool CheckNonTypeTemplatePartialSpecializationArgs(
6014     Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
6015     const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
6016   for (unsigned I = 0; I != NumArgs; ++I) {
6017     if (Args[I].getKind() == TemplateArgument::Pack) {
6018       if (CheckNonTypeTemplatePartialSpecializationArgs(
6019               S, TemplateNameLoc, Param, Args[I].pack_begin(),
6020               Args[I].pack_size(), IsDefaultArgument))
6021         return true;
6022 
6023       continue;
6024     }
6025 
6026     if (Args[I].getKind() != TemplateArgument::Expression)
6027       continue;
6028 
6029     Expr *ArgExpr = Args[I].getAsExpr();
6030 
6031     // We can have a pack expansion of any of the bullets below.
6032     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
6033       ArgExpr = Expansion->getPattern();
6034 
6035     // Strip off any implicit casts we added as part of type checking.
6036     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
6037       ArgExpr = ICE->getSubExpr();
6038 
6039     // C++ [temp.class.spec]p8:
6040     //   A non-type argument is non-specialized if it is the name of a
6041     //   non-type parameter. All other non-type arguments are
6042     //   specialized.
6043     //
6044     // Below, we check the two conditions that only apply to
6045     // specialized non-type arguments, so skip any non-specialized
6046     // arguments.
6047     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
6048       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
6049         continue;
6050 
6051     // C++ [temp.class.spec]p9:
6052     //   Within the argument list of a class template partial
6053     //   specialization, the following restrictions apply:
6054     //     -- A partially specialized non-type argument expression
6055     //        shall not involve a template parameter of the partial
6056     //        specialization except when the argument expression is a
6057     //        simple identifier.
6058     SourceRange ParamUseRange =
6059         findTemplateParameter(Param->getDepth(), ArgExpr);
6060     if (ParamUseRange.isValid()) {
6061       if (IsDefaultArgument) {
6062         S.Diag(TemplateNameLoc,
6063                diag::err_dependent_non_type_arg_in_partial_spec);
6064         S.Diag(ParamUseRange.getBegin(),
6065                diag::note_dependent_non_type_default_arg_in_partial_spec)
6066           << ParamUseRange;
6067       } else {
6068         S.Diag(ParamUseRange.getBegin(),
6069                diag::err_dependent_non_type_arg_in_partial_spec)
6070           << ParamUseRange;
6071       }
6072       return true;
6073     }
6074 
6075     //     -- The type of a template parameter corresponding to a
6076     //        specialized non-type argument shall not be dependent on a
6077     //        parameter of the specialization.
6078     //
6079     // FIXME: We need to delay this check until instantiation in some cases:
6080     //
6081     //   template<template<typename> class X> struct A {
6082     //     template<typename T, X<T> N> struct B;
6083     //     template<typename T> struct B<T, 0>;
6084     //   };
6085     //   template<typename> using X = int;
6086     //   A<X>::B<int, 0> b;
6087     ParamUseRange = findTemplateParameter(
6088             Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
6089     if (ParamUseRange.isValid()) {
6090       S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
6091              diag::err_dependent_typed_non_type_arg_in_partial_spec)
6092         << Param->getType() << ParamUseRange;
6093       S.Diag(Param->getLocation(), diag::note_template_param_here)
6094         << (IsDefaultArgument ? ParamUseRange : SourceRange());
6095       return true;
6096     }
6097   }
6098 
6099   return false;
6100 }
6101 
6102 /// \brief Check the non-type template arguments of a class template
6103 /// partial specialization according to C++ [temp.class.spec]p9.
6104 ///
6105 /// \param TemplateNameLoc the location of the template name.
6106 /// \param TemplateParams the template parameters of the primary class
6107 ///        template.
6108 /// \param NumExplicit the number of explicitly-specified template arguments.
6109 /// \param TemplateArgs the template arguments of the class template
6110 ///        partial specialization.
6111 ///
6112 /// \returns \c true if there was an error, \c false otherwise.
CheckTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,TemplateParameterList * TemplateParams,unsigned NumExplicit,SmallVectorImpl<TemplateArgument> & TemplateArgs)6113 static bool CheckTemplatePartialSpecializationArgs(
6114     Sema &S, SourceLocation TemplateNameLoc,
6115     TemplateParameterList *TemplateParams, unsigned NumExplicit,
6116     SmallVectorImpl<TemplateArgument> &TemplateArgs) {
6117   const TemplateArgument *ArgList = TemplateArgs.data();
6118 
6119   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
6120     NonTypeTemplateParmDecl *Param
6121       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
6122     if (!Param)
6123       continue;
6124 
6125     if (CheckNonTypeTemplatePartialSpecializationArgs(
6126             S, TemplateNameLoc, Param, &ArgList[I], 1, I >= NumExplicit))
6127       return true;
6128   }
6129 
6130   return false;
6131 }
6132 
6133 DeclResult
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,SourceLocation ModulePrivateLoc,TemplateIdAnnotation & TemplateId,AttributeList * Attr,MultiTemplateParamsArg TemplateParameterLists,SkipBodyInfo * SkipBody)6134 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
6135                                        TagUseKind TUK,
6136                                        SourceLocation KWLoc,
6137                                        SourceLocation ModulePrivateLoc,
6138                                        TemplateIdAnnotation &TemplateId,
6139                                        AttributeList *Attr,
6140                                        MultiTemplateParamsArg
6141                                            TemplateParameterLists,
6142                                        SkipBodyInfo *SkipBody) {
6143   assert(TUK != TUK_Reference && "References are not specializations");
6144 
6145   CXXScopeSpec &SS = TemplateId.SS;
6146 
6147   // NOTE: KWLoc is the location of the tag keyword. This will instead
6148   // store the location of the outermost template keyword in the declaration.
6149   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
6150     ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
6151   SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
6152   SourceLocation LAngleLoc = TemplateId.LAngleLoc;
6153   SourceLocation RAngleLoc = TemplateId.RAngleLoc;
6154 
6155   // Find the class template we're specializing
6156   TemplateName Name = TemplateId.Template.get();
6157   ClassTemplateDecl *ClassTemplate
6158     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
6159 
6160   if (!ClassTemplate) {
6161     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
6162       << (Name.getAsTemplateDecl() &&
6163           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
6164     return true;
6165   }
6166 
6167   bool isExplicitSpecialization = false;
6168   bool isPartialSpecialization = false;
6169 
6170   // Check the validity of the template headers that introduce this
6171   // template.
6172   // FIXME: We probably shouldn't complain about these headers for
6173   // friend declarations.
6174   bool Invalid = false;
6175   TemplateParameterList *TemplateParams =
6176       MatchTemplateParametersToScopeSpecifier(
6177           KWLoc, TemplateNameLoc, SS, &TemplateId,
6178           TemplateParameterLists, TUK == TUK_Friend, isExplicitSpecialization,
6179           Invalid);
6180   if (Invalid)
6181     return true;
6182 
6183   if (TemplateParams && TemplateParams->size() > 0) {
6184     isPartialSpecialization = true;
6185 
6186     if (TUK == TUK_Friend) {
6187       Diag(KWLoc, diag::err_partial_specialization_friend)
6188         << SourceRange(LAngleLoc, RAngleLoc);
6189       return true;
6190     }
6191 
6192     // C++ [temp.class.spec]p10:
6193     //   The template parameter list of a specialization shall not
6194     //   contain default template argument values.
6195     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
6196       Decl *Param = TemplateParams->getParam(I);
6197       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
6198         if (TTP->hasDefaultArgument()) {
6199           Diag(TTP->getDefaultArgumentLoc(),
6200                diag::err_default_arg_in_partial_spec);
6201           TTP->removeDefaultArgument();
6202         }
6203       } else if (NonTypeTemplateParmDecl *NTTP
6204                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
6205         if (Expr *DefArg = NTTP->getDefaultArgument()) {
6206           Diag(NTTP->getDefaultArgumentLoc(),
6207                diag::err_default_arg_in_partial_spec)
6208             << DefArg->getSourceRange();
6209           NTTP->removeDefaultArgument();
6210         }
6211       } else {
6212         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
6213         if (TTP->hasDefaultArgument()) {
6214           Diag(TTP->getDefaultArgument().getLocation(),
6215                diag::err_default_arg_in_partial_spec)
6216             << TTP->getDefaultArgument().getSourceRange();
6217           TTP->removeDefaultArgument();
6218         }
6219       }
6220     }
6221   } else if (TemplateParams) {
6222     if (TUK == TUK_Friend)
6223       Diag(KWLoc, diag::err_template_spec_friend)
6224         << FixItHint::CreateRemoval(
6225                                 SourceRange(TemplateParams->getTemplateLoc(),
6226                                             TemplateParams->getRAngleLoc()))
6227         << SourceRange(LAngleLoc, RAngleLoc);
6228     else
6229       isExplicitSpecialization = true;
6230   } else {
6231     assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
6232   }
6233 
6234   // Check that the specialization uses the same tag kind as the
6235   // original template.
6236   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6237   assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
6238   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6239                                     Kind, TUK == TUK_Definition, KWLoc,
6240                                     ClassTemplate->getIdentifier())) {
6241     Diag(KWLoc, diag::err_use_with_wrong_tag)
6242       << ClassTemplate
6243       << FixItHint::CreateReplacement(KWLoc,
6244                             ClassTemplate->getTemplatedDecl()->getKindName());
6245     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6246          diag::note_previous_use);
6247     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6248   }
6249 
6250   // Translate the parser's template argument list in our AST format.
6251   TemplateArgumentListInfo TemplateArgs =
6252       makeTemplateArgumentListInfo(*this, TemplateId);
6253 
6254   // Check for unexpanded parameter packs in any of the template arguments.
6255   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6256     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
6257                                         UPPC_PartialSpecialization))
6258       return true;
6259 
6260   // Check that the template argument list is well-formed for this
6261   // template.
6262   SmallVector<TemplateArgument, 4> Converted;
6263   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6264                                 TemplateArgs, false, Converted))
6265     return true;
6266 
6267   // Find the class template (partial) specialization declaration that
6268   // corresponds to these arguments.
6269   if (isPartialSpecialization) {
6270     if (CheckTemplatePartialSpecializationArgs(
6271             *this, TemplateNameLoc, ClassTemplate->getTemplateParameters(),
6272             TemplateArgs.size(), Converted))
6273       return true;
6274 
6275     bool InstantiationDependent;
6276     if (!Name.isDependent() &&
6277         !TemplateSpecializationType::anyDependentTemplateArguments(
6278                                              TemplateArgs.getArgumentArray(),
6279                                                          TemplateArgs.size(),
6280                                                      InstantiationDependent)) {
6281       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
6282         << ClassTemplate->getDeclName();
6283       isPartialSpecialization = false;
6284     }
6285   }
6286 
6287   void *InsertPos = nullptr;
6288   ClassTemplateSpecializationDecl *PrevDecl = nullptr;
6289 
6290   if (isPartialSpecialization)
6291     // FIXME: Template parameter list matters, too
6292     PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
6293   else
6294     PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
6295 
6296   ClassTemplateSpecializationDecl *Specialization = nullptr;
6297 
6298   // Check whether we can declare a class template specialization in
6299   // the current scope.
