1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "DAGISelMatcher.h"
11 #include "CodeGenDAGPatterns.h"
12 #include "CodeGenRegisters.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringMap.h"
16 #include "llvm/TableGen/Error.h"
17 #include "llvm/TableGen/Record.h"
18 #include <utility>
19 using namespace llvm;
20
21
22 /// getRegisterValueType - Look up and return the ValueType of the specified
23 /// register. If the register is a member of multiple register classes which
24 /// have different associated types, return MVT::Other.
getRegisterValueType(Record * R,const CodeGenTarget & T)25 static MVT::SimpleValueType getRegisterValueType(Record *R,
26 const CodeGenTarget &T) {
27 bool FoundRC = false;
28 MVT::SimpleValueType VT = MVT::Other;
29 const CodeGenRegister *Reg = T.getRegBank().getReg(R);
30
31 for (const auto &RC : T.getRegBank().getRegClasses()) {
32 if (!RC.contains(Reg))
33 continue;
34
35 if (!FoundRC) {
36 FoundRC = true;
37 VT = RC.getValueTypeNum(0);
38 continue;
39 }
40
41 // If this occurs in multiple register classes, they all have to agree.
42 assert(VT == RC.getValueTypeNum(0));
43 }
44 return VT;
45 }
46
47
48 namespace {
49 class MatcherGen {
50 const PatternToMatch &Pattern;
51 const CodeGenDAGPatterns &CGP;
52
53 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
54 /// out with all of the types removed. This allows us to insert type checks
55 /// as we scan the tree.
56 TreePatternNode *PatWithNoTypes;
57
58 /// VariableMap - A map from variable names ('$dst') to the recorded operand
59 /// number that they were captured as. These are biased by 1 to make
60 /// insertion easier.
61 StringMap<unsigned> VariableMap;
62
63 /// This maintains the recorded operand number that OPC_CheckComplexPattern
64 /// drops each sub-operand into. We don't want to insert these into
65 /// VariableMap because that leads to identity checking if they are
66 /// encountered multiple times. Biased by 1 like VariableMap for
67 /// consistency.
68 StringMap<unsigned> NamedComplexPatternOperands;
69
70 /// NextRecordedOperandNo - As we emit opcodes to record matched values in
71 /// the RecordedNodes array, this keeps track of which slot will be next to
72 /// record into.
73 unsigned NextRecordedOperandNo;
74
75 /// MatchedChainNodes - This maintains the position in the recorded nodes
76 /// array of all of the recorded input nodes that have chains.
77 SmallVector<unsigned, 2> MatchedChainNodes;
78
79 /// MatchedGlueResultNodes - This maintains the position in the recorded
80 /// nodes array of all of the recorded input nodes that have glue results.
81 SmallVector<unsigned, 2> MatchedGlueResultNodes;
82
83 /// MatchedComplexPatterns - This maintains a list of all of the
84 /// ComplexPatterns that we need to check. The second element of each pair
85 /// is the recorded operand number of the input node.
86 SmallVector<std::pair<const TreePatternNode*,
87 unsigned>, 2> MatchedComplexPatterns;
88
89 /// PhysRegInputs - List list has an entry for each explicitly specified
90 /// physreg input to the pattern. The first elt is the Register node, the
91 /// second is the recorded slot number the input pattern match saved it in.
92 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
93
94 /// Matcher - This is the top level of the generated matcher, the result.
95 Matcher *TheMatcher;
96
97 /// CurPredicate - As we emit matcher nodes, this points to the latest check
98 /// which should have future checks stuck into its Next position.
99 Matcher *CurPredicate;
100 public:
101 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
102
~MatcherGen()103 ~MatcherGen() {
104 delete PatWithNoTypes;
105 }
106
107 bool EmitMatcherCode(unsigned Variant);
108 void EmitResultCode();
109
GetMatcher() const110 Matcher *GetMatcher() const { return TheMatcher; }
111 private:
112 void AddMatcher(Matcher *NewNode);
113 void InferPossibleTypes();
114
115 // Matcher Generation.
116 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
117 void EmitLeafMatchCode(const TreePatternNode *N);
118 void EmitOperatorMatchCode(const TreePatternNode *N,
119 TreePatternNode *NodeNoTypes);
120
121 /// If this is the first time a node with unique identifier Name has been
122 /// seen, record it. Otherwise, emit a check to make sure this is the same
123 /// node. Returns true if this is the first encounter.
124 bool recordUniqueNode(std::string Name);
125
126 // Result Code Generation.
getNamedArgumentSlot(StringRef Name)127 unsigned getNamedArgumentSlot(StringRef Name) {
128 unsigned VarMapEntry = VariableMap[Name];
129 assert(VarMapEntry != 0 &&
130 "Variable referenced but not defined and not caught earlier!");
131 return VarMapEntry-1;
132 }
133
134 /// GetInstPatternNode - Get the pattern for an instruction.
