• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_UTILS_ASSEMBLER_H_
18 #define ART_COMPILER_UTILS_ASSEMBLER_H_
19 
20 #include <vector>
21 
22 #include "arch/instruction_set.h"
23 #include "arch/instruction_set_features.h"
24 #include "arm/constants_arm.h"
25 #include "base/arena_allocator.h"
26 #include "base/arena_object.h"
27 #include "base/logging.h"
28 #include "base/macros.h"
29 #include "debug/dwarf/debug_frame_opcode_writer.h"
30 #include "label.h"
31 #include "managed_register.h"
32 #include "memory_region.h"
33 #include "mips/constants_mips.h"
34 #include "offsets.h"
35 #include "x86/constants_x86.h"
36 #include "x86_64/constants_x86_64.h"
37 
38 namespace art {
39 
40 class Assembler;
41 class AssemblerBuffer;
42 
43 // Assembler fixups are positions in generated code that require processing
44 // after the code has been copied to executable memory. This includes building
45 // relocation information.
46 class AssemblerFixup {
47  public:
48   virtual void Process(const MemoryRegion& region, int position) = 0;
~AssemblerFixup()49   virtual ~AssemblerFixup() {}
50 
51  private:
52   AssemblerFixup* previous_;
53   int position_;
54 
previous()55   AssemblerFixup* previous() const { return previous_; }
set_previous(AssemblerFixup * previous_in)56   void set_previous(AssemblerFixup* previous_in) { previous_ = previous_in; }
57 
position()58   int position() const { return position_; }
set_position(int position_in)59   void set_position(int position_in) { position_ = position_in; }
60 
61   friend class AssemblerBuffer;
62 };
63 
64 // Parent of all queued slow paths, emitted during finalization
65 class SlowPath : public DeletableArenaObject<kArenaAllocAssembler> {
66  public:
SlowPath()67   SlowPath() : next_(nullptr) {}
~SlowPath()68   virtual ~SlowPath() {}
69 
Continuation()70   Label* Continuation() { return &continuation_; }
Entry()71   Label* Entry() { return &entry_; }
72   // Generate code for slow path
73   virtual void Emit(Assembler *sp_asm) = 0;
74 
75  protected:
76   // Entry branched to by fast path
77   Label entry_;
78   // Optional continuation that is branched to at the end of the slow path
79   Label continuation_;
80   // Next in linked list of slow paths
81   SlowPath *next_;
82 
83  private:
84   friend class AssemblerBuffer;
85   DISALLOW_COPY_AND_ASSIGN(SlowPath);
86 };
87 
88 class AssemblerBuffer {
89  public:
90   explicit AssemblerBuffer(ArenaAllocator* arena);
91   ~AssemblerBuffer();
92 
GetArena()93   ArenaAllocator* GetArena() {
94     return arena_;
95   }
96 
97   // Basic support for emitting, loading, and storing.
Emit(T value)98   template<typename T> void Emit(T value) {
99     CHECK(HasEnsuredCapacity());
100     *reinterpret_cast<T*>(cursor_) = value;
101     cursor_ += sizeof(T);
102   }
103 
Load(size_t position)104   template<typename T> T Load(size_t position) {
105     CHECK_LE(position, Size() - static_cast<int>(sizeof(T)));
106     return *reinterpret_cast<T*>(contents_ + position);
107   }
108 
Store(size_t position,T value)109   template<typename T> void Store(size_t position, T value) {
110     CHECK_LE(position, Size() - static_cast<int>(sizeof(T)));
111     *reinterpret_cast<T*>(contents_ + position) = value;
112   }
113 
Resize(size_t new_size)114   void Resize(size_t new_size) {
115     if (new_size > Capacity()) {
116       ExtendCapacity(new_size);
117     }
118     cursor_ = contents_ + new_size;
119   }
120 
Move(size_t newposition,size_t oldposition,size_t size)121   void Move(size_t newposition, size_t oldposition, size_t size) {
122     // Move a chunk of the buffer from oldposition to newposition.
123     DCHECK_LE(oldposition + size, Size());
124     DCHECK_LE(newposition + size, Size());
125     memmove(contents_ + newposition, contents_ + oldposition, size);
126   }
127 
128   // Emit a fixup at the current location.