6300   if (TUK != TUK_Friend &&
6301       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
6302                                        TemplateNameLoc,
6303                                        isPartialSpecialization))
6304     return true;
6305 
6306   // The canonical type
6307   QualType CanonType;
6308   if (isPartialSpecialization) {
6309     // Build the canonical type that describes the converted template
6310     // arguments of the class template partial specialization.
6311     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
6312     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
6313                                                       Converted.data(),
6314                                                       Converted.size());
6315 
6316     if (Context.hasSameType(CanonType,
6317                         ClassTemplate->getInjectedClassNameSpecialization())) {
6318       // C++ [temp.class.spec]p9b3:
6319       //
6320       //   -- The argument list of the specialization shall not be identical
6321       //      to the implicit argument list of the primary template.
6322       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
6323         << /*class template*/0 << (TUK == TUK_Definition)
6324         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
6325       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
6326                                 ClassTemplate->getIdentifier(),
6327                                 TemplateNameLoc,
6328                                 Attr,
6329                                 TemplateParams,
6330                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
6331                                 /*FriendLoc*/SourceLocation(),
6332                                 TemplateParameterLists.size() - 1,
6333                                 TemplateParameterLists.data());
6334     }
6335 
6336     // Create a new class template partial specialization declaration node.
6337     ClassTemplatePartialSpecializationDecl *PrevPartial
6338       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
6339     ClassTemplatePartialSpecializationDecl *Partial
6340       = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
6341                                              ClassTemplate->getDeclContext(),
6342                                                        KWLoc, TemplateNameLoc,
6343                                                        TemplateParams,
6344                                                        ClassTemplate,
6345                                                        Converted.data(),
6346                                                        Converted.size(),
6347                                                        TemplateArgs,
6348                                                        CanonType,
6349                                                        PrevPartial);
6350     SetNestedNameSpecifier(Partial, SS);
6351     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
6352       Partial->setTemplateParameterListsInfo(
6353           Context, TemplateParameterLists.drop_back(1));
6354     }
6355 
6356     if (!PrevPartial)
6357       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
6358     Specialization = Partial;
6359 
6360     // If we are providing an explicit specialization of a member class
6361     // template specialization, make a note of that.
6362     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
6363       PrevPartial->setMemberSpecialization();
6364 
6365     // Check that all of the template parameters of the class template
6366     // partial specialization are deducible from the template
6367     // arguments. If not, this class template partial specialization
6368     // will never be used.
6369     llvm::SmallBitVector DeducibleParams(TemplateParams->size());
6370     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
6371                                TemplateParams->getDepth(),
6372                                DeducibleParams);
6373 
6374     if (!DeducibleParams.all()) {
6375       unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
6376       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
6377         << /*class template*/0 << (NumNonDeducible > 1)
6378         << SourceRange(TemplateNameLoc, RAngleLoc);
6379       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
6380         if (!DeducibleParams[I]) {
6381           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
6382           if (Param->getDeclName())
6383             Diag(Param->getLocation(),
6384                  diag::note_partial_spec_unused_parameter)
6385               << Param->getDeclName();
6386           else
6387             Diag(Param->getLocation(),
6388                  diag::note_partial_spec_unused_parameter)
6389               << "(anonymous)";
6390         }
6391       }
6392     }
6393   } else {
6394     // Create a new class template specialization declaration node for
6395     // this explicit specialization or friend declaration.
6396     Specialization
6397       = ClassTemplateSpecializationDecl::Create(Context, Kind,
6398                                              ClassTemplate->getDeclContext(),
6399                                                 KWLoc, TemplateNameLoc,
6400                                                 ClassTemplate,
6401                                                 Converted.data(),
6402                                                 Converted.size(),
6403                                                 PrevDecl);
6404     SetNestedNameSpecifier(Specialization, SS);
6405     if (TemplateParameterLists.size() > 0) {
6406       Specialization->setTemplateParameterListsInfo(Context,
6407                                                     TemplateParameterLists);
6408     }
6409 
6410     if (!PrevDecl)
6411       ClassTemplate->AddSpecialization(Specialization, InsertPos);
6412 
6413     if (CurContext->isDependentContext()) {
6414       // -fms-extensions permits specialization of nested classes without
6415       // fully specializing the outer class(es).
6416       assert(getLangOpts().MicrosoftExt &&
6417              "Only possible with -fms-extensions!");
6418       TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
6419       CanonType = Context.getTemplateSpecializationType(
6420           CanonTemplate, Converted.data(), Converted.size());
6421     } else {
6422       CanonType = Context.getTypeDeclType(Specialization);
6423     }
6424   }
6425 
6426   // C++ [temp.expl.spec]p6:
6427   //   If a template, a member template or the member of a class template is
6428   //   explicitly specialized then that specialization shall be declared
6429   //   before the first use of that specialization that would cause an implicit
6430   //   instantiation to take place, in every translation unit in which such a
6431   //   use occurs; no diagnostic is required.
6432   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
6433     bool Okay = false;
6434     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6435       // Is there any previous explicit specialization declaration?
6436       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6437         Okay = true;
6438         break;
6439       }
6440     }
6441 
6442     if (!Okay) {
6443       SourceRange Range(TemplateNameLoc, RAngleLoc);
6444       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
6445         << Context.getTypeDeclType(Specialization) << Range;
6446 
6447       Diag(PrevDecl->getPointOfInstantiation(),
6448            diag::note_instantiation_required_here)
6449         << (PrevDecl->getTemplateSpecializationKind()
6450                                                 != TSK_ImplicitInstantiation);
6451       return true;
6452     }
6453   }
6454 
6455   // If this is not a friend, note that this is an explicit specialization.
6456   if (TUK != TUK_Friend)
6457     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
6458 
6459   // Check that this isn't a redefinition of this specialization.
6460   if (TUK == TUK_Definition) {
6461     RecordDecl *Def = Specialization->getDefinition();
6462     NamedDecl *Hidden = nullptr;
6463     if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
6464       SkipBody->ShouldSkip = true;
6465       makeMergedDefinitionVisible(Hidden, KWLoc);
6466       // From here on out, treat this as just a redeclaration.
6467       TUK = TUK_Declaration;
6468     } else if (Def) {
6469       SourceRange Range(TemplateNameLoc, RAngleLoc);
6470       Diag(TemplateNameLoc, diag::err_redefinition)
6471         << Context.getTypeDeclType(Specialization) << Range;
6472       Diag(Def->getLocation(), diag::note_previous_definition);
6473       Specialization->setInvalidDecl();
6474       return true;
6475     }
6476   }
6477 
6478   if (Attr)
6479     ProcessDeclAttributeList(S, Specialization, Attr);
6480 
6481   // Add alignment attributes if necessary; these attributes are checked when
6482   // the ASTContext lays out the structure.
6483   if (TUK == TUK_Definition) {
6484     AddAlignmentAttributesForRecord(Specialization);
6485     AddMsStructLayoutForRecord(Specialization);
6486   }
6487 
6488   if (ModulePrivateLoc.isValid())
6489     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
6490       << (isPartialSpecialization? 1 : 0)
6491       << FixItHint::CreateRemoval(ModulePrivateLoc);
6492 
6493   // Build the fully-sugared type for this class template
6494   // specialization as the user wrote in the specialization
6495   // itself. This means that we'll pretty-print the type retrieved
6496   // from the specialization's declaration the way that the user
6497   // actually wrote the specialization, rather than formatting the
6498   // name based on the "canonical" representation used to store the
6499   // template arguments in the specialization.
6500   TypeSourceInfo *WrittenTy
6501     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6502                                                 TemplateArgs, CanonType);
6503   if (TUK != TUK_Friend) {
6504     Specialization->setTypeAsWritten(WrittenTy);
6505     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
6506   }
6507 
6508   // C++ [temp.expl.spec]p9:
6509   //   A template explicit specialization is in the scope of the
6510   //   namespace in which the template was defined.
6511   //
6512   // We actually implement this paragraph where we set the semantic
6513   // context (in the creation of the ClassTemplateSpecializationDecl),
6514   // but we also maintain the lexical context where the actual
6515   // definition occurs.
6516   Specialization->setLexicalDeclContext(CurContext);
6517 
6518   // We may be starting the definition of this specialization.
6519   if (TUK == TUK_Definition)
6520     Specialization->startDefinition();
6521 
6522   if (TUK == TUK_Friend) {
6523     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
6524                                             TemplateNameLoc,
6525                                             WrittenTy,
6526                                             /*FIXME:*/KWLoc);
6527     Friend->setAccess(AS_public);
6528     CurContext->addDecl(Friend);
6529   } else {
6530     // Add the specialization into its lexical context, so that it can
6531     // be seen when iterating through the list of declarations in that
6532     // context. However, specializations are not found by name lookup.
6533     CurContext->addDecl(Specialization);
6534   }
6535   return Specialization;
6536 }
6537 
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)6538 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
6539                               MultiTemplateParamsArg TemplateParameterLists,
6540                                     Declarator &D) {
6541   Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
6542   ActOnDocumentableDecl(NewDecl);
6543   return NewDecl;
6544 }
6545 
6546 /// \brief Strips various properties off an implicit instantiation
6547 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D)6548 static void StripImplicitInstantiation(NamedDecl *D) {
6549   D->dropAttr<DLLImportAttr>();
6550   D->dropAttr<DLLExportAttr>();
6551 
6552   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
6553     FD->setInlineSpecified(false);
6554 }
6555 
6556 /// \brief Compute the diagnostic location for an explicit instantiation
6557 //  declaration or definition.
DiagLocForExplicitInstantiation(NamedDecl * D,SourceLocation PointOfInstantiation)6558 static SourceLocation DiagLocForExplicitInstantiation(
6559     NamedDecl* D, SourceLocation PointOfInstantiation) {
6560   // Explicit instantiations following a specialization have no effect and
6561   // hence no PointOfInstantiation. In that case, walk decl backwards
6562   // until a valid name loc is found.
6563   SourceLocation PrevDiagLoc = PointOfInstantiation;
6564   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
6565        Prev = Prev->getPreviousDecl()) {
6566     PrevDiagLoc = Prev->getLocation();
6567   }
6568   assert(PrevDiagLoc.isValid() &&
6569          "Explicit instantiation without point of instantiation?");
6570   return PrevDiagLoc;
6571 }
6572 
6573 /// \brief Diagnose cases where we have an explicit template specialization
6574 /// before/after an explicit template instantiation, producing diagnostics
6575 /// for those cases where they are required and determining whether the
6576 /// new specialization/instantiation will have any effect.
6577 ///
6578 /// \param NewLoc the location of the new explicit specialization or
6579 /// instantiation.
6580 ///
6581 /// \param NewTSK the kind of the new explicit specialization or instantiation.
6582 ///
6583 /// \param PrevDecl the previous declaration of the entity.
6584 ///
6585 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
6586 ///
6587 /// \param PrevPointOfInstantiation if valid, indicates where the previus
6588 /// declaration was instantiated (either implicitly or explicitly).
6589 ///
6590 /// \param HasNoEffect will be set to true to indicate that the new
6591 /// specialization or instantiation has no effect and should be ignored.
6592 ///
6593 /// \returns true if there was an error that should prevent the introduction of
6594 /// the new declaration into the AST, false otherwise.
