1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "induction_var_analysis.h"
18 #include "induction_var_range.h"
19
20 namespace art {
21
22 /**
23 * Since graph traversal may enter a SCC at any position, an initial representation may be rotated,
24 * along dependences, viz. any of (a, b, c, d), (d, a, b, c) (c, d, a, b), (b, c, d, a) assuming
25 * a chain of dependences (mutual independent items may occur in arbitrary order). For proper
26 * classification, the lexicographically first entry-phi is rotated to the front.
27 */
RotateEntryPhiFirst(HLoopInformation * loop,ArenaVector<HInstruction * > * scc,ArenaVector<HInstruction * > * new_scc)28 static void RotateEntryPhiFirst(HLoopInformation* loop,
29 ArenaVector<HInstruction*>* scc,
30 ArenaVector<HInstruction*>* new_scc) {
31 // Find very first entry-phi.
32 const HInstructionList& phis = loop->GetHeader()->GetPhis();
33 HInstruction* phi = nullptr;
34 size_t phi_pos = -1;
35 const size_t size = scc->size();
36 for (size_t i = 0; i < size; i++) {
37 HInstruction* other = (*scc)[i];
38 if (other->IsLoopHeaderPhi() && (phi == nullptr || phis.FoundBefore(other, phi))) {
39 phi = other;
40 phi_pos = i;
41 }
42 }
43
44 // If found, bring that entry-phi to front.
45 if (phi != nullptr) {
46 new_scc->clear();
47 for (size_t i = 0; i < size; i++) {
48 new_scc->push_back((*scc)[phi_pos]);
49 if (++phi_pos >= size) phi_pos = 0;
50 }
51 DCHECK_EQ(size, new_scc->size());
52 scc->swap(*new_scc);
53 }
54 }
55
56 /**
57 * Returns true if the from/to types denote a narrowing, integral conversion (precision loss).
58 */
IsNarrowingIntegralConversion(Primitive::Type from,Primitive::Type to)59 static bool IsNarrowingIntegralConversion(Primitive::Type from, Primitive::Type to) {
60 switch (from) {
61 case Primitive::kPrimLong:
62 return to == Primitive::kPrimByte || to == Primitive::kPrimShort
63 || to == Primitive::kPrimChar || to == Primitive::kPrimInt;
64 case Primitive::kPrimInt:
65 return to == Primitive::kPrimByte || to == Primitive::kPrimShort
66 || to == Primitive::kPrimChar;
67 case Primitive::kPrimChar:
68 case Primitive::kPrimShort:
69 return to == Primitive::kPrimByte;
70 default:
71 return false;
72 }
73 }
74
75 /**
76 * Returns narrowest data type.
77 */
Narrowest(Primitive::Type type1,Primitive::Type type2)78 static Primitive::Type Narrowest(Primitive::Type type1, Primitive::Type type2) {
79 return Primitive::ComponentSize(type1) <= Primitive::ComponentSize(type2) ? type1 : type2;
80 }
81
82 //
83 // Class methods.
84 //
85
HInductionVarAnalysis(HGraph * graph)86 HInductionVarAnalysis::HInductionVarAnalysis(HGraph* graph)
87 : HOptimization(graph, kInductionPassName),
88 global_depth_(0),
89 stack_(graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
90 scc_(graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
91 map_(std::less<HInstruction*>(),
92 graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
93 cycle_(std::less<HInstruction*>(),
94 graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
95 induction_(std::less<HLoopInformation*>(),
96 graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)) {
97 }
98
Run()99 void HInductionVarAnalysis::Run() {
100 // Detects sequence variables (generalized induction variables) during an outer to inner
101 // traversal of all loops using Gerlek's algorithm. The order is important to enable
102 // range analysis on outer loop while visiting inner loops.
103 for (HReversePostOrderIterator it_graph(*graph_); !it_graph.Done(); it_graph.Advance()) {
104 HBasicBlock* graph_block = it_graph.Current();
105 // Don't analyze irreducible loops.
106 // TODO(ajcbik): could/should we remove this restriction?
107 if (graph_block->IsLoopHeader() && !graph_block->GetLoopInformation()->IsIrreducible()) {
108 VisitLoop(graph_block->GetLoopInformation());
109 }
110 }
111 }
112
VisitLoop(HLoopInformation * loop)113 void HInductionVarAnalysis::VisitLoop(HLoopInformation* loop) {
114 // Find strongly connected components (SSCs) in the SSA graph of this loop using Tarjan's
115 // algorithm. Due to the descendant-first nature, classification happens "on-demand".
116 global_depth_ = 0;
117 DCHECK(stack_.empty());
118 map_.clear();
119
120 for (HBlocksInLoopIterator it_loop(*loop); !it_loop.Done(); it_loop.Advance()) {
121 HBasicBlock* loop_block = it_loop.Current();
122 DCHECK(loop_block->IsInLoop());
123 if (loop_block->GetLoopInformation() != loop) {
124 continue; // Inner loops already visited.
125 }
126 // Visit phi-operations and instructions.
127 for (HInstructionIterator it(loop_block->GetPhis()); !it.Done(); it.Advance()) {
128 HInstruction* instruction = it.Current();
129 if (!IsVisitedNode(instruction)) {
130 VisitNode(loop, instruction);
131 }
132 }
133 for (HInstructionIterator it(loop_block->GetInstructions()); !it.Done(); it.Advance()) {
134 HInstruction* instruction = it.Current();
135 if (!IsVisitedNode(instruction)) {
136 VisitNode(loop, instruction);
137 }
138 }
139 }
140
141 DCHECK(stack_.empty());
142 map_.clear();
143
144 // Determine the loop's trip-count.