EmitFixup(AssemblerFixup * fixup)129   void EmitFixup(AssemblerFixup* fixup) {
130     fixup->set_previous(fixup_);
131     fixup->set_position(Size());
132     fixup_ = fixup;
133   }
134 
EnqueueSlowPath(SlowPath * slowpath)135   void EnqueueSlowPath(SlowPath* slowpath) {
136     if (slow_path_ == nullptr) {
137       slow_path_ = slowpath;
138     } else {
139       SlowPath* cur = slow_path_;
140       for ( ; cur->next_ != nullptr ; cur = cur->next_) {}
141       cur->next_ = slowpath;
142     }
143   }
144 
EmitSlowPaths(Assembler * sp_asm)145   void EmitSlowPaths(Assembler* sp_asm) {
146     SlowPath* cur = slow_path_;
147     SlowPath* next = nullptr;
148     slow_path_ = nullptr;
149     for ( ; cur != nullptr ; cur = next) {
150       cur->Emit(sp_asm);
151       next = cur->next_;
152       delete cur;
153     }
154   }
155 
156   // Get the size of the emitted code.
Size()157   size_t Size() const {
158     CHECK_GE(cursor_, contents_);
159     return cursor_ - contents_;
160   }
161 
contents()162   uint8_t* contents() const { return contents_; }
163 
164   // Copy the assembled instructions into the specified memory block
165   // and apply all fixups.
166   void FinalizeInstructions(const MemoryRegion& region);
167 
168   // To emit an instruction to the assembler buffer, the EnsureCapacity helper
169   // must be used to guarantee that the underlying data area is big enough to
170   // hold the emitted instruction. Usage:
171   //
172   //     AssemblerBuffer buffer;
173   //     AssemblerBuffer::EnsureCapacity ensured(&buffer);
174   //     ... emit bytes for single instruction ...
175 
176 #ifndef NDEBUG
177 
178   class EnsureCapacity {
179    public:
EnsureCapacity(AssemblerBuffer * buffer)180     explicit EnsureCapacity(AssemblerBuffer* buffer) {
181       if (buffer->cursor() > buffer->limit()) {
182         buffer->ExtendCapacity(buffer->Size() + kMinimumGap);
183       }
184       // In debug mode, we save the assembler buffer along with the gap
185       // size before we start emitting to the buffer. This allows us to
186       // check that any single generated instruction doesn't overflow the
187       // limit implied by the minimum gap size.
188       buffer_ = buffer;
189       gap_ = ComputeGap();
190       // Make sure that extending the capacity leaves a big enough gap
191       // for any kind of instruction.
192       CHECK_GE(gap_, kMinimumGap);
193       // Mark the buffer as having ensured the capacity.
194       CHECK(!buffer->HasEnsuredCapacity());  // Cannot nest.
195       buffer->has_ensured_capacity_ = true;
196     }
197 
~EnsureCapacity()198     ~EnsureCapacity() {
199       // Unmark the buffer, so we cannot emit after this.
200       buffer_->has_ensured_capacity_ = false;
201       // Make sure the generated instruction doesn't take up more
202       // space than the minimum gap.
203       int delta = gap_ - ComputeGap();
204       CHECK_LE(delta, kMinimumGap);
205     }
206 
207    private:
208     AssemblerBuffer* buffer_;
209     int gap_;
210 
ComputeGap()211     int ComputeGap() { return buffer_->Capacity() - buffer_->Size(); }
212   };
213 
214   bool has_ensured_capacity_;
HasEnsuredCapacity()215   bool HasEnsuredCapacity() const { return has_ensured_capacity_; }
216 
217 #else
218 
219   class EnsureCapacity {
220    public:
EnsureCapacity(AssemblerBuffer * buffer)221     explicit EnsureCapacity(AssemblerBuffer* buffer) {
222       if (buffer->cursor() > buffer->limit()) {
223         buffer->ExtendCapacity(buffer->Size() + kMinimumGap);
224       }
225     }
226   };
227 
228   // When building the C++ tests, assertion code is enabled. To allow
229   // asserting that the user of the assembler buffer has ensured the
230   // capacity needed for emitting, we add a dummy method in non-debug mode.
HasEnsuredCapacity()231   bool HasEnsuredCapacity() const { return true; }
232 
233 #endif
234 
235   // Returns the position in the instruction stream.
GetPosition()236   int GetPosition() { return  cursor_ - contents_; }
237 
Capacity()238   size_t Capacity() const {
239     CHECK_GE(limit_, contents_);
240     return (limit_ - contents_) + kMinimumGap;
241   }
242 
243   // Unconditionally increase the capacity.
244   // The provided `min_capacity` must be higher than current `Capacity()`.
245   void ExtendCapacity(size_t min_capacity);
246 
247  private:
248   // The limit is set to kMinimumGap bytes before the end of the data area.
249   // This leaves enough space for the longest possible instruction and allows
250   // for a single, fast space check per instruction.
