• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "induction_var_analysis.h"
18 #include "induction_var_range.h"
19 
20 namespace art {
21 
22 /**
23  * Since graph traversal may enter a SCC at any position, an initial representation may be rotated,
24  * along dependences, viz. any of (a, b, c, d), (d, a, b, c)  (c, d, a, b), (b, c, d, a) assuming
25  * a chain of dependences (mutual independent items may occur in arbitrary order). For proper
26  * classification, the lexicographically first entry-phi is rotated to the front.
27  */
RotateEntryPhiFirst(HLoopInformation * loop,ArenaVector<HInstruction * > * scc,ArenaVector<HInstruction * > * new_scc)28 static void RotateEntryPhiFirst(HLoopInformation* loop,
29                                 ArenaVector<HInstruction*>* scc,
30                                 ArenaVector<HInstruction*>* new_scc) {
31   // Find very first entry-phi.
32   const HInstructionList& phis = loop->GetHeader()->GetPhis();
33   HInstruction* phi = nullptr;
34   size_t phi_pos = -1;
35   const size_t size = scc->size();
36   for (size_t i = 0; i < size; i++) {
37     HInstruction* other = (*scc)[i];
38     if (other->IsLoopHeaderPhi() && (phi == nullptr || phis.FoundBefore(other, phi))) {
39       phi = other;
40       phi_pos = i;
41     }
42   }
43 
44   // If found, bring that entry-phi to front.
45   if (phi != nullptr) {
46     new_scc->clear();
47     for (size_t i = 0; i < size; i++) {
48       new_scc->push_back((*scc)[phi_pos]);
49       if (++phi_pos >= size) phi_pos = 0;
50     }
51     DCHECK_EQ(size, new_scc->size());
52     scc->swap(*new_scc);
53   }
54 }
55 
56 /**
57  * Returns true if the from/to types denote a narrowing, integral conversion (precision loss).
58  */
IsNarrowingIntegralConversion(Primitive::Type from,Primitive::Type to)59 static bool IsNarrowingIntegralConversion(Primitive::Type from, Primitive::Type to) {
60   switch (from) {
61     case Primitive::kPrimLong:
62       return to == Primitive::kPrimByte || to == Primitive::kPrimShort
63           || to == Primitive::kPrimChar || to == Primitive::kPrimInt;
64     case Primitive::kPrimInt:
65       return to == Primitive::kPrimByte || to == Primitive::kPrimShort
66           || to == Primitive::kPrimChar;
67     case Primitive::kPrimChar:
68     case Primitive::kPrimShort:
69       return to == Primitive::kPrimByte;
70     default:
71       return false;
72   }
73 }
74 
75 /**
76  * Returns narrowest data type.
77  */
Narrowest(Primitive::Type type1,Primitive::Type type2)78 static Primitive::Type Narrowest(Primitive::Type type1, Primitive::Type type2) {
79   return Primitive::ComponentSize(type1) <= Primitive::ComponentSize(type2) ? type1 : type2;
80 }
81 
82 //
83 // Class methods.
84 //
85 
HInductionVarAnalysis(HGraph * graph)86 HInductionVarAnalysis::HInductionVarAnalysis(HGraph* graph)
87     : HOptimization(graph, kInductionPassName),
88       global_depth_(0),
89       stack_(graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
90       scc_(graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
91       map_(std::less<HInstruction*>(),
92            graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
93       cycle_(std::less<HInstruction*>(),
94              graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
95       induction_(std::less<HLoopInformation*>(),
96                  graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)) {
97 }
98 
Run()99 void HInductionVarAnalysis::Run() {
100   // Detects sequence variables (generalized induction variables) during an outer to inner
101   // traversal of all loops using Gerlek's algorithm. The order is important to enable
102   // range analysis on outer loop while visiting inner loops.
103   for (HReversePostOrderIterator it_graph(*graph_); !it_graph.Done(); it_graph.Advance()) {
104     HBasicBlock* graph_block = it_graph.Current();
105     // Don't analyze irreducible loops.
106     // TODO(ajcbik): could/should we remove this restriction?
107     if (graph_block->IsLoopHeader() && !graph_block->GetLoopInformation()->IsIrreducible()) {
108       VisitLoop(graph_block->GetLoopInformation());
109     }
110   }
111 }
112 
VisitLoop(HLoopInformation * loop)113 void HInductionVarAnalysis::VisitLoop(HLoopInformation* loop) {
114   // Find strongly connected components (SSCs) in the SSA graph of this loop using Tarjan's
115   // algorithm. Due to the descendant-first nature, classification happens "on-demand".
116   global_depth_ = 0;
117   DCHECK(stack_.empty());
118   map_.clear();
119 
120   for (HBlocksInLoopIterator it_loop(*loop); !it_loop.Done(); it_loop.Advance()) {
121     HBasicBlock* loop_block = it_loop.Current();
122     DCHECK(loop_block->IsInLoop());
123     if (loop_block->GetLoopInformation() != loop) {
124       continue;  // Inner loops already visited.
125     }
126     // Visit phi-operations and instructions.
127     for (HInstructionIterator it(loop_block->GetPhis()); !it.Done(); it.Advance()) {
128       HInstruction* instruction = it.Current();
129       if (!IsVisitedNode(instruction)) {
130         VisitNode(loop, instruction);
131       }
132     }
133     for (HInstructionIterator it(loop_block->GetInstructions()); !it.Done(); it.Advance()) {
134       HInstruction* instruction = it.Current();
135       if (!IsVisitedNode(instruction)) {
136         VisitNode(loop, instruction);
137       }
138     }
139   }
140 
141   DCHECK(stack_.empty());
142   map_.clear();
143 
144   // Determine the loop's trip-count.
