1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_COMPILER_UTILS_ASSEMBLER_H_ 18 #define ART_COMPILER_UTILS_ASSEMBLER_H_ 19 20 #include <vector> 21 22 #include "arch/instruction_set.h" 23 #include "arch/instruction_set_features.h" 24 #include "arm/constants_arm.h" 25 #include "base/arena_allocator.h" 26 #include "base/arena_object.h" 27 #include "base/logging.h" 28 #include "base/macros.h" 29 #include "debug/dwarf/debug_frame_opcode_writer.h" 30 #include "label.h" 31 #include "managed_register.h" 32 #include "memory_region.h" 33 #include "mips/constants_mips.h" 34 #include "offsets.h" 35 #include "x86/constants_x86.h" 36 #include "x86_64/constants_x86_64.h" 37 38 namespace art { 39 40 class Assembler; 41 class AssemblerBuffer; 42 43 // Assembler fixups are positions in generated code that require processing 44 // after the code has been copied to executable memory. This includes building 45 // relocation information. 46 class AssemblerFixup { 47 public: 48 virtual void Process(const MemoryRegion& region, int position) = 0; ~AssemblerFixup()49 virtual ~AssemblerFixup() {} 50 51 private: 52 AssemblerFixup* previous_; 53 int position_; 54 previous()55 AssemblerFixup* previous() const { return previous_; } set_previous(AssemblerFixup * previous_in)56 void set_previous(AssemblerFixup* previous_in) { previous_ = previous_in; } 57 position()58 int position() const { return position_; } set_position(int position_in)59 void set_position(int position_in) { position_ = position_in; } 60 61 friend class AssemblerBuffer; 62 }; 63 64 // Parent of all queued slow paths, emitted during finalization 65 class SlowPath : public DeletableArenaObject<kArenaAllocAssembler> { 66 public: SlowPath()67 SlowPath() : next_(nullptr) {} ~SlowPath()68 virtual ~SlowPath() {} 69 Continuation()70 Label* Continuation() { return &continuation_; } Entry()71 Label* Entry() { return &entry_; } 72 // Generate code for slow path 73 virtual void Emit(Assembler *sp_asm) = 0; 74 75 protected: 76 // Entry branched to by fast path 77 Label entry_; 78 // Optional continuation that is branched to at the end of the slow path 79 Label continuation_; 80 // Next in linked list of slow paths 81 SlowPath *next_; 82 83 private: 84 friend class AssemblerBuffer; 85 DISALLOW_COPY_AND_ASSIGN(SlowPath); 86 }; 87 88 class AssemblerBuffer { 89 public: 90 explicit AssemblerBuffer(ArenaAllocator* arena); 91 ~AssemblerBuffer(); 92 GetArena()93 ArenaAllocator* GetArena() { 94 return arena_; 95 } 96 97 // Basic support for emitting, loading, and storing. Emit(T value)98 template<typename T> void Emit(T value) { 99 CHECK(HasEnsuredCapacity()); 100 *reinterpret_cast<T*>(cursor_) = value; 101 cursor_ += sizeof(T); 102 } 103 Load(size_t position)104 template<typename T> T Load(size_t position) { 105 CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); 106 return *reinterpret_cast<T*>(contents_ + position); 107 } 108 Store(size_t position,T value)109 template<typename T> void Store(size_t position, T value) { 110 CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); 111 *reinterpret_cast<T*>(contents_ + position) = value; 112 } 113 Resize(size_t new_size)114 void Resize(size_t new_size) { 115 if (new_size > Capacity()) { 116 ExtendCapacity(new_size); 117 } 118 cursor_ = contents_ + new_size; 119 } 120 Move(size_t newposition,size_t oldposition,size_t size)121 void Move(size_t newposition, size_t oldposition, size_t size) { 122 // Move a chunk of the buffer from oldposition to newposition. 