6595 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)6596 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
6597                                              TemplateSpecializationKind NewTSK,
6598                                              NamedDecl *PrevDecl,
6599                                              TemplateSpecializationKind PrevTSK,
6600                                         SourceLocation PrevPointOfInstantiation,
6601                                              bool &HasNoEffect) {
6602   HasNoEffect = false;
6603 
6604   switch (NewTSK) {
6605   case TSK_Undeclared:
6606   case TSK_ImplicitInstantiation:
6607     assert(
6608         (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
6609         "previous declaration must be implicit!");
6610     return false;
6611 
6612   case TSK_ExplicitSpecialization:
6613     switch (PrevTSK) {
6614     case TSK_Undeclared:
6615     case TSK_ExplicitSpecialization:
6616       // Okay, we're just specializing something that is either already
6617       // explicitly specialized or has merely been mentioned without any
6618       // instantiation.
6619       return false;
6620 
6621     case TSK_ImplicitInstantiation:
6622       if (PrevPointOfInstantiation.isInvalid()) {
6623         // The declaration itself has not actually been instantiated, so it is
6624         // still okay to specialize it.
6625         StripImplicitInstantiation(PrevDecl);
6626         return false;
6627       }
6628       // Fall through
6629 
6630     case TSK_ExplicitInstantiationDeclaration:
6631     case TSK_ExplicitInstantiationDefinition:
6632       assert((PrevTSK == TSK_ImplicitInstantiation ||
6633               PrevPointOfInstantiation.isValid()) &&
6634              "Explicit instantiation without point of instantiation?");
6635 
6636       // C++ [temp.expl.spec]p6:
6637       //   If a template, a member template or the member of a class template
6638       //   is explicitly specialized then that specialization shall be declared
6639       //   before the first use of that specialization that would cause an
6640       //   implicit instantiation to take place, in every translation unit in
6641       //   which such a use occurs; no diagnostic is required.
6642       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6643         // Is there any previous explicit specialization declaration?
6644         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
6645           return false;
6646       }
6647 
6648       Diag(NewLoc, diag::err_specialization_after_instantiation)
6649         << PrevDecl;
6650       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
6651         << (PrevTSK != TSK_ImplicitInstantiation);
6652 
6653       return true;
6654     }
6655 
6656   case TSK_ExplicitInstantiationDeclaration:
6657     switch (PrevTSK) {
6658     case TSK_ExplicitInstantiationDeclaration:
6659       // This explicit instantiation declaration is redundant (that's okay).
6660       HasNoEffect = true;
6661       return false;
6662 
6663     case TSK_Undeclared:
6664     case TSK_ImplicitInstantiation:
6665       // We're explicitly instantiating something that may have already been
6666       // implicitly instantiated; that's fine.
6667       return false;
6668 
6669     case TSK_ExplicitSpecialization:
6670       // C++0x [temp.explicit]p4:
6671       //   For a given set of template parameters, if an explicit instantiation
6672       //   of a template appears after a declaration of an explicit
6673       //   specialization for that template, the explicit instantiation has no
6674       //   effect.
6675       HasNoEffect = true;
6676       return false;
6677 
6678     case TSK_ExplicitInstantiationDefinition:
6679       // C++0x [temp.explicit]p10:
6680       //   If an entity is the subject of both an explicit instantiation
6681       //   declaration and an explicit instantiation definition in the same
6682       //   translation unit, the definition shall follow the declaration.
6683       Diag(NewLoc,
6684            diag::err_explicit_instantiation_declaration_after_definition);
6685 
6686       // Explicit instantiations following a specialization have no effect and
6687       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
6688       // until a valid name loc is found.
6689       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6690            diag::note_explicit_instantiation_definition_here);
6691       HasNoEffect = true;
6692       return false;
6693     }
6694 
6695   case TSK_ExplicitInstantiationDefinition:
6696     switch (PrevTSK) {
6697     case TSK_Undeclared:
6698     case TSK_ImplicitInstantiation:
6699       // We're explicitly instantiating something that may have already been
6700       // implicitly instantiated; that's fine.
6701       return false;
6702 
6703     case TSK_ExplicitSpecialization:
6704       // C++ DR 259, C++0x [temp.explicit]p4:
6705       //   For a given set of template parameters, if an explicit
6706       //   instantiation of a template appears after a declaration of
6707       //   an explicit specialization for that template, the explicit
6708       //   instantiation has no effect.
6709       //
6710       // In C++98/03 mode, we only give an extension warning here, because it
6711       // is not harmful to try to explicitly instantiate something that
6712       // has been explicitly specialized.
6713       Diag(NewLoc, getLangOpts().CPlusPlus11 ?
6714            diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
6715            diag::ext_explicit_instantiation_after_specialization)
6716         << PrevDecl;
6717       Diag(PrevDecl->getLocation(),
6718            diag::note_previous_template_specialization);
6719       HasNoEffect = true;
6720       return false;
6721 
6722     case TSK_ExplicitInstantiationDeclaration:
6723       // We're explicity instantiating a definition for something for which we
6724       // were previously asked to suppress instantiations. That's fine.
6725 
6726       // C++0x [temp.explicit]p4:
6727       //   For a given set of template parameters, if an explicit instantiation
6728       //   of a template appears after a declaration of an explicit
6729       //   specialization for that template, the explicit instantiation has no
6730       //   effect.
6731       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6732         // Is there any previous explicit specialization declaration?
6733         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6734           HasNoEffect = true;
6735           break;
6736         }
6737       }
6738 
6739       return false;
6740 
6741     case TSK_ExplicitInstantiationDefinition:
6742       // C++0x [temp.spec]p5:
6743       //   For a given template and a given set of template-arguments,
6744       //     - an explicit instantiation definition shall appear at most once
6745       //       in a program,
6746 
6747       // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
6748       Diag(NewLoc, (getLangOpts().MSVCCompat)
6749                        ? diag::ext_explicit_instantiation_duplicate
6750                        : diag::err_explicit_instantiation_duplicate)
6751           << PrevDecl;
6752       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6753            diag::note_previous_explicit_instantiation);
6754       HasNoEffect = true;
6755       return false;
6756     }
6757   }
6758 
6759   llvm_unreachable("Missing specialization/instantiation case?");
6760 }
6761 
6762 /// \brief Perform semantic analysis for the given dependent function
6763 /// template specialization.
6764 ///
6765 /// The only possible way to get a dependent function template specialization
6766 /// is with a friend declaration, like so:
6767 ///
6768 /// \code
6769 ///   template \<class T> void foo(T);
6770 ///   template \<class T> class A {
6771 ///     friend void foo<>(T);
6772 ///   };
6773 /// \endcode
6774 ///
6775 /// There really isn't any useful analysis we can do here, so we
6776 /// just store the information.
6777 bool
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo & ExplicitTemplateArgs,LookupResult & Previous)6778 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
6779                    const TemplateArgumentListInfo &ExplicitTemplateArgs,
6780                                                    LookupResult &Previous) {
6781   // Remove anything from Previous that isn't a function template in
6782   // the correct context.
6783   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6784   LookupResult::Filter F = Previous.makeFilter();
6785   while (F.hasNext()) {
6786     NamedDecl *D = F.next()->getUnderlyingDecl();
6787     if (!isa<FunctionTemplateDecl>(D) ||
6788         !FDLookupContext->InEnclosingNamespaceSetOf(
6789                               D->getDeclContext()->getRedeclContext()))
6790       F.erase();
6791   }
6792   F.done();
6793 
6794   // Should this be diagnosed here?
6795   if (Previous.empty()) return true;
6796 
6797   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
6798                                          ExplicitTemplateArgs);
6799   return false;
6800 }
6801 
6802 /// \brief Perform semantic analysis for the given function template
6803 /// specialization.
6804 ///
6805 /// This routine performs all of the semantic analysis required for an
6806 /// explicit function template specialization. On successful completion,
6807 /// the function declaration \p FD will become a function template
6808 /// specialization.
6809 ///
6810 /// \param FD the function declaration, which will be updated to become a
6811 /// function template specialization.
6812 ///
6813 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
6814 /// if any. Note that this may be valid info even when 0 arguments are
6815 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
6816 /// as it anyway contains info on the angle brackets locations.
6817 ///
6818 /// \param Previous the set of declarations that may be specialized by
6819 /// this function specialization.
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous)6820 bool Sema::CheckFunctionTemplateSpecialization(
6821     FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
6822     LookupResult &Previous) {
6823   // The set of function template specializations that could match this
6824   // explicit function template specialization.
6825   UnresolvedSet<8> Candidates;
6826   TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
6827                                             /*ForTakingAddress=*/false);
6828 
6829   llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
6830       ConvertedTemplateArgs;
6831 
6832   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6833   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6834          I != E; ++I) {
6835     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
6836     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
6837       // Only consider templates found within the same semantic lookup scope as
6838       // FD.
6839       if (!FDLookupContext->InEnclosingNamespaceSetOf(
6840                                 Ovl->getDeclContext()->getRedeclContext()))
6841         continue;
6842 
6843       // When matching a constexpr member function template specialization
6844       // against the primary template, we don't yet know whether the
6845       // specialization has an implicit 'const' (because we don't know whether
6846       // it will be a static member function until we know which template it
6847       // specializes), so adjust it now assuming it specializes this template.
6848       QualType FT = FD->getType();
6849       if (FD->isConstexpr()) {
6850         CXXMethodDecl *OldMD =
6851           dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
6852         if (OldMD && OldMD->isConst()) {
6853           const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
6854           FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6855           EPI.TypeQuals |= Qualifiers::Const;
6856           FT = Context.getFunctionType(FPT->getReturnType(),
6857                                        FPT->getParamTypes(), EPI);
6858         }
6859       }
6860 
6861       TemplateArgumentListInfo Args;
6862       if (ExplicitTemplateArgs)
6863         Args = *ExplicitTemplateArgs;
6864 
6865       // C++ [temp.expl.spec]p11:
6866       //   A trailing template-argument can be left unspecified in the
6867       //   template-id naming an explicit function template specialization
6868       //   provided it can be deduced from the function argument type.
6869       // Perform template argument deduction to determine whether we may be
6870       // specializing this template.
6871       // FIXME: It is somewhat wasteful to build
6872       TemplateDeductionInfo Info(FailedCandidates.getLocation());
6873       FunctionDecl *Specialization = nullptr;
6874       if (TemplateDeductionResult TDK = DeduceTemplateArguments(
6875               cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
6876               ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, Info)) {
6877         // Template argument deduction failed; record why it failed, so
6878         // that we can provide nifty diagnostics.
6879         FailedCandidates.addCandidate()
6880             .set(FunTmpl->getTemplatedDecl(),
6881                  MakeDeductionFailureInfo(Context, TDK, Info));
6882         (void)TDK;
6883         continue;
6884       }
6885 
6886       // Record this candidate.
6887       if (ExplicitTemplateArgs)
6888         ConvertedTemplateArgs[Specialization] = std::move(Args);
6889       Candidates.addDecl(Specialization, I.getAccess());
6890     }
6891   }
6892 
6893   // Find the most specialized function template.
