1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_space.h"
18
19 #include <lz4.h>
20 #include <random>
21 #include <sys/statvfs.h>
22 #include <sys/types.h>
23 #include <unistd.h>
24
25 #include "art_method.h"
26 #include "base/macros.h"
27 #include "base/stl_util.h"
28 #include "base/scoped_flock.h"
29 #include "base/systrace.h"
30 #include "base/time_utils.h"
31 #include "gc/accounting/space_bitmap-inl.h"
32 #include "image-inl.h"
33 #include "image_space_fs.h"
34 #include "mirror/class-inl.h"
35 #include "mirror/object-inl.h"
36 #include "oat_file.h"
37 #include "os.h"
38 #include "space-inl.h"
39 #include "utils.h"
40
41 namespace art {
42 namespace gc {
43 namespace space {
44
45 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
46
ImageSpace(const std::string & image_filename,const char * image_location,MemMap * mem_map,accounting::ContinuousSpaceBitmap * live_bitmap,uint8_t * end)47 ImageSpace::ImageSpace(const std::string& image_filename,
48 const char* image_location,
49 MemMap* mem_map,
50 accounting::ContinuousSpaceBitmap* live_bitmap,
51 uint8_t* end)
52 : MemMapSpace(image_filename,
53 mem_map,
54 mem_map->Begin(),
55 end,
56 end,
57 kGcRetentionPolicyNeverCollect),
58 oat_file_non_owned_(nullptr),
59 image_location_(image_location) {
60 DCHECK(live_bitmap != nullptr);
61 live_bitmap_.reset(live_bitmap);
62 }
63
ChooseRelocationOffsetDelta(int32_t min_delta,int32_t max_delta)64 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
65 CHECK_ALIGNED(min_delta, kPageSize);
66 CHECK_ALIGNED(max_delta, kPageSize);
67 CHECK_LT(min_delta, max_delta);
68
69 int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
70 if (r % 2 == 0) {
71 r = RoundUp(r, kPageSize);
72 } else {
73 r = RoundDown(r, kPageSize);
74 }
75 CHECK_LE(min_delta, r);
76 CHECK_GE(max_delta, r);
77 CHECK_ALIGNED(r, kPageSize);
78 return r;
79 }
80
GenerateImage(const std::string & image_filename,InstructionSet image_isa,std::string * error_msg)81 static bool GenerateImage(const std::string& image_filename, InstructionSet image_isa,
82 std::string* error_msg) {
83 const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString());
84 std::vector<std::string> boot_class_path;
85 Split(boot_class_path_string, ':', &boot_class_path);
86 if (boot_class_path.empty()) {
87 *error_msg = "Failed to generate image because no boot class path specified";
88 return false;
89 }
90 // We should clean up so we are more likely to have room for the image.
91 if (Runtime::Current()->IsZygote()) {
92 LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
93 PruneDalvikCache(image_isa);
94 }
95
96 std::vector<std::string> arg_vector;
97
98 std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
99 arg_vector.push_back(dex2oat);
100
101 std::string image_option_string("--image=");
102 image_option_string += image_filename;
103 arg_vector.push_back(image_option_string);
104
105 for (size_t i = 0; i < boot_class_path.size(); i++) {
106 arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
107 }
108
109 std::string oat_file_option_string("--oat-file=");
110 oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
111 arg_vector.push_back(oat_file_option_string);
112
113 // Note: we do not generate a fully debuggable boot image so we do not pass the
114 // compiler flag --debuggable here.
115
116 Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
117 CHECK_EQ(image_isa, kRuntimeISA)
118 << "We should always be generating an image for the current isa.";
119
120 int32_t base_offset = ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA,
121 ART_BASE_ADDRESS_MAX_DELTA);
122 LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
123 << "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
124 arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));
125
126 if (!kIsTargetBuild) {
127 arg_vector.push_back("--host");
128 }
129
130 const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
131 for (size_t i = 0; i < compiler_options.size(); ++i) {
132 arg_vector.push_back(compiler_options[i].c_str());
133 }
134
135 std::string command_line(Join(arg_vector, ' '));
136 LOG(INFO) << "GenerateImage: " << command_line;
137 return Exec(arg_vector, error_msg);
138 }
139
FindImageFilename(const char * image_location,const InstructionSet image_isa,std::string * system_filename,bool * has_system,std::string * cache_filename,bool * dalvik_cache_exists,bool * has_cache,bool * is_global_cache)140 bool ImageSpace::FindImageFilename(const char* image_location,
141 const InstructionSet image_isa,
142 std::string* system_filename,
143 bool* has_system,
144 std::string* cache_filename,
145 bool* dalvik_cache_exists,
146 bool* has_cache,
147 bool* is_global_cache) {
148 *has_system = false;
149 *has_cache = false;
150 // image_location = /system/framework/boot.art
151 // system_image_location = /system/framework/<image_isa>/boot.art
152 std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
153 if (OS::FileExists(system_image_filename.c_str())) {
154 *system_filename = system_image_filename;
155 *has_system = true;
156 }
157
158 bool have_android_data = false;
159 *dalvik_cache_exists = false;
160 std::string dalvik_cache;
161 GetDalvikCache(GetInstructionSetString(image_isa), true, &dalvik_cache,
162 &have_android_data, dalvik_cache_exists, is_global_cache);
163
164 if (have_android_data && *dalvik_cache_exists) {
165 // Always set output location even if it does not exist,
166 // so that the caller knows where to create the image.