145   VisitControl(loop);
146 }
147 
VisitNode(HLoopInformation * loop,HInstruction * instruction)148 void HInductionVarAnalysis::VisitNode(HLoopInformation* loop, HInstruction* instruction) {
149   const uint32_t d1 = ++global_depth_;
150   map_.Put(instruction, NodeInfo(d1));
151   stack_.push_back(instruction);
152 
153   // Visit all descendants.
154   uint32_t low = d1;
155   for (size_t i = 0, count = instruction->InputCount(); i < count; ++i) {
156     low = std::min(low, VisitDescendant(loop, instruction->InputAt(i)));
157   }
158 
159   // Lower or found SCC?
160   if (low < d1) {
161     map_.find(instruction)->second.depth = low;
162   } else {
163     scc_.clear();
164     cycle_.clear();
165 
166     // Pop the stack to build the SCC for classification.
167     while (!stack_.empty()) {
168       HInstruction* x = stack_.back();
169       scc_.push_back(x);
170       stack_.pop_back();
171       map_.find(x)->second.done = true;
172       if (x == instruction) {
173         break;
174       }
175     }
176 
177     // Type of induction.
178     type_ = scc_[0]->GetType();
179 
180     // Classify the SCC.
181     if (scc_.size() == 1 && !scc_[0]->IsLoopHeaderPhi()) {
182       ClassifyTrivial(loop, scc_[0]);
183     } else {
184       ClassifyNonTrivial(loop);
185     }
186 
187     scc_.clear();
188     cycle_.clear();
189   }
190 }
191 
VisitDescendant(HLoopInformation * loop,HInstruction * instruction)192 uint32_t HInductionVarAnalysis::VisitDescendant(HLoopInformation* loop, HInstruction* instruction) {
193   // If the definition is either outside the loop (loop invariant entry value)
194   // or assigned in inner loop (inner exit value), the traversal stops.
195   HLoopInformation* otherLoop = instruction->GetBlock()->GetLoopInformation();
196   if (otherLoop != loop) {
197     return global_depth_;
198   }
199 
200   // Inspect descendant node.
201   if (!IsVisitedNode(instruction)) {
202     VisitNode(loop, instruction);
203     return map_.find(instruction)->second.depth;
204   } else {
205     auto it = map_.find(instruction);
206     return it->second.done ? global_depth_ : it->second.depth;
207   }
208 }
209 
ClassifyTrivial(HLoopInformation * loop,HInstruction * instruction)210 void HInductionVarAnalysis::ClassifyTrivial(HLoopInformation* loop, HInstruction* instruction) {
211   InductionInfo* info = nullptr;
212   if (instruction->IsPhi()) {
213     info = TransferPhi(loop, instruction, /* input_index */ 0);
214   } else if (instruction->IsAdd()) {
215     info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)),
216                           LookupInfo(loop, instruction->InputAt(1)), kAdd);
217   } else if (instruction->IsSub()) {
218     info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)),
219                           LookupInfo(loop, instruction->InputAt(1)), kSub);
220   } else if (instruction->IsMul()) {
221     info = TransferMul(LookupInfo(loop, instruction->InputAt(0)),
222                        LookupInfo(loop, instruction->InputAt(1)));
223   } else if (instruction->IsShl()) {
224     info = TransferShl(LookupInfo(loop, instruction->InputAt(0)),
225                        LookupInfo(loop, instruction->InputAt(1)),
226                        instruction->InputAt(0)->GetType());
227   } else if (instruction->IsNeg()) {
228     info = TransferNeg(LookupInfo(loop, instruction->InputAt(0)));
229   } else if (instruction->IsTypeConversion()) {
230     info = TransferCnv(LookupInfo(loop, instruction->InputAt(0)),
231                        instruction->AsTypeConversion()->GetInputType(),
232                        instruction->AsTypeConversion()->GetResultType());
233 
234   } else if (instruction->IsBoundsCheck()) {
235     info = LookupInfo(loop, instruction->InputAt(0));  // Pass-through.
236   }
237 
238   // Successfully classified?
239   if (info != nullptr) {
240     AssignInfo(loop, instruction, info);
241   }
242 }
243 
ClassifyNonTrivial(HLoopInformation * loop)244 void HInductionVarAnalysis::ClassifyNonTrivial(HLoopInformation* loop) {
245   const size_t size = scc_.size();
246   DCHECK_GE(size, 1u);
247 
248   // Rotate proper entry-phi to front.
249   if (size > 1) {
250     ArenaVector<HInstruction*> other(graph_->GetArena()->Adapter(kArenaAllocInductionVarAnalysis));
251     RotateEntryPhiFirst(loop, &scc_, &other);
252   }
253 
254   // Analyze from entry-phi onwards.
255   HInstruction* phi = scc_[0];
256   if (!phi->IsLoopHeaderPhi()) {
257     return;
258   }
259 
260   // External link should be loop invariant.
261   InductionInfo* initial = LookupInfo(loop, phi->InputAt(0));
262   if (initial == nullptr || initial->induction_class != kInvariant) {
263     return;
264   }
265 
266   // Singleton is wrap-around induction if all internal links have the same meaning.
267   if (size == 1) {
268     InductionInfo* update = TransferPhi(loop, phi, /* input_index */ 1);
269     if (update != nullptr) {
270       AssignInfo(loop, phi, CreateInduction(kWrapAround, initial, update, type_));
271     }
272     return;
273   }
274 
275   // Inspect remainder of the cycle that resides in scc_. The cycle_ mapping assigns
276   // temporary meaning to its nodes, seeded from the phi instruction and back.
