• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ssa_liveness_analysis.h"
18 
19 #include "base/bit_vector-inl.h"
20 #include "code_generator.h"
21 #include "nodes.h"
22 
23 namespace art {
24 
Analyze()25 void SsaLivenessAnalysis::Analyze() {
26   LinearizeGraph();
27   NumberInstructions();
28   ComputeLiveness();
29 }
30 
IsLoop(HLoopInformation * info)31 static bool IsLoop(HLoopInformation* info) {
32   return info != nullptr;
33 }
34 
InSameLoop(HLoopInformation * first_loop,HLoopInformation * second_loop)35 static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) {
36   return first_loop == second_loop;
37 }
38 
IsInnerLoop(HLoopInformation * outer,HLoopInformation * inner)39 static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) {
40   return (inner != outer)
41       && (inner != nullptr)
42       && (outer != nullptr)
43       && inner->IsIn(*outer);
44 }
45 
AddToListForLinearization(ArenaVector<HBasicBlock * > * worklist,HBasicBlock * block)46 static void AddToListForLinearization(ArenaVector<HBasicBlock*>* worklist, HBasicBlock* block) {
47   HLoopInformation* block_loop = block->GetLoopInformation();
48   auto insert_pos = worklist->rbegin();  // insert_pos.base() will be the actual position.
49   for (auto end = worklist->rend(); insert_pos != end; ++insert_pos) {
50     HBasicBlock* current = *insert_pos;
51     HLoopInformation* current_loop = current->GetLoopInformation();
52     if (InSameLoop(block_loop, current_loop)
53         || !IsLoop(current_loop)
54         || IsInnerLoop(current_loop, block_loop)) {
55       // The block can be processed immediately.
56       break;
57     }
58   }
59   worklist->insert(insert_pos.base(), block);
60 }
61 
LinearizeGraph()62 void SsaLivenessAnalysis::LinearizeGraph() {
63   // Create a reverse post ordering with the following properties:
64   // - Blocks in a loop are consecutive,
65   // - Back-edge is the last block before loop exits.
66 
67   // (1): Record the number of forward predecessors for each block. This is to
68   //      ensure the resulting order is reverse post order. We could use the
69   //      current reverse post order in the graph, but it would require making
70   //      order queries to a GrowableArray, which is not the best data structure
71   //      for it.
72   ArenaVector<uint32_t> forward_predecessors(graph_->GetBlocks().size(),
73                                              graph_->GetArena()->Adapter(kArenaAllocSsaLiveness));
74   for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
75     HBasicBlock* block = it.Current();
76     size_t number_of_forward_predecessors = block->GetPredecessors().size();
77     if (block->IsLoopHeader()) {
78       number_of_forward_predecessors -= block->GetLoopInformation()->NumberOfBackEdges();
79     }
80     forward_predecessors[block->GetBlockId()] = number_of_forward_predecessors;
81   }
82 
83   // (2): Following a worklist approach, first start with the entry block, and
84   //      iterate over the successors. When all non-back edge predecessors of a
85   //      successor block are visited, the successor block is added in the worklist
86   //      following an order that satisfies the requirements to build our linear graph.
87   graph_->linear_order_.reserve(graph_->GetReversePostOrder().size());
88   ArenaVector<HBasicBlock*> worklist(graph_->GetArena()->Adapter(kArenaAllocSsaLiveness));
89   worklist.push_back(graph_->GetEntryBlock());
90   do {
91     HBasicBlock* current = worklist.back();
92     worklist.pop_back();
93     graph_->linear_order_.push_back(current);
94     for (HBasicBlock* successor : current->GetSuccessors()) {
95       int block_id = successor->GetBlockId();
96       size_t number_of_remaining_predecessors = forward_predecessors[block_id];
97       if (number_of_remaining_predecessors == 1) {
98         AddToListForLinearization(&worklist, successor);
99       }
100       forward_predecessors[block_id] = number_of_remaining_predecessors - 1;
101     }
102   } while (!worklist.empty());
103 }
104 
NumberInstructions()105 void SsaLivenessAnalysis::NumberInstructions() {
106   int ssa_index = 0;
107   size_t lifetime_position = 0;
108   // Each instruction gets a lifetime position, and a block gets a lifetime
109   // start and end position. Non-phi instructions have a distinct lifetime position than
110   // the block they are in. Phi instructions have the lifetime start of their block as
111   // lifetime position.
112   //
113   // Because the register allocator will insert moves in the graph, we need
114   // to differentiate between the start and end of an instruction. Adding 2 to
115   // the lifetime position for each instruction ensures the start of an
116   // instruction is different than the end of the previous instruction.