6894   UnresolvedSetIterator Result = getMostSpecialized(
6895       Candidates.begin(), Candidates.end(), FailedCandidates,
6896       FD->getLocation(),
6897       PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
6898       PDiag(diag::err_function_template_spec_ambiguous)
6899           << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
6900       PDiag(diag::note_function_template_spec_matched));
6901 
6902   if (Result == Candidates.end())
6903     return true;
6904 
6905   // Ignore access information;  it doesn't figure into redeclaration checking.
6906   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6907 
6908   FunctionTemplateSpecializationInfo *SpecInfo
6909     = Specialization->getTemplateSpecializationInfo();
6910   assert(SpecInfo && "Function template specialization info missing?");
6911 
6912   // Note: do not overwrite location info if previous template
6913   // specialization kind was explicit.
6914   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
6915   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
6916     Specialization->setLocation(FD->getLocation());
6917     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
6918     // function can differ from the template declaration with respect to
6919     // the constexpr specifier.
6920     Specialization->setConstexpr(FD->isConstexpr());
6921   }
6922 
6923   // FIXME: Check if the prior specialization has a point of instantiation.
6924   // If so, we have run afoul of .
6925 
6926   // If this is a friend declaration, then we're not really declaring
6927   // an explicit specialization.
6928   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
6929 
6930   // Check the scope of this explicit specialization.
6931   if (!isFriend &&
6932       CheckTemplateSpecializationScope(*this,
6933                                        Specialization->getPrimaryTemplate(),
6934                                        Specialization, FD->getLocation(),
6935                                        false))
6936     return true;
6937 
6938   // C++ [temp.expl.spec]p6:
6939   //   If a template, a member template or the member of a class template is
6940   //   explicitly specialized then that specialization shall be declared
6941   //   before the first use of that specialization that would cause an implicit
6942   //   instantiation to take place, in every translation unit in which such a
6943   //   use occurs; no diagnostic is required.
6944   bool HasNoEffect = false;
6945   if (!isFriend &&
6946       CheckSpecializationInstantiationRedecl(FD->getLocation(),
6947                                              TSK_ExplicitSpecialization,
6948                                              Specialization,
6949                                    SpecInfo->getTemplateSpecializationKind(),
6950                                          SpecInfo->getPointOfInstantiation(),
6951                                              HasNoEffect))
6952     return true;
6953 
6954   // Mark the prior declaration as an explicit specialization, so that later
6955   // clients know that this is an explicit specialization.
6956   if (!isFriend) {
6957     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6958     MarkUnusedFileScopedDecl(Specialization);
6959   }
6960 
6961   // Turn the given function declaration into a function template
6962   // specialization, with the template arguments from the previous
6963   // specialization.
6964   // Take copies of (semantic and syntactic) template argument lists.
6965   const TemplateArgumentList* TemplArgs = new (Context)
6966     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6967   FD->setFunctionTemplateSpecialization(
6968       Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
6969       SpecInfo->getTemplateSpecializationKind(),
6970       ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
6971 
6972   // The "previous declaration" for this function template specialization is
6973   // the prior function template specialization.
6974   Previous.clear();
6975   Previous.addDecl(Specialization);
6976   return false;
6977 }
6978 
6979 /// \brief Perform semantic analysis for the given non-template member
6980 /// specialization.
6981 ///
6982 /// This routine performs all of the semantic analysis required for an
6983 /// explicit member function specialization. On successful completion,
6984 /// the function declaration \p FD will become a member function
6985 /// specialization.
6986 ///
6987 /// \param Member the member declaration, which will be updated to become a
6988 /// specialization.
6989 ///
6990 /// \param Previous the set of declarations, one of which may be specialized
6991 /// by this function specialization;  the set will be modified to contain the
6992 /// redeclared member.
6993 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)6994 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6995   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6996 
6997   // Try to find the member we are instantiating.
6998   NamedDecl *Instantiation = nullptr;
6999   NamedDecl *InstantiatedFrom = nullptr;
7000   MemberSpecializationInfo *MSInfo = nullptr;
7001 
7002   if (Previous.empty()) {
7003     // Nowhere to look anyway.
7004   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
7005     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7006            I != E; ++I) {
7007       NamedDecl *D = (*I)->getUnderlyingDecl();
7008       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
7009         QualType Adjusted = Function->getType();
7010         if (!hasExplicitCallingConv(Adjusted))
7011           Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
7012         if (Context.hasSameType(Adjusted, Method->getType())) {
7013           Instantiation = Method;
7014           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
7015           MSInfo = Method->getMemberSpecializationInfo();
7016           break;
7017         }
7018       }
7019     }
7020   } else if (isa<VarDecl>(Member)) {
7021     VarDecl *PrevVar;
7022     if (Previous.isSingleResult() &&
7023         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
7024       if (PrevVar->isStaticDataMember()) {
7025         Instantiation = PrevVar;
7026         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
7027         MSInfo = PrevVar->getMemberSpecializationInfo();
7028       }
7029   } else if (isa<RecordDecl>(Member)) {
7030     CXXRecordDecl *PrevRecord;
7031     if (Previous.isSingleResult() &&
7032         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
7033       Instantiation = PrevRecord;
7034       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
7035       MSInfo = PrevRecord->getMemberSpecializationInfo();
7036     }
7037   } else if (isa<EnumDecl>(Member)) {
7038     EnumDecl *PrevEnum;
7039     if (Previous.isSingleResult() &&
7040         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
7041       Instantiation = PrevEnum;
7042       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
7043       MSInfo = PrevEnum->getMemberSpecializationInfo();
7044     }
7045   }
7046 
7047   if (!Instantiation) {
7048     // There is no previous declaration that matches. Since member
7049     // specializations are always out-of-line, the caller will complain about
7050     // this mismatch later.
7051     return false;
7052   }
7053 
7054   // If this is a friend, just bail out here before we start turning
7055   // things into explicit specializations.
7056   if (Member->getFriendObjectKind() != Decl::FOK_None) {
7057     // Preserve instantiation information.
7058     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
7059       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
7060                                       cast<CXXMethodDecl>(InstantiatedFrom),
7061         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
7062     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
7063       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
7064                                       cast<CXXRecordDecl>(InstantiatedFrom),
7065         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
7066     }
7067 
7068     Previous.clear();
7069     Previous.addDecl(Instantiation);
7070     return false;
7071   }
7072 
7073   // Make sure that this is a specialization of a member.
7074   if (!InstantiatedFrom) {
7075     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
7076       << Member;
7077     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
7078     return true;
7079   }
7080 
7081   // C++ [temp.expl.spec]p6:
7082   //   If a template, a member template or the member of a class template is
7083   //   explicitly specialized then that specialization shall be declared
7084   //   before the first use of that specialization that would cause an implicit
7085   //   instantiation to take place, in every translation unit in which such a
7086   //   use occurs; no diagnostic is required.
7087   assert(MSInfo && "Member specialization info missing?");
7088 
7089   bool HasNoEffect = false;
7090   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
7091                                              TSK_ExplicitSpecialization,
7092                                              Instantiation,
7093                                      MSInfo->getTemplateSpecializationKind(),
7094                                            MSInfo->getPointOfInstantiation(),
7095                                              HasNoEffect))
7096     return true;
7097 
7098   // Check the scope of this explicit specialization.
7099   if (CheckTemplateSpecializationScope(*this,
7100                                        InstantiatedFrom,
7101                                        Instantiation, Member->getLocation(),
7102                                        false))
7103     return true;
7104 
7105   // Note that this is an explicit instantiation of a member.
7106   // the original declaration to note that it is an explicit specialization
7107   // (if it was previously an implicit instantiation). This latter step
7108   // makes bookkeeping easier.
7109   if (isa<FunctionDecl>(Member)) {
7110     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
7111     if (InstantiationFunction->getTemplateSpecializationKind() ==
7112           TSK_ImplicitInstantiation) {
7113       InstantiationFunction->setTemplateSpecializationKind(
7114                                                   TSK_ExplicitSpecialization);
7115       InstantiationFunction->setLocation(Member->getLocation());
7116     }
7117 
7118     cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
7119                                         cast<CXXMethodDecl>(InstantiatedFrom),
7120                                                   TSK_ExplicitSpecialization);
7121     MarkUnusedFileScopedDecl(InstantiationFunction);
7122   } else if (isa<VarDecl>(Member)) {
7123     VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
7124     if (InstantiationVar->getTemplateSpecializationKind() ==
7125           TSK_ImplicitInstantiation) {
7126       InstantiationVar->setTemplateSpecializationKind(
7127                                                   TSK_ExplicitSpecialization);
7128       InstantiationVar->setLocation(Member->getLocation());
7129     }
7130 
7131     cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
7132         cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
7133     MarkUnusedFileScopedDecl(InstantiationVar);
7134   } else if (isa<CXXRecordDecl>(Member)) {
7135     CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
7136     if (InstantiationClass->getTemplateSpecializationKind() ==
7137           TSK_ImplicitInstantiation) {
7138       InstantiationClass->setTemplateSpecializationKind(
7139                                                    TSK_ExplicitSpecialization);
7140       InstantiationClass->setLocation(Member->getLocation());
7141     }
7142 
7143     cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
7144                                         cast<CXXRecordDecl>(InstantiatedFrom),
7145                                                    TSK_ExplicitSpecialization);
7146   } else {
7147     assert(isa<EnumDecl>(Member) && "Only member enums remain");
7148     EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
7149     if (InstantiationEnum->getTemplateSpecializationKind() ==
7150           TSK_ImplicitInstantiation) {
7151       InstantiationEnum->setTemplateSpecializationKind(
7152                                                    TSK_ExplicitSpecialization);
7153       InstantiationEnum->setLocation(Member->getLocation());
7154     }
7155 
7156     cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
7157         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
7158   }
7159 
7160   // Save the caller the trouble of having to figure out which declaration
7161   // this specialization matches.
7162   Previous.clear();
7163   Previous.addDecl(Instantiation);
7164   return false;
7165 }
7166 
7167 /// \brief Check the scope of an explicit instantiation.
7168 ///
7169 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)7170 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
7171                                             SourceLocation InstLoc,
7172                                             bool WasQualifiedName) {
7173   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
7174   DeclContext *CurContext = S.CurContext->getRedeclContext();
7175 
7176   if (CurContext->isRecord()) {
7177     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
7178       << D;
7179     return true;
7180   }
7181 
7182   // C++11 [temp.explicit]p3:
7183   //   An explicit instantiation shall appear in an enclosing namespace of its
7184   //   template. If the name declared in the explicit instantiation is an
7185   //   unqualified name, the explicit instantiation shall appear in the
7186   //   namespace where its template is declared or, if that namespace is inline
7187   //   (7.3.1), any namespace from its enclosing namespace set.
7188   //
7189   // This is DR275, which we do not retroactively apply to C++98/03.