123 DCHECK_LE(oldposition + size, Size()); 124 DCHECK_LE(newposition + size, Size()); 125 memmove(contents_ + newposition, contents_ + oldposition, size); 126 } 127 128 // Emit a fixup at the current location. EmitFixup(AssemblerFixup * fixup)129 void EmitFixup(AssemblerFixup* fixup) { 130 fixup->set_previous(fixup_); 131 fixup->set_position(Size()); 132 fixup_ = fixup; 133 } 134 EnqueueSlowPath(SlowPath * slowpath)135 void EnqueueSlowPath(SlowPath* slowpath) { 136 if (slow_path_ == nullptr) { 137 slow_path_ = slowpath; 138 } else { 139 SlowPath* cur = slow_path_; 140 for ( ; cur->next_ != nullptr ; cur = cur->next_) {} 141 cur->next_ = slowpath; 142 } 143 } 144 EmitSlowPaths(Assembler * sp_asm)145 void EmitSlowPaths(Assembler* sp_asm) { 146 SlowPath* cur = slow_path_; 147 SlowPath* next = nullptr; 148 slow_path_ = nullptr; 149 for ( ; cur != nullptr ; cur = next) { 150 cur->Emit(sp_asm); 151 next = cur->next_; 152 delete cur; 153 } 154 } 155 156 // Get the size of the emitted code. Size()157 size_t Size() const { 158 CHECK_GE(cursor_, contents_); 159 return cursor_ - contents_; 160 } 161 contents()162 uint8_t* contents() const { return contents_; } 163 164 // Copy the assembled instructions into the specified memory block 165 // and apply all fixups. 166 void FinalizeInstructions(const MemoryRegion& region); 167 168 // To emit an instruction to the assembler buffer, the EnsureCapacity helper 169 // must be used to guarantee that the underlying data area is big enough to 170 // hold the emitted instruction. Usage: 171 // 172 // AssemblerBuffer buffer; 173 // AssemblerBuffer::EnsureCapacity ensured(&buffer); 174 // ... emit bytes for single instruction ... 175 176 #ifndef NDEBUG 177 178 class EnsureCapacity { 179 public: EnsureCapacity(AssemblerBuffer * buffer)180 explicit EnsureCapacity(AssemblerBuffer* buffer) { 181 if (buffer->cursor() > buffer->limit()) { 182 buffer->ExtendCapacity(buffer->Size() + kMinimumGap); 183 } 184 // In debug mode, we save the assembler buffer along with the gap 185 // size before we start emitting to the buffer. This allows us to 186 // check that any single generated instruction doesn't overflow the 187 // limit implied by the minimum gap size. 188 buffer_ = buffer; 189 gap_ = ComputeGap(); 190 // Make sure that extending the capacity leaves a big enough gap 191 // for any kind of instruction. 192 CHECK_GE(gap_, kMinimumGap); 193 // Mark the buffer as having ensured the capacity. 194 CHECK(!buffer->HasEnsuredCapacity()); // Cannot nest. 195 buffer->has_ensured_capacity_ = true; 196 } 197 ~EnsureCapacity()198 ~EnsureCapacity() { 199 // Unmark the buffer, so we cannot emit after this. 200 buffer_->has_ensured_capacity_ = false; 201 // Make sure the generated instruction doesn't take up more 202 // space than the minimum gap. 203 int delta = gap_ - ComputeGap(); 204 CHECK_LE(delta, kMinimumGap); 205 } 206 207 private: 208 AssemblerBuffer* buffer_; 209 int gap_; 210 ComputeGap()211 int ComputeGap() { return buffer_->Capacity() - buffer_->Size(); } 212 }; 213 214 bool has_ensured_capacity_; HasEnsuredCapacity()215 bool HasEnsuredCapacity() const { return has_ensured_capacity_; } 216 217 #else 218 219 class EnsureCapacity { 220 public: EnsureCapacity(AssemblerBuffer * buffer)221 explicit EnsureCapacity(AssemblerBuffer* buffer) { 222 if (buffer->cursor() > buffer->limit()) { 223 buffer->ExtendCapacity(buffer->Size() + kMinimumGap); 224 } 225 } 226 }; 227 228 // When building the C++ tests, assertion code is enabled. To allow 229 // asserting that the user of the assembler buffer has ensured the 230 // capacity needed for emitting, we add a dummy method in non-debug mode. HasEnsuredCapacity()231 bool HasEnsuredCapacity() const { return true; } 232 233 #endif 234 235 // Returns the position in the instruction stream. GetPosition()236 int GetPosition() { return cursor_ - contents_; } 237 Capacity()238 size_t Capacity() const { 239 CHECK_GE(limit_, contents_); 240 return (limit_ - contents_) + kMinimumGap; 241 } 242 243 // Unconditionally increase the capacity. 244 // The provided `min_capacity` must be higher than current `Capacity()`. 245 void ExtendCapacity(size_t min_capacity); 246 247 private: 248 // The limit is set to kMinimumGap bytes before the end of the data area. 249 // This leaves enough space for the longest possible instruction and allows 250 // for a single, fast space check per instruction. 