167 //
168 // image_location = /system/framework/boot.art
169 // *image_filename = /data/dalvik-cache/<image_isa>/boot.art
170 std::string error_msg;
171 if (!GetDalvikCacheFilename(image_location, dalvik_cache.c_str(), cache_filename, &error_msg)) {
172 LOG(WARNING) << error_msg;
173 return *has_system;
174 }
175 *has_cache = OS::FileExists(cache_filename->c_str());
176 }
177 return *has_system || *has_cache;
178 }
179
ReadSpecificImageHeader(const char * filename,ImageHeader * image_header)180 static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
181 std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
182 if (image_file.get() == nullptr) {
183 return false;
184 }
185 const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
186 if (!success || !image_header->IsValid()) {
187 return false;
188 }
189 return true;
190 }
191
192 // Relocate the image at image_location to dest_filename and relocate it by a random amount.
RelocateImage(const char * image_location,const char * dest_filename,InstructionSet isa,std::string * error_msg)193 static bool RelocateImage(const char* image_location, const char* dest_filename,
194 InstructionSet isa, std::string* error_msg) {
195 // We should clean up so we are more likely to have room for the image.
196 if (Runtime::Current()->IsZygote()) {
197 LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile";
198 PruneDalvikCache(isa);
199 }
200
201 std::string patchoat(Runtime::Current()->GetPatchoatExecutable());
202
203 std::string input_image_location_arg("--input-image-location=");
204 input_image_location_arg += image_location;
205
206 std::string output_image_filename_arg("--output-image-file=");
207 output_image_filename_arg += dest_filename;
208
209 std::string instruction_set_arg("--instruction-set=");
210 instruction_set_arg += GetInstructionSetString(isa);
211
212 std::string base_offset_arg("--base-offset-delta=");
213 StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA,
214 ART_BASE_ADDRESS_MAX_DELTA));
215
216 std::vector<std::string> argv;
217 argv.push_back(patchoat);
218
219 argv.push_back(input_image_location_arg);
220 argv.push_back(output_image_filename_arg);
221
222 argv.push_back(instruction_set_arg);
223 argv.push_back(base_offset_arg);
224
225 std::string command_line(Join(argv, ' '));
226 LOG(INFO) << "RelocateImage: " << command_line;
227 return Exec(argv, error_msg);
228 }
229
ReadSpecificImageHeader(const char * filename,std::string * error_msg)230 static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) {
231 std::unique_ptr<ImageHeader> hdr(new ImageHeader);
232 if (!ReadSpecificImageHeader(filename, hdr.get())) {
233 *error_msg = StringPrintf("Unable to read image header for %s", filename);
234 return nullptr;
235 }
236 return hdr.release();
237 }
238
ReadImageHeaderOrDie(const char * image_location,const InstructionSet image_isa)239 ImageHeader* ImageSpace::ReadImageHeaderOrDie(const char* image_location,
240 const InstructionSet image_isa) {
241 std::string error_msg;
242 ImageHeader* image_header = ReadImageHeader(image_location, image_isa, &error_msg);
243 if (image_header == nullptr) {
244 LOG(FATAL) << error_msg;
245 }
246 return image_header;
247 }
248
ReadImageHeader(const char * image_location,const InstructionSet image_isa,std::string * error_msg)249 ImageHeader* ImageSpace::ReadImageHeader(const char* image_location,
250 const InstructionSet image_isa,
251 std::string* error_msg) {
252 std::string system_filename;
253 bool has_system = false;
254 std::string cache_filename;
255 bool has_cache = false;
256 bool dalvik_cache_exists = false;
257 bool is_global_cache = false;
258 if (FindImageFilename(image_location, image_isa, &system_filename, &has_system,
259 &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) {
260 if (Runtime::Current()->ShouldRelocate()) {
261 if (has_system && has_cache) {
262 std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader);
263 std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader);
264 if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) {
265 *error_msg = StringPrintf("Unable to read image header for %s at %s",
266 image_location, system_filename.c_str());
267 return nullptr;
268 }
269 if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) {
270 *error_msg = StringPrintf("Unable to read image header for %s at %s",
271 image_location, cache_filename.c_str());
272 return nullptr;
273 }
274 if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) {
275 *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
276 image_location);
277 return nullptr;
278 }
279 return cache_hdr.release();
280 } else if (!has_cache) {
281 *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
282 image_location);
283 return nullptr;
284 } else if (!has_system && has_cache) {
285 // This can probably just use the cache one.
286 return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
287 }
288 } else {
289 // We don't want to relocate, Just pick the appropriate one if we have it and return.
290 if (has_system && has_cache) {
291 // We want the cache if the checksum matches, otherwise the system.