7190   if (WasQualifiedName) {
7191     if (CurContext->Encloses(OrigContext))
7192       return false;
7193   } else {
7194     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
7195       return false;
7196   }
7197 
7198   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
7199     if (WasQualifiedName)
7200       S.Diag(InstLoc,
7201              S.getLangOpts().CPlusPlus11?
7202                diag::err_explicit_instantiation_out_of_scope :
7203                diag::warn_explicit_instantiation_out_of_scope_0x)
7204         << D << NS;
7205     else
7206       S.Diag(InstLoc,
7207              S.getLangOpts().CPlusPlus11?
7208                diag::err_explicit_instantiation_unqualified_wrong_namespace :
7209                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
7210         << D << NS;
7211   } else
7212     S.Diag(InstLoc,
7213            S.getLangOpts().CPlusPlus11?
7214              diag::err_explicit_instantiation_must_be_global :
7215              diag::warn_explicit_instantiation_must_be_global_0x)
7216       << D;
7217   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
7218   return false;
7219 }
7220 
7221 /// \brief Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)7222 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
7223   if (!SS.isSet())
7224     return false;
7225 
7226   // C++11 [temp.explicit]p3:
7227   //   If the explicit instantiation is for a member function, a member class
7228   //   or a static data member of a class template specialization, the name of
7229   //   the class template specialization in the qualified-id for the member
7230   //   name shall be a simple-template-id.
7231   //
7232   // C++98 has the same restriction, just worded differently.
7233   for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
7234        NNS = NNS->getPrefix())
7235     if (const Type *T = NNS->getAsType())
7236       if (isa<TemplateSpecializationType>(T))
7237         return true;
7238 
7239   return false;
7240 }
7241 
7242 // Explicit instantiation of a class template specialization
7243 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr)7244 Sema::ActOnExplicitInstantiation(Scope *S,
7245                                  SourceLocation ExternLoc,
7246                                  SourceLocation TemplateLoc,
7247                                  unsigned TagSpec,
7248                                  SourceLocation KWLoc,
7249                                  const CXXScopeSpec &SS,
7250                                  TemplateTy TemplateD,
7251                                  SourceLocation TemplateNameLoc,
7252                                  SourceLocation LAngleLoc,
7253                                  ASTTemplateArgsPtr TemplateArgsIn,
7254                                  SourceLocation RAngleLoc,
7255                                  AttributeList *Attr) {
7256   // Find the class template we're specializing
7257   TemplateName Name = TemplateD.get();
7258   TemplateDecl *TD = Name.getAsTemplateDecl();
7259   // Check that the specialization uses the same tag kind as the
7260   // original template.
7261   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7262   assert(Kind != TTK_Enum &&
7263          "Invalid enum tag in class template explicit instantiation!");
7264 
7265   if (isa<TypeAliasTemplateDecl>(TD)) {
7266       Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind;
7267       Diag(TD->getTemplatedDecl()->getLocation(),
7268            diag::note_previous_use);
7269     return true;
7270   }
7271 
7272   ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD);
7273 
7274   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
7275                                     Kind, /*isDefinition*/false, KWLoc,
7276                                     ClassTemplate->getIdentifier())) {
7277     Diag(KWLoc, diag::err_use_with_wrong_tag)
7278       << ClassTemplate
7279       << FixItHint::CreateReplacement(KWLoc,
7280                             ClassTemplate->getTemplatedDecl()->getKindName());
7281     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
7282          diag::note_previous_use);
7283     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
7284   }
7285 
7286   // C++0x [temp.explicit]p2:
7287   //   There are two forms of explicit instantiation: an explicit instantiation
7288   //   definition and an explicit instantiation declaration. An explicit
7289   //   instantiation declaration begins with the extern keyword. [...]
7290   TemplateSpecializationKind TSK = ExternLoc.isInvalid()
7291                                        ? TSK_ExplicitInstantiationDefinition
7292                                        : TSK_ExplicitInstantiationDeclaration;
7293 
7294   if (TSK == TSK_ExplicitInstantiationDeclaration) {
7295     // Check for dllexport class template instantiation declarations.
7296     for (AttributeList *A = Attr; A; A = A->getNext()) {
7297       if (A->getKind() == AttributeList::AT_DLLExport) {
7298         Diag(ExternLoc,
7299              diag::warn_attribute_dllexport_explicit_instantiation_decl);
7300         Diag(A->getLoc(), diag::note_attribute);
7301         break;
7302       }
7303     }
7304 
7305     if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
7306       Diag(ExternLoc,
7307            diag::warn_attribute_dllexport_explicit_instantiation_decl);
7308       Diag(A->getLocation(), diag::note_attribute);
7309     }
7310   }
7311 
7312   // Translate the parser's template argument list in our AST format.
7313   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7314   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7315 
7316   // Check that the template argument list is well-formed for this
7317   // template.
7318   SmallVector<TemplateArgument, 4> Converted;
7319   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
7320                                 TemplateArgs, false, Converted))
7321     return true;
7322 
7323   // Find the class template specialization declaration that
7324   // corresponds to these arguments.
7325   void *InsertPos = nullptr;
7326   ClassTemplateSpecializationDecl *PrevDecl
7327     = ClassTemplate->findSpecialization(Converted, InsertPos);
7328 
7329   TemplateSpecializationKind PrevDecl_TSK
7330     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
7331 
7332   // C++0x [temp.explicit]p2:
7333   //   [...] An explicit instantiation shall appear in an enclosing
7334   //   namespace of its template. [...]
7335   //
7336   // This is C++ DR 275.
7337   if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
7338                                       SS.isSet()))
7339     return true;
7340 
7341   ClassTemplateSpecializationDecl *Specialization = nullptr;
7342 
7343   bool HasNoEffect = false;
7344   if (PrevDecl) {
7345     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
7346                                                PrevDecl, PrevDecl_TSK,
7347                                             PrevDecl->getPointOfInstantiation(),
7348                                                HasNoEffect))
7349       return PrevDecl;
7350 
7351     // Even though HasNoEffect == true means that this explicit instantiation
7352     // has no effect on semantics, we go on to put its syntax in the AST.
7353 
7354     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
7355         PrevDecl_TSK == TSK_Undeclared) {
7356       // Since the only prior class template specialization with these
7357       // arguments was referenced but not declared, reuse that
7358       // declaration node as our own, updating the source location
7359       // for the template name to reflect our new declaration.
7360       // (Other source locations will be updated later.)
7361       Specialization = PrevDecl;
7362       Specialization->setLocation(TemplateNameLoc);
7363       PrevDecl = nullptr;
7364     }
7365   }
7366 
7367   if (!Specialization) {
7368     // Create a new class template specialization declaration node for
7369     // this explicit specialization.
7370     Specialization
7371       = ClassTemplateSpecializationDecl::Create(Context, Kind,
7372                                              ClassTemplate->getDeclContext(),
7373                                                 KWLoc, TemplateNameLoc,
7374                                                 ClassTemplate,
7375                                                 Converted.data(),
7376                                                 Converted.size(),
7377                                                 PrevDecl);
7378     SetNestedNameSpecifier(Specialization, SS);
7379 
7380     if (!HasNoEffect && !PrevDecl) {
7381       // Insert the new specialization.
7382       ClassTemplate->AddSpecialization(Specialization, InsertPos);
7383     }
7384   }
7385 
7386   // Build the fully-sugared type for this explicit instantiation as
7387   // the user wrote in the explicit instantiation itself. This means
7388   // that we'll pretty-print the type retrieved from the
7389   // specialization's declaration the way that the user actually wrote
7390   // the explicit instantiation, rather than formatting the name based
7391   // on the "canonical" representation used to store the template
7392   // arguments in the specialization.
7393   TypeSourceInfo *WrittenTy
7394     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
7395                                                 TemplateArgs,
7396                                   Context.getTypeDeclType(Specialization));
7397   Specialization->setTypeAsWritten(WrittenTy);
7398 
7399   // Set source locations for keywords.
7400   Specialization->setExternLoc(ExternLoc);
7401   Specialization->setTemplateKeywordLoc(TemplateLoc);
7402   Specialization->setRBraceLoc(SourceLocation());
7403 
7404   if (Attr)
7405     ProcessDeclAttributeList(S, Specialization, Attr);
7406 
7407   // Add the explicit instantiation into its lexical context. However,
7408   // since explicit instantiations are never found by name lookup, we
7409   // just put it into the declaration context directly.
7410   Specialization->setLexicalDeclContext(CurContext);
7411   CurContext->addDecl(Specialization);
7412 
7413   // Syntax is now OK, so return if it has no other effect on semantics.
7414   if (HasNoEffect) {
7415     // Set the template specialization kind.
7416     Specialization->setTemplateSpecializationKind(TSK);
7417     return Specialization;
7418   }
7419 
7420   // C++ [temp.explicit]p3:
7421   //   A definition of a class template or class member template
7422   //   shall be in scope at the point of the explicit instantiation of
7423   //   the class template or class member template.
7424   //
7425   // This check comes when we actually try to perform the
7426   // instantiation.
7427   ClassTemplateSpecializationDecl *Def
7428     = cast_or_null<ClassTemplateSpecializationDecl>(
7429                                               Specialization->getDefinition());
7430   if (!Def)
7431     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
7432   else if (TSK == TSK_ExplicitInstantiationDefinition) {
7433     MarkVTableUsed(TemplateNameLoc, Specialization, true);
7434     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
7435   }
7436 
7437   // Instantiate the members of this class template specialization.
7438   Def = cast_or_null<ClassTemplateSpecializationDecl>(
7439                                        Specialization->getDefinition());
7440   if (Def) {
7441     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
7442 
7443     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
7444     // TSK_ExplicitInstantiationDefinition
7445     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
7446         TSK == TSK_ExplicitInstantiationDefinition) {
7447       // FIXME: Need to notify the ASTMutationListener that we did this.
7448       Def->setTemplateSpecializationKind(TSK);
7449 
7450       if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
7451           Context.getTargetInfo().getCXXABI().isMicrosoft()) {
7452         // In the MS ABI, an explicit instantiation definition can add a dll
7453         // attribute to a template with a previous instantiation declaration.
7454         // MinGW doesn't allow this.
7455         auto *A = cast<InheritableAttr>(
7456             getDLLAttr(Specialization)->clone(getASTContext()));
7457         A->setInherited(true);
7458         Def->addAttr(A);
7459         checkClassLevelDLLAttribute(Def);
7460 
7461         // Propagate attribute to base class templates.
7462         for (auto &B : Def->bases()) {
7463           if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
7464                   B.getType()->getAsCXXRecordDecl()))
7465             propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getLocStart());
7466         }
7467       }
7468     }
7469 
7470     // Set the template specialization kind. Make sure it is set before
7471     // instantiating the members which will trigger ASTConsumer callbacks.
7472     Specialization->setTemplateSpecializationKind(TSK);
7473     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
7474   } else {
7475 
7476     // Set the template specialization kind.
7477     Specialization->setTemplateSpecializationKind(TSK);
7478   }
7479 
7480   return Specialization;
7481 }
7482 
7483 // Explicit instantiation of a member class of a class template.