135 const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
136 const TreePatternNode *N);
137
138 void EmitResultOperand(const TreePatternNode *N,
139 SmallVectorImpl<unsigned> &ResultOps);
140 void EmitResultOfNamedOperand(const TreePatternNode *N,
141 SmallVectorImpl<unsigned> &ResultOps);
142 void EmitResultLeafAsOperand(const TreePatternNode *N,
143 SmallVectorImpl<unsigned> &ResultOps);
144 void EmitResultInstructionAsOperand(const TreePatternNode *N,
145 SmallVectorImpl<unsigned> &ResultOps);
146 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
147 SmallVectorImpl<unsigned> &ResultOps);
148 };
149
150 } // end anon namespace.
151
MatcherGen(const PatternToMatch & pattern,const CodeGenDAGPatterns & cgp)152 MatcherGen::MatcherGen(const PatternToMatch &pattern,
153 const CodeGenDAGPatterns &cgp)
154 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
155 TheMatcher(nullptr), CurPredicate(nullptr) {
156 // We need to produce the matcher tree for the patterns source pattern. To do
157 // this we need to match the structure as well as the types. To do the type
158 // matching, we want to figure out the fewest number of type checks we need to
159 // emit. For example, if there is only one integer type supported by a
160 // target, there should be no type comparisons at all for integer patterns!
161 //
162 // To figure out the fewest number of type checks needed, clone the pattern,
163 // remove the types, then perform type inference on the pattern as a whole.
164 // If there are unresolved types, emit an explicit check for those types,
165 // apply the type to the tree, then rerun type inference. Iterate until all
166 // types are resolved.
167 //
168 PatWithNoTypes = Pattern.getSrcPattern()->clone();
169 PatWithNoTypes->RemoveAllTypes();
170
171 // If there are types that are manifestly known, infer them.
172 InferPossibleTypes();
173 }
174
175 /// InferPossibleTypes - As we emit the pattern, we end up generating type
176 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
177 /// want to propagate implied types as far throughout the tree as possible so
178 /// that we avoid doing redundant type checks. This does the type propagation.
InferPossibleTypes()179 void MatcherGen::InferPossibleTypes() {
180 // TP - Get *SOME* tree pattern, we don't care which. It is only used for
181 // diagnostics, which we know are impossible at this point.
182 TreePattern &TP = *CGP.pf_begin()->second;
183
184 bool MadeChange = true;
185 while (MadeChange)
186 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
187 true/*Ignore reg constraints*/);
188 }
189
190
191 /// AddMatcher - Add a matcher node to the current graph we're building.
AddMatcher(Matcher * NewNode)192 void MatcherGen::AddMatcher(Matcher *NewNode) {
193 if (CurPredicate)
194 CurPredicate->setNext(NewNode);
195 else
196 TheMatcher = NewNode;
197 CurPredicate = NewNode;
198 }
199
200
201 //===----------------------------------------------------------------------===//
202 // Pattern Match Generation
203 //===----------------------------------------------------------------------===//
204
205 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
EmitLeafMatchCode(const TreePatternNode * N)206 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
207 assert(N->isLeaf() && "Not a leaf?");
208
209 // Direct match against an integer constant.
210 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
211 // If this is the root of the dag we're matching, we emit a redundant opcode
212 // check to ensure that this gets folded into the normal top-level
213 // OpcodeSwitch.
214 if (N == Pattern.getSrcPattern()) {
215 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
216 AddMatcher(new CheckOpcodeMatcher(NI));
217 }
218
219 return AddMatcher(new CheckIntegerMatcher(II->getValue()));
220 }
221
222 // An UnsetInit represents a named node without any constraints.
223 if (isa<UnsetInit>(N->getLeafValue())) {
224 assert(N->hasName() && "Unnamed ? leaf");
225 return;
226 }
227
228 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
229 if (!DI) {
230 errs() << "Unknown leaf kind: " << *N << "\n";
231 abort();
232 }
233
234 Record *LeafRec = DI->getDef();
235
236 // A ValueType leaf node can represent a register when named, or itself when
237 // unnamed.
238 if (LeafRec->isSubClassOf("ValueType")) {
239 // A named ValueType leaf always matches: (add i32:$a, i32:$b).
240 if (N->hasName())
241 return;
242 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
243 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
244 }
245
246 if (// Handle register references. Nothing to do here, they always match.