251 static const int kMinimumGap = 32; 252 253 ArenaAllocator* arena_; 254 uint8_t* contents_; 255 uint8_t* cursor_; 256 uint8_t* limit_; 257 AssemblerFixup* fixup_; 258 #ifndef NDEBUG 259 bool fixups_processed_; 260 #endif 261 262 // Head of linked list of slow paths 263 SlowPath* slow_path_; 264 cursor()265 uint8_t* cursor() const { return cursor_; } limit()266 uint8_t* limit() const { return limit_; } 267 268 // Process the fixup chain starting at the given fixup. The offset is 269 // non-zero for fixups in the body if the preamble is non-empty. 270 void ProcessFixups(const MemoryRegion& region); 271 272 // Compute the limit based on the data area and the capacity. See 273 // description of kMinimumGap for the reasoning behind the value. ComputeLimit(uint8_t * data,size_t capacity)274 static uint8_t* ComputeLimit(uint8_t* data, size_t capacity) { 275 return data + capacity - kMinimumGap; 276 } 277 278 friend class AssemblerFixup; 279 }; 280 281 // The purpose of this class is to ensure that we do not have to explicitly 282 // call the AdvancePC method (which is good for convenience and correctness). 283 class DebugFrameOpCodeWriterForAssembler FINAL 284 : public dwarf::DebugFrameOpCodeWriter<> { 285 public: 286 struct DelayedAdvancePC { 287 uint32_t stream_pos; 288 uint32_t pc; 289 }; 290 291 // This method is called the by the opcode writers. 292 virtual void ImplicitlyAdvancePC() FINAL; 293 DebugFrameOpCodeWriterForAssembler(Assembler * buffer)294 explicit DebugFrameOpCodeWriterForAssembler(Assembler* buffer) 295 : dwarf::DebugFrameOpCodeWriter<>(false /* enabled */), 296 assembler_(buffer), 297 delay_emitting_advance_pc_(false), 298 delayed_advance_pcs_() { 299 } 300 ~DebugFrameOpCodeWriterForAssembler()301 ~DebugFrameOpCodeWriterForAssembler() { 302 DCHECK(delayed_advance_pcs_.empty()); 303 } 304 305 // Tell the writer to delay emitting advance PC info. 306 // The assembler must explicitly process all the delayed advances. DelayEmittingAdvancePCs()307 void DelayEmittingAdvancePCs() { 308 delay_emitting_advance_pc_ = true; 309 } 310 311 // Override the last delayed PC. The new PC can be out of order. OverrideDelayedPC(size_t pc)312 void OverrideDelayedPC(size_t pc) { 313 DCHECK(delay_emitting_advance_pc_); 314 DCHECK(!delayed_advance_pcs_.empty()); 315 delayed_advance_pcs_.back().pc = pc; 316 } 317 318 // Return the number of delayed advance PC entries. NumberOfDelayedAdvancePCs()319 size_t NumberOfDelayedAdvancePCs() const { 320 return delayed_advance_pcs_.size(); 321 } 322 323 // Release the CFI stream and advance PC infos so that the assembler can patch it. 324 std::pair<std::vector<uint8_t>, std::vector<DelayedAdvancePC>> ReleaseStreamAndPrepareForDelayedAdvancePC()325 ReleaseStreamAndPrepareForDelayedAdvancePC() { 326 DCHECK(delay_emitting_advance_pc_); 327 delay_emitting_advance_pc_ = false; 328 std::pair<std::vector<uint8_t>, std::vector<DelayedAdvancePC>> result; 329 result.first.swap(opcodes_); 330 result.second.swap(delayed_advance_pcs_); 331 return result; 332 } 333 334 // Reserve space for the CFI stream. ReserveCFIStream(size_t capacity)335 void ReserveCFIStream(size_t capacity) { 336 opcodes_.reserve(capacity); 337 } 338 339 // Append raw data to the CFI stream. AppendRawData(const std::vector<uint8_t> & raw_data,size_t first,size_t last)340 void AppendRawData(const std::vector<uint8_t>& raw_data, size_t first, size_t last) { 341 DCHECK_LE(0u, first); 342 DCHECK_LE(first, last); 343 DCHECK_LE(last, raw_data.size()); 344 opcodes_.insert(opcodes_.end(), raw_data.begin() + first, raw_data.begin() + last); 345 } 346 347 private: 348 Assembler* assembler_; 349 bool delay_emitting_advance_pc_; 350 std::vector<DelayedAdvancePC> delayed_advance_pcs_; 351 }; 352 353 class Assembler : public DeletableArenaObject<kArenaAllocAssembler> { 354 public: 355 static std::unique_ptr<Assembler> Create( 