7484 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr)7485 Sema::ActOnExplicitInstantiation(Scope *S,
7486                                  SourceLocation ExternLoc,
7487                                  SourceLocation TemplateLoc,
7488                                  unsigned TagSpec,
7489                                  SourceLocation KWLoc,
7490                                  CXXScopeSpec &SS,
7491                                  IdentifierInfo *Name,
7492                                  SourceLocation NameLoc,
7493                                  AttributeList *Attr) {
7494 
7495   bool Owned = false;
7496   bool IsDependent = false;
7497   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
7498                         KWLoc, SS, Name, NameLoc, Attr, AS_none,
7499                         /*ModulePrivateLoc=*/SourceLocation(),
7500                         MultiTemplateParamsArg(), Owned, IsDependent,
7501                         SourceLocation(), false, TypeResult(),
7502                         /*IsTypeSpecifier*/false);
7503   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
7504 
7505   if (!TagD)
7506     return true;
7507 
7508   TagDecl *Tag = cast<TagDecl>(TagD);
7509   assert(!Tag->isEnum() && "shouldn't see enumerations here");
7510 
7511   if (Tag->isInvalidDecl())
7512     return true;
7513 
7514   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
7515   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
7516   if (!Pattern) {
7517     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
7518       << Context.getTypeDeclType(Record);
7519     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
7520     return true;
7521   }
7522 
7523   // C++0x [temp.explicit]p2:
7524   //   If the explicit instantiation is for a class or member class, the
7525   //   elaborated-type-specifier in the declaration shall include a
7526   //   simple-template-id.
7527   //
7528   // C++98 has the same restriction, just worded differently.
7529   if (!ScopeSpecifierHasTemplateId(SS))
7530     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
7531       << Record << SS.getRange();
7532 
7533   // C++0x [temp.explicit]p2:
7534   //   There are two forms of explicit instantiation: an explicit instantiation
7535   //   definition and an explicit instantiation declaration. An explicit
7536   //   instantiation declaration begins with the extern keyword. [...]
7537   TemplateSpecializationKind TSK
7538     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7539                            : TSK_ExplicitInstantiationDeclaration;
7540 
7541   // C++0x [temp.explicit]p2:
7542   //   [...] An explicit instantiation shall appear in an enclosing
7543   //   namespace of its template. [...]
7544   //
7545   // This is C++ DR 275.
7546   CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
7547 
7548   // Verify that it is okay to explicitly instantiate here.
7549   CXXRecordDecl *PrevDecl
7550     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
7551   if (!PrevDecl && Record->getDefinition())
7552     PrevDecl = Record;
7553   if (PrevDecl) {
7554     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
7555     bool HasNoEffect = false;
7556     assert(MSInfo && "No member specialization information?");
7557     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
7558                                                PrevDecl,
7559                                         MSInfo->getTemplateSpecializationKind(),
7560                                              MSInfo->getPointOfInstantiation(),
7561                                                HasNoEffect))
7562       return true;
7563     if (HasNoEffect)
7564       return TagD;
7565   }
7566 
7567   CXXRecordDecl *RecordDef
7568     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7569   if (!RecordDef) {
7570     // C++ [temp.explicit]p3:
7571     //   A definition of a member class of a class template shall be in scope
7572     //   at the point of an explicit instantiation of the member class.
7573     CXXRecordDecl *Def
7574       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
7575     if (!Def) {
7576       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
7577         << 0 << Record->getDeclName() << Record->getDeclContext();
7578       Diag(Pattern->getLocation(), diag::note_forward_declaration)
7579         << Pattern;
7580       return true;
7581     } else {
7582       if (InstantiateClass(NameLoc, Record, Def,
7583                            getTemplateInstantiationArgs(Record),
7584                            TSK))
7585         return true;
7586 
7587       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7588       if (!RecordDef)
7589         return true;
7590     }
7591   }
7592 
7593   // Instantiate all of the members of the class.
7594   InstantiateClassMembers(NameLoc, RecordDef,
7595                           getTemplateInstantiationArgs(Record), TSK);
7596 
7597   if (TSK == TSK_ExplicitInstantiationDefinition)
7598     MarkVTableUsed(NameLoc, RecordDef, true);
7599 
7600   // FIXME: We don't have any representation for explicit instantiations of
7601   // member classes. Such a representation is not needed for compilation, but it
7602   // should be available for clients that want to see all of the declarations in
7603   // the source code.
7604   return TagD;
7605 }
7606 
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)7607 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
7608                                             SourceLocation ExternLoc,
7609                                             SourceLocation TemplateLoc,
7610                                             Declarator &D) {
7611   // Explicit instantiations always require a name.
7612   // TODO: check if/when DNInfo should replace Name.
7613   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7614   DeclarationName Name = NameInfo.getName();
7615   if (!Name) {
7616     if (!D.isInvalidType())
7617       Diag(D.getDeclSpec().getLocStart(),
7618            diag::err_explicit_instantiation_requires_name)
7619         << D.getDeclSpec().getSourceRange()
7620         << D.getSourceRange();
7621 
7622     return true;
7623   }
7624 
7625   // The scope passed in may not be a decl scope.  Zip up the scope tree until
7626   // we find one that is.
7627   while ((S->getFlags() & Scope::DeclScope) == 0 ||
7628          (S->getFlags() & Scope::TemplateParamScope) != 0)
7629     S = S->getParent();
7630 
7631   // Determine the type of the declaration.
7632   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
7633   QualType R = T->getType();
7634   if (R.isNull())
7635     return true;
7636 
7637   // C++ [dcl.stc]p1:
7638   //   A storage-class-specifier shall not be specified in [...] an explicit
7639   //   instantiation (14.7.2) directive.
7640   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
7641     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
7642       << Name;
7643     return true;
7644   } else if (D.getDeclSpec().getStorageClassSpec()
7645                                                 != DeclSpec::SCS_unspecified) {
7646     // Complain about then remove the storage class specifier.
7647     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
7648       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7649 
7650     D.getMutableDeclSpec().ClearStorageClassSpecs();
7651   }
7652 
7653   // C++0x [temp.explicit]p1:
7654   //   [...] An explicit instantiation of a function template shall not use the
7655   //   inline or constexpr specifiers.
7656   // Presumably, this also applies to member functions of class templates as
7657   // well.
7658   if (D.getDeclSpec().isInlineSpecified())
7659     Diag(D.getDeclSpec().getInlineSpecLoc(),
7660          getLangOpts().CPlusPlus11 ?
7661            diag::err_explicit_instantiation_inline :
7662            diag::warn_explicit_instantiation_inline_0x)
7663       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7664   if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
7665     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
7666     // not already specified.
7667     Diag(D.getDeclSpec().getConstexprSpecLoc(),
7668          diag::err_explicit_instantiation_constexpr);
7669 
7670   // C++0x [temp.explicit]p2:
7671   //   There are two forms of explicit instantiation: an explicit instantiation
7672   //   definition and an explicit instantiation declaration. An explicit
7673   //   instantiation declaration begins with the extern keyword. [...]
7674   TemplateSpecializationKind TSK
7675     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7676                            : TSK_ExplicitInstantiationDeclaration;
7677 
7678   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
7679   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
7680 
7681   if (!R->isFunctionType()) {
7682     // C++ [temp.explicit]p1:
7683     //   A [...] static data member of a class template can be explicitly
7684     //   instantiated from the member definition associated with its class
7685     //   template.
7686     // C++1y [temp.explicit]p1:
7687     //   A [...] variable [...] template specialization can be explicitly
7688     //   instantiated from its template.
7689     if (Previous.isAmbiguous())
7690       return true;
7691 
7692     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
7693     VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
7694 
7695     if (!PrevTemplate) {
7696       if (!Prev || !Prev->isStaticDataMember()) {
7697         // We expect to see a data data member here.
7698         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
7699             << Name;
7700         for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7701              P != PEnd; ++P)
7702           Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
7703         return true;
7704       }
7705 
7706       if (!Prev->getInstantiatedFromStaticDataMember()) {
7707         // FIXME: Check for explicit specialization?
7708         Diag(D.getIdentifierLoc(),
7709              diag::err_explicit_instantiation_data_member_not_instantiated)
7710             << Prev;
7711         Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
7712         // FIXME: Can we provide a note showing where this was declared?
7713         return true;
7714       }
7715     } else {
7716       // Explicitly instantiate a variable template.
7717 
7718       // C++1y [dcl.spec.auto]p6:
7719       //   ... A program that uses auto or decltype(auto) in a context not
7720       //   explicitly allowed in this section is ill-formed.
7721       //
7722       // This includes auto-typed variable template instantiations.
7723       if (R->isUndeducedType()) {
7724         Diag(T->getTypeLoc().getLocStart(),
7725              diag::err_auto_not_allowed_var_inst);
7726         return true;
7727       }
7728 
7729       if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7730         // C++1y [temp.explicit]p3:
7731         //   If the explicit instantiation is for a variable, the unqualified-id
7732         //   in the declaration shall be a template-id.
7733         Diag(D.getIdentifierLoc(),
7734              diag::err_explicit_instantiation_without_template_id)
7735           << PrevTemplate;
7736         Diag(PrevTemplate->getLocation(),
7737              diag::note_explicit_instantiation_here);
7738         return true;
7739       }
7740 
7741       // Translate the parser's template argument list into our AST format.
7742       TemplateArgumentListInfo TemplateArgs =
7743           makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
7744 
7745       DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
7746                                           D.getIdentifierLoc(), TemplateArgs);
7747       if (Res.isInvalid())
7748         return true;
7749 
7750       // Ignore access control bits, we don't need them for redeclaration
7751       // checking.
7752       Prev = cast<VarDecl>(Res.get());
7753     }
7754 
7755     // C++0x [temp.explicit]p2:
7756     //   If the explicit instantiation is for a member function, a member class
7757     //   or a static data member of a class template specialization, the name of
7758     //   the class template specialization in the qualified-id for the member
7759     //   name shall be a simple-template-id.
7760     //
7761     // C++98 has the same restriction, just worded differently.
7762     //
7763     // This does not apply to variable template specializations, where the
7764     // template-id is in the unqualified-id instead.
7765     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
7766       Diag(D.getIdentifierLoc(),
7767            diag::ext_explicit_instantiation_without_qualified_id)
7768         << Prev << D.getCXXScopeSpec().getRange();
7769 
7770     // Check the scope of this explicit instantiation.
7771     CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
7772 
7773     // Verify that it is okay to explicitly instantiate here.
7774     TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
7775     SourceLocation POI = Prev->getPointOfInstantiation();
7776     bool HasNoEffect = false;
7777     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
7778                                                PrevTSK, POI, HasNoEffect))
7779       return true;
7780 
7781     if (!HasNoEffect) {
7782       // Instantiate static data member or variable template.
7783 
7784       Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7785       if (PrevTemplate) {
7786         // Merge attributes.
7787         if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
7788           ProcessDeclAttributeList(S, Prev, Attr);
7789       }
7790       if (TSK == TSK_ExplicitInstantiationDefinition)
7791         InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
7792     }
7793 
7794     // Check the new variable specialization against the parsed input.
7795     if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
7796       Diag(T->getTypeLoc().getLocStart(),
7797            diag::err_invalid_var_template_spec_type)
7798           << 0 << PrevTemplate << R << Prev->getType();
7799       Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
7800           << 2 << PrevTemplate->getDeclName();
7801       return true;
7802     }
7803 
7804     // FIXME: Create an ExplicitInstantiation node?
7805     return (Decl*) nullptr;
7806   }
7807 
7808   // If the declarator is a template-id, translate the parser's template
7809   // argument list into our AST format.
7810   bool HasExplicitTemplateArgs = false;
7811   TemplateArgumentListInfo TemplateArgs;
7812   if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7813     TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
7814     HasExplicitTemplateArgs = true;
7815   }
7816 
7817   // C++ [temp.explicit]p1:
7818   //   A [...] function [...] can be explicitly instantiated from its template.
7819   //   A member function [...] of a class template can be explicitly
7820   //  instantiated from the member definition associated with its class
7821   //  template.