145 VisitControl(loop);
146 }
147
VisitNode(HLoopInformation * loop,HInstruction * instruction)148 void HInductionVarAnalysis::VisitNode(HLoopInformation* loop, HInstruction* instruction) {
149 const uint32_t d1 = ++global_depth_;
150 map_.Put(instruction, NodeInfo(d1));
151 stack_.push_back(instruction);
152
153 // Visit all descendants.
154 uint32_t low = d1;
155 for (size_t i = 0, count = instruction->InputCount(); i < count; ++i) {
156 low = std::min(low, VisitDescendant(loop, instruction->InputAt(i)));
157 }
158
159 // Lower or found SCC?
160 if (low < d1) {
161 map_.find(instruction)->second.depth = low;
162 } else {
163 scc_.clear();
164 cycle_.clear();
165
166 // Pop the stack to build the SCC for classification.
167 while (!stack_.empty()) {
168 HInstruction* x = stack_.back();
169 scc_.push_back(x);
170 stack_.pop_back();
171 map_.find(x)->second.done = true;
172 if (x == instruction) {
173 break;
174 }
175 }
176
177 // Type of induction.
178 type_ = scc_[0]->GetType();
179
180 // Classify the SCC.
181 if (scc_.size() == 1 && !scc_[0]->IsLoopHeaderPhi()) {
182 ClassifyTrivial(loop, scc_[0]);
183 } else {
184 ClassifyNonTrivial(loop);
185 }
186
187 scc_.clear();
188 cycle_.clear();
189 }
190 }
191
VisitDescendant(HLoopInformation * loop,HInstruction * instruction)192 uint32_t HInductionVarAnalysis::VisitDescendant(HLoopInformation* loop, HInstruction* instruction) {
193 // If the definition is either outside the loop (loop invariant entry value)
194 // or assigned in inner loop (inner exit value), the traversal stops.
195 HLoopInformation* otherLoop = instruction->GetBlock()->GetLoopInformation();
196 if (otherLoop != loop) {
197 return global_depth_;
198 }
199
200 // Inspect descendant node.
201 if (!IsVisitedNode(instruction)) {
202 VisitNode(loop, instruction);
203 return map_.find(instruction)->second.depth;
204 } else {
205 auto it = map_.find(instruction);
206 return it->second.done ? global_depth_ : it->second.depth;
207 }
208 }
209
ClassifyTrivial(HLoopInformation * loop,HInstruction * instruction)210 void HInductionVarAnalysis::ClassifyTrivial(HLoopInformation* loop, HInstruction* instruction) {
211 InductionInfo* info = nullptr;
212 if (instruction->IsPhi()) {
213 info = TransferPhi(loop, instruction, /* input_index */ 0);
214 } else if (instruction->IsAdd()) {
215 info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)),
216 LookupInfo(loop, instruction->InputAt(1)), kAdd);
217 } else if (instruction->IsSub()) {
218 info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)),
219 LookupInfo(loop, instruction->InputAt(1)), kSub);
220 } else if (instruction->IsMul()) {
221 info = TransferMul(LookupInfo(loop, instruction->InputAt(0)),
222 LookupInfo(loop, instruction->InputAt(1)));
223 } else if (instruction->IsShl()) {
224 info = TransferShl(LookupInfo(loop, instruction->InputAt(0)),
225 LookupInfo(loop, instruction->InputAt(1)),
226 instruction->InputAt(0)->GetType());
227 } else if (instruction->IsNeg()) {
228 info = TransferNeg(LookupInfo(loop, instruction->InputAt(0)));
229 } else if (instruction->IsTypeConversion()) {
230 info = TransferCnv(LookupInfo(loop, instruction->InputAt(0)),
231 instruction->AsTypeConversion()->GetInputType(),
232 instruction->AsTypeConversion()->GetResultType());
233
234 } else if (instruction->IsBoundsCheck()) {
235 info = LookupInfo(loop, instruction->InputAt(0)); // Pass-through.
236 }
237
238 // Successfully classified?
239 if (info != nullptr) {
240 AssignInfo(loop, instruction, info);
241 }
242 }
243
ClassifyNonTrivial(HLoopInformation * loop)244 void HInductionVarAnalysis::ClassifyNonTrivial(HLoopInformation* loop) {
245 const size_t size = scc_.size();
246 DCHECK_GE(size, 1u);
247
248 // Rotate proper entry-phi to front.
249 if (size > 1) {
250 ArenaVector<HInstruction*> other(graph_->GetArena()->Adapter(kArenaAllocInductionVarAnalysis));
251 RotateEntryPhiFirst(loop, &scc_, &other);
252 }
253
254 // Analyze from entry-phi onwards.
255 HInstruction* phi = scc_[0];
256 if (!phi->IsLoopHeaderPhi()) {
257 return;
258 }
259
260 // External link should be loop invariant.
261 InductionInfo* initial = LookupInfo(loop, phi->InputAt(0));
262 if (initial == nullptr || initial->induction_class != kInvariant) {
263 return;
264 }
265
266 // Singleton is wrap-around induction if all internal links have the same meaning.
267 if (size == 1) {
268 InductionInfo* update = TransferPhi(loop, phi, /* input_index */ 1);
269 if (update != nullptr) {
270 AssignInfo(loop, phi, CreateInduction(kWrapAround, initial, update, type_));
271 }
272 return;
273 }
274
275 // Inspect remainder of the cycle that resides in scc_. The cycle_ mapping assigns
276 // temporary meaning to its nodes, seeded from the phi instruction and back.