292 std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(),
293 error_msg));
294 std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(),
295 error_msg));
296 if (system.get() == nullptr ||
297 (cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) {
298 return cache.release();
299 } else {
300 return system.release();
301 }
302 } else if (has_system) {
303 return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
304 } else if (has_cache) {
305 return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
306 }
307 }
308 }
309
310 *error_msg = StringPrintf("Unable to find image file for %s", image_location);
311 return nullptr;
312 }
313
ChecksumsMatch(const char * image_a,const char * image_b)314 static bool ChecksumsMatch(const char* image_a, const char* image_b) {
315 ImageHeader hdr_a;
316 ImageHeader hdr_b;
317 return ReadSpecificImageHeader(image_a, &hdr_a) && ReadSpecificImageHeader(image_b, &hdr_b)
318 && hdr_a.GetOatChecksum() == hdr_b.GetOatChecksum();
319 }
320
ImageCreationAllowed(bool is_global_cache,std::string * error_msg)321 static bool ImageCreationAllowed(bool is_global_cache, std::string* error_msg) {
322 // Anyone can write into a "local" cache.
323 if (!is_global_cache) {
324 return true;
325 }
326
327 // Only the zygote is allowed to create the global boot image.
328 if (Runtime::Current()->IsZygote()) {
329 return true;
330 }
331
332 *error_msg = "Only the zygote can create the global boot image.";
333 return false;
334 }
335
336 static constexpr uint64_t kLowSpaceValue = 50 * MB;
337 static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;
338
339 // Read the free space of the cache partition and make a decision whether to keep the generated
340 // image. This is to try to mitigate situations where the system might run out of space later.
CheckSpace(const std::string & cache_filename,std::string * error_msg)341 static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
342 // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
343 struct statvfs buf;
344
345 int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
346 if (res != 0) {
347 // Could not stat. Conservatively tell the system to delete the image.
348 *error_msg = "Could not stat the filesystem, assuming low-memory situation.";
349 return false;
350 }
351
352 uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
353 // Zygote is privileged, but other things are not. Use bavail.
354 uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);
355
356 // Take the overall size as an indicator for a tmpfs, which is being used for the decryption
357 // environment. We do not want to fail quickening the boot image there, as it is beneficial
358 // for time-to-UI.
359 if (fs_overall_size > kTmpFsSentinelValue) {
360 if (fs_free_size < kLowSpaceValue) {
361 *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available after image"
362 " generation, need at least %" PRIu64 ".",
363 static_cast<double>(fs_free_size) / MB,
364 kLowSpaceValue / MB);
365 return false;
366 }
367 }
368 return true;
369 }
370
CreateBootImage(const char * image_location,const InstructionSet image_isa,bool secondary_image,std::string * error_msg)371 ImageSpace* ImageSpace::CreateBootImage(const char* image_location,
372 const InstructionSet image_isa,
373 bool secondary_image,
374 std::string* error_msg) {
375 ScopedTrace trace(__FUNCTION__);
376 std::string system_filename;
377 bool has_system = false;
378 std::string cache_filename;
379 bool has_cache = false;
380 bool dalvik_cache_exists = false;
381 bool is_global_cache = true;
382 bool found_image = FindImageFilename(image_location, image_isa, &system_filename,
383 &has_system, &cache_filename, &dalvik_cache_exists,
384 &has_cache, &is_global_cache);
385
386 // If we're starting with the global cache, and we're the zygote, try to see whether there are
387 // OTA artifacts from the A/B OTA preopting to move over.
388 // (It is structurally simpler to check this here, instead of complicating the compile/relocate
389 // logic below.)
390 const bool is_zygote = Runtime::Current()->IsZygote();
391 if (is_global_cache && is_zygote) {
392 VLOG(startup) << "Checking for A/B OTA data.";
393 TryMoveOTAArtifacts(cache_filename, dalvik_cache_exists);
394
395 // Retry. There are two cases where the old info is outdated:
396 // * There wasn't a boot image before (e.g., some failure on boot), but now the OTA preopted
397 // image has been moved in-place.
398 // * There was a boot image before, and we tried to move the OTA preopted image, but a failure
399 // happened and there is no file anymore.
400 found_image = FindImageFilename(image_location,
401 image_isa,
402 &system_filename,
403 &has_system,
404 &cache_filename,
405 &dalvik_cache_exists,
406 &has_cache,
407 &is_global_cache);
408 }
409
410 if (is_zygote && !secondary_image) {
411 MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots());
412 }
413
414 ImageSpace* space;
415 bool relocate = Runtime::Current()->ShouldRelocate();
416 bool can_compile = Runtime::Current()->IsImageDex2OatEnabled();
417 if (found_image) {
418 const std::string* image_filename;
419 bool is_system = false;
420 bool relocated_version_used = false;
421 if (relocate) {
422 if (!dalvik_cache_exists) {
423 *error_msg = StringPrintf("Requiring relocation for image '%s' at '%s' but we do not have "
424 "any dalvik_cache to find/place it in.",
425 image_location, system_filename.c_str());
426 return nullptr;
427 }
428 if (has_system) {
429 if (has_cache && ChecksumsMatch(system_filename.c_str(), cache_filename.c_str())) {
430 // We already have a relocated version
431 image_filename = &cache_filename;
432 relocated_version_used = true;
433 } else {
434 // We cannot have a relocated version, Relocate the system one and use it.
435
436 std::string reason;
437 bool success;
438
439 // Check whether we are allowed to relocate.
440 if (!can_compile) {
441 reason = "Image dex2oat disabled by -Xnoimage-dex2oat.";
442 success = false;
443 } else if (!ImageCreationAllowed(is_global_cache, &reason)) {
444 // Whether we can write to the cache.