251   static const int kMinimumGap = 32;
252 
253   ArenaAllocator* arena_;
254   uint8_t* contents_;
255   uint8_t* cursor_;
256   uint8_t* limit_;
257   AssemblerFixup* fixup_;
258 #ifndef NDEBUG
259   bool fixups_processed_;
260 #endif
261 
262   // Head of linked list of slow paths
263   SlowPath* slow_path_;
264 
cursor()265   uint8_t* cursor() const { return cursor_; }
limit()266   uint8_t* limit() const { return limit_; }
267 
268   // Process the fixup chain starting at the given fixup. The offset is
269   // non-zero for fixups in the body if the preamble is non-empty.
270   void ProcessFixups(const MemoryRegion& region);
271 
272   // Compute the limit based on the data area and the capacity. See
273   // description of kMinimumGap for the reasoning behind the value.
ComputeLimit(uint8_t * data,size_t capacity)274   static uint8_t* ComputeLimit(uint8_t* data, size_t capacity) {
275     return data + capacity - kMinimumGap;
276   }
277 
278   friend class AssemblerFixup;
279 };
280 
281 // The purpose of this class is to ensure that we do not have to explicitly
282 // call the AdvancePC method (which is good for convenience and correctness).
283 class DebugFrameOpCodeWriterForAssembler FINAL
284     : public dwarf::DebugFrameOpCodeWriter<> {
285  public:
286   struct DelayedAdvancePC {
287     uint32_t stream_pos;
288     uint32_t pc;
289   };
290 
291   // This method is called the by the opcode writers.
292   virtual void ImplicitlyAdvancePC() FINAL;
293 
DebugFrameOpCodeWriterForAssembler(Assembler * buffer)294   explicit DebugFrameOpCodeWriterForAssembler(Assembler* buffer)
295       : dwarf::DebugFrameOpCodeWriter<>(false /* enabled */),
296         assembler_(buffer),
297         delay_emitting_advance_pc_(false),
298         delayed_advance_pcs_() {
299   }
300 
~DebugFrameOpCodeWriterForAssembler()301   ~DebugFrameOpCodeWriterForAssembler() {
302     DCHECK(delayed_advance_pcs_.empty());
303   }
304 
305   // Tell the writer to delay emitting advance PC info.
306   // The assembler must explicitly process all the delayed advances.
DelayEmittingAdvancePCs()307   void DelayEmittingAdvancePCs() {
308     delay_emitting_advance_pc_ = true;
309   }
310 
311   // Override the last delayed PC. The new PC can be out of order.
OverrideDelayedPC(size_t pc)312   void OverrideDelayedPC(size_t pc) {
313     DCHECK(delay_emitting_advance_pc_);
314     DCHECK(!delayed_advance_pcs_.empty());
315     delayed_advance_pcs_.back().pc = pc;
316   }
317 
318   // Return the number of delayed advance PC entries.
NumberOfDelayedAdvancePCs()319   size_t NumberOfDelayedAdvancePCs() const {
320     return delayed_advance_pcs_.size();
321   }
322 
323   // Release the CFI stream and advance PC infos so that the assembler can patch it.
324   std::pair<std::vector<uint8_t>, std::vector<DelayedAdvancePC>>
ReleaseStreamAndPrepareForDelayedAdvancePC()325   ReleaseStreamAndPrepareForDelayedAdvancePC() {
326     DCHECK(delay_emitting_advance_pc_);
327     delay_emitting_advance_pc_ = false;
328     std::pair<std::vector<uint8_t>, std::vector<DelayedAdvancePC>> result;
329     result.first.swap(opcodes_);
330     result.second.swap(delayed_advance_pcs_);
331     return result;
332   }
333 
334   // Reserve space for the CFI stream.
ReserveCFIStream(size_t capacity)335   void ReserveCFIStream(size_t capacity) {
336     opcodes_.reserve(capacity);
337   }
338 
339   // Append raw data to the CFI stream.
AppendRawData(const std::vector<uint8_t> & raw_data,size_t first,size_t last)340   void AppendRawData(const std::vector<uint8_t>& raw_data, size_t first, size_t last) {
341     DCHECK_LE(0u, first);
342     DCHECK_LE(first, last);
343     DCHECK_LE(last, raw_data.size());
344     opcodes_.insert(opcodes_.end(), raw_data.begin() + first, raw_data.begin() + last);
345   }
346 
347  private:
348   Assembler* assembler_;
349   bool delay_emitting_advance_pc_;
350   std::vector<DelayedAdvancePC> delayed_advance_pcs_;
351 };
352 
353 class Assembler : public DeletableArenaObject<kArenaAllocAssembler> {
354  public:
355   static std::unique_ptr<Assembler> Create(
356       ArenaAllocator* arena,
357       InstructionSet instruction_set,
358       const InstructionSetFeatures* instruction_set_features = nullptr);
359 
360   // Finalize the code; emit slow paths, fixup branches, add literal pool, etc.