277   for (size_t i = 1; i < size; i++) {
278     HInstruction* instruction = scc_[i];
279     InductionInfo* update = nullptr;
280     if (instruction->IsPhi()) {
281       update = SolvePhiAllInputs(loop, phi, instruction);
282     } else if (instruction->IsAdd()) {
283       update = SolveAddSub(
284           loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kAdd, true);
285     } else if (instruction->IsSub()) {
286       update = SolveAddSub(
287           loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kSub, true);
288     } else if (instruction->IsTypeConversion()) {
289       update = SolveCnv(instruction->AsTypeConversion());
290     }
291     if (update == nullptr) {
292       return;
293     }
294     cycle_.Put(instruction, update);
295   }
296 
297   // Success if all internal links received the same temporary meaning.
298   InductionInfo* induction = SolvePhi(phi, /* input_index */ 1);
299   if (induction != nullptr) {
300     switch (induction->induction_class) {
301       case kInvariant:
302         // Classify first phi and then the rest of the cycle "on-demand".
303         // Statements are scanned in order.
304         AssignInfo(loop, phi, CreateInduction(kLinear, induction, initial, type_));
305         for (size_t i = 1; i < size; i++) {
306           ClassifyTrivial(loop, scc_[i]);
307         }
308         break;
309       case kPeriodic:
310         // Classify all elements in the cycle with the found periodic induction while
311         // rotating each first element to the end. Lastly, phi is classified.
312         // Statements are scanned in reverse order.
313         for (size_t i = size - 1; i >= 1; i--) {
314           AssignInfo(loop, scc_[i], induction);
315           induction = RotatePeriodicInduction(induction->op_b, induction->op_a);
316         }
317         AssignInfo(loop, phi, induction);
318         break;
319       default:
320         break;
321     }
322   }
323 }
324 
RotatePeriodicInduction(InductionInfo * induction,InductionInfo * last)325 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::RotatePeriodicInduction(
326     InductionInfo* induction,
327     InductionInfo* last) {
328   // Rotates a periodic induction of the form
329   //   (a, b, c, d, e)
330   // into
331   //   (b, c, d, e, a)
332   // in preparation of assigning this to the previous variable in the sequence.
333   if (induction->induction_class == kInvariant) {
334     return CreateInduction(kPeriodic, induction, last, type_);
335   }
336   return CreateInduction(
337       kPeriodic, induction->op_a, RotatePeriodicInduction(induction->op_b, last), type_);
338 }
339 
TransferPhi(HLoopInformation * loop,HInstruction * phi,size_t input_index)340 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferPhi(HLoopInformation* loop,
341                                                                          HInstruction* phi,
342                                                                          size_t input_index) {
343   // Match all phi inputs from input_index onwards exactly.
344   const size_t count = phi->InputCount();
345   DCHECK_LT(input_index, count);
346   InductionInfo* a = LookupInfo(loop, phi->InputAt(input_index));
347   for (size_t i = input_index + 1; i < count; i++) {
348     InductionInfo* b = LookupInfo(loop, phi->InputAt(i));
349     if (!InductionEqual(a, b)) {
350       return nullptr;
351     }
352   }
353   return a;
354 }
355 
TransferAddSub(InductionInfo * a,InductionInfo * b,InductionOp op)356 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferAddSub(InductionInfo* a,
357                                                                             InductionInfo* b,
358                                                                             InductionOp op) {
359   // Transfer over an addition or subtraction: any invariant, linear, wrap-around, or periodic
360   // can be combined with an invariant to yield a similar result. Even two linear inputs can
361   // be combined. All other combinations fail, however.
362   if (a != nullptr && b != nullptr) {
363     if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
364       return CreateInvariantOp(op, a, b);
365     } else if (a->induction_class == kLinear && b->induction_class == kLinear) {
366       return CreateInduction(kLinear,
367                              TransferAddSub(a->op_a, b->op_a, op),
368                              TransferAddSub(a->op_b, b->op_b, op),
369                              type_);
370     } else if (a->induction_class == kInvariant) {
371       InductionInfo* new_a = b->op_a;
372       InductionInfo* new_b = TransferAddSub(a, b->op_b, op);
373       if (b->induction_class != kLinear) {
374         DCHECK(b->induction_class == kWrapAround || b->induction_class == kPeriodic);
375         new_a = TransferAddSub(a, new_a, op);
376       } else if (op == kSub) {  // Negation required.
377         new_a = TransferNeg(new_a);
378       }
379       return CreateInduction(b->induction_class, new_a, new_b, type_);
380     } else if (b->induction_class == kInvariant) {
381       InductionInfo* new_a = a->op_a;
382       InductionInfo* new_b = TransferAddSub(a->op_b, b, op);
383       if (a->induction_class != kLinear) {
384         DCHECK(a->induction_class == kWrapAround || a->induction_class == kPeriodic);
385         new_a = TransferAddSub(new_a, b, op);
386       }
387       return CreateInduction(a->induction_class, new_a, new_b, type_);
388     }
389   }
390   return nullptr;
391 }
392 
TransferMul(InductionInfo * a,InductionInfo * b)393 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferMul(InductionInfo* a,
394                                                                          InductionInfo* b) {
395   // Transfer over a multiplication: any invariant, linear, wrap-around, or periodic
396   // can be multiplied with an invariant to yield a similar but multiplied result.
397   // Two non-invariant inputs cannot be multiplied, however.