445 success = false;
446 } else if (secondary_image) {
447 if (is_zygote) {
448 // Secondary image is out of date. Clear cache and exit to let it retry from scratch.
449 LOG(ERROR) << "Cannot patch secondary image '" << image_location
450 << "', clearing dalvik_cache and restarting zygote.";
451 PruneDalvikCache(image_isa);
452 _exit(1);
453 } else {
454 reason = "Should not have to patch secondary image.";
455 success = false;
456 }
457 } else {
458 // Try to relocate.
459 success = RelocateImage(image_location, cache_filename.c_str(), image_isa, &reason);
460 }
461
462 if (success) {
463 relocated_version_used = true;
464 image_filename = &cache_filename;
465 } else {
466 *error_msg = StringPrintf("Unable to relocate image '%s' from '%s' to '%s': %s",
467 image_location, system_filename.c_str(),
468 cache_filename.c_str(), reason.c_str());
469 // We failed to create files, remove any possibly garbage output.
470 // Since ImageCreationAllowed was true above, we are the zygote
471 // and therefore the only process expected to generate these for
472 // the device.
473 PruneDalvikCache(image_isa);
474 return nullptr;
475 }
476 }
477 } else {
478 CHECK(has_cache);
479 // We can just use cache's since it should be fine. This might or might not be relocated.
480 image_filename = &cache_filename;
481 }
482 } else {
483 if (has_system && has_cache) {
484 // Check they have the same cksum. If they do use the cache. Otherwise system.
485 if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str())) {
486 image_filename = &cache_filename;
487 relocated_version_used = true;
488 } else {
489 image_filename = &system_filename;
490 is_system = true;
491 }
492 } else if (has_system) {
493 image_filename = &system_filename;
494 is_system = true;
495 } else {
496 CHECK(has_cache);
497 image_filename = &cache_filename;
498 }
499 }
500 {
501 // Note that we must not use the file descriptor associated with
502 // ScopedFlock::GetFile to Init the image file. We want the file
503 // descriptor (and the associated exclusive lock) to be released when
504 // we leave Create.
505 ScopedFlock image_lock;
506 // Should this be a RDWR lock? This is only a defensive measure, as at
507 // this point the image should exist.
508 // However, only the zygote can write into the global dalvik-cache, so
509 // restrict to zygote processes, or any process that isn't using
510 // /data/dalvik-cache (which we assume to be allowed to write there).
511 const bool rw_lock = is_zygote || !is_global_cache;
512 image_lock.Init(image_filename->c_str(),
513 rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY /* flags */,
514 true /* block */,
515 error_msg);
516 VLOG(startup) << "Using image file " << image_filename->c_str() << " for image location "
517 << image_location;
518 // If we are in /system we can assume the image is good. We can also
519 // assume this if we are using a relocated image (i.e. image checksum
520 // matches) since this is only different by the offset. We need this to
521 // make sure that host tests continue to work.
522 // Since we are the boot image, pass null since we load the oat file from the boot image oat
523 // file name.
524 space = ImageSpace::Init(image_filename->c_str(),
525 image_location,
526 !(is_system || relocated_version_used),
527 /* oat_file */nullptr,
528 error_msg);
529 }
530 if (space != nullptr) {
531 return space;
532 }
533
534 if (relocated_version_used) {
535 // Something is wrong with the relocated copy (even though checksums match). Cleanup.
536 // This can happen if the .oat is corrupt, since the above only checks the .art checksums.
537 // TODO: Check the oat file validity earlier.
538 *error_msg = StringPrintf("Attempted to use relocated version of %s at %s generated from %s "
539 "but image failed to load: %s",
540 image_location, cache_filename.c_str(), system_filename.c_str(),
541 error_msg->c_str());
542 PruneDalvikCache(image_isa);
543 return nullptr;
544 } else if (is_system) {
545 // If the /system file exists, it should be up-to-date, don't try to generate it.
546 *error_msg = StringPrintf("Failed to load /system image '%s': %s",
547 image_filename->c_str(), error_msg->c_str());
548 return nullptr;
549 } else {
550 // Otherwise, log a warning and fall through to GenerateImage.
551 LOG(WARNING) << *error_msg;
552 }
553 }
554
555 if (!can_compile) {
556 *error_msg = "Not attempting to compile image because -Xnoimage-dex2oat";
557 return nullptr;
558 } else if (!dalvik_cache_exists) {
559 *error_msg = StringPrintf("No place to put generated image.");
560 return nullptr;
561 } else if (!ImageCreationAllowed(is_global_cache, error_msg)) {
562 return nullptr;
563 } else if (secondary_image) {
564 *error_msg = "Cannot compile a secondary image.";
565 return nullptr;
566 } else if (!GenerateImage(cache_filename, image_isa, error_msg)) {
567 *error_msg = StringPrintf("Failed to generate image '%s': %s",
568 cache_filename.c_str(), error_msg->c_str());
569 // We failed to create files, remove any possibly garbage output.
570 // Since ImageCreationAllowed was true above, we are the zygote
571 // and therefore the only process expected to generate these for
572 // the device.
573 PruneDalvikCache(image_isa);
574 return nullptr;
575 } else {
576 // Check whether there is enough space left over after we have generated the image.
577 if (!CheckSpace(cache_filename, error_msg)) {
578 // No. Delete the generated image and try to run out of the dex files.