277 for (size_t i = 1; i < size; i++) {
278 HInstruction* instruction = scc_[i];
279 InductionInfo* update = nullptr;
280 if (instruction->IsPhi()) {
281 update = SolvePhiAllInputs(loop, phi, instruction);
282 } else if (instruction->IsAdd()) {
283 update = SolveAddSub(
284 loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kAdd, true);
285 } else if (instruction->IsSub()) {
286 update = SolveAddSub(
287 loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kSub, true);
288 } else if (instruction->IsTypeConversion()) {
289 update = SolveCnv(instruction->AsTypeConversion());
290 }
291 if (update == nullptr) {
292 return;
293 }
294 cycle_.Put(instruction, update);
295 }
296
297 // Success if all internal links received the same temporary meaning.
298 InductionInfo* induction = SolvePhi(phi, /* input_index */ 1);
299 if (induction != nullptr) {
300 switch (induction->induction_class) {
301 case kInvariant:
302 // Classify first phi and then the rest of the cycle "on-demand".
303 // Statements are scanned in order.
304 AssignInfo(loop, phi, CreateInduction(kLinear, induction, initial, type_));
305 for (size_t i = 1; i < size; i++) {
306 ClassifyTrivial(loop, scc_[i]);
307 }
308 break;
309 case kPeriodic:
310 // Classify all elements in the cycle with the found periodic induction while
311 // rotating each first element to the end. Lastly, phi is classified.
312 // Statements are scanned in reverse order.
313 for (size_t i = size - 1; i >= 1; i--) {
314 AssignInfo(loop, scc_[i], induction);
315 induction = RotatePeriodicInduction(induction->op_b, induction->op_a);
316 }
317 AssignInfo(loop, phi, induction);
318 break;
319 default:
320 break;
321 }
322 }
323 }
324
RotatePeriodicInduction(InductionInfo * induction,InductionInfo * last)325 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::RotatePeriodicInduction(
326 InductionInfo* induction,
327 InductionInfo* last) {
328 // Rotates a periodic induction of the form
329 // (a, b, c, d, e)
330 // into
331 // (b, c, d, e, a)
332 // in preparation of assigning this to the previous variable in the sequence.
333 if (induction->induction_class == kInvariant) {
334 return CreateInduction(kPeriodic, induction, last, type_);
335 }
336 return CreateInduction(
337 kPeriodic, induction->op_a, RotatePeriodicInduction(induction->op_b, last), type_);
338 }
339
TransferPhi(HLoopInformation * loop,HInstruction * phi,size_t input_index)340 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferPhi(HLoopInformation* loop,
341 HInstruction* phi,
342 size_t input_index) {
343 // Match all phi inputs from input_index onwards exactly.
344 const size_t count = phi->InputCount();
345 DCHECK_LT(input_index, count);
346 InductionInfo* a = LookupInfo(loop, phi->InputAt(input_index));
347 for (size_t i = input_index + 1; i < count; i++) {
348 InductionInfo* b = LookupInfo(loop, phi->InputAt(i));
349 if (!InductionEqual(a, b)) {
350 return nullptr;
351 }
352 }
353 return a;
354 }
355
TransferAddSub(InductionInfo * a,InductionInfo * b,InductionOp op)356 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferAddSub(InductionInfo* a,
357 InductionInfo* b,
358 InductionOp op) {
359 // Transfer over an addition or subtraction: any invariant, linear, wrap-around, or periodic
360 // can be combined with an invariant to yield a similar result. Even two linear inputs can
361 // be combined. All other combinations fail, however.
362 if (a != nullptr && b != nullptr) {
363 if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
364 return CreateInvariantOp(op, a, b);
365 } else if (a->induction_class == kLinear && b->induction_class == kLinear) {
366 return CreateInduction(kLinear,
367 TransferAddSub(a->op_a, b->op_a, op),
368 TransferAddSub(a->op_b, b->op_b, op),
369 type_);
370 } else if (a->induction_class == kInvariant) {
371 InductionInfo* new_a = b->op_a;
372 InductionInfo* new_b = TransferAddSub(a, b->op_b, op);
373 if (b->induction_class != kLinear) {
374 DCHECK(b->induction_class == kWrapAround || b->induction_class == kPeriodic);
375 new_a = TransferAddSub(a, new_a, op);
376 } else if (op == kSub) { // Negation required.
377 new_a = TransferNeg(new_a);
378 }
379 return CreateInduction(b->induction_class, new_a, new_b, type_);
380 } else if (b->induction_class == kInvariant) {
381 InductionInfo* new_a = a->op_a;
382 InductionInfo* new_b = TransferAddSub(a->op_b, b, op);
383 if (a->induction_class != kLinear) {
384 DCHECK(a->induction_class == kWrapAround || a->induction_class == kPeriodic);
385 new_a = TransferAddSub(new_a, b, op);
386 }
387 return CreateInduction(a->induction_class, new_a, new_b, type_);
388 }
389 }
390 return nullptr;
391 }
392
TransferMul(InductionInfo * a,InductionInfo * b)393 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferMul(InductionInfo* a,
394 InductionInfo* b) {
395 // Transfer over a multiplication: any invariant, linear, wrap-around, or periodic
396 // can be multiplied with an invariant to yield a similar but multiplied result.
397 // Two non-invariant inputs cannot be multiplied, however.