398   if (a != nullptr && b != nullptr) {
399     if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
400       return CreateInvariantOp(kMul, a, b);
401     } else if (a->induction_class == kInvariant) {
402       return CreateInduction(b->induction_class,
403                              TransferMul(a, b->op_a),
404                              TransferMul(a, b->op_b),
405                              type_);
406     } else if (b->induction_class == kInvariant) {
407       return CreateInduction(a->induction_class,
408                              TransferMul(a->op_a, b),
409                              TransferMul(a->op_b, b),
410                              type_);
411     }
412   }
413   return nullptr;
414 }
415 
TransferShl(InductionInfo * a,InductionInfo * b,Primitive::Type type)416 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferShl(InductionInfo* a,
417                                                                          InductionInfo* b,
418                                                                          Primitive::Type type) {
419   // Transfer over a shift left: treat shift by restricted constant as equivalent multiplication.
420   int64_t value = -1;
421   if (a != nullptr && IsExact(b, &value)) {
422     // Obtain the constant needed for the multiplication. This yields an existing instruction
423     // if the constants is already there. Otherwise, this has a side effect on the HIR.
424     // The restriction on the shift factor avoids generating a negative constant
425     // (viz. 1 << 31 and 1L << 63 set the sign bit). The code assumes that generalization
426     // for shift factors outside [0,32) and [0,64) ranges is done by earlier simplification.
427     if ((type == Primitive::kPrimInt  && 0 <= value && value < 31) ||
428         (type == Primitive::kPrimLong && 0 <= value && value < 63)) {
429       return TransferMul(a, CreateConstant(1 << value, type));
430     }
431   }
432   return nullptr;
433 }
434 
TransferNeg(InductionInfo * a)435 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferNeg(InductionInfo* a) {
436   // Transfer over a unary negation: an invariant, linear, wrap-around, or periodic input
437   // yields a similar but negated induction as result.
438   if (a != nullptr) {
439     if (a->induction_class == kInvariant) {
440       return CreateInvariantOp(kNeg, nullptr, a);
441     }
442     return CreateInduction(a->induction_class, TransferNeg(a->op_a), TransferNeg(a->op_b), type_);
443   }
444   return nullptr;
445 }
446 
TransferCnv(InductionInfo * a,Primitive::Type from,Primitive::Type to)447 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferCnv(InductionInfo* a,
448                                                                          Primitive::Type from,
449                                                                          Primitive::Type to) {
450   if (a != nullptr) {
451     // Allow narrowing conversion in certain cases.
452     if (IsNarrowingIntegralConversion(from, to)) {
453       if (a->induction_class == kLinear) {
454         if (a->type == to || (a->type == from && IsNarrowingIntegralConversion(from, to))) {
455           return CreateInduction(kLinear, a->op_a, a->op_b, to);
456         }
457       }
458       // TODO: other cases useful too?
459     }
460   }
461   return nullptr;
462 }
463 
SolvePhi(HInstruction * phi,size_t input_index)464 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhi(HInstruction* phi,
465                                                                       size_t input_index) {
466   // Match all phi inputs from input_index onwards exactly.
467   const size_t count = phi->InputCount();
468   DCHECK_LT(input_index, count);
469   auto ita = cycle_.find(phi->InputAt(input_index));
470   if (ita != cycle_.end()) {
471     for (size_t i = input_index + 1; i < count; i++) {
472       auto itb = cycle_.find(phi->InputAt(i));
473       if (itb == cycle_.end() ||
474           !HInductionVarAnalysis::InductionEqual(ita->second, itb->second)) {
475         return nullptr;
476       }
477     }
478     return ita->second;
479   }
480   return nullptr;
481 }
482 
SolvePhiAllInputs(HLoopInformation * loop,HInstruction * entry_phi,HInstruction * phi)483 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhiAllInputs(
484     HLoopInformation* loop,
485     HInstruction* entry_phi,
486     HInstruction* phi) {
487   // Match all phi inputs.
488   InductionInfo* match = SolvePhi(phi, /* input_index */ 0);
489   if (match != nullptr) {
490     return match;
491   }
492 
493   // Otherwise, try to solve for a periodic seeded from phi onward.
494   // Only tight multi-statement cycles are considered in order to
495   // simplify rotating the periodic during the final classification.
496   if (phi->IsLoopHeaderPhi() && phi->InputCount() == 2) {
497     InductionInfo* a = LookupInfo(loop, phi->InputAt(0));
498     if (a != nullptr && a->induction_class == kInvariant) {
499       if (phi->InputAt(1) == entry_phi) {
500         InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
501         return CreateInduction(kPeriodic, a, initial, type_);
502       }
503       InductionInfo* b = SolvePhi(phi, /* input_index */ 1);
504       if (b != nullptr && b->induction_class == kPeriodic) {
505         return CreateInduction(kPeriodic, a, b, type_);
506       }
507     }
508   }
509   return nullptr;
510 }
511 
SolveAddSub(HLoopInformation * loop,HInstruction * entry_phi,HInstruction * instruction,HInstruction * x,HInstruction * y,InductionOp op,bool is_first_call)512 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveAddSub(HLoopInformation* loop,
513                                                                          HInstruction* entry_phi,
514                                                                          HInstruction* instruction,
515                                                                          HInstruction* x,
516                                                                          HInstruction* y,
517                                                                          InductionOp op,
518                                                                          bool is_first_call) {
519   // Solve within a cycle over an addition or subtraction: adding or subtracting an
520   // invariant value, seeded from phi, keeps adding to the stride of the induction.