579 PruneDalvikCache(image_isa);
580 return nullptr;
581 }
582
583 // Note that we must not use the file descriptor associated with
584 // ScopedFlock::GetFile to Init the image file. We want the file
585 // descriptor (and the associated exclusive lock) to be released when
586 // we leave Create.
587 ScopedFlock image_lock;
588 image_lock.Init(cache_filename.c_str(), error_msg);
589 space = ImageSpace::Init(cache_filename.c_str(), image_location, true, nullptr, error_msg);
590 if (space == nullptr) {
591 *error_msg = StringPrintf("Failed to load generated image '%s': %s",
592 cache_filename.c_str(), error_msg->c_str());
593 }
594 return space;
595 }
596 }
597
VerifyImageAllocations()598 void ImageSpace::VerifyImageAllocations() {
599 uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
600 while (current < End()) {
601 CHECK_ALIGNED(current, kObjectAlignment);
602 auto* obj = reinterpret_cast<mirror::Object*>(current);
603 CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
604 CHECK(live_bitmap_->Test(obj)) << PrettyTypeOf(obj);
605 if (kUseBakerOrBrooksReadBarrier) {
606 obj->AssertReadBarrierPointer();
607 }
608 current += RoundUp(obj->SizeOf(), kObjectAlignment);
609 }
610 }
611
612 // Helper class for relocating from one range of memory to another.
613 class RelocationRange {
614 public:
615 RelocationRange() = default;
616 RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source,uintptr_t dest,uintptr_t length)617 RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
618 : source_(source),
619 dest_(dest),
620 length_(length) {}
621
InSource(uintptr_t address) const622 bool InSource(uintptr_t address) const {
623 return address - source_ < length_;
624 }
625
InDest(uintptr_t address) const626 bool InDest(uintptr_t address) const {
627 return address - dest_ < length_;
628 }
629
630 // Translate a source address to the destination space.
ToDest(uintptr_t address) const631 uintptr_t ToDest(uintptr_t address) const {
632 DCHECK(InSource(address));
633 return address + Delta();
634 }
635
636 // Returns the delta between the dest from the source.
Delta() const637 uintptr_t Delta() const {
638 return dest_ - source_;
639 }
640
Source() const641 uintptr_t Source() const {
642 return source_;
643 }
644
Dest() const645 uintptr_t Dest() const {
646 return dest_;
647 }
648
Length() const649 uintptr_t Length() const {
650 return length_;
651 }
652
653 private:
654 const uintptr_t source_;
655 const uintptr_t dest_;
656 const uintptr_t length_;
657 };
658
operator <<(std::ostream & os,const RelocationRange & reloc)659 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
660 return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
661 << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
662 << reinterpret_cast<const void*>(reloc.Dest()) << "-"
663 << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
664 }
665
666 class FixupVisitor : public ValueObject {
667 public:
FixupVisitor(const RelocationRange & boot_image,const RelocationRange & boot_oat,const RelocationRange & app_image,const RelocationRange & app_oat)668 FixupVisitor(const RelocationRange& boot_image,
669 const RelocationRange& boot_oat,
670 const RelocationRange& app_image,
671 const RelocationRange& app_oat)
672 : boot_image_(boot_image),
673 boot_oat_(boot_oat),
674 app_image_(app_image),
675 app_oat_(app_oat) {}
676
677 // Return the relocated address of a heap object.
678 template <typename T>
ForwardObject(T * src) const679 ALWAYS_INLINE T* ForwardObject(T* src) const {
680 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
681 if (boot_image_.InSource(uint_src)) {
682 return reinterpret_cast<T*>(boot_image_.ToDest(uint_src));
683 }
684 if (app_image_.InSource(uint_src)) {
685 return reinterpret_cast<T*>(app_image_.ToDest(uint_src));
686 }
687 // Since we are fixing up the app image, there should only be pointers to the app image and
688 // boot image.
689 DCHECK(src == nullptr) << reinterpret_cast<const void*>(src);
690 return src;
691 }
692
693 // Return the relocated address of a code pointer (contained by an oat file).
ForwardCode(const void * src) const694 ALWAYS_INLINE const void* ForwardCode(const void* src) const {
695 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
696 if (boot_oat_.InSource(uint_src)) {
697 return reinterpret_cast<const void*>(boot_oat_.ToDest(uint_src));
698 }
699 if (app_oat_.InSource(uint_src)) {
700 return reinterpret_cast<const void*>(app_oat_.ToDest(uint_src));
701 }
702 DCHECK(src == nullptr) << src;
703 return src;
704 }
705
706 // Must be called on pointers that already have been relocated to the destination relocation.
IsInAppImage(mirror::Object * object) const707 ALWAYS_INLINE bool IsInAppImage(mirror::Object* object) const {
708 return app_image_.InDest(reinterpret_cast<uintptr_t>(object));
709 }
710
711 protected:
712 // Source section.
713 const RelocationRange boot_image_;
714 const RelocationRange boot_oat_;
715 const RelocationRange app_image_;
716 const RelocationRange app_oat_;
717 };
718
719 // Adapt for mirror::Class::FixupNativePointers.