398 if (a != nullptr && b != nullptr) {
399 if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
400 return CreateInvariantOp(kMul, a, b);
401 } else if (a->induction_class == kInvariant) {
402 return CreateInduction(b->induction_class,
403 TransferMul(a, b->op_a),
404 TransferMul(a, b->op_b),
405 type_);
406 } else if (b->induction_class == kInvariant) {
407 return CreateInduction(a->induction_class,
408 TransferMul(a->op_a, b),
409 TransferMul(a->op_b, b),
410 type_);
411 }
412 }
413 return nullptr;
414 }
415
TransferShl(InductionInfo * a,InductionInfo * b,Primitive::Type type)416 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferShl(InductionInfo* a,
417 InductionInfo* b,
418 Primitive::Type type) {
419 // Transfer over a shift left: treat shift by restricted constant as equivalent multiplication.
420 int64_t value = -1;
421 if (a != nullptr && IsExact(b, &value)) {
422 // Obtain the constant needed for the multiplication. This yields an existing instruction
423 // if the constants is already there. Otherwise, this has a side effect on the HIR.
424 // The restriction on the shift factor avoids generating a negative constant
425 // (viz. 1 << 31 and 1L << 63 set the sign bit). The code assumes that generalization
426 // for shift factors outside [0,32) and [0,64) ranges is done by earlier simplification.
427 if ((type == Primitive::kPrimInt && 0 <= value && value < 31) ||
428 (type == Primitive::kPrimLong && 0 <= value && value < 63)) {
429 return TransferMul(a, CreateConstant(1 << value, type));
430 }
431 }
432 return nullptr;
433 }
434
TransferNeg(InductionInfo * a)435 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferNeg(InductionInfo* a) {
436 // Transfer over a unary negation: an invariant, linear, wrap-around, or periodic input
437 // yields a similar but negated induction as result.
438 if (a != nullptr) {
439 if (a->induction_class == kInvariant) {
440 return CreateInvariantOp(kNeg, nullptr, a);
441 }
442 return CreateInduction(a->induction_class, TransferNeg(a->op_a), TransferNeg(a->op_b), type_);
443 }
444 return nullptr;
445 }
446
TransferCnv(InductionInfo * a,Primitive::Type from,Primitive::Type to)447 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferCnv(InductionInfo* a,
448 Primitive::Type from,
449 Primitive::Type to) {
450 if (a != nullptr) {
451 // Allow narrowing conversion in certain cases.
452 if (IsNarrowingIntegralConversion(from, to)) {
453 if (a->induction_class == kLinear) {
454 if (a->type == to || (a->type == from && IsNarrowingIntegralConversion(from, to))) {
455 return CreateInduction(kLinear, a->op_a, a->op_b, to);
456 }
457 }
458 // TODO: other cases useful too?
459 }
460 }
461 return nullptr;
462 }
463
SolvePhi(HInstruction * phi,size_t input_index)464 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhi(HInstruction* phi,
465 size_t input_index) {
466 // Match all phi inputs from input_index onwards exactly.
467 const size_t count = phi->InputCount();
468 DCHECK_LT(input_index, count);
469 auto ita = cycle_.find(phi->InputAt(input_index));
470 if (ita != cycle_.end()) {
471 for (size_t i = input_index + 1; i < count; i++) {
472 auto itb = cycle_.find(phi->InputAt(i));
473 if (itb == cycle_.end() ||
474 !HInductionVarAnalysis::InductionEqual(ita->second, itb->second)) {
475 return nullptr;
476 }
477 }
478 return ita->second;
479 }
480 return nullptr;
481 }
482
SolvePhiAllInputs(HLoopInformation * loop,HInstruction * entry_phi,HInstruction * phi)483 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhiAllInputs(
484 HLoopInformation* loop,
485 HInstruction* entry_phi,
486 HInstruction* phi) {
487 // Match all phi inputs.
488 InductionInfo* match = SolvePhi(phi, /* input_index */ 0);
489 if (match != nullptr) {
490 return match;
491 }
492
493 // Otherwise, try to solve for a periodic seeded from phi onward.
494 // Only tight multi-statement cycles are considered in order to
495 // simplify rotating the periodic during the final classification.
496 if (phi->IsLoopHeaderPhi() && phi->InputCount() == 2) {
497 InductionInfo* a = LookupInfo(loop, phi->InputAt(0));
498 if (a != nullptr && a->induction_class == kInvariant) {
499 if (phi->InputAt(1) == entry_phi) {
500 InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
501 return CreateInduction(kPeriodic, a, initial, type_);
502 }
503 InductionInfo* b = SolvePhi(phi, /* input_index */ 1);
504 if (b != nullptr && b->induction_class == kPeriodic) {
505 return CreateInduction(kPeriodic, a, b, type_);
506 }
507 }
508 }
509 return nullptr;
510 }
511
SolveAddSub(HLoopInformation * loop,HInstruction * entry_phi,HInstruction * instruction,HInstruction * x,HInstruction * y,InductionOp op,bool is_first_call)512 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveAddSub(HLoopInformation* loop,
513 HInstruction* entry_phi,
514 HInstruction* instruction,
515 HInstruction* x,
516 HInstruction* y,
517 InductionOp op,
518 bool is_first_call) {
519 // Solve within a cycle over an addition or subtraction: adding or subtracting an
520 // invariant value, seeded from phi, keeps adding to the stride of the induction.