521   InductionInfo* b = LookupInfo(loop, y);
522   if (b != nullptr && b->induction_class == kInvariant) {
523     if (x == entry_phi) {
524       return (op == kAdd) ? b : CreateInvariantOp(kNeg, nullptr, b);
525     }
526     auto it = cycle_.find(x);
527     if (it != cycle_.end()) {
528       InductionInfo* a = it->second;
529       if (a->induction_class == kInvariant) {
530         return CreateInvariantOp(op, a, b);
531       }
532     }
533   }
534 
535   // Try some alternatives before failing.
536   if (op == kAdd) {
537     // Try the other way around for an addition if considered for first time.
538     if (is_first_call) {
539       return SolveAddSub(loop, entry_phi, instruction, y, x, op, false);
540     }
541   } else if (op == kSub) {
542     // Solve within a tight cycle that is formed by exactly two instructions,
543     // one phi and one update, for a periodic idiom of the form k = c - k;
544     if (y == entry_phi && entry_phi->InputCount() == 2 && instruction == entry_phi->InputAt(1)) {
545       InductionInfo* a = LookupInfo(loop, x);
546       if (a != nullptr && a->induction_class == kInvariant) {
547         InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
548         return CreateInduction(kPeriodic, CreateInvariantOp(kSub, a, initial), initial, type_);
549       }
550     }
551   }
552 
553   return nullptr;
554 }
555 
SolveCnv(HTypeConversion * conversion)556 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveCnv(HTypeConversion* conversion) {
557   Primitive::Type from = conversion->GetInputType();
558   Primitive::Type to = conversion->GetResultType();
559   // A narrowing conversion is allowed within the cycle of a linear induction, provided that the
560   // narrowest encountered type is recorded with the induction to account for the precision loss.
561   if (IsNarrowingIntegralConversion(from, to)) {
562     auto it = cycle_.find(conversion->GetInput());
563     if (it != cycle_.end() && it->second->induction_class == kInvariant) {
564       type_ = Narrowest(type_, to);
565       return it->second;
566     }
567   }
568   return nullptr;
569 }
570 
VisitControl(HLoopInformation * loop)571 void HInductionVarAnalysis::VisitControl(HLoopInformation* loop) {
572   HInstruction* control = loop->GetHeader()->GetLastInstruction();
573   if (control->IsIf()) {
574     HIf* ifs = control->AsIf();
575     HBasicBlock* if_true = ifs->IfTrueSuccessor();
576     HBasicBlock* if_false = ifs->IfFalseSuccessor();
577     HInstruction* if_expr = ifs->InputAt(0);
578     // Determine if loop has following structure in header.
579     // loop-header: ....
580     //              if (condition) goto X
581     if (if_expr->IsCondition()) {
582       HCondition* condition = if_expr->AsCondition();
583       InductionInfo* a = LookupInfo(loop, condition->InputAt(0));
584       InductionInfo* b = LookupInfo(loop, condition->InputAt(1));
585       Primitive::Type type = condition->InputAt(0)->GetType();
586       // Determine if the loop control uses a known sequence on an if-exit (X outside) or on
587       // an if-iterate (X inside), expressed as if-iterate when passed into VisitCondition().
588       if (a == nullptr || b == nullptr) {
589         return;  // Loop control is not a sequence.
590       } else if (if_true->GetLoopInformation() != loop && if_false->GetLoopInformation() == loop) {
591         VisitCondition(loop, a, b, type, condition->GetOppositeCondition());
592       } else if (if_true->GetLoopInformation() == loop && if_false->GetLoopInformation() != loop) {
593         VisitCondition(loop, a, b, type, condition->GetCondition());
594       }
595     }
596   }
597 }
598 
VisitCondition(HLoopInformation * loop,InductionInfo * a,InductionInfo * b,Primitive::Type type,IfCondition cmp)599 void HInductionVarAnalysis::VisitCondition(HLoopInformation* loop,
600                                            InductionInfo* a,
601                                            InductionInfo* b,
602                                            Primitive::Type type,
603                                            IfCondition cmp) {
604   if (a->induction_class == kInvariant && b->induction_class == kLinear) {
605     // Swap condition if induction is at right-hand-side (e.g. U > i is same as i < U).
606     switch (cmp) {
607       case kCondLT: VisitCondition(loop, b, a, type, kCondGT); break;
608       case kCondLE: VisitCondition(loop, b, a, type, kCondGE); break;
609       case kCondGT: VisitCondition(loop, b, a, type, kCondLT); break;
610       case kCondGE: VisitCondition(loop, b, a, type, kCondLE); break;
611       case kCondNE: VisitCondition(loop, b, a, type, kCondNE); break;
612       default: break;
613     }
614   } else if (a->induction_class == kLinear && b->induction_class == kInvariant) {
615     // Analyze condition with induction at left-hand-side (e.g. i < U).
616     InductionInfo* lower_expr = a->op_b;
617     InductionInfo* upper_expr = b;
618     InductionInfo* stride_expr = a->op_a;
619     // Constant stride?
620     int64_t stride_value = 0;
621     if (!IsExact(stride_expr, &stride_value)) {
622       return;
623     }
624     // Rewrite condition i != U into strict end condition i < U or i > U if this end condition
625     // is reached exactly (tested by verifying if the loop has a unit stride and the non-strict
626     // condition would be always taken).
627     if (cmp == kCondNE && ((stride_value == +1 && IsTaken(lower_expr, upper_expr, kCondLE)) ||
628                            (stride_value == -1 && IsTaken(lower_expr, upper_expr, kCondGE)))) {
629       cmp = stride_value > 0 ? kCondLT : kCondGT;
630     }
631     // Only accept integral condition. A mismatch between the type of condition and the induction
632     // is only allowed if the, necessarily narrower, induction range fits the narrower control.