7822   UnresolvedSet<8> Matches;
7823   TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
7824   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7825        P != PEnd; ++P) {
7826     NamedDecl *Prev = *P;
7827     if (!HasExplicitTemplateArgs) {
7828       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
7829         QualType Adjusted = adjustCCAndNoReturn(R, Method->getType());
7830         if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
7831           Matches.clear();
7832 
7833           Matches.addDecl(Method, P.getAccess());
7834           if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
7835             break;
7836         }
7837       }
7838     }
7839 
7840     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
7841     if (!FunTmpl)
7842       continue;
7843 
7844     TemplateDeductionInfo Info(FailedCandidates.getLocation());
7845     FunctionDecl *Specialization = nullptr;
7846     if (TemplateDeductionResult TDK
7847           = DeduceTemplateArguments(FunTmpl,
7848                                (HasExplicitTemplateArgs ? &TemplateArgs
7849                                                         : nullptr),
7850                                     R, Specialization, Info)) {
7851       // Keep track of almost-matches.
7852       FailedCandidates.addCandidate()
7853           .set(FunTmpl->getTemplatedDecl(),
7854                MakeDeductionFailureInfo(Context, TDK, Info));
7855       (void)TDK;
7856       continue;
7857     }
7858 
7859     Matches.addDecl(Specialization, P.getAccess());
7860   }
7861 
7862   // Find the most specialized function template specialization.
7863   UnresolvedSetIterator Result = getMostSpecialized(
7864       Matches.begin(), Matches.end(), FailedCandidates,
7865       D.getIdentifierLoc(),
7866       PDiag(diag::err_explicit_instantiation_not_known) << Name,
7867       PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
7868       PDiag(diag::note_explicit_instantiation_candidate));
7869 
7870   if (Result == Matches.end())
7871     return true;
7872 
7873   // Ignore access control bits, we don't need them for redeclaration checking.
7874   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
7875 
7876   // C++11 [except.spec]p4
7877   // In an explicit instantiation an exception-specification may be specified,
7878   // but is not required.
7879   // If an exception-specification is specified in an explicit instantiation
7880   // directive, it shall be compatible with the exception-specifications of
7881   // other declarations of that function.
7882   if (auto *FPT = R->getAs<FunctionProtoType>())
7883     if (FPT->hasExceptionSpec()) {
7884       unsigned DiagID =
7885           diag::err_mismatched_exception_spec_explicit_instantiation;
7886       if (getLangOpts().MicrosoftExt)
7887         DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
7888       bool Result = CheckEquivalentExceptionSpec(
7889           PDiag(DiagID) << Specialization->getType(),
7890           PDiag(diag::note_explicit_instantiation_here),
7891           Specialization->getType()->getAs<FunctionProtoType>(),
7892           Specialization->getLocation(), FPT, D.getLocStart());
7893       // In Microsoft mode, mismatching exception specifications just cause a
7894       // warning.
7895       if (!getLangOpts().MicrosoftExt && Result)
7896         return true;
7897     }
7898 
7899   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
7900     Diag(D.getIdentifierLoc(),
7901          diag::err_explicit_instantiation_member_function_not_instantiated)
7902       << Specialization
7903       << (Specialization->getTemplateSpecializationKind() ==
7904           TSK_ExplicitSpecialization);
7905     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
7906     return true;
7907   }
7908 
7909   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
7910   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
7911     PrevDecl = Specialization;
7912 
7913   if (PrevDecl) {
7914     bool HasNoEffect = false;
7915     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
7916                                                PrevDecl,
7917                                      PrevDecl->getTemplateSpecializationKind(),
7918                                           PrevDecl->getPointOfInstantiation(),
7919                                                HasNoEffect))
7920       return true;
7921 
7922     // FIXME: We may still want to build some representation of this
7923     // explicit specialization.
7924     if (HasNoEffect)
7925       return (Decl*) nullptr;
7926   }
7927 
7928   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7929   AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
7930   if (Attr)
7931     ProcessDeclAttributeList(S, Specialization, Attr);
7932 
7933   if (Specialization->isDefined()) {
7934     // Let the ASTConsumer know that this function has been explicitly
7935     // instantiated now, and its linkage might have changed.
7936     Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
7937   } else if (TSK == TSK_ExplicitInstantiationDefinition)
7938     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
7939 
7940   // C++0x [temp.explicit]p2:
7941   //   If the explicit instantiation is for a member function, a member class
7942   //   or a static data member of a class template specialization, the name of
7943   //   the class template specialization in the qualified-id for the member
7944   //   name shall be a simple-template-id.
7945   //
7946   // C++98 has the same restriction, just worded differently.
7947   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
7948   if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
7949       D.getCXXScopeSpec().isSet() &&
7950       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
7951     Diag(D.getIdentifierLoc(),
7952          diag::ext_explicit_instantiation_without_qualified_id)
7953     << Specialization << D.getCXXScopeSpec().getRange();
7954 
7955   CheckExplicitInstantiationScope(*this,
7956                    FunTmpl? (NamedDecl *)FunTmpl
7957                           : Specialization->getInstantiatedFromMemberFunction(),
7958                                   D.getIdentifierLoc(),
7959                                   D.getCXXScopeSpec().isSet());
7960 
7961   // FIXME: Create some kind of ExplicitInstantiationDecl here.
7962   return (Decl*) nullptr;
7963 }
7964 
7965 TypeResult
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)7966 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7967                         const CXXScopeSpec &SS, IdentifierInfo *Name,
7968                         SourceLocation TagLoc, SourceLocation NameLoc) {
7969   // This has to hold, because SS is expected to be defined.
7970   assert(Name && "Expected a name in a dependent tag");
7971 
7972   NestedNameSpecifier *NNS = SS.getScopeRep();
7973   if (!NNS)
7974     return true;
7975 
7976   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7977 
7978   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
7979     Diag(NameLoc, diag::err_dependent_tag_decl)
7980       << (TUK == TUK_Definition) << Kind << SS.getRange();
7981     return true;
7982   }
7983 
7984   // Create the resulting type.
7985   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7986   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
7987 
7988   // Create type-source location information for this type.
7989   TypeLocBuilder TLB;
7990   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
7991   TL.setElaboratedKeywordLoc(TagLoc);
7992   TL.setQualifierLoc(SS.getWithLocInContext(Context));
7993   TL.setNameLoc(NameLoc);
7994   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
7995 }
7996 
7997 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc)7998 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7999                         const CXXScopeSpec &SS, const IdentifierInfo &II,
8000                         SourceLocation IdLoc) {
8001   if (SS.isInvalid())
8002     return true;
8003 
8004   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
8005     Diag(TypenameLoc,
8006          getLangOpts().CPlusPlus11 ?
8007            diag::warn_cxx98_compat_typename_outside_of_template :
8008            diag::ext_typename_outside_of_template)
8009       << FixItHint::CreateRemoval(TypenameLoc);
8010 
8011   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8012   QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
8013                                  TypenameLoc, QualifierLoc, II, IdLoc);
8014   if (T.isNull())
8015     return true;
8016 
8017   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8018   if (isa<DependentNameType>(T)) {
8019     DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
8020     TL.setElaboratedKeywordLoc(TypenameLoc);
8021     TL.setQualifierLoc(QualifierLoc);
8022     TL.setNameLoc(IdLoc);
8023   } else {
8024     ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
8025     TL.setElaboratedKeywordLoc(TypenameLoc);
8026     TL.setQualifierLoc(QualifierLoc);
8027     TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
8028   }
8029 
8030   return CreateParsedType(T, TSI);
8031 }
8032 
8033 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateIn,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)8034 Sema::ActOnTypenameType(Scope *S,
8035                         SourceLocation TypenameLoc,
8036                         const CXXScopeSpec &SS,
8037                         SourceLocation TemplateKWLoc,
8038                         TemplateTy TemplateIn,
8039                         SourceLocation TemplateNameLoc,
8040                         SourceLocation LAngleLoc,
8041                         ASTTemplateArgsPtr TemplateArgsIn,
8042                         SourceLocation RAngleLoc) {
8043   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
8044     Diag(TypenameLoc,
8045          getLangOpts().CPlusPlus11 ?
8046            diag::warn_cxx98_compat_typename_outside_of_template :
8047            diag::ext_typename_outside_of_template)
8048       << FixItHint::CreateRemoval(TypenameLoc);
8049 
8050   // Translate the parser's template argument list in our AST format.
8051   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
8052   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
8053 
8054   TemplateName Template = TemplateIn.get();
8055   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
8056     // Construct a dependent template specialization type.
8057     assert(DTN && "dependent template has non-dependent name?");
8058     assert(DTN->getQualifier() == SS.getScopeRep());
8059     QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
8060                                                           DTN->getQualifier(),
8061                                                           DTN->getIdentifier(),
8062                                                                 TemplateArgs);
8063 
8064     // Create source-location information for this type.
8065     TypeLocBuilder Builder;
8066     DependentTemplateSpecializationTypeLoc SpecTL
8067     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
8068     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
8069     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
8070     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
8071     SpecTL.setTemplateNameLoc(TemplateNameLoc);
8072     SpecTL.setLAngleLoc(LAngleLoc);
8073     SpecTL.setRAngleLoc(RAngleLoc);
8074     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8075       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
8076     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
8077   }
8078 
8079   QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
8080   if (T.isNull())
8081     return true;
8082 
8083   // Provide source-location information for the template specialization type.
8084   TypeLocBuilder Builder;
8085   TemplateSpecializationTypeLoc SpecTL
8086     = Builder.push<TemplateSpecializationTypeLoc>(T);
8087   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
8088   SpecTL.setTemplateNameLoc(TemplateNameLoc);
8089   SpecTL.setLAngleLoc(LAngleLoc);
8090   SpecTL.setRAngleLoc(RAngleLoc);
8091   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8092     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
8093 
8094   T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
8095   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
8096   TL.setElaboratedKeywordLoc(TypenameLoc);
8097   TL.setQualifierLoc(SS.getWithLocInContext(Context));
8098 
8099   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
8100   return CreateParsedType(T, TSI);
8101 }
8102 
8103 
8104 /// Determine whether this failed name lookup should be treated as being
8105 /// disabled by a usage of std::enable_if.
isEnableIf(NestedNameSpecifierLoc NNS,const IdentifierInfo & II,SourceRange & CondRange)8106 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
8107                        SourceRange &CondRange) {
8108   // We must be looking for a ::type...
8109   if (!II.isStr("type"))
8110     return false;
8111 
8112   // ... within an explicitly-written template specialization...
8113   if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
8114     return false;
8115   TypeLoc EnableIfTy = NNS.getTypeLoc();
8116   TemplateSpecializationTypeLoc EnableIfTSTLoc =
8117       EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
8118   if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
8119     return false;
8120   const TemplateSpecializationType *EnableIfTST =
8121     cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
8122 
8123   // ... which names a complete class template declaration...
8124   const TemplateDecl *EnableIfDecl =
8125     EnableIfTST->getTemplateName().getAsTemplateDecl();
8126   if (!EnableIfDecl || EnableIfTST->isIncompleteType())
8127     return false;
8128 
8129   // ... called "enable_if".