247 LeafRec->isSubClassOf("RegisterClass") ||
248 LeafRec->isSubClassOf("RegisterOperand") ||
249 LeafRec->isSubClassOf("PointerLikeRegClass") ||
250 LeafRec->isSubClassOf("SubRegIndex") ||
251 // Place holder for SRCVALUE nodes. Nothing to do here.
252 LeafRec->getName() == "srcvalue")
253 return;
254
255 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
256 // record the register
257 if (LeafRec->isSubClassOf("Register")) {
258 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
259 NextRecordedOperandNo));
260 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
261 return;
262 }
263
264 if (LeafRec->isSubClassOf("CondCode"))
265 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
266
267 if (LeafRec->isSubClassOf("ComplexPattern")) {
268 // We can't model ComplexPattern uses that don't have their name taken yet.
269 // The OPC_CheckComplexPattern operation implicitly records the results.
270 if (N->getName().empty()) {
271 std::string S;
272 raw_string_ostream OS(S);
273 OS << "We expect complex pattern uses to have names: " << *N;
274 PrintFatalError(OS.str());
275 }
276
277 // Remember this ComplexPattern so that we can emit it after all the other
278 // structural matches are done.
279 unsigned InputOperand = VariableMap[N->getName()] - 1;
280 MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
281 return;
282 }
283
284 errs() << "Unknown leaf kind: " << *N << "\n";
285 abort();
286 }
287
EmitOperatorMatchCode(const TreePatternNode * N,TreePatternNode * NodeNoTypes)288 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
289 TreePatternNode *NodeNoTypes) {
290 assert(!N->isLeaf() && "Not an operator?");
291
292 if (N->getOperator()->isSubClassOf("ComplexPattern")) {
293 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
294 // "MY_PAT:op1:op2". We should already have validated that the uses are
295 // consistent.
296 std::string PatternName = N->getOperator()->getName();
297 for (unsigned i = 0; i < N->getNumChildren(); ++i) {
298 PatternName += ":";
299 PatternName += N->getChild(i)->getName();
300 }
301
302 if (recordUniqueNode(PatternName)) {
303 auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
304 MatchedComplexPatterns.push_back(NodeAndOpNum);
305 }
306
307 return;
308 }
309
310 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
311
312 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
313 // a constant without a predicate fn that has more that one bit set, handle
314 // this as a special case. This is usually for targets that have special
315 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
316 // handling stuff). Using these instructions is often far more efficient
317 // than materializing the constant. Unfortunately, both the instcombiner
318 // and the dag combiner can often infer that bits are dead, and thus drop
319 // them from the mask in the dag. For example, it might turn 'AND X, 255'
320 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
321 // to handle this.
322 if ((N->getOperator()->getName() == "and" ||
323 N->getOperator()->getName() == "or") &&
324 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
325 N->getPredicateFns().empty()) {
326 if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
327 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
328 // If this is at the root of the pattern, we emit a redundant
329 // CheckOpcode so that the following checks get factored properly under
330 // a single opcode check.
331 if (N == Pattern.getSrcPattern())
332 AddMatcher(new CheckOpcodeMatcher(CInfo));
333
334 // Emit the CheckAndImm/CheckOrImm node.
335 if (N->getOperator()->getName() == "and")
336 AddMatcher(new CheckAndImmMatcher(II->getValue()));
337 else
338 AddMatcher(new CheckOrImmMatcher(II->getValue()));
339
340 // Match the LHS of the AND as appropriate.
341 AddMatcher(new MoveChildMatcher(0));
342 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
343 AddMatcher(new MoveParentMatcher());
344 return;
345 }
346 }
347 }
348
349 // Check that the current opcode lines up.
350 AddMatcher(new CheckOpcodeMatcher(CInfo));
351
352 // If this node has memory references (i.e. is a load or store), tell the
353 // interpreter to capture them in the memref array.
354 if (N->NodeHasProperty(SDNPMemOperand, CGP))
355 AddMatcher(new RecordMemRefMatcher());
356
357 // If this node has a chain, then the chain is operand #0 is the SDNode, and
358 // the child numbers of the node are all offset by one.
359 unsigned OpNo = 0;
360 if (N->NodeHasProperty(SDNPHasChain, CGP)) {
361 // Record the node and remember it in our chained nodes list.
362 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
363 "' chained node",
364 NextRecordedOperandNo));
365 // Remember all of the input chains our pattern will match.
366 MatchedChainNodes.push_back(NextRecordedOperandNo++);
367
368 // Don't look at the input chain when matching the tree pattern to the
369 // SDNode.
370 OpNo = 1;
371
372 // If this node is not the root and the subtree underneath it produces a
373 // chain, then the result of matching the node is also produce a chain.