521 InductionInfo* b = LookupInfo(loop, y);
522 if (b != nullptr && b->induction_class == kInvariant) {
523 if (x == entry_phi) {
524 return (op == kAdd) ? b : CreateInvariantOp(kNeg, nullptr, b);
525 }
526 auto it = cycle_.find(x);
527 if (it != cycle_.end()) {
528 InductionInfo* a = it->second;
529 if (a->induction_class == kInvariant) {
530 return CreateInvariantOp(op, a, b);
531 }
532 }
533 }
534
535 // Try some alternatives before failing.
536 if (op == kAdd) {
537 // Try the other way around for an addition if considered for first time.
538 if (is_first_call) {
539 return SolveAddSub(loop, entry_phi, instruction, y, x, op, false);
540 }
541 } else if (op == kSub) {
542 // Solve within a tight cycle that is formed by exactly two instructions,
543 // one phi and one update, for a periodic idiom of the form k = c - k;
544 if (y == entry_phi && entry_phi->InputCount() == 2 && instruction == entry_phi->InputAt(1)) {
545 InductionInfo* a = LookupInfo(loop, x);
546 if (a != nullptr && a->induction_class == kInvariant) {
547 InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
548 return CreateInduction(kPeriodic, CreateInvariantOp(kSub, a, initial), initial, type_);
549 }
550 }
551 }
552
553 return nullptr;
554 }
555
SolveCnv(HTypeConversion * conversion)556 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveCnv(HTypeConversion* conversion) {
557 Primitive::Type from = conversion->GetInputType();
558 Primitive::Type to = conversion->GetResultType();
559 // A narrowing conversion is allowed within the cycle of a linear induction, provided that the
560 // narrowest encountered type is recorded with the induction to account for the precision loss.
561 if (IsNarrowingIntegralConversion(from, to)) {
562 auto it = cycle_.find(conversion->GetInput());
563 if (it != cycle_.end() && it->second->induction_class == kInvariant) {
564 type_ = Narrowest(type_, to);
565 return it->second;
566 }
567 }
568 return nullptr;
569 }
570
VisitControl(HLoopInformation * loop)571 void HInductionVarAnalysis::VisitControl(HLoopInformation* loop) {
572 HInstruction* control = loop->GetHeader()->GetLastInstruction();
573 if (control->IsIf()) {
574 HIf* ifs = control->AsIf();
575 HBasicBlock* if_true = ifs->IfTrueSuccessor();
576 HBasicBlock* if_false = ifs->IfFalseSuccessor();
577 HInstruction* if_expr = ifs->InputAt(0);
578 // Determine if loop has following structure in header.
579 // loop-header: ....
580 // if (condition) goto X
581 if (if_expr->IsCondition()) {
582 HCondition* condition = if_expr->AsCondition();
583 InductionInfo* a = LookupInfo(loop, condition->InputAt(0));
584 InductionInfo* b = LookupInfo(loop, condition->InputAt(1));
585 Primitive::Type type = condition->InputAt(0)->GetType();
586 // Determine if the loop control uses a known sequence on an if-exit (X outside) or on
587 // an if-iterate (X inside), expressed as if-iterate when passed into VisitCondition().
588 if (a == nullptr || b == nullptr) {
589 return; // Loop control is not a sequence.
590 } else if (if_true->GetLoopInformation() != loop && if_false->GetLoopInformation() == loop) {
591 VisitCondition(loop, a, b, type, condition->GetOppositeCondition());
592 } else if (if_true->GetLoopInformation() == loop && if_false->GetLoopInformation() != loop) {
593 VisitCondition(loop, a, b, type, condition->GetCondition());
594 }
595 }
596 }
597 }
598
VisitCondition(HLoopInformation * loop,InductionInfo * a,InductionInfo * b,Primitive::Type type,IfCondition cmp)599 void HInductionVarAnalysis::VisitCondition(HLoopInformation* loop,
600 InductionInfo* a,
601 InductionInfo* b,
602 Primitive::Type type,
603 IfCondition cmp) {
604 if (a->induction_class == kInvariant && b->induction_class == kLinear) {
605 // Swap condition if induction is at right-hand-side (e.g. U > i is same as i < U).
606 switch (cmp) {
607 case kCondLT: VisitCondition(loop, b, a, type, kCondGT); break;
608 case kCondLE: VisitCondition(loop, b, a, type, kCondGE); break;
609 case kCondGT: VisitCondition(loop, b, a, type, kCondLT); break;
610 case kCondGE: VisitCondition(loop, b, a, type, kCondLE); break;
611 case kCondNE: VisitCondition(loop, b, a, type, kCondNE); break;
612 default: break;
613 }
614 } else if (a->induction_class == kLinear && b->induction_class == kInvariant) {
615 // Analyze condition with induction at left-hand-side (e.g. i < U).
616 InductionInfo* lower_expr = a->op_b;
617 InductionInfo* upper_expr = b;
618 InductionInfo* stride_expr = a->op_a;
619 // Constant stride?
620 int64_t stride_value = 0;
621 if (!IsExact(stride_expr, &stride_value)) {
622 return;
623 }
624 // Rewrite condition i != U into strict end condition i < U or i > U if this end condition
625 // is reached exactly (tested by verifying if the loop has a unit stride and the non-strict
626 // condition would be always taken).
627 if (cmp == kCondNE && ((stride_value == +1 && IsTaken(lower_expr, upper_expr, kCondLE)) ||
628 (stride_value == -1 && IsTaken(lower_expr, upper_expr, kCondGE)))) {
629 cmp = stride_value > 0 ? kCondLT : kCondGT;
630 }
631 // Only accept integral condition. A mismatch between the type of condition and the induction
632 // is only allowed if the, necessarily narrower, induction range fits the narrower control.