720 class FixupObjectAdapter : public FixupVisitor {
721 public:
722 template<typename... Args>
FixupObjectAdapter(Args...args)723 explicit FixupObjectAdapter(Args... args) : FixupVisitor(args...) {}
724
725 template <typename T>
operator ()(T * obj) const726 T* operator()(T* obj) const {
727 return ForwardObject(obj);
728 }
729 };
730
731 class FixupRootVisitor : public FixupVisitor {
732 public:
733 template<typename... Args>
FixupRootVisitor(Args...args)734 explicit FixupRootVisitor(Args... args) : FixupVisitor(args...) {}
735
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const736 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
737 SHARED_REQUIRES(Locks::mutator_lock_) {
738 if (!root->IsNull()) {
739 VisitRoot(root);
740 }
741 }
742
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const743 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
744 SHARED_REQUIRES(Locks::mutator_lock_) {
745 mirror::Object* ref = root->AsMirrorPtr();
746 mirror::Object* new_ref = ForwardObject(ref);
747 if (ref != new_ref) {
748 root->Assign(new_ref);
749 }
750 }
751 };
752
753 class FixupObjectVisitor : public FixupVisitor {
754 public:
755 template<typename... Args>
FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap * visited,const size_t pointer_size,Args...args)756 explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
757 const size_t pointer_size,
758 Args... args)
759 : FixupVisitor(args...),
760 pointer_size_(pointer_size),
761 visited_(visited) {}
762
763 // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const764 ALWAYS_INLINE void VisitRootIfNonNull(
765 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
766
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const767 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
768 const {}
769
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const770 ALWAYS_INLINE void operator()(mirror::Object* obj,
771 MemberOffset offset,
772 bool is_static ATTRIBUTE_UNUSED) const
773 NO_THREAD_SAFETY_ANALYSIS {
774 // There could be overlap between ranges, we must avoid visiting the same reference twice.
775 // Avoid the class field since we already fixed it up in FixupClassVisitor.
776 if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
777 // Space is not yet added to the heap, don't do a read barrier.
778 mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
779 offset);
780 // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
781 // image.
782 obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, ForwardObject(ref));
783 }
784 }
785
786 // Visit a pointer array and forward corresponding native data. Ignores pointer arrays in the
787 // boot image. Uses the bitmap to ensure the same array is not visited multiple times.
788 template <typename Visitor>
UpdatePointerArrayContents(mirror::PointerArray * array,const Visitor & visitor) const789 void UpdatePointerArrayContents(mirror::PointerArray* array, const Visitor& visitor) const
790 NO_THREAD_SAFETY_ANALYSIS {
791 DCHECK(array != nullptr);
792 DCHECK(visitor.IsInAppImage(array));
793 // The bit for the array contents is different than the bit for the array. Since we may have
794 // already visited the array as a long / int array from walking the bitmap without knowing it
795 // was a pointer array.
796 static_assert(kObjectAlignment == 8u, "array bit may be in another object");
797 mirror::Object* const contents_bit = reinterpret_cast<mirror::Object*>(
798 reinterpret_cast<uintptr_t>(array) + kObjectAlignment);
799 // If the bit is not set then the contents have not yet been updated.
800 if (!visited_->Test(contents_bit)) {
801 array->Fixup<kVerifyNone, kWithoutReadBarrier>(array, pointer_size_, visitor);
802 visited_->Set(contents_bit);
803 }
804 }
805
806 // java.lang.ref.Reference visitor.
operator ()(mirror::Class * klass ATTRIBUTE_UNUSED,mirror::Reference * ref) const807 void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
808 SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
809 mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>();
810 ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
811 mirror::Reference::ReferentOffset(),
812 ForwardObject(obj));
813 }
814
operator ()(mirror::Object * obj) const815 void operator()(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
816 if (visited_->Test(obj)) {
817 // Already visited.
818 return;
819 }
820 visited_->Set(obj);
821
822 // Handle class specially first since we need it to be updated to properly visit the rest of
823 // the instance fields.
824 {
825 mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
826 DCHECK(klass != nullptr) << "Null class in image";
827 // No AsClass since our fields aren't quite fixed up yet.
828 mirror::Class* new_klass = down_cast<mirror::Class*>(ForwardObject(klass));
829 if (klass != new_klass) {
830 obj->SetClass<kVerifyNone>(new_klass);
831 }
832 if (new_klass != klass && IsInAppImage(new_klass)) {
833 // Make sure the klass contents are fixed up since we depend on it to walk the fields.
834 operator()(new_klass);
835 }
836 }
837
838 obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
839 *this,
840 *this);
841 // Note that this code relies on no circular dependencies.
842 // We want to use our own class loader and not the one in the image.
843 if (obj->IsClass<kVerifyNone, kWithoutReadBarrier>()) {
844 mirror::Class* as_klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
845 FixupObjectAdapter visitor(boot_image_, boot_oat_, app_image_, app_oat_);
846 as_klass->FixupNativePointers<kVerifyNone, kWithoutReadBarrier>(as_klass,
847 pointer_size_,
848 visitor);
849 // Deal with the pointer arrays. Use the helper function since multiple classes can reference
850 // the same arrays.
851 mirror::PointerArray* const vtable = as_klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
852 if (vtable != nullptr && IsInAppImage(vtable)) {
853 operator()(vtable);
854 UpdatePointerArrayContents(vtable, visitor);
855 }
856 mirror::IfTable* iftable = as_klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
857 // Ensure iftable arrays are fixed up since we need GetMethodArray to return the valid
858 // contents.