374 // Beyond that, this means that we're also folding (at least) the root node
375 // into the node that produce the chain (for example, matching
376 // "(add reg, (load ptr))" as a add_with_memory on X86). This is
377 // problematic, if the 'reg' node also uses the load (say, its chain).
378 // Graphically:
379 //
380 // [LD]
381 // ^ ^
382 // | \ DAG's like cheese.
383 // / |
384 // / [YY]
385 // | ^
386 // [XX]--/
387 //
388 // It would be invalid to fold XX and LD. In this case, folding the two
389 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
390 // To prevent this, we emit a dynamic check for legality before allowing
391 // this to be folded.
392 //
393 const TreePatternNode *Root = Pattern.getSrcPattern();
394 if (N != Root) { // Not the root of the pattern.
395 // If there is a node between the root and this node, then we definitely
396 // need to emit the check.
397 bool NeedCheck = !Root->hasChild(N);
398
399 // If it *is* an immediate child of the root, we can still need a check if
400 // the root SDNode has multiple inputs. For us, this means that it is an
401 // intrinsic, has multiple operands, or has other inputs like chain or
402 // glue).
403 if (!NeedCheck) {
404 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
405 NeedCheck =
406 Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
407 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
408 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
409 PInfo.getNumOperands() > 1 ||
410 PInfo.hasProperty(SDNPHasChain) ||
411 PInfo.hasProperty(SDNPInGlue) ||
412 PInfo.hasProperty(SDNPOptInGlue);
413 }
414
415 if (NeedCheck)
416 AddMatcher(new CheckFoldableChainNodeMatcher());
417 }
418 }
419
420 // If this node has an output glue and isn't the root, remember it.
421 if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
422 N != Pattern.getSrcPattern()) {
423 // TODO: This redundantly records nodes with both glues and chains.
424
425 // Record the node and remember it in our chained nodes list.
426 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
427 "' glue output node",
428 NextRecordedOperandNo));
429 // Remember all of the nodes with output glue our pattern will match.
430 MatchedGlueResultNodes.push_back(NextRecordedOperandNo++);
431 }
432
433 // If this node is known to have an input glue or if it *might* have an input
434 // glue, capture it as the glue input of the pattern.
435 if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
436 N->NodeHasProperty(SDNPInGlue, CGP))
437 AddMatcher(new CaptureGlueInputMatcher());
438
439 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
440 // Get the code suitable for matching this child. Move to the child, check
441 // it then move back to the parent.
442 AddMatcher(new MoveChildMatcher(OpNo));
443 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
444 AddMatcher(new MoveParentMatcher());
445 }
446 }
447
recordUniqueNode(std::string Name)448 bool MatcherGen::recordUniqueNode(std::string Name) {
449 unsigned &VarMapEntry = VariableMap[Name];
450 if (VarMapEntry == 0) {
451 // If it is a named node, we must emit a 'Record' opcode.
452 AddMatcher(new RecordMatcher("$" + Name, NextRecordedOperandNo));
453 VarMapEntry = ++NextRecordedOperandNo;
454 return true;
455 }
456
457 // If we get here, this is a second reference to a specific name. Since
458 // we already have checked that the first reference is valid, we don't
459 // have to recursively match it, just check that it's the same as the
460 // previously named thing.
461 AddMatcher(new CheckSameMatcher(VarMapEntry-1));
462 return false;
463 }
464
EmitMatchCode(const TreePatternNode * N,TreePatternNode * NodeNoTypes)465 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
466 TreePatternNode *NodeNoTypes) {
467 // If N and NodeNoTypes don't agree on a type, then this is a case where we
468 // need to do a type check. Emit the check, apply the type to NodeNoTypes and
469 // reinfer any correlated types.
470 SmallVector<unsigned, 2> ResultsToTypeCheck;
471
472 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
473 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
474 NodeNoTypes->setType(i, N->getExtType(i));
475 InferPossibleTypes();
476 ResultsToTypeCheck.push_back(i);
477 }
478
479 // If this node has a name associated with it, capture it in VariableMap. If
480 // we already saw this in the pattern, emit code to verify dagness.
481 if (!N->getName().empty())
482 if (!recordUniqueNode(N->getName()))
483 return;
484
485 if (N->isLeaf())
486 EmitLeafMatchCode(N);
487 else
488 EmitOperatorMatchCode(N, NodeNoTypes);
489
490 // If there are node predicates for this node, generate their checks.
491 for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
492 AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
493
494 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
495 AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
496 ResultsToTypeCheck[i]));
497 }
498
499 /// EmitMatcherCode - Generate the code that matches the predicate of this
500 /// pattern for the specified Variant. If the variant is invalid this returns
501 /// true and does not generate code, if it is valid, it returns false.