633     if (type != Primitive::kPrimInt && type != Primitive::kPrimLong) {
634       return;  // not integral
635     } else if (type != a->type &&
636                !FitsNarrowerControl(lower_expr, upper_expr, stride_value, a->type, cmp)) {
637       return;  // mismatched type
638     }
639     // Normalize a linear loop control with a nonzero stride:
640     //   stride > 0, either i < U or i <= U
641     //   stride < 0, either i > U or i >= U
642     if ((stride_value > 0 && (cmp == kCondLT || cmp == kCondLE)) ||
643         (stride_value < 0 && (cmp == kCondGT || cmp == kCondGE))) {
644       VisitTripCount(loop, lower_expr, upper_expr, stride_expr, stride_value, type, cmp);
645     }
646   }
647 }
648 
VisitTripCount(HLoopInformation * loop,InductionInfo * lower_expr,InductionInfo * upper_expr,InductionInfo * stride_expr,int64_t stride_value,Primitive::Type type,IfCondition cmp)649 void HInductionVarAnalysis::VisitTripCount(HLoopInformation* loop,
650                                            InductionInfo* lower_expr,
651                                            InductionInfo* upper_expr,
652                                            InductionInfo* stride_expr,
653                                            int64_t stride_value,
654                                            Primitive::Type type,
655                                            IfCondition cmp) {
656   // Any loop of the general form:
657   //
658   //    for (i = L; i <= U; i += S) // S > 0
659   // or for (i = L; i >= U; i += S) // S < 0
660   //      .. i ..
661   //
662   // can be normalized into:
663   //
664   //    for (n = 0; n < TC; n++) // where TC = (U + S - L) / S
665   //      .. L + S * n ..
666   //
667   // taking the following into consideration:
668   //
669   // (1) Using the same precision, the TC (trip-count) expression should be interpreted as
670   //     an unsigned entity, for example, as in the following loop that uses the full range:
671   //     for (int i = INT_MIN; i < INT_MAX; i++) // TC = UINT_MAX
672   // (2) The TC is only valid if the loop is taken, otherwise TC = 0, as in:
673   //     for (int i = 12; i < U; i++) // TC = 0 when U < 12
674   //     If this cannot be determined at compile-time, the TC is only valid within the
675   //     loop-body proper, not the loop-header unless enforced with an explicit taken-test.
676   // (3) The TC is only valid if the loop is finite, otherwise TC has no value, as in:
677   //     for (int i = 0; i <= U; i++) // TC = Inf when U = INT_MAX
678   //     If this cannot be determined at compile-time, the TC is only valid when enforced
679   //     with an explicit finite-test.
680   // (4) For loops which early-exits, the TC forms an upper bound, as in:
681   //     for (int i = 0; i < 10 && ....; i++) // TC <= 10
682   InductionInfo* trip_count = upper_expr;
683   const bool is_taken = IsTaken(lower_expr, upper_expr, cmp);
684   const bool is_finite = IsFinite(upper_expr, stride_value, type, cmp);
685   const bool cancels = (cmp == kCondLT || cmp == kCondGT) && std::abs(stride_value) == 1;
686   if (!cancels) {
687     // Convert exclusive integral inequality into inclusive integral inequality,
688     // viz. condition i < U is i <= U - 1 and condition i > U is i >= U + 1.
689     if (cmp == kCondLT) {
690       trip_count = CreateInvariantOp(kSub, trip_count, CreateConstant(1, type));
691     } else if (cmp == kCondGT) {
692       trip_count = CreateInvariantOp(kAdd, trip_count, CreateConstant(1, type));
693     }
694     // Compensate for stride.
695     trip_count = CreateInvariantOp(kAdd, trip_count, stride_expr);
696   }
697   trip_count = CreateInvariantOp(
698       kDiv, CreateInvariantOp(kSub, trip_count, lower_expr), stride_expr);
699   // Assign the trip-count expression to the loop control. Clients that use the information
700   // should be aware that the expression is only valid under the conditions listed above.
701   InductionOp tcKind = kTripCountInBodyUnsafe;  // needs both tests
702   if (is_taken && is_finite) {
703     tcKind = kTripCountInLoop;  // needs neither test
704   } else if (is_finite) {
705     tcKind = kTripCountInBody;  // needs taken-test
706   } else if (is_taken) {
707     tcKind = kTripCountInLoopUnsafe;  // needs finite-test
708   }
709   InductionOp op = kNop;
710   switch (cmp) {
711     case kCondLT: op = kLT; break;
712     case kCondLE: op = kLE; break;
713     case kCondGT: op = kGT; break;
714     case kCondGE: op = kGE; break;
715     default:      LOG(FATAL) << "CONDITION UNREACHABLE";
716   }
717   InductionInfo* taken_test = CreateInvariantOp(op, lower_expr, upper_expr);
718   AssignInfo(loop,
719              loop->GetHeader()->GetLastInstruction(),
720              CreateTripCount(tcKind, trip_count, taken_test, type));
721 }
722 
IsTaken(InductionInfo * lower_expr,InductionInfo * upper_expr,IfCondition cmp)723 bool HInductionVarAnalysis::IsTaken(InductionInfo* lower_expr,
724                                     InductionInfo* upper_expr,
725                                     IfCondition cmp) {
726   int64_t lower_value;
727   int64_t upper_value;
728   switch (cmp) {
729     case kCondLT:
730       return IsAtMost(lower_expr, &lower_value)
731           && IsAtLeast(upper_expr, &upper_value)
732           && lower_value < upper_value;
733     case kCondLE:
734       return IsAtMost(lower_expr, &lower_value)
735           && IsAtLeast(upper_expr, &upper_value)
736           && lower_value <= upper_value;
737     case kCondGT:
738       return IsAtLeast(lower_expr, &lower_value)
739           && IsAtMost(upper_expr, &upper_value)
740           && lower_value > upper_value;
741     case kCondGE:
742       return IsAtLeast(lower_expr, &lower_value)
743           && IsAtMost(upper_expr, &upper_value)
744           && lower_value >= upper_value;
745     default:
746       LOG(FATAL) << "CONDITION UNREACHABLE";
747   }
748   return false;  // not certain, may be untaken
749 }
750 
IsFinite(InductionInfo * upper_expr,int64_t stride_value,Primitive::Type type,IfCondition cmp)751 bool HInductionVarAnalysis::IsFinite(InductionInfo* upper_expr,
752                                      int64_t stride_value,
753                                      Primitive::Type type,
754                                      IfCondition cmp) {
755   const int64_t min = Primitive::MinValueOfIntegralType(type);
756   const int64_t max = Primitive::MaxValueOfIntegralType(type);
757   // Some rules under which it is certain at compile-time that the loop is finite.