117   for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) {
118     HBasicBlock* block = it.Current();
119     block->SetLifetimeStart(lifetime_position);
120 
121     for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
122       HInstruction* current = inst_it.Current();
123       codegen_->AllocateLocations(current);
124       LocationSummary* locations = current->GetLocations();
125       if (locations != nullptr && locations->Out().IsValid()) {
126         instructions_from_ssa_index_.push_back(current);
127         current->SetSsaIndex(ssa_index++);
128         current->SetLiveInterval(
129             LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current));
130       }
131       current->SetLifetimePosition(lifetime_position);
132     }
133     lifetime_position += 2;
134 
135     // Add a null marker to notify we are starting a block.
136     instructions_from_lifetime_position_.push_back(nullptr);
137 
138     for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done();
139          inst_it.Advance()) {
140       HInstruction* current = inst_it.Current();
141       codegen_->AllocateLocations(current);
142       LocationSummary* locations = current->GetLocations();
143       if (locations != nullptr && locations->Out().IsValid()) {
144         instructions_from_ssa_index_.push_back(current);
145         current->SetSsaIndex(ssa_index++);
146         current->SetLiveInterval(
147             LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current));
148       }
149       instructions_from_lifetime_position_.push_back(current);
150       current->SetLifetimePosition(lifetime_position);
151       lifetime_position += 2;
152     }
153 
154     block->SetLifetimeEnd(lifetime_position);
155   }
156   number_of_ssa_values_ = ssa_index;
157 }
158 
ComputeLiveness()159 void SsaLivenessAnalysis::ComputeLiveness() {
160   for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) {
161     HBasicBlock* block = it.Current();
162     block_infos_[block->GetBlockId()] =
163         new (graph_->GetArena()) BlockInfo(graph_->GetArena(), *block, number_of_ssa_values_);
164   }
165 
166   // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
167   // This method does not handle backward branches for the sets, therefore live_in
168   // and live_out sets are not yet correct.
169   ComputeLiveRanges();
170 
171   // Do a fixed point calculation to take into account backward branches,
172   // that will update live_in of loop headers, and therefore live_out and live_in
173   // of blocks in the loop.
174   ComputeLiveInAndLiveOutSets();
175 }
176 
RecursivelyProcessInputs(HInstruction * current,HInstruction * actual_user,BitVector * live_in)177 static void RecursivelyProcessInputs(HInstruction* current,
178                                      HInstruction* actual_user,
179                                      BitVector* live_in) {
180   for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
181     HInstruction* input = current->InputAt(i);
182     bool has_in_location = current->GetLocations()->InAt(i).IsValid();
183     bool has_out_location = input->GetLocations()->Out().IsValid();
184 
185     if (has_in_location) {
186       DCHECK(has_out_location)
187           << "Instruction " << current->DebugName() << current->GetId()
188           << " expects an input value at index " << i << " but "
189           << input->DebugName() << input->GetId() << " does not produce one.";
190       DCHECK(input->HasSsaIndex());
191       // `input` generates a result used by `current`. Add use and update
192       // the live-in set.
193       input->GetLiveInterval()->AddUse(current, /* environment */ nullptr, i, actual_user);
194       live_in->SetBit(input->GetSsaIndex());
195     } else if (has_out_location) {
196       // `input` generates a result but it is not used by `current`.
197     } else {
198       // `input` is inlined into `current`. Walk over its inputs and record
199       // uses at `current`.
200       DCHECK(input->IsEmittedAtUseSite());
201       // Check that the inlined input is not a phi. Recursing on loop phis could
202       // lead to an infinite loop.
203       DCHECK(!input->IsPhi());
204       RecursivelyProcessInputs(input, actual_user, live_in);
205     }
206   }
207 }
208 
ComputeLiveRanges()209 void SsaLivenessAnalysis::ComputeLiveRanges() {
210   // Do a post order visit, adding inputs of instructions live in the block where
211   // that instruction is defined, and killing instructions that are being visited.
212   for (HLinearPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
213     HBasicBlock* block = it.Current();
214 
215     BitVector* kill = GetKillSet(*block);
216     BitVector* live_in = GetLiveInSet(*block);
217 
218     // Set phi inputs of successors of this block corresponding to this block
219     // as live_in.
220     for (HBasicBlock* successor : block->GetSuccessors()) {
221       live_in->Union(GetLiveInSet(*successor));
222       if (successor->IsCatchBlock()) {
223         // Inputs of catch phis will be kept alive through their environment
224         // uses, allowing the runtime to copy their values to the corresponding
225         // catch phi spill slots when an exception is thrown.