EmitMatcherCode(unsigned Variant)502 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
503 // If the root of the pattern is a ComplexPattern and if it is specified to
504 // match some number of root opcodes, these are considered to be our variants.
505 // Depending on which variant we're generating code for, emit the root opcode
506 // check.
507 if (const ComplexPattern *CP =
508 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
509 const std::vector<Record*> &OpNodes = CP->getRootNodes();
510 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
511 if (Variant >= OpNodes.size()) return true;
512
513 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
514 } else {
515 if (Variant != 0) return true;
516 }
517
518 // Emit the matcher for the pattern structure and types.
519 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
520
521 // If the pattern has a predicate on it (e.g. only enabled when a subtarget
522 // feature is around, do the check).
523 if (!Pattern.getPredicateCheck().empty())
524 AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
525
526 // Now that we've completed the structural type match, emit any ComplexPattern
527 // checks (e.g. addrmode matches). We emit this after the structural match
528 // because they are generally more expensive to evaluate and more difficult to
529 // factor.
530 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
531 const TreePatternNode *N = MatchedComplexPatterns[i].first;
532
533 // Remember where the results of this match get stuck.
534 if (N->isLeaf()) {
535 NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
536 } else {
537 unsigned CurOp = NextRecordedOperandNo;
538 for (unsigned i = 0; i < N->getNumChildren(); ++i) {
539 NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
540 CurOp += N->getChild(i)->getNumMIResults(CGP);
541 }
542 }
543
544 // Get the slot we recorded the value in from the name on the node.
545 unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
546
547 const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
548
549 // Emit a CheckComplexPat operation, which does the match (aborting if it
550 // fails) and pushes the matched operands onto the recorded nodes list.
551 AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
552 N->getName(), NextRecordedOperandNo));
553
554 // Record the right number of operands.
555 NextRecordedOperandNo += CP.getNumOperands();
556 if (CP.hasProperty(SDNPHasChain)) {
557 // If the complex pattern has a chain, then we need to keep track of the
558 // fact that we just recorded a chain input. The chain input will be
559 // matched as the last operand of the predicate if it was successful.
560 ++NextRecordedOperandNo; // Chained node operand.
561
562 // It is the last operand recorded.
563 assert(NextRecordedOperandNo > 1 &&
564 "Should have recorded input/result chains at least!");
565 MatchedChainNodes.push_back(NextRecordedOperandNo-1);
566 }
567
568 // TODO: Complex patterns can't have output glues, if they did, we'd want
569 // to record them.
570 }
571
572 return false;
573 }
574
575
576 //===----------------------------------------------------------------------===//
577 // Node Result Generation
578 //===----------------------------------------------------------------------===//
579
EmitResultOfNamedOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)580 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
581 SmallVectorImpl<unsigned> &ResultOps){
582 assert(!N->getName().empty() && "Operand not named!");
583
584 if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
585 // Complex operands have already been completely selected, just find the
586 // right slot ant add the arguments directly.
587 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
588 ResultOps.push_back(SlotNo - 1 + i);
589
590 return;
591 }
592
593 unsigned SlotNo = getNamedArgumentSlot(N->getName());
594
595 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
596 // version of the immediate so that it doesn't get selected due to some other
597 // node use.
598 if (!N->isLeaf()) {
599 StringRef OperatorName = N->getOperator()->getName();
600 if (OperatorName == "imm" || OperatorName == "fpimm") {
601 AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
602 ResultOps.push_back(NextRecordedOperandNo++);
603 return;
604 }
605 }
606
607 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
608 ResultOps.push_back(SlotNo + i);
609 }
610
EmitResultLeafAsOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)611 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
612 SmallVectorImpl<unsigned> &ResultOps) {
613 assert(N->isLeaf() && "Must be a leaf");
614
615 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
616 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
617 ResultOps.push_back(NextRecordedOperandNo++);
618 return;
619 }
620
621 // If this is an explicit register reference, handle it.
622 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
623 Record *Def = DI->getDef();
624 if (Def->isSubClassOf("Register")) {
625 const CodeGenRegister *Reg =
626 CGP.getTargetInfo().getRegBank().getReg(Def);
627 AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0)));
628 ResultOps.push_back(NextRecordedOperandNo++);
629 return;
630 }
631
632 if (Def->getName() == "zero_reg") {
633 AddMatcher(new EmitRegisterMatcher(nullptr, N->getType(0)));
634 ResultOps.push_back(NextRecordedOperandNo++);
635 return;
636 }
637
638 // Handle a reference to a register class. This is used
639 // in COPY_TO_SUBREG instructions.