859 if (iftable != nullptr && IsInAppImage(iftable)) {
860 operator()(iftable);
861 for (int32_t i = 0, count = iftable->Count(); i < count; ++i) {
862 if (iftable->GetMethodArrayCount<kVerifyNone, kWithoutReadBarrier>(i) > 0) {
863 mirror::PointerArray* methods =
864 iftable->GetMethodArray<kVerifyNone, kWithoutReadBarrier>(i);
865 if (visitor.IsInAppImage(methods)) {
866 operator()(methods);
867 DCHECK(methods != nullptr);
868 UpdatePointerArrayContents(methods, visitor);
869 }
870 }
871 }
872 }
873 }
874 }
875
876 private:
877 const size_t pointer_size_;
878 gc::accounting::ContinuousSpaceBitmap* const visited_;
879 };
880
881 class ForwardObjectAdapter {
882 public:
ForwardObjectAdapter(const FixupVisitor * visitor)883 ALWAYS_INLINE ForwardObjectAdapter(const FixupVisitor* visitor) : visitor_(visitor) {}
884
885 template <typename T>
operator ()(T * src) const886 ALWAYS_INLINE T* operator()(T* src) const {
887 return visitor_->ForwardObject(src);
888 }
889
890 private:
891 const FixupVisitor* const visitor_;
892 };
893
894 class ForwardCodeAdapter {
895 public:
ForwardCodeAdapter(const FixupVisitor * visitor)896 ALWAYS_INLINE ForwardCodeAdapter(const FixupVisitor* visitor)
897 : visitor_(visitor) {}
898
899 template <typename T>
operator ()(T * src) const900 ALWAYS_INLINE T* operator()(T* src) const {
901 return visitor_->ForwardCode(src);
902 }
903
904 private:
905 const FixupVisitor* const visitor_;
906 };
907
908 class FixupArtMethodVisitor : public FixupVisitor, public ArtMethodVisitor {
909 public:
910 template<typename... Args>
FixupArtMethodVisitor(bool fixup_heap_objects,size_t pointer_size,Args...args)911 explicit FixupArtMethodVisitor(bool fixup_heap_objects, size_t pointer_size, Args... args)
912 : FixupVisitor(args...),
913 fixup_heap_objects_(fixup_heap_objects),
914 pointer_size_(pointer_size) {}
915
Visit(ArtMethod * method)916 virtual void Visit(ArtMethod* method) NO_THREAD_SAFETY_ANALYSIS {
917 // TODO: Separate visitor for runtime vs normal methods.
918 if (UNLIKELY(method->IsRuntimeMethod())) {
919 ImtConflictTable* table = method->GetImtConflictTable(pointer_size_);
920 if (table != nullptr) {
921 ImtConflictTable* new_table = ForwardObject(table);
922 if (table != new_table) {
923 method->SetImtConflictTable(new_table, pointer_size_);
924 }
925 }
926 const void* old_code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size_);
927 const void* new_code = ForwardCode(old_code);
928 if (old_code != new_code) {
929 method->SetEntryPointFromQuickCompiledCodePtrSize(new_code, pointer_size_);
930 }
931 } else {
932 if (fixup_heap_objects_) {
933 method->UpdateObjectsForImageRelocation(ForwardObjectAdapter(this), pointer_size_);
934 }
935 method->UpdateEntrypoints<kWithoutReadBarrier>(ForwardCodeAdapter(this), pointer_size_);
936 }
937 }
938
939 private:
940 const bool fixup_heap_objects_;
941 const size_t pointer_size_;
942 };
943
944 class FixupArtFieldVisitor : public FixupVisitor, public ArtFieldVisitor {
945 public:
946 template<typename... Args>
FixupArtFieldVisitor(Args...args)947 explicit FixupArtFieldVisitor(Args... args) : FixupVisitor(args...) {}
948
Visit(ArtField * field)949 virtual void Visit(ArtField* field) NO_THREAD_SAFETY_ANALYSIS {
950 field->UpdateObjects(ForwardObjectAdapter(this));
951 }
952 };
953
954 // Relocate an image space mapped at target_base which possibly used to be at a different base
955 // address. Only needs a single image space, not one for both source and destination.
956 // In place means modifying a single ImageSpace in place rather than relocating from one ImageSpace
957 // to another.
RelocateInPlace(ImageHeader & image_header,uint8_t * target_base,accounting::ContinuousSpaceBitmap * bitmap,const OatFile * app_oat_file,std::string * error_msg)958 static bool RelocateInPlace(ImageHeader& image_header,
959 uint8_t* target_base,
960 accounting::ContinuousSpaceBitmap* bitmap,
961 const OatFile* app_oat_file,
962 std::string* error_msg) {
963 DCHECK(error_msg != nullptr);
964 if (!image_header.IsPic()) {
965 if (image_header.GetImageBegin() == target_base) {
966 return true;
967 }
968 *error_msg = StringPrintf("Cannot relocate non-pic image for oat file %s",
969 (app_oat_file != nullptr) ? app_oat_file->GetLocation().c_str() : "");
970 return false;
971 }
972 // Set up sections.