633 if (type != Primitive::kPrimInt && type != Primitive::kPrimLong) {
634 return; // not integral
635 } else if (type != a->type &&
636 !FitsNarrowerControl(lower_expr, upper_expr, stride_value, a->type, cmp)) {
637 return; // mismatched type
638 }
639 // Normalize a linear loop control with a nonzero stride:
640 // stride > 0, either i < U or i <= U
641 // stride < 0, either i > U or i >= U
642 if ((stride_value > 0 && (cmp == kCondLT || cmp == kCondLE)) ||
643 (stride_value < 0 && (cmp == kCondGT || cmp == kCondGE))) {
644 VisitTripCount(loop, lower_expr, upper_expr, stride_expr, stride_value, type, cmp);
645 }
646 }
647 }
648
VisitTripCount(HLoopInformation * loop,InductionInfo * lower_expr,InductionInfo * upper_expr,InductionInfo * stride_expr,int64_t stride_value,Primitive::Type type,IfCondition cmp)649 void HInductionVarAnalysis::VisitTripCount(HLoopInformation* loop,
650 InductionInfo* lower_expr,
651 InductionInfo* upper_expr,
652 InductionInfo* stride_expr,
653 int64_t stride_value,
654 Primitive::Type type,
655 IfCondition cmp) {
656 // Any loop of the general form:
657 //
658 // for (i = L; i <= U; i += S) // S > 0
659 // or for (i = L; i >= U; i += S) // S < 0
660 // .. i ..
661 //
662 // can be normalized into:
663 //
664 // for (n = 0; n < TC; n++) // where TC = (U + S - L) / S
665 // .. L + S * n ..
666 //
667 // taking the following into consideration:
668 //
669 // (1) Using the same precision, the TC (trip-count) expression should be interpreted as
670 // an unsigned entity, for example, as in the following loop that uses the full range:
671 // for (int i = INT_MIN; i < INT_MAX; i++) // TC = UINT_MAX
672 // (2) The TC is only valid if the loop is taken, otherwise TC = 0, as in:
673 // for (int i = 12; i < U; i++) // TC = 0 when U < 12
674 // If this cannot be determined at compile-time, the TC is only valid within the
675 // loop-body proper, not the loop-header unless enforced with an explicit taken-test.
676 // (3) The TC is only valid if the loop is finite, otherwise TC has no value, as in:
677 // for (int i = 0; i <= U; i++) // TC = Inf when U = INT_MAX
678 // If this cannot be determined at compile-time, the TC is only valid when enforced
679 // with an explicit finite-test.
680 // (4) For loops which early-exits, the TC forms an upper bound, as in:
681 // for (int i = 0; i < 10 && ....; i++) // TC <= 10
682 InductionInfo* trip_count = upper_expr;
683 const bool is_taken = IsTaken(lower_expr, upper_expr, cmp);
684 const bool is_finite = IsFinite(upper_expr, stride_value, type, cmp);
685 const bool cancels = (cmp == kCondLT || cmp == kCondGT) && std::abs(stride_value) == 1;
686 if (!cancels) {
687 // Convert exclusive integral inequality into inclusive integral inequality,
688 // viz. condition i < U is i <= U - 1 and condition i > U is i >= U + 1.
689 if (cmp == kCondLT) {
690 trip_count = CreateInvariantOp(kSub, trip_count, CreateConstant(1, type));
691 } else if (cmp == kCondGT) {
692 trip_count = CreateInvariantOp(kAdd, trip_count, CreateConstant(1, type));
693 }
694 // Compensate for stride.
695 trip_count = CreateInvariantOp(kAdd, trip_count, stride_expr);
696 }
697 trip_count = CreateInvariantOp(
698 kDiv, CreateInvariantOp(kSub, trip_count, lower_expr), stride_expr);
699 // Assign the trip-count expression to the loop control. Clients that use the information
700 // should be aware that the expression is only valid under the conditions listed above.
701 InductionOp tcKind = kTripCountInBodyUnsafe; // needs both tests
702 if (is_taken && is_finite) {
703 tcKind = kTripCountInLoop; // needs neither test
704 } else if (is_finite) {
705 tcKind = kTripCountInBody; // needs taken-test
706 } else if (is_taken) {
707 tcKind = kTripCountInLoopUnsafe; // needs finite-test
708 }
709 InductionOp op = kNop;
710 switch (cmp) {
711 case kCondLT: op = kLT; break;
712 case kCondLE: op = kLE; break;
713 case kCondGT: op = kGT; break;
714 case kCondGE: op = kGE; break;
715 default: LOG(FATAL) << "CONDITION UNREACHABLE";
716 }
717 InductionInfo* taken_test = CreateInvariantOp(op, lower_expr, upper_expr);
718 AssignInfo(loop,
719 loop->GetHeader()->GetLastInstruction(),
720 CreateTripCount(tcKind, trip_count, taken_test, type));
721 }
722
IsTaken(InductionInfo * lower_expr,InductionInfo * upper_expr,IfCondition cmp)723 bool HInductionVarAnalysis::IsTaken(InductionInfo* lower_expr,
724 InductionInfo* upper_expr,
725 IfCondition cmp) {
726 int64_t lower_value;
727 int64_t upper_value;
728 switch (cmp) {
729 case kCondLT:
730 return IsAtMost(lower_expr, &lower_value)
731 && IsAtLeast(upper_expr, &upper_value)
732 && lower_value < upper_value;
733 case kCondLE:
734 return IsAtMost(lower_expr, &lower_value)
735 && IsAtLeast(upper_expr, &upper_value)
736 && lower_value <= upper_value;
737 case kCondGT:
738 return IsAtLeast(lower_expr, &lower_value)
739 && IsAtMost(upper_expr, &upper_value)
740 && lower_value > upper_value;
741 case kCondGE:
742 return IsAtLeast(lower_expr, &lower_value)
743 && IsAtMost(upper_expr, &upper_value)
744 && lower_value >= upper_value;
745 default:
746 LOG(FATAL) << "CONDITION UNREACHABLE";
747 }
748 return false; // not certain, may be untaken
749 }
750
IsFinite(InductionInfo * upper_expr,int64_t stride_value,Primitive::Type type,IfCondition cmp)751 bool HInductionVarAnalysis::IsFinite(InductionInfo* upper_expr,
752 int64_t stride_value,
753 Primitive::Type type,
754 IfCondition cmp) {
755 const int64_t min = Primitive::MinValueOfIntegralType(type);
756 const int64_t max = Primitive::MaxValueOfIntegralType(type);
757 // Some rules under which it is certain at compile-time that the loop is finite.