640 if (Def->isSubClassOf("RegisterOperand"))
641 Def = Def->getValueAsDef("RegClass");
642 if (Def->isSubClassOf("RegisterClass")) {
643 std::string Value = getQualifiedName(Def) + "RegClassID";
644 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
645 ResultOps.push_back(NextRecordedOperandNo++);
646 return;
647 }
648
649 // Handle a subregister index. This is used for INSERT_SUBREG etc.
650 if (Def->isSubClassOf("SubRegIndex")) {
651 std::string Value = getQualifiedName(Def);
652 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
653 ResultOps.push_back(NextRecordedOperandNo++);
654 return;
655 }
656 }
657
658 errs() << "unhandled leaf node: \n";
659 N->dump();
660 }
661
662 /// GetInstPatternNode - Get the pattern for an instruction.
663 ///
664 const TreePatternNode *MatcherGen::
GetInstPatternNode(const DAGInstruction & Inst,const TreePatternNode * N)665 GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
666 const TreePattern *InstPat = Inst.getPattern();
667
668 // FIXME2?: Assume actual pattern comes before "implicit".
669 TreePatternNode *InstPatNode;
670 if (InstPat)
671 InstPatNode = InstPat->getTree(0);
672 else if (/*isRoot*/ N == Pattern.getDstPattern())
673 InstPatNode = Pattern.getSrcPattern();
674 else
675 return nullptr;
676
677 if (InstPatNode && !InstPatNode->isLeaf() &&
678 InstPatNode->getOperator()->getName() == "set")
679 InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
680
681 return InstPatNode;
682 }
683
684 static bool
mayInstNodeLoadOrStore(const TreePatternNode * N,const CodeGenDAGPatterns & CGP)685 mayInstNodeLoadOrStore(const TreePatternNode *N,
686 const CodeGenDAGPatterns &CGP) {
687 Record *Op = N->getOperator();
688 const CodeGenTarget &CGT = CGP.getTargetInfo();
689 CodeGenInstruction &II = CGT.getInstruction(Op);
690 return II.mayLoad || II.mayStore;
691 }
692
693 static unsigned
numNodesThatMayLoadOrStore(const TreePatternNode * N,const CodeGenDAGPatterns & CGP)694 numNodesThatMayLoadOrStore(const TreePatternNode *N,
695 const CodeGenDAGPatterns &CGP) {
696 if (N->isLeaf())
697 return 0;
698
699 Record *OpRec = N->getOperator();
700 if (!OpRec->isSubClassOf("Instruction"))
701 return 0;
702
703 unsigned Count = 0;
704 if (mayInstNodeLoadOrStore(N, CGP))
705 ++Count;
706
707 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
708 Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
709
710 return Count;
711 }
712
713 void MatcherGen::
EmitResultInstructionAsOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & OutputOps)714 EmitResultInstructionAsOperand(const TreePatternNode *N,
715 SmallVectorImpl<unsigned> &OutputOps) {
716 Record *Op = N->getOperator();
717 const CodeGenTarget &CGT = CGP.getTargetInfo();
718 CodeGenInstruction &II = CGT.getInstruction(Op);
719 const DAGInstruction &Inst = CGP.getInstruction(Op);
720
721 // If we can, get the pattern for the instruction we're generating. We derive
722 // a variety of information from this pattern, such as whether it has a chain.
723 //
724 // FIXME2: This is extremely dubious for several reasons, not the least of
725 // which it gives special status to instructions with patterns that Pat<>
726 // nodes can't duplicate.
727 const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
728
729 // NodeHasChain - Whether the instruction node we're creating takes chains.
730 bool NodeHasChain = InstPatNode &&
731 InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
732
733 // Instructions which load and store from memory should have a chain,
734 // regardless of whether they happen to have an internal pattern saying so.
735 if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)
736 && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
737 II.hasSideEffects))
738 NodeHasChain = true;
739
740 bool isRoot = N == Pattern.getDstPattern();
741
742 // TreeHasOutGlue - True if this tree has glue.
743 bool TreeHasInGlue = false, TreeHasOutGlue = false;
744 if (isRoot) {
745 const TreePatternNode *SrcPat = Pattern.getSrcPattern();
746 TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
747 SrcPat->TreeHasProperty(SDNPInGlue, CGP);
748
749 // FIXME2: this is checking the entire pattern, not just the node in
750 // question, doing this just for the root seems like a total hack.
751 TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
752 }
753
754 // NumResults - This is the number of results produced by the instruction in
755 // the "outs" list.
756 unsigned NumResults = Inst.getNumResults();
757
758 // Number of operands we know the output instruction must have. If it is
759 // variadic, we could have more operands.