8130   const IdentifierInfo *EnableIfII =
8131     EnableIfDecl->getDeclName().getAsIdentifierInfo();
8132   if (!EnableIfII || !EnableIfII->isStr("enable_if"))
8133     return false;
8134 
8135   // Assume the first template argument is the condition.
8136   CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
8137   return true;
8138 }
8139 
8140 /// \brief Build the type that describes a C++ typename specifier,
8141 /// e.g., "typename T::type".
8142 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc)8143 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
8144                         SourceLocation KeywordLoc,
8145                         NestedNameSpecifierLoc QualifierLoc,
8146                         const IdentifierInfo &II,
8147                         SourceLocation IILoc) {
8148   CXXScopeSpec SS;
8149   SS.Adopt(QualifierLoc);
8150 
8151   DeclContext *Ctx = computeDeclContext(SS);
8152   if (!Ctx) {
8153     // If the nested-name-specifier is dependent and couldn't be
8154     // resolved to a type, build a typename type.
8155     assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
8156     return Context.getDependentNameType(Keyword,
8157                                         QualifierLoc.getNestedNameSpecifier(),
8158                                         &II);
8159   }
8160 
8161   // If the nested-name-specifier refers to the current instantiation,
8162   // the "typename" keyword itself is superfluous. In C++03, the
8163   // program is actually ill-formed. However, DR 382 (in C++0x CD1)
8164   // allows such extraneous "typename" keywords, and we retroactively
8165   // apply this DR to C++03 code with only a warning. In any case we continue.
8166 
8167   if (RequireCompleteDeclContext(SS, Ctx))
8168     return QualType();
8169 
8170   DeclarationName Name(&II);
8171   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
8172   LookupQualifiedName(Result, Ctx, SS);
8173   unsigned DiagID = 0;
8174   Decl *Referenced = nullptr;
8175   switch (Result.getResultKind()) {
8176   case LookupResult::NotFound: {
8177     // If we're looking up 'type' within a template named 'enable_if', produce
8178     // a more specific diagnostic.
8179     SourceRange CondRange;
8180     if (isEnableIf(QualifierLoc, II, CondRange)) {
8181       Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
8182         << Ctx << CondRange;
8183       return QualType();
8184     }
8185 
8186     DiagID = diag::err_typename_nested_not_found;
8187     break;
8188   }
8189 
8190   case LookupResult::FoundUnresolvedValue: {
8191     // We found a using declaration that is a value. Most likely, the using
8192     // declaration itself is meant to have the 'typename' keyword.
8193     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
8194                           IILoc);
8195     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
8196       << Name << Ctx << FullRange;
8197     if (UnresolvedUsingValueDecl *Using
8198           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
8199       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
8200       Diag(Loc, diag::note_using_value_decl_missing_typename)
8201         << FixItHint::CreateInsertion(Loc, "typename ");
8202     }
8203   }
8204   // Fall through to create a dependent typename type, from which we can recover
8205   // better.
8206 
8207   case LookupResult::NotFoundInCurrentInstantiation:
8208     // Okay, it's a member of an unknown instantiation.
8209     return Context.getDependentNameType(Keyword,
8210                                         QualifierLoc.getNestedNameSpecifier(),
8211                                         &II);
8212 
8213   case LookupResult::Found:
8214     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
8215       // We found a type. Build an ElaboratedType, since the
8216       // typename-specifier was just sugar.
8217       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
8218       return Context.getElaboratedType(ETK_Typename,
8219                                        QualifierLoc.getNestedNameSpecifier(),
8220                                        Context.getTypeDeclType(Type));
8221     }
8222 
8223     DiagID = diag::err_typename_nested_not_type;
8224     Referenced = Result.getFoundDecl();
8225     break;
8226 
8227   case LookupResult::FoundOverloaded:
8228     DiagID = diag::err_typename_nested_not_type;
8229     Referenced = *Result.begin();
8230     break;
8231 
8232   case LookupResult::Ambiguous:
8233     return QualType();
8234   }
8235 
8236   // If we get here, it's because name lookup did not find a
8237   // type. Emit an appropriate diagnostic and return an error.
8238   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
8239                         IILoc);
8240   Diag(IILoc, DiagID) << FullRange << Name << Ctx;
8241   if (Referenced)
8242     Diag(Referenced->getLocation(), diag::note_typename_refers_here)
8243       << Name;
8244   return QualType();
8245 }
8246 
8247 namespace {
8248   // See Sema::RebuildTypeInCurrentInstantiation
8249   class CurrentInstantiationRebuilder
8250     : public TreeTransform<CurrentInstantiationRebuilder> {
8251     SourceLocation Loc;
8252     DeclarationName Entity;
8253 
8254   public:
8255     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
8256 
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)8257     CurrentInstantiationRebuilder(Sema &SemaRef,
8258                                   SourceLocation Loc,
8259                                   DeclarationName Entity)
8260     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
8261       Loc(Loc), Entity(Entity) { }
8262 
8263     /// \brief Determine whether the given type \p T has already been
8264     /// transformed.
8265     ///
8266     /// For the purposes of type reconstruction, a type has already been
8267     /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)8268     bool AlreadyTransformed(QualType T) {
8269       return T.isNull() || !T->isDependentType();
8270     }
8271 
8272     /// \brief Returns the location of the entity whose type is being
8273     /// rebuilt.
getBaseLocation()8274     SourceLocation getBaseLocation() { return Loc; }
8275 
8276     /// \brief Returns the name of the entity whose type is being rebuilt.
getBaseEntity()8277     DeclarationName getBaseEntity() { return Entity; }
8278 
8279     /// \brief Sets the "base" location and entity when that
8280     /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)8281     void setBase(SourceLocation Loc, DeclarationName Entity) {
8282       this->Loc = Loc;
8283       this->Entity = Entity;
8284     }
8285 
TransformLambdaExpr(LambdaExpr * E)8286     ExprResult TransformLambdaExpr(LambdaExpr *E) {
8287       // Lambdas never need to be transformed.
8288       return E;
8289     }
8290   };
8291 }
8292 
8293 /// \brief Rebuilds a type within the context of the current instantiation.
8294 ///
8295 /// The type \p T is part of the type of an out-of-line member definition of
8296 /// a class template (or class template partial specialization) that was parsed
8297 /// and constructed before we entered the scope of the class template (or
8298 /// partial specialization thereof). This routine will rebuild that type now
8299 /// that we have entered the declarator's scope, which may produce different
8300 /// canonical types, e.g.,
8301 ///
8302 /// \code
8303 /// template<typename T>
8304 /// struct X {
8305 ///   typedef T* pointer;
8306 ///   pointer data();
8307 /// };
8308 ///
8309 /// template<typename T>
8310 /// typename X<T>::pointer X<T>::data() { ... }
8311 /// \endcode
8312 ///
8313 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
8314 /// since we do not know that we can look into X<T> when we parsed the type.
8315 /// This function will rebuild the type, performing the lookup of "pointer"
8316 /// in X<T> and returning an ElaboratedType whose canonical type is the same
8317 /// as the canonical type of T*, allowing the return types of the out-of-line
8318 /// definition and the declaration to match.
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)8319 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
8320                                                         SourceLocation Loc,
8321                                                         DeclarationName Name) {
8322   if (!T || !T->getType()->isDependentType())
8323     return T;
8324 
8325   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
8326   return Rebuilder.TransformType(T);
8327 }
8328 
RebuildExprInCurrentInstantiation(Expr * E)8329 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
8330   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
8331                                           DeclarationName());
8332   return Rebuilder.TransformExpr(E);
8333 }
8334 
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)8335 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
8336   if (SS.isInvalid())
8337     return true;
8338 
8339   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8340   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
8341                                           DeclarationName());
8342   NestedNameSpecifierLoc Rebuilt
8343     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
8344   if (!Rebuilt)
8345     return true;
8346 
8347   SS.Adopt(Rebuilt);
8348   return false;
8349 }
8350 
8351 /// \brief Rebuild the template parameters now that we know we're in a current
8352 /// instantiation.
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList * Params)8353 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
8354                                                TemplateParameterList *Params) {
8355   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8356     Decl *Param = Params->getParam(I);
8357 
8358     // There is nothing to rebuild in a type parameter.
8359     if (isa<TemplateTypeParmDecl>(Param))
8360       continue;
8361 
8362     // Rebuild the template parameter list of a template template parameter.
8363     if (TemplateTemplateParmDecl *TTP
8364         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
8365       if (RebuildTemplateParamsInCurrentInstantiation(
8366             TTP->getTemplateParameters()))
8367         return true;
8368 
8369       continue;
8370     }
8371 
8372     // Rebuild the type of a non-type template parameter.
8373     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
8374     TypeSourceInfo *NewTSI
8375       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
8376                                           NTTP->getLocation(),
8377                                           NTTP->getDeclName());
8378     if (!NewTSI)
8379       return true;
8380 
8381     if (NewTSI != NTTP->getTypeSourceInfo()) {
8382       NTTP->setTypeSourceInfo(NewTSI);
8383       NTTP->setType(NewTSI->getType());
8384     }
8385   }
8386 
8387   return false;
8388 }
8389 
8390 /// \brief Produces a formatted string that describes the binding of
8391 /// template parameters to template arguments.
8392 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)8393 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
8394                                       const TemplateArgumentList &Args) {
8395   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
8396 }
8397 
8398 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)8399 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
8400                                       const TemplateArgument *Args,
8401                                       unsigned NumArgs) {
8402   SmallString<128> Str;
8403   llvm::raw_svector_ostream Out(Str);
8404 
8405   if (!Params || Params->size() == 0 || NumArgs == 0)
8406     return std::string();
8407 
8408   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8409     if (I >= NumArgs)
8410       break;
8411 
8412     if (I == 0)
8413       Out << "[with ";
8414     else
8415       Out << ", ";
8416 
8417     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
8418       Out << Id->getName();
8419     } else {
8420       Out << '$' << I;
8421     }
8422 
8423     Out << " = ";
8424     Args[I].print(getPrintingPolicy(), Out);
8425   }
8426 
8427   Out << ']';
8428   return Out.str();
8429 }
8430 
MarkAsLateParsedTemplate(FunctionDecl * FD,Decl * FnD,CachedTokens & Toks)8431 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
8432                                     CachedTokens &Toks) {
8433   if (!FD)
8434     return;
8435 
8436   LateParsedTemplate *LPT = new LateParsedTemplate;
8437 
8438   // Take tokens to avoid allocations
8439   LPT->Toks.swap(Toks);
8440   LPT->D = FnD;
8441   LateParsedTemplateMap.insert(std::make_pair(FD, LPT));
8442 
8443   FD->setLateTemplateParsed(true);
8444 }
8445 
UnmarkAsLateParsedTemplate(FunctionDecl * FD)8446 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
8447   if (!FD)
8448     return;
8449   FD->setLateTemplateParsed(false);
8450 }
8451 
IsInsideALocalClassWithinATemplateFunction()8452 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
8453   DeclContext *DC = CurContext;
8454 
8455   while (DC) {
8456     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
8457       const FunctionDecl *FD = RD->isLocalClass();
8458       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
8459     } else if (DC->isTranslationUnit() || DC->isNamespace())
8460       return false;
8461 
8462     DC = DC->getParent();
8463   }
8464   return false;
8465 }
8466