356 ArenaAllocator* arena, 357 InstructionSet instruction_set, 358 const InstructionSetFeatures* instruction_set_features = nullptr); 359 360 // Finalize the code; emit slow paths, fixup branches, add literal pool, etc. FinalizeCode()361 virtual void FinalizeCode() { buffer_.EmitSlowPaths(this); } 362 363 // Size of generated code CodeSize()364 virtual size_t CodeSize() const { return buffer_.Size(); } CodeBufferBaseAddress()365 virtual const uint8_t* CodeBufferBaseAddress() const { return buffer_.contents(); } 366 367 // Copy instructions out of assembly buffer into the given region of memory FinalizeInstructions(const MemoryRegion & region)368 virtual void FinalizeInstructions(const MemoryRegion& region) { 369 buffer_.FinalizeInstructions(region); 370 } 371 372 // TODO: Implement with disassembler. Comment(const char * format ATTRIBUTE_UNUSED,...)373 virtual void Comment(const char* format ATTRIBUTE_UNUSED, ...) {} 374 375 // Emit code that will create an activation on the stack 376 virtual void BuildFrame(size_t frame_size, ManagedRegister method_reg, 377 const std::vector<ManagedRegister>& callee_save_regs, 378 const ManagedRegisterEntrySpills& entry_spills) = 0; 379 380 // Emit code that will remove an activation from the stack 381 virtual void RemoveFrame(size_t frame_size, 382 const std::vector<ManagedRegister>& callee_save_regs) = 0; 383 384 virtual void IncreaseFrameSize(size_t adjust) = 0; 385 virtual void DecreaseFrameSize(size_t adjust) = 0; 386 387 // Store routines 388 virtual void Store(FrameOffset offs, ManagedRegister src, size_t size) = 0; 389 virtual void StoreRef(FrameOffset dest, ManagedRegister src) = 0; 390 virtual void StoreRawPtr(FrameOffset dest, ManagedRegister src) = 0; 391 392 virtual void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, 393 ManagedRegister scratch) = 0; 394 395 virtual void StoreImmediateToThread32(ThreadOffset<4> dest, uint32_t imm, 396 ManagedRegister scratch); 397 virtual void StoreImmediateToThread64(ThreadOffset<8> dest, uint32_t imm, 398 ManagedRegister scratch); 399 400 virtual void StoreStackOffsetToThread32(ThreadOffset<4> thr_offs, 401 FrameOffset fr_offs, 402 ManagedRegister scratch); 403 virtual void StoreStackOffsetToThread64(ThreadOffset<8> thr_offs, 404 FrameOffset fr_offs, 405 ManagedRegister scratch); 406 407 virtual void StoreStackPointerToThread32(ThreadOffset<4> thr_offs); 408 virtual void StoreStackPointerToThread64(ThreadOffset<8> thr_offs); 409 410 virtual void StoreSpanning(FrameOffset dest, ManagedRegister src, 411 FrameOffset in_off, ManagedRegister scratch) = 0; 412 413 // Load routines 414 virtual void Load(ManagedRegister dest, FrameOffset src, size_t size) = 0; 415 416 virtual void LoadFromThread32(ManagedRegister dest, ThreadOffset<4> src, size_t size); 417 virtual void LoadFromThread64(ManagedRegister dest, ThreadOffset<8> src, size_t size); 418 419 virtual void LoadRef(ManagedRegister dest, FrameOffset src) = 0; 420 // If unpoison_reference is true and kPoisonReference is true, then we negate the read reference. 421 virtual void LoadRef(ManagedRegister dest, ManagedRegister base, MemberOffset offs, 422 bool unpoison_reference) = 0; 423 424 virtual void LoadRawPtr(ManagedRegister dest, ManagedRegister base, Offset offs) = 0; 425 426 virtual void LoadRawPtrFromThread32(ManagedRegister dest, ThreadOffset<4> offs); 427 virtual void LoadRawPtrFromThread64(ManagedRegister dest, ThreadOffset<8> offs); 428 429 // Copying routines 430 virtual void Move(ManagedRegister dest, ManagedRegister src, size_t size) = 0; 431 432 virtual void CopyRawPtrFromThread32(FrameOffset fr_offs, ThreadOffset<4> thr_offs, 433 ManagedRegister scratch); 434 virtual void CopyRawPtrFromThread64(FrameOffset fr_offs, ThreadOffset<8> thr_offs, 435 ManagedRegister scratch); 436 437 virtual void CopyRawPtrToThread32(ThreadOffset<4> thr_offs, FrameOffset fr_offs, 438 ManagedRegister scratch); 439 