760 unsigned NumFixedOperands = II.Operands.size();
761
762 SmallVector<unsigned, 8> InstOps;
763
764 // Loop over all of the fixed operands of the instruction pattern, emitting
765 // code to fill them all in. The node 'N' usually has number children equal to
766 // the number of input operands of the instruction. However, in cases where
767 // there are predicate operands for an instruction, we need to fill in the
768 // 'execute always' values. Match up the node operands to the instruction
769 // operands to do this.
770 unsigned ChildNo = 0;
771 for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
772 InstOpNo != e; ++InstOpNo) {
773 // Determine what to emit for this operand.
774 Record *OperandNode = II.Operands[InstOpNo].Rec;
775 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
776 !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
777 // This is a predicate or optional def operand; emit the
778 // 'default ops' operands.
779 const DAGDefaultOperand &DefaultOp
780 = CGP.getDefaultOperand(OperandNode);
781 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
782 EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
783 continue;
784 }
785
786 // Otherwise this is a normal operand or a predicate operand without
787 // 'execute always'; emit it.
788
789 // For operands with multiple sub-operands we may need to emit
790 // multiple child patterns to cover them all. However, ComplexPattern
791 // children may themselves emit multiple MI operands.
792 unsigned NumSubOps = 1;
793 if (OperandNode->isSubClassOf("Operand")) {
794 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
795 if (unsigned NumArgs = MIOpInfo->getNumArgs())
796 NumSubOps = NumArgs;
797 }
798
799 unsigned FinalNumOps = InstOps.size() + NumSubOps;
800 while (InstOps.size() < FinalNumOps) {
801 const TreePatternNode *Child = N->getChild(ChildNo);
802 unsigned BeforeAddingNumOps = InstOps.size();
803 EmitResultOperand(Child, InstOps);
804 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
805
806 // If the operand is an instruction and it produced multiple results, just
807 // take the first one.
808 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
809 InstOps.resize(BeforeAddingNumOps+1);
810
811 ++ChildNo;
812 }
813 }
814
815 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
816 // expand suboperands, use default operands, or other features determined from
817 // the CodeGenInstruction after the fixed operands, which were handled
818 // above. Emit the remaining instructions implicitly added by the use for
819 // variable_ops.
820 if (II.Operands.isVariadic) {
821 for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
822 EmitResultOperand(N->getChild(I), InstOps);
823 }
824
825 // If this node has input glue or explicitly specified input physregs, we
826 // need to add chained and glued copyfromreg nodes and materialize the glue
827 // input.
828 if (isRoot && !PhysRegInputs.empty()) {
829 // Emit all of the CopyToReg nodes for the input physical registers. These
830 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
831 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
832 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
833 PhysRegInputs[i].first));
834 // Even if the node has no other glue inputs, the resultant node must be
835 // glued to the CopyFromReg nodes we just generated.
836 TreeHasInGlue = true;
837 }
838
839 // Result order: node results, chain, glue
840
841 // Determine the result types.
842 SmallVector<MVT::SimpleValueType, 4> ResultVTs;
843 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
844 ResultVTs.push_back(N->getType(i));
845
846 // If this is the root instruction of a pattern that has physical registers in
847 // its result pattern, add output VTs for them. For example, X86 has:
848 // (set AL, (mul ...))
849 // This also handles implicit results like:
850 // (implicit EFLAGS)
851 if (isRoot && !Pattern.getDstRegs().empty()) {
852 // If the root came from an implicit def in the instruction handling stuff,
853 // don't re-add it.
854 Record *HandledReg = nullptr;
855 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
856 HandledReg = II.ImplicitDefs[0];
857
858 for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
859 Record *Reg = Pattern.getDstRegs()[i];
860 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
861 ResultVTs.push_back(getRegisterValueType(Reg, CGT));
862 }
863 }
864
865 // If this is the root of the pattern and the pattern we're matching includes
866 // a node that is variadic, mark the generated node as variadic so that it
867 // gets the excess operands from the input DAG.
868 int NumFixedArityOperands = -1;
869 if (isRoot &&
870 Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
871 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
872
873 // If this is the root node and multiple matched nodes in the input pattern
874 // have MemRefs in them, have the interpreter collect them and plop them onto
875 // this node. If there is just one node with MemRefs, leave them on that node
876 // even if it is not the root.
877 //
878 // FIXME3: This is actively incorrect for result patterns with multiple
879 // memory-referencing instructions.