226         // The only instructions which may not be recorded in the environments
227         // are constants created by the SSA builder as typed equivalents of
228         // untyped constants from the bytecode, or phis with only such constants
229         // as inputs (verified by GraphChecker). Their raw binary value must
230         // therefore be the same and we only need to keep alive one.
231       } else {
232         size_t phi_input_index = successor->GetPredecessorIndexOf(block);
233         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
234           HInstruction* phi = phi_it.Current();
235           HInstruction* input = phi->InputAt(phi_input_index);
236           input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
237           // A phi input whose last user is the phi dies at the end of the predecessor block,
238           // and not at the phi's lifetime position.
239           live_in->SetBit(input->GetSsaIndex());
240         }
241       }
242     }
243 
244     // Add a range that covers this block to all instructions live_in because of successors.
245     // Instructions defined in this block will have their start of the range adjusted.
246     for (uint32_t idx : live_in->Indexes()) {
247       HInstruction* current = GetInstructionFromSsaIndex(idx);
248       current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
249     }
250 
251     for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
252          back_it.Advance()) {
253       HInstruction* current = back_it.Current();
254       if (current->HasSsaIndex()) {
255         // Kill the instruction and shorten its interval.
256         kill->SetBit(current->GetSsaIndex());
257         live_in->ClearBit(current->GetSsaIndex());
258         current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
259       }
260 
261       // Process the environment first, because we know their uses come after
262       // or at the same liveness position of inputs.
263       for (HEnvironment* environment = current->GetEnvironment();
264            environment != nullptr;
265            environment = environment->GetParent()) {
266         // Handle environment uses. See statements (b) and (c) of the
267         // SsaLivenessAnalysis.
268         for (size_t i = 0, e = environment->Size(); i < e; ++i) {
269           HInstruction* instruction = environment->GetInstructionAt(i);
270           bool should_be_live = ShouldBeLiveForEnvironment(current, instruction);
271           if (should_be_live) {
272             DCHECK(instruction->HasSsaIndex());
273             live_in->SetBit(instruction->GetSsaIndex());
274           }
275           if (instruction != nullptr) {
276             instruction->GetLiveInterval()->AddUse(
277                 current, environment, i, /* actual_user */ nullptr, should_be_live);
278           }
279         }
280       }
281 
282       // Process inputs of instructions.
283       if (current->IsEmittedAtUseSite()) {
284         if (kIsDebugBuild) {
285           DCHECK(!current->GetLocations()->Out().IsValid());
286           for (const HUseListNode<HInstruction*>& use : current->GetUses()) {
287             HInstruction* user = use.GetUser();
288             size_t index = use.GetIndex();
289             DCHECK(!user->GetLocations()->InAt(index).IsValid());
290           }
291           DCHECK(!current->HasEnvironmentUses());
292         }
293       } else {
294         RecursivelyProcessInputs(current, current, live_in);
295       }
296     }
297 
298     // Kill phis defined in this block.
299     for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
300       HInstruction* current = inst_it.Current();
301       if (current->HasSsaIndex()) {
302         kill->SetBit(current->GetSsaIndex());
303         live_in->ClearBit(current->GetSsaIndex());
304         LiveInterval* interval = current->GetLiveInterval();
305         DCHECK((interval->GetFirstRange() == nullptr)
306                || (interval->GetStart() == current->GetLifetimePosition()));
307         interval->SetFrom(current->GetLifetimePosition());
308       }
309     }
310 
311     if (block->IsLoopHeader()) {
312       if (kIsDebugBuild) {
313         CheckNoLiveInIrreducibleLoop(*block);
314       }
315       size_t last_position = block->GetLoopInformation()->GetLifetimeEnd();
316       // For all live_in instructions at the loop header, we need to create a range
317       // that covers the full loop.
318       for (uint32_t idx : live_in->Indexes()) {
319         HInstruction* current = GetInstructionFromSsaIndex(idx);
320         current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(), last_position);
321       }
322     }
323   }
324 }
325 
ComputeLiveInAndLiveOutSets()326 void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
327   bool changed;
328   do {
329     changed = false;
330 
331     for (HPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
332       const HBasicBlock& block = *it.Current();
333 
334       // The live_in set depends on the kill set (which does not
335       // change in this loop), and the live_out set.  If the live_out
336       // set does not change, there is no need to update the live_in set.