FinalizeCode()361   virtual void FinalizeCode() { buffer_.EmitSlowPaths(this); }
362 
363   // Size of generated code
CodeSize()364   virtual size_t CodeSize() const { return buffer_.Size(); }
CodeBufferBaseAddress()365   virtual const uint8_t* CodeBufferBaseAddress() const { return buffer_.contents(); }
366 
367   // Copy instructions out of assembly buffer into the given region of memory
FinalizeInstructions(const MemoryRegion & region)368   virtual void FinalizeInstructions(const MemoryRegion& region) {
369     buffer_.FinalizeInstructions(region);
370   }
371 
372   // TODO: Implement with disassembler.
Comment(const char * format ATTRIBUTE_UNUSED,...)373   virtual void Comment(const char* format ATTRIBUTE_UNUSED, ...) {}
374 
375   // Emit code that will create an activation on the stack
376   virtual void BuildFrame(size_t frame_size, ManagedRegister method_reg,
377                           const std::vector<ManagedRegister>& callee_save_regs,
378                           const ManagedRegisterEntrySpills& entry_spills) = 0;
379 
380   // Emit code that will remove an activation from the stack
381   virtual void RemoveFrame(size_t frame_size,
382                            const std::vector<ManagedRegister>& callee_save_regs) = 0;
383 
384   virtual void IncreaseFrameSize(size_t adjust) = 0;
385   virtual void DecreaseFrameSize(size_t adjust) = 0;
386 
387   // Store routines
388   virtual void Store(FrameOffset offs, ManagedRegister src, size_t size) = 0;
389   virtual void StoreRef(FrameOffset dest, ManagedRegister src) = 0;
390   virtual void StoreRawPtr(FrameOffset dest, ManagedRegister src) = 0;
391 
392   virtual void StoreImmediateToFrame(FrameOffset dest, uint32_t imm,
393                                      ManagedRegister scratch) = 0;
394 
395   virtual void StoreImmediateToThread32(ThreadOffset<4> dest, uint32_t imm,
396                                         ManagedRegister scratch);
397   virtual void StoreImmediateToThread64(ThreadOffset<8> dest, uint32_t imm,
398                                         ManagedRegister scratch);
399 
400   virtual void StoreStackOffsetToThread32(ThreadOffset<4> thr_offs,
401                                           FrameOffset fr_offs,
402                                           ManagedRegister scratch);
403   virtual void StoreStackOffsetToThread64(ThreadOffset<8> thr_offs,
404                                           FrameOffset fr_offs,
405                                           ManagedRegister scratch);
406 
407   virtual void StoreStackPointerToThread32(ThreadOffset<4> thr_offs);
408   virtual void StoreStackPointerToThread64(ThreadOffset<8> thr_offs);
409 
410   virtual void StoreSpanning(FrameOffset dest, ManagedRegister src,
411                              FrameOffset in_off, ManagedRegister scratch) = 0;
412 
413   // Load routines
414   virtual void Load(ManagedRegister dest, FrameOffset src, size_t size) = 0;
415 
416   virtual void LoadFromThread32(ManagedRegister dest, ThreadOffset<4> src, size_t size);
417   virtual void LoadFromThread64(ManagedRegister dest, ThreadOffset<8> src, size_t size);
418 
419   virtual void LoadRef(ManagedRegister dest, FrameOffset src) = 0;
420   // If unpoison_reference is true and kPoisonReference is true, then we negate the read reference.