880 bool PatternHasMemOperands =
881 Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
882
883 bool NodeHasMemRefs = false;
884 if (PatternHasMemOperands) {
885 unsigned NumNodesThatLoadOrStore =
886 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
887 bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
888 NumNodesThatLoadOrStore == 1;
889 NodeHasMemRefs =
890 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
891 NumNodesThatLoadOrStore != 1));
892 }
893
894 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
895 "Node has no result");
896
897 AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
898 ResultVTs, InstOps,
899 NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
900 NodeHasMemRefs, NumFixedArityOperands,
901 NextRecordedOperandNo));
902
903 // The non-chain and non-glue results of the newly emitted node get recorded.
904 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
905 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
906 OutputOps.push_back(NextRecordedOperandNo++);
907 }
908 }
909
910 void MatcherGen::
EmitResultSDNodeXFormAsOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)911 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
912 SmallVectorImpl<unsigned> &ResultOps) {
913 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
914
915 // Emit the operand.
916 SmallVector<unsigned, 8> InputOps;
917
918 // FIXME2: Could easily generalize this to support multiple inputs and outputs
919 // to the SDNodeXForm. For now we just support one input and one output like
920 // the old instruction selector.
921 assert(N->getNumChildren() == 1);
922 EmitResultOperand(N->getChild(0), InputOps);
923
924 // The input currently must have produced exactly one result.
925 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
926
927 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
928 ResultOps.push_back(NextRecordedOperandNo++);
929 }
930
EmitResultOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)931 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
932 SmallVectorImpl<unsigned> &ResultOps) {
933 // This is something selected from the pattern we matched.
934 if (!N->getName().empty())
935 return EmitResultOfNamedOperand(N, ResultOps);
936
937 if (N->isLeaf())
938 return EmitResultLeafAsOperand(N, ResultOps);
939
940 Record *OpRec = N->getOperator();
941 if (OpRec->isSubClassOf("Instruction"))
942 return EmitResultInstructionAsOperand(N, ResultOps);
943 if (OpRec->isSubClassOf("SDNodeXForm"))
944 return EmitResultSDNodeXFormAsOperand(N, ResultOps);
945 errs() << "Unknown result node to emit code for: " << *N << '\n';
946 PrintFatalError("Unknown node in result pattern!");
947 }
948
EmitResultCode()949 void MatcherGen::EmitResultCode() {
950 // Patterns that match nodes with (potentially multiple) chain inputs have to
951 // merge them together into a token factor. This informs the generated code
952 // what all the chained nodes are.
953 if (!MatchedChainNodes.empty())
954 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
955
956 // Codegen the root of the result pattern, capturing the resulting values.
957 SmallVector<unsigned, 8> Ops;
958 EmitResultOperand(Pattern.getDstPattern(), Ops);
959
960 // At this point, we have however many values the result pattern produces.
961 // However, the input pattern might not need all of these. If there are
962 // excess values at the end (such as implicit defs of condition codes etc)
963 // just lop them off. This doesn't need to worry about glue or chains, just
964 // explicit results.
965 //
966 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
967
968 // If the pattern also has (implicit) results, count them as well.
969 if (!Pattern.getDstRegs().empty()) {
970 // If the root came from an implicit def in the instruction handling stuff,
971 // don't re-add it.
972 Record *HandledReg = nullptr;
973 const TreePatternNode *DstPat = Pattern.getDstPattern();
974 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
975 const CodeGenTarget &CGT = CGP.getTargetInfo();
976 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
977
978 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
979 HandledReg = II.ImplicitDefs[0];
980 }
981
982 for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
983 Record *Reg = Pattern.getDstRegs()[i];
984 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
985 ++NumSrcResults;
986 }
987 }
988
989 assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
990 Ops.resize(NumSrcResults);
991
992 // If the matched pattern covers nodes which define a glue result, emit a node
993 // that tells the matcher about them so that it can update their results.
994 if (!MatchedGlueResultNodes.empty())
995 AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes));
996
997 AddMatcher(new CompleteMatchMatcher(Ops, Pattern));
998 }
999
1000
1001 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1002 /// the specified variant. If the variant number is invalid, this returns null.
ConvertPatternToMatcher(const PatternToMatch & Pattern,unsigned Variant,const CodeGenDAGPatterns & CGP)1003 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
1004 unsigned Variant,
1005 const CodeGenDAGPatterns &CGP) {
1006 MatcherGen Gen(Pattern, CGP);
1007
1008 // Generate the code for the matcher.
1009 if (Gen.EmitMatcherCode(Variant))
1010 return nullptr;
1011
1012 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1013 // FIXME2: Split result code out to another table, and make the matcher end
1014 // with an "Emit <index>" command. This allows result generation stuff to be
1015 // shared and factored?
1016
1017 // If the match succeeds, then we generate Pattern.
1018 Gen.EmitResultCode();
1019
1020 // Unconditional match.
1021 return Gen.GetMatcher();
1022 }
1023