758 int64_t value;
759 switch (cmp) {
760 case kCondLT:
761 return stride_value == 1 ||
762 (IsAtMost(upper_expr, &value) && value <= (max - stride_value + 1));
763 case kCondLE:
764 return (IsAtMost(upper_expr, &value) && value <= (max - stride_value));
765 case kCondGT:
766 return stride_value == -1 ||
767 (IsAtLeast(upper_expr, &value) && value >= (min - stride_value - 1));
768 case kCondGE:
769 return (IsAtLeast(upper_expr, &value) && value >= (min - stride_value));
770 default:
771 LOG(FATAL) << "CONDITION UNREACHABLE";
772 }
773 return false; // not certain, may be infinite
774 }
775
FitsNarrowerControl(InductionInfo * lower_expr,InductionInfo * upper_expr,int64_t stride_value,Primitive::Type type,IfCondition cmp)776 bool HInductionVarAnalysis::FitsNarrowerControl(InductionInfo* lower_expr,
777 InductionInfo* upper_expr,
778 int64_t stride_value,
779 Primitive::Type type,
780 IfCondition cmp) {
781 int64_t min = Primitive::MinValueOfIntegralType(type);
782 int64_t max = Primitive::MaxValueOfIntegralType(type);
783 // Inclusive test need one extra.
784 if (stride_value != 1 && stride_value != -1) {
785 return false; // non-unit stride
786 } else if (cmp == kCondLE) {
787 max--;
788 } else if (cmp == kCondGE) {
789 min++;
790 }
791 // Do both bounds fit the range?
792 // Note: The `value` is initialized to please valgrind - the compiler can reorder
793 // the return value check with the `value` check, b/27651442 .
794 int64_t value = 0;
795 return IsAtLeast(lower_expr, &value) && value >= min &&
796 IsAtMost(lower_expr, &value) && value <= max &&
797 IsAtLeast(upper_expr, &value) && value >= min &&
798 IsAtMost(upper_expr, &value) && value <= max;
799 }
800
AssignInfo(HLoopInformation * loop,HInstruction * instruction,InductionInfo * info)801 void HInductionVarAnalysis::AssignInfo(HLoopInformation* loop,
802 HInstruction* instruction,
803 InductionInfo* info) {
804 auto it = induction_.find(loop);
805 if (it == induction_.end()) {
806 it = induction_.Put(loop,
807 ArenaSafeMap<HInstruction*, InductionInfo*>(
808 std::less<HInstruction*>(),
809 graph_->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)));
810 }
811 it->second.Put(instruction, info);
812 }
813
LookupInfo(HLoopInformation * loop,HInstruction * instruction)814 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::LookupInfo(HLoopInformation* loop,
815 HInstruction* instruction) {
816 auto it = induction_.find(loop);
817 if (it != induction_.end()) {
818 auto loop_it = it->second.find(instruction);
819 if (loop_it != it->second.end()) {
820 return loop_it->second;
821 }
822 }
823 if (loop->IsDefinedOutOfTheLoop(instruction)) {
824 InductionInfo* info = CreateInvariantFetch(instruction);
825 AssignInfo(loop, instruction, info);
826 return info;
827 }
828 return nullptr;
829 }
830
CreateConstant(int64_t value,Primitive::Type type)831 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateConstant(int64_t value,
832 Primitive::Type type) {
833 if (type == Primitive::kPrimInt) {
834 return CreateInvariantFetch(graph_->GetIntConstant(value));
835 }
836 DCHECK_EQ(type, Primitive::kPrimLong);
837 return CreateInvariantFetch(graph_->GetLongConstant(value));
838 }
839
CreateSimplifiedInvariant(InductionOp op,InductionInfo * a,InductionInfo * b)840 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateSimplifiedInvariant(
841 InductionOp op,
842 InductionInfo* a,
843 InductionInfo* b) {
844 // Perform some light-weight simplifications during construction of a new invariant.
845 // This often safes memory and yields a more concise representation of the induction.
846 // More exhaustive simplifications are done by later phases once induction nodes are
847 // translated back into HIR code (e.g. by loop optimizations or BCE).
848 int64_t value = -1;
849 if (IsExact(a, &value)) {
850 if (value == 0) {
851 // Simplify 0 + b = b, 0 * b = 0.