337       if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
338         if (kIsDebugBuild) {
339           CheckNoLiveInIrreducibleLoop(block);
340         }
341         changed = true;
342       }
343     }
344   } while (changed);
345 }
346 
UpdateLiveOut(const HBasicBlock & block)347 bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
348   BitVector* live_out = GetLiveOutSet(block);
349   bool changed = false;
350   // The live_out set of a block is the union of live_in sets of its successors.
351   for (HBasicBlock* successor : block.GetSuccessors()) {
352     if (live_out->Union(GetLiveInSet(*successor))) {
353       changed = true;
354     }
355   }
356   return changed;
357 }
358 
359 
UpdateLiveIn(const HBasicBlock & block)360 bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
361   BitVector* live_out = GetLiveOutSet(block);
362   BitVector* kill = GetKillSet(block);
363   BitVector* live_in = GetLiveInSet(block);
364   // If live_out is updated (because of backward branches), we need to make
365   // sure instructions in live_out are also in live_in, unless they are killed
366   // by this block.
367   return live_in->UnionIfNotIn(live_out, kill);
368 }
369 
RegisterOrLowRegister(Location location)370 static int RegisterOrLowRegister(Location location) {
371   return location.IsPair() ? location.low() : location.reg();
372 }
373 
FindFirstRegisterHint(size_t * free_until,const SsaLivenessAnalysis & liveness) const374 int LiveInterval::FindFirstRegisterHint(size_t* free_until,
375                                         const SsaLivenessAnalysis& liveness) const {
376   DCHECK(!IsHighInterval());
377   if (IsTemp()) return kNoRegister;
378 
379   if (GetParent() == this && defined_by_ != nullptr) {
380     // This is the first interval for the instruction. Try to find
381     // a register based on its definition.
382     DCHECK_EQ(defined_by_->GetLiveInterval(), this);
383     int hint = FindHintAtDefinition();
384     if (hint != kNoRegister && free_until[hint] > GetStart()) {
385       return hint;
386     }
387   }
388 
389   if (IsSplit() && liveness.IsAtBlockBoundary(GetStart() / 2)) {
390     // If the start of this interval is at a block boundary, we look at the
391     // location of the interval in blocks preceding the block this interval
392     // starts at. If one location is a register we return it as a hint. This
393     // will avoid a move between the two blocks.
394     HBasicBlock* block = liveness.GetBlockFromPosition(GetStart() / 2);
395     size_t next_register_use = FirstRegisterUse();
396     for (HBasicBlock* predecessor : block->GetPredecessors()) {
397       size_t position = predecessor->GetLifetimeEnd() - 1;
398       // We know positions above GetStart() do not have a location yet.
399       if (position < GetStart()) {
400         LiveInterval* existing = GetParent()->GetSiblingAt(position);
401         if (existing != nullptr
402             && existing->HasRegister()
403             // It's worth using that register if it is available until
404             // the next use.
405             && (free_until[existing->GetRegister()] >= next_register_use)) {
406           return existing->GetRegister();
407         }
408       }
409     }
410   }
411 
412   UsePosition* use = first_use_;
413   size_t start = GetStart();
414   size_t end = GetEnd();
415   while (use != nullptr && use->GetPosition() <= end) {
416     size_t use_position = use->GetPosition();
417     if (use_position >= start && !use->IsSynthesized()) {
418       HInstruction* user = use->GetUser();
419       size_t input_index = use->GetInputIndex();
420       if (user->IsPhi()) {
421         // If the phi has a register, try to use the same.
422         Location phi_location = user->GetLiveInterval()->ToLocation();
423         if (phi_location.IsRegisterKind()) {
424           DCHECK(SameRegisterKind(phi_location));
425           int reg = RegisterOrLowRegister(phi_location);
426           if (free_until[reg] >= use_position) {
427             return reg;
428           }
429         }
430         // If the instruction dies at the phi assignment, we can try having the
431         // same register.
432         if (end == user->GetBlock()->GetPredecessors()[input_index]->GetLifetimeEnd()) {
433           for (size_t i = 0, e = user->InputCount(); i < e; ++i) {
434             if (i == input_index) {
435               continue;
436             }
437             HInstruction* input = user->InputAt(i);
438             Location location = input->GetLiveInterval()->GetLocationAt(
439                 user->GetBlock()->GetPredecessors()[i]->GetLifetimeEnd() - 1);
440             if (location.IsRegisterKind()) {
441               int reg = RegisterOrLowRegister(location);
442               if (free_until[reg] >= use_position) {
443                 return reg;
444               }
445             }
446           }
447         }
448       } else {
449         // If the instruction is expected in a register, try to use it.