758   int64_t value;
759   switch (cmp) {
760     case kCondLT:
761       return stride_value == 1 ||
762           (IsAtMost(upper_expr, &value) && value <= (max - stride_value + 1));
763     case kCondLE:
764       return (IsAtMost(upper_expr, &value) && value <= (max - stride_value));
765     case kCondGT:
766       return stride_value == -1 ||
767           (IsAtLeast(upper_expr, &value) && value >= (min - stride_value - 1));
768     case kCondGE:
769       return (IsAtLeast(upper_expr, &value) && value >= (min - stride_value));
770     default:
771       LOG(FATAL) << "CONDITION UNREACHABLE";
772   }
773   return false;  // not certain, may be infinite
774 }
775 
FitsNarrowerControl(InductionInfo * lower_expr,InductionInfo * upper_expr,int64_t stride_value,Primitive::Type type,IfCondition cmp)776 bool HInductionVarAnalysis::FitsNarrowerControl(InductionInfo* lower_expr,
777                                                 InductionInfo* upper_expr,
778                                                 int64_t stride_value,
779                                                 Primitive::Type type,
780                                                 IfCondition cmp) {
781   int64_t min = Primitive::MinValueOfIntegralType(type);
782   int64_t max = Primitive::MaxValueOfIntegralType(type);
783   // Inclusive test need one extra.
784   if (stride_value != 1 && stride_value != -1) {
785     return false;  // non-unit stride
786   } else if (cmp == kCondLE) {
787     max--;
788   } else if (cmp == kCondGE) {
789     min++;
790   }
791   // Do both bounds fit the range?
792   // Note: The `value` is initialized to please valgrind - the compiler can reorder
793   // the return value check with the `value` check, b/27651442 .
794   int64_t value = 0;
795   return IsAtLeast(lower_expr, &value) && value >= min &&
796          IsAtMost(lower_expr, &value)  && value <= max &&
797          IsAtLeast(upper_expr, &value) && value >= min &&
798          IsAtMost(upper_expr, &value)  && value <= max;
799 }
800 
AssignInfo(HLoopInformation * loop,HInstruction * instruction,InductionInfo * info)801 void HInductionVarAnalysis::AssignInfo(HLoopInformation* loop,
802                                        HInstruction* instruction,
803                                        InductionInfo* info) {
804   auto it = induction_.find(loop);
805   if (it == induction_.end()) {
806     it = induction_.Put(loop,
807                         ArenaSafeMap<HInstruction*, InductionInfo*>(
808                             std::less<HInstruction*>(),
809                             graph_->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)));
810   }
811   it->second.Put(instruction, info);
812 }
813 
LookupInfo(HLoopInformation * loop,HInstruction * instruction)814 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::LookupInfo(HLoopInformation* loop,
815                                                                         HInstruction* instruction) {
816   auto it = induction_.find(loop);
817   if (it != induction_.end()) {
818     auto loop_it = it->second.find(instruction);
819     if (loop_it != it->second.end()) {
820       return loop_it->second;
821     }
822   }
823   if (loop->IsDefinedOutOfTheLoop(instruction)) {
824     InductionInfo* info = CreateInvariantFetch(instruction);
825     AssignInfo(loop, instruction, info);
826     return info;
827   }
828   return nullptr;
829 }
830 
CreateConstant(int64_t value,Primitive::Type type)831 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateConstant(int64_t value,
832                                                                             Primitive::Type type) {
833   if (type == Primitive::kPrimInt) {
834     return CreateInvariantFetch(graph_->GetIntConstant(value));
835   }
836   DCHECK_EQ(type, Primitive::kPrimLong);
837   return CreateInvariantFetch(graph_->GetLongConstant(value));
838 }
839 
CreateSimplifiedInvariant(InductionOp op,InductionInfo * a,InductionInfo * b)840 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateSimplifiedInvariant(
841     InductionOp op,
842     InductionInfo* a,
843     InductionInfo* b) {
844   // Perform some light-weight simplifications during construction of a new invariant.
845   // This often safes memory and yields a more concise representation of the induction.
846   // More exhaustive simplifications are done by later phases once induction nodes are
847   // translated back into HIR code (e.g. by loop optimizations or BCE).
848   int64_t value = -1;
849   if (IsExact(a, &value)) {
850     if (value == 0) {
851       // Simplify 0 + b = b, 0 * b = 0.