421   virtual void LoadRef(ManagedRegister dest, ManagedRegister base, MemberOffset offs,
422                        bool unpoison_reference) = 0;
423 
424   virtual void LoadRawPtr(ManagedRegister dest, ManagedRegister base, Offset offs) = 0;
425 
426   virtual void LoadRawPtrFromThread32(ManagedRegister dest, ThreadOffset<4> offs);
427   virtual void LoadRawPtrFromThread64(ManagedRegister dest, ThreadOffset<8> offs);
428 
429   // Copying routines
430   virtual void Move(ManagedRegister dest, ManagedRegister src, size_t size) = 0;
431 
432   virtual void CopyRawPtrFromThread32(FrameOffset fr_offs, ThreadOffset<4> thr_offs,
433                                       ManagedRegister scratch);
434   virtual void CopyRawPtrFromThread64(FrameOffset fr_offs, ThreadOffset<8> thr_offs,
435                                       ManagedRegister scratch);
436 
437   virtual void CopyRawPtrToThread32(ThreadOffset<4> thr_offs, FrameOffset fr_offs,
438                                     ManagedRegister scratch);
439   virtual void CopyRawPtrToThread64(ThreadOffset<8> thr_offs, FrameOffset fr_offs,
440                                     ManagedRegister scratch);
441 
442   virtual void CopyRef(FrameOffset dest, FrameOffset src,
443                        ManagedRegister scratch) = 0;
444 
445   virtual void Copy(FrameOffset dest, FrameOffset src, ManagedRegister scratch, size_t size) = 0;
446 
447   virtual void Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset,
448                     ManagedRegister scratch, size_t size) = 0;
449 
450   virtual void Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src,
451                     ManagedRegister scratch, size_t size) = 0;
452 
453   virtual void Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset,
454                     ManagedRegister scratch, size_t size) = 0;
455 
456   virtual void Copy(ManagedRegister dest, Offset dest_offset,
457                     ManagedRegister src, Offset src_offset,
458                     ManagedRegister scratch, size_t size) = 0;
459 
460   virtual void Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset,
461                     ManagedRegister scratch, size_t size) = 0;
462 
463   virtual void MemoryBarrier(ManagedRegister scratch) = 0;
464 
465   // Sign extension
466   virtual void SignExtend(ManagedRegister mreg, size_t size) = 0;
467 
468   // Zero extension
469   virtual void ZeroExtend(ManagedRegister mreg, size_t size) = 0;
470 
471   // Exploit fast access in managed code to Thread::Current()
472   virtual void GetCurrentThread(ManagedRegister tr) = 0;
473   virtual void GetCurrentThread(FrameOffset dest_offset,
474                                 ManagedRegister scratch) = 0;
475 
476   // Set up out_reg to hold a Object** into the handle scope, or to be null if the
477   // value is null and null_allowed. in_reg holds a possibly stale reference
478   // that can be used to avoid loading the handle scope entry to see if the value is
479   // null.
480   virtual void CreateHandleScopeEntry(ManagedRegister out_reg, FrameOffset handlescope_offset,
481                                ManagedRegister in_reg, bool null_allowed) = 0;
482 
483   // Set up out_off to hold a Object** into the handle scope, or to be null if the
484   // value is null and null_allowed.
485   virtual void CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handlescope_offset,
486                                ManagedRegister scratch, bool null_allowed) = 0;
487 
488   // src holds a handle scope entry (Object**) load this into dst
489   virtual void LoadReferenceFromHandleScope(ManagedRegister dst,
490                                      ManagedRegister src) = 0;
491 
492   // Heap::VerifyObject on src. In some cases (such as a reference to this) we
493   // know that src may not be null.
494   virtual void VerifyObject(ManagedRegister src, bool could_be_null) = 0;
495   virtual void VerifyObject(FrameOffset src, bool could_be_null) = 0;
496 
497   // Call to address held at [base+offset]
498   virtual void Call(ManagedRegister base, Offset offset,
499                     ManagedRegister scratch) = 0;
500   virtual void Call(FrameOffset base, Offset offset,
501                     ManagedRegister scratch) = 0;
502   virtual void CallFromThread32(ThreadOffset<4> offset, ManagedRegister scratch);
503   virtual void CallFromThread64(ThreadOffset<8> offset, ManagedRegister scratch);
504 
505   // Generate code to check if Thread::Current()->exception_ is non-null
506   // and branch to a ExceptionSlowPath if it is.
507   virtual void ExceptionPoll(ManagedRegister scratch, size_t stack_adjust) = 0;
508 
509   virtual void Bind(Label* label) = 0;
510   virtual void Jump(Label* label) = 0;
511 
~Assembler()512   virtual ~Assembler() {}
513 
514   /**
515    * @brief Buffer of DWARF's Call Frame Information opcodes.
516    * @details It is used by debuggers and other tools to unwind the call stack.
517    */
cfi()518   DebugFrameOpCodeWriterForAssembler& cfi() { return cfi_; }
519 
520  protected:
Assembler(ArenaAllocator * arena)521   explicit Assembler(ArenaAllocator* arena) : buffer_(arena), cfi_(this) {}
522 
GetArena()523   ArenaAllocator* GetArena() {
524     return buffer_.GetArena();
525   }
526 
527   AssemblerBuffer buffer_;
528 
529   DebugFrameOpCodeWriterForAssembler cfi_;
530 };
531 
532 }  // namespace art
533 
534 #endif  // ART_COMPILER_UTILS_ASSEMBLER_H_
535