852 if (op == kAdd) {
853 return b;
854 } else if (op == kMul) {
855 return a;
856 }
857 } else if (op == kMul) {
858 // Simplify 1 * b = b, -1 * b = -b
859 if (value == 1) {
860 return b;
861 } else if (value == -1) {
862 return CreateSimplifiedInvariant(kNeg, nullptr, b);
863 }
864 }
865 }
866 if (IsExact(b, &value)) {
867 if (value == 0) {
868 // Simplify a + 0 = a, a - 0 = a, a * 0 = 0, -0 = 0.
869 if (op == kAdd || op == kSub) {
870 return a;
871 } else if (op == kMul || op == kNeg) {
872 return b;
873 }
874 } else if (op == kMul || op == kDiv) {
875 // Simplify a * 1 = a, a / 1 = a, a * -1 = -a, a / -1 = -a
876 if (value == 1) {
877 return a;
878 } else if (value == -1) {
879 return CreateSimplifiedInvariant(kNeg, nullptr, a);
880 }
881 }
882 } else if (b->operation == kNeg) {
883 // Simplify a + (-b) = a - b, a - (-b) = a + b, -(-b) = b.
884 if (op == kAdd) {
885 return CreateSimplifiedInvariant(kSub, a, b->op_b);
886 } else if (op == kSub) {
887 return CreateSimplifiedInvariant(kAdd, a, b->op_b);
888 } else if (op == kNeg) {
889 return b->op_b;
890 }
891 } else if (b->operation == kSub) {
892 // Simplify - (a - b) = b - a.
893 if (op == kNeg) {
894 return CreateSimplifiedInvariant(kSub, b->op_b, b->op_a);
895 }
896 }
897 return new (graph_->GetArena()) InductionInfo(kInvariant, op, a, b, nullptr, b->type);
898 }
899
IsExact(InductionInfo * info,int64_t * value)900 bool HInductionVarAnalysis::IsExact(InductionInfo* info, int64_t* value) {
901 return InductionVarRange(this).IsConstant(info, InductionVarRange::kExact, value);
902 }
903
IsAtMost(InductionInfo * info,int64_t * value)904 bool HInductionVarAnalysis::IsAtMost(InductionInfo* info, int64_t* value) {
905 return InductionVarRange(this).IsConstant(info, InductionVarRange::kAtMost, value);
906 }
907
IsAtLeast(InductionInfo * info,int64_t * value)908 bool HInductionVarAnalysis::IsAtLeast(InductionInfo* info, int64_t* value) {
909 return InductionVarRange(this).IsConstant(info, InductionVarRange::kAtLeast, value);
910 }
911
InductionEqual(InductionInfo * info1,InductionInfo * info2)912 bool HInductionVarAnalysis::InductionEqual(InductionInfo* info1,
913 InductionInfo* info2) {
914 // Test structural equality only, without accounting for simplifications.
915 if (info1 != nullptr && info2 != nullptr) {
916 return
917 info1->induction_class == info2->induction_class &&
918 info1->operation == info2->operation &&
919 info1->fetch == info2->fetch &&
920 info1->type == info2->type &&
921 InductionEqual(info1->op_a, info2->op_a) &&
922 InductionEqual(info1->op_b, info2->op_b);
923 }
924 // Otherwise only two nullptrs are considered equal.
925 return info1 == info2;
926 }
927
InductionToString(InductionInfo * info)928 std::string HInductionVarAnalysis::InductionToString(InductionInfo* info) {
929 if (info != nullptr) {
930 if (info->induction_class == kInvariant) {
931 std::string inv = "(";
932 inv += InductionToString(info->op_a);
933 switch (info->operation) {
934 case kNop: inv += " @ "; break;
935 case kAdd: inv += " + "; break;
936 case kSub:
937 case kNeg: inv += " - "; break;
938 case kMul: inv += " * "; break;
939 case kDiv: inv += " / "; break;
940 case kLT: inv += " < "; break;
941 case kLE: inv += " <= "; break;
942 case kGT: inv += " > "; break;
943 case kGE: inv += " >= "; break;
944 case kFetch:
945 DCHECK(info->fetch);
946 if (info->fetch->IsIntConstant()) {
947 inv += std::to_string(info->fetch->AsIntConstant()->GetValue());
948 } else if (info->fetch->IsLongConstant()) {
949 inv += std::to_string(info->fetch->AsLongConstant()->GetValue());
950 } else {
951 inv += std::to_string(info->fetch->GetId()) + ":" + info->fetch->DebugName();
952 }
953 break;
954 case kTripCountInLoop: inv += " (TC-loop) "; break;
955 case kTripCountInBody: inv += " (TC-body) "; break;
956 case kTripCountInLoopUnsafe: inv += " (TC-loop-unsafe) "; break;
957 case kTripCountInBodyUnsafe: inv += " (TC-body-unsafe) "; break;
958 }
959 inv += InductionToString(info->op_b);
960 inv += ")";
961 return inv;
962 } else {
963 DCHECK(info->operation == kNop);
964 if (info->induction_class == kLinear) {
965 return "(" + InductionToString(info->op_a) + " * i + " +
966 InductionToString(info->op_b) + "):" +
967 Primitive::PrettyDescriptor(info->type);
968 } else if (info->induction_class == kWrapAround) {
969 return "wrap(" + InductionToString(info->op_a) + ", " +
970 InductionToString(info->op_b) + "):" +
971 Primitive::PrettyDescriptor(info->type);
972 } else if (info->induction_class == kPeriodic) {
973 return "periodic(" + InductionToString(info->op_a) + ", " +
974 InductionToString(info->op_b) + "):" +
975 Primitive::PrettyDescriptor(info->type);
976 }
977 }
978 }
979 return "";
980 }
981
982 } // namespace art
983