852       if (op == kAdd) {
853         return b;
854       } else if (op == kMul) {
855         return a;
856       }
857     } else if (op == kMul) {
858       // Simplify 1 * b = b, -1 * b = -b
859       if (value == 1) {
860         return b;
861       } else if (value == -1) {
862         return CreateSimplifiedInvariant(kNeg, nullptr, b);
863       }
864     }
865   }
866   if (IsExact(b, &value)) {
867     if (value == 0) {
868       // Simplify a + 0 = a, a - 0 = a, a * 0 = 0, -0 = 0.
869       if (op == kAdd || op == kSub) {
870         return a;
871       } else if (op == kMul || op == kNeg) {
872         return b;
873       }
874     } else if (op == kMul || op == kDiv) {
875       // Simplify a * 1 = a, a / 1 = a, a * -1 = -a, a / -1 = -a
876       if (value == 1) {
877         return a;
878       } else if (value == -1) {
879         return CreateSimplifiedInvariant(kNeg, nullptr, a);
880       }
881     }
882   } else if (b->operation == kNeg) {
883     // Simplify a + (-b) = a - b, a - (-b) = a + b, -(-b) = b.
884     if (op == kAdd) {
885       return CreateSimplifiedInvariant(kSub, a, b->op_b);
886     } else if (op == kSub) {
887       return CreateSimplifiedInvariant(kAdd, a, b->op_b);
888     } else if (op == kNeg) {
889       return b->op_b;
890     }
891   } else if (b->operation == kSub) {
892     // Simplify - (a - b) = b - a.
893     if (op == kNeg) {
894       return CreateSimplifiedInvariant(kSub, b->op_b, b->op_a);
895     }
896   }
897   return new (graph_->GetArena()) InductionInfo(kInvariant, op, a, b, nullptr, b->type);
898 }
899 
IsExact(InductionInfo * info,int64_t * value)900 bool HInductionVarAnalysis::IsExact(InductionInfo* info, int64_t* value) {
901   return InductionVarRange(this).IsConstant(info, InductionVarRange::kExact, value);
902 }
903 
IsAtMost(InductionInfo * info,int64_t * value)904 bool HInductionVarAnalysis::IsAtMost(InductionInfo* info, int64_t* value) {
905   return InductionVarRange(this).IsConstant(info, InductionVarRange::kAtMost, value);
906 }
907 
IsAtLeast(InductionInfo * info,int64_t * value)908 bool HInductionVarAnalysis::IsAtLeast(InductionInfo* info, int64_t* value) {
909   return InductionVarRange(this).IsConstant(info, InductionVarRange::kAtLeast, value);
910 }
911 
InductionEqual(InductionInfo * info1,InductionInfo * info2)912 bool HInductionVarAnalysis::InductionEqual(InductionInfo* info1,
913                                            InductionInfo* info2) {
914   // Test structural equality only, without accounting for simplifications.
915   if (info1 != nullptr && info2 != nullptr) {
916     return
917         info1->induction_class == info2->induction_class &&
918         info1->operation       == info2->operation       &&
919         info1->fetch           == info2->fetch           &&
920         info1->type            == info2->type            &&
921         InductionEqual(info1->op_a, info2->op_a)         &&
922         InductionEqual(info1->op_b, info2->op_b);
923   }
924   // Otherwise only two nullptrs are considered equal.
925   return info1 == info2;
926 }
927 
InductionToString(InductionInfo * info)928 std::string HInductionVarAnalysis::InductionToString(InductionInfo* info) {
929   if (info != nullptr) {
930     if (info->induction_class == kInvariant) {
931       std::string inv = "(";
932       inv += InductionToString(info->op_a);
933       switch (info->operation) {
934         case kNop:   inv += " @ ";  break;
935         case kAdd:   inv += " + ";  break;
936         case kSub:
937         case kNeg:   inv += " - ";  break;
938         case kMul:   inv += " * ";  break;
939         case kDiv:   inv += " / ";  break;
940         case kLT:    inv += " < ";  break;
941         case kLE:    inv += " <= "; break;
942         case kGT:    inv += " > ";  break;
943         case kGE:    inv += " >= "; break;
944         case kFetch:
945           DCHECK(info->fetch);
946           if (info->fetch->IsIntConstant()) {
947             inv += std::to_string(info->fetch->AsIntConstant()->GetValue());
948           } else if (info->fetch->IsLongConstant()) {
949             inv += std::to_string(info->fetch->AsLongConstant()->GetValue());
950           } else {
951             inv += std::to_string(info->fetch->GetId()) + ":" + info->fetch->DebugName();
952           }
953           break;
954         case kTripCountInLoop:       inv += " (TC-loop) ";        break;
955         case kTripCountInBody:       inv += " (TC-body) ";        break;
956         case kTripCountInLoopUnsafe: inv += " (TC-loop-unsafe) "; break;
957         case kTripCountInBodyUnsafe: inv += " (TC-body-unsafe) "; break;
958       }
959       inv += InductionToString(info->op_b);
960       inv += ")";
961       return inv;
962     } else {
963       DCHECK(info->operation == kNop);
964       if (info->induction_class == kLinear) {
965         return "(" + InductionToString(info->op_a) + " * i + " +
966                      InductionToString(info->op_b) + "):" +
967                      Primitive::PrettyDescriptor(info->type);
968       } else if (info->induction_class == kWrapAround) {
969         return "wrap(" + InductionToString(info->op_a) + ", " +
970                          InductionToString(info->op_b) + "):" +
971                          Primitive::PrettyDescriptor(info->type);
972       } else if (info->induction_class == kPeriodic) {
973         return "periodic(" + InductionToString(info->op_a) + ", " +
974                              InductionToString(info->op_b) + "):" +
975                              Primitive::PrettyDescriptor(info->type);
976       }
977     }
978   }
979   return "";
980 }
981 
982 }  // namespace art
983