virtual void CopyRawPtrToThread64(ThreadOffset<8> thr_offs, FrameOffset fr_offs, 440 ManagedRegister scratch); 441 442 virtual void CopyRef(FrameOffset dest, FrameOffset src, 443 ManagedRegister scratch) = 0; 444 445 virtual void Copy(FrameOffset dest, FrameOffset src, ManagedRegister scratch, size_t size) = 0; 446 447 virtual void Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, 448 ManagedRegister scratch, size_t size) = 0; 449 450 virtual void Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, 451 ManagedRegister scratch, size_t size) = 0; 452 453 virtual void Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset, 454 ManagedRegister scratch, size_t size) = 0; 455 456 virtual void Copy(ManagedRegister dest, Offset dest_offset, 457 ManagedRegister src, Offset src_offset, 458 ManagedRegister scratch, size_t size) = 0; 459 460 virtual void Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset, 461 ManagedRegister scratch, size_t size) = 0; 462 463 virtual void MemoryBarrier(ManagedRegister scratch) = 0; 464 465 // Sign extension 466 virtual void SignExtend(ManagedRegister mreg, size_t size) = 0; 467 468 // Zero extension 469 virtual void ZeroExtend(ManagedRegister mreg, size_t size) = 0; 470 471 // Exploit fast access in managed code to Thread::Current() 472 virtual void GetCurrentThread(ManagedRegister tr) = 0; 473 virtual void GetCurrentThread(FrameOffset dest_offset, 474 ManagedRegister scratch) = 0; 475 476 // Set up out_reg to hold a Object** into the handle scope, or to be null if the 477 // value is null and null_allowed. in_reg holds a possibly stale reference 478 // that can be used to avoid loading the handle scope entry to see if the value is 479 // null. 480 virtual void CreateHandleScopeEntry(ManagedRegister out_reg, FrameOffset handlescope_offset, 481 ManagedRegister in_reg, bool null_allowed) = 0; 482 483 // Set up out_off to hold a Object** into the handle scope, or to be null if the 484 // value is null and null_allowed. 485 virtual void CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handlescope_offset, 486 ManagedRegister scratch, bool null_allowed) = 0; 487 488 // src holds a handle scope entry (Object**) load this into dst 489 virtual void LoadReferenceFromHandleScope(ManagedRegister dst, 490 ManagedRegister src) = 0; 491 492 // Heap::VerifyObject on src. In some cases (such as a reference to this) we 493 // know that src may not be null. 494 virtual void VerifyObject(ManagedRegister src, bool could_be_null) = 0; 495 virtual void VerifyObject(FrameOffset src, bool could_be_null) = 0; 496 497 // Call to address held at [base+offset] 498 virtual void Call(ManagedRegister base, Offset offset, 499 ManagedRegister scratch) = 0; 500 virtual void Call(FrameOffset base, Offset offset, 501 ManagedRegister scratch) = 0; 502 virtual void CallFromThread32(ThreadOffset<4> offset, ManagedRegister scratch); 503 virtual void CallFromThread64(ThreadOffset<8> offset, ManagedRegister scratch); 504 505 // Generate code to check if Thread::Current()->exception_ is non-null 506 // and branch to a ExceptionSlowPath if it is. 507 virtual void ExceptionPoll(ManagedRegister scratch, size_t stack_adjust) = 0; 508 509 virtual void Bind(Label* label) = 0; 510 virtual void Jump(Label* label) = 0; 511 ~Assembler()512 virtual ~Assembler() {} 513 514 /** 515 * @brief Buffer of DWARF's Call Frame Information opcodes. 516 * @details It is used by debuggers and other tools to unwind the call stack. 517 */ cfi()518 DebugFrameOpCodeWriterForAssembler& cfi() { return cfi_; } 519 520 protected: Assembler(ArenaAllocator * arena)521 explicit Assembler(ArenaAllocator* arena) : buffer_(arena), cfi_(this) {} 522 GetArena()523 ArenaAllocator* GetArena() { 524 return buffer_.GetArena(); 525 } 526 527 AssemblerBuffer buffer_; 528 529 DebugFrameOpCodeWriterForAssembler cfi_; 530 }; 531 532 } // namespace art 533 534 #endif // ART_COMPILER_UTILS_ASSEMBLER_H_ 535