450         LocationSummary* locations = user->GetLocations();
451         Location expected = locations->InAt(use->GetInputIndex());
452         // We use the user's lifetime position - 1 (and not `use_position`) because the
453         // register is blocked at the beginning of the user.
454         size_t position = user->GetLifetimePosition() - 1;
455         if (expected.IsRegisterKind()) {
456           DCHECK(SameRegisterKind(expected));
457           int reg = RegisterOrLowRegister(expected);
458           if (free_until[reg] >= position) {
459             return reg;
460           }
461         }
462       }
463     }
464     use = use->GetNext();
465   }
466 
467   return kNoRegister;
468 }
469 
FindHintAtDefinition() const470 int LiveInterval::FindHintAtDefinition() const {
471   if (defined_by_->IsPhi()) {
472     // Try to use the same register as one of the inputs.
473     const ArenaVector<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
474     for (size_t i = 0, e = defined_by_->InputCount(); i < e; ++i) {
475       HInstruction* input = defined_by_->InputAt(i);
476       size_t end = predecessors[i]->GetLifetimeEnd();
477       LiveInterval* input_interval = input->GetLiveInterval()->GetSiblingAt(end - 1);
478       if (input_interval->GetEnd() == end) {
479         // If the input dies at the end of the predecessor, we know its register can
480         // be reused.
481         Location input_location = input_interval->ToLocation();
482         if (input_location.IsRegisterKind()) {
483           DCHECK(SameRegisterKind(input_location));
484           return RegisterOrLowRegister(input_location);
485         }
486       }
487     }
488   } else {
489     LocationSummary* locations = GetDefinedBy()->GetLocations();
490     Location out = locations->Out();
491     if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
492       // Try to use the same register as the first input.
493       LiveInterval* input_interval =
494           GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetSiblingAt(GetStart() - 1);
495       if (input_interval->GetEnd() == GetStart()) {
496         // If the input dies at the start of this instruction, we know its register can
497         // be reused.
498         Location location = input_interval->ToLocation();
499         if (location.IsRegisterKind()) {
500           DCHECK(SameRegisterKind(location));
501           return RegisterOrLowRegister(location);
502         }
503       }
504     }
505   }
506   return kNoRegister;
507 }
508 
SameRegisterKind(Location other) const509 bool LiveInterval::SameRegisterKind(Location other) const {
510   if (IsFloatingPoint()) {
511     if (IsLowInterval() || IsHighInterval()) {
512       return other.IsFpuRegisterPair();
513     } else {
514       return other.IsFpuRegister();
515     }
516   } else {
517     if (IsLowInterval() || IsHighInterval()) {
518       return other.IsRegisterPair();
519     } else {
520       return other.IsRegister();
521     }
522   }
523 }
524 
NeedsTwoSpillSlots() const525 bool LiveInterval::NeedsTwoSpillSlots() const {
526   return type_ == Primitive::kPrimLong || type_ == Primitive::kPrimDouble;
527 }
528 
ToLocation() const529 Location LiveInterval::ToLocation() const {
530   DCHECK(!IsHighInterval());
531   if (HasRegister()) {
532     if (IsFloatingPoint()) {
533       if (HasHighInterval()) {
534         return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
535       } else {
536         return Location::FpuRegisterLocation(GetRegister());
537       }
538     } else {
539       if (HasHighInterval()) {
540         return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
541       } else {
542         return Location::RegisterLocation(GetRegister());
543       }
544     }
545   } else {
546     HInstruction* defined_by = GetParent()->GetDefinedBy();
547     if (defined_by->IsConstant()) {
548       return defined_by->GetLocations()->Out();
549     } else if (GetParent()->HasSpillSlot()) {
550       if (NeedsTwoSpillSlots()) {
551         return Location::DoubleStackSlot(GetParent()->GetSpillSlot());
552       } else {
553         return Location::StackSlot(GetParent()->GetSpillSlot());
554       }
555     } else {
556       return Location();
557     }
558   }
559 }
560 
GetLocationAt(size_t position)561 Location LiveInterval::GetLocationAt(size_t position) {
562   LiveInterval* sibling = GetSiblingAt(position);
563   DCHECK(sibling != nullptr);
564   return sibling->ToLocation();
565 }
566 
GetSiblingAt(size_t position)567 LiveInterval* LiveInterval::GetSiblingAt(size_t position) {
568   LiveInterval* current = this;
569   while (current != nullptr && !current->IsDefinedAt(position)) {
570     current = current->GetNextSibling();
571   }
572   return current;
573 }
574 
575 }  // namespace art
576