973 uint32_t boot_image_begin = 0;
974 uint32_t boot_image_end = 0;
975 uint32_t boot_oat_begin = 0;
976 uint32_t boot_oat_end = 0;
977 const size_t pointer_size = image_header.GetPointerSize();
978 gc::Heap* const heap = Runtime::Current()->GetHeap();
979 heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
980 if (boot_image_begin == boot_image_end) {
981 *error_msg = "Can not relocate app image without boot image space";
982 return false;
983 }
984 if (boot_oat_begin == boot_oat_end) {
985 *error_msg = "Can not relocate app image without boot oat file";
986 return false;
987 }
988 const uint32_t boot_image_size = boot_image_end - boot_image_begin;
989 const uint32_t boot_oat_size = boot_oat_end - boot_oat_begin;
990 const uint32_t image_header_boot_image_size = image_header.GetBootImageSize();
991 const uint32_t image_header_boot_oat_size = image_header.GetBootOatSize();
992 if (boot_image_size != image_header_boot_image_size) {
993 *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %"
994 PRIu64,
995 static_cast<uint64_t>(boot_image_size),
996 static_cast<uint64_t>(image_header_boot_image_size));
997 return false;
998 }
999 if (boot_oat_size != image_header_boot_oat_size) {
1000 *error_msg = StringPrintf("Boot oat size %" PRIu64 " does not match expected size %"
1001 PRIu64,
1002 static_cast<uint64_t>(boot_oat_size),
1003 static_cast<uint64_t>(image_header_boot_oat_size));
1004 return false;
1005 }
1006 TimingLogger logger(__FUNCTION__, true, false);
1007 RelocationRange boot_image(image_header.GetBootImageBegin(),
1008 boot_image_begin,
1009 boot_image_size);
1010 RelocationRange boot_oat(image_header.GetBootOatBegin(),
1011 boot_oat_begin,
1012 boot_oat_size);
1013 RelocationRange app_image(reinterpret_cast<uintptr_t>(image_header.GetImageBegin()),
1014 reinterpret_cast<uintptr_t>(target_base),
1015 image_header.GetImageSize());
1016 // Use the oat data section since this is where the OatFile::Begin is.
1017 RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()),
1018 // Not necessarily in low 4GB.
1019 reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
1020 image_header.GetOatDataEnd() - image_header.GetOatDataBegin());
1021 VLOG(image) << "App image " << app_image;
1022 VLOG(image) << "App oat " << app_oat;
1023 VLOG(image) << "Boot image " << boot_image;
1024 VLOG(image) << "Boot oat " << boot_oat;
1025 // True if we need to fixup any heap pointers, otherwise only code pointers.
1026 const bool fixup_image = boot_image.Delta() != 0 || app_image.Delta() != 0;
1027 const bool fixup_code = boot_oat.Delta() != 0 || app_oat.Delta() != 0;
1028 if (!fixup_image && !fixup_code) {
1029 // Nothing to fix up.
1030 return true;
1031 }
1032 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1033 // Need to update the image to be at the target base.
1034 const ImageSection& objects_section = image_header.GetImageSection(ImageHeader::kSectionObjects);
1035 uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
1036 uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
1037 FixupObjectAdapter fixup_adapter(boot_image, boot_oat, app_image, app_oat);
1038 if (fixup_image) {
1039 // Two pass approach, fix up all classes first, then fix up non class-objects.
1040 // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
1041 std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap(
1042 gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
1043 target_base,
1044 image_header.GetImageSize()));
1045 FixupObjectVisitor fixup_object_visitor(visited_bitmap.get(),
1046 pointer_size,
1047 boot_image,
1048 boot_oat,
1049 app_image,
1050 app_oat);
1051 TimingLogger::ScopedTiming timing("Fixup classes", &logger);
1052 // Fixup objects may read fields in the boot image, use the mutator lock here for sanity. Though
1053 // its probably not required.
1054 ScopedObjectAccess soa(Thread::Current());
1055 timing.NewTiming("Fixup objects");
1056 bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
1057 // Fixup image roots.
1058 CHECK(app_image.InSource(reinterpret_cast<uintptr_t>(
1059 image_header.GetImageRoots<kWithoutReadBarrier>())));
1060 image_header.RelocateImageObjects(app_image.Delta());
1061 CHECK_EQ(image_header.GetImageBegin(), target_base);
1062 // Fix up dex cache DexFile pointers.
1063 auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)->
1064 AsObjectArray<mirror::DexCache, kVerifyNone, kWithoutReadBarrier>();
1065 for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
1066 mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
1067 // Fix up dex cache pointers.
1068 GcRoot<mirror::String>* strings = dex_cache->GetStrings();
1069 if (strings != nullptr) {
1070 GcRoot<mirror::String>* new_strings = fixup_adapter.ForwardObject(strings);
1071 if (strings != new_strings) {
1072 dex_cache->SetStrings(new_strings);
1073 }
1074 dex_cache->FixupStrings<kWithoutReadBarrier>(new_strings, fixup_adapter);
1075 }
1076 GcRoot<mirror::Class>* types = dex_cache->GetResolvedTypes();
1077 if (types != nullptr) {
1078 GcRoot<mirror::Class>* new_types = fixup_adapter.ForwardObject(types);
1079 if (types != new_types) {
1080 dex_cache->SetResolvedTypes(new_types);
1081 }
1082 dex_cache->FixupResolvedTypes<kWithoutReadBarrier>(new_types, fixup_adapter);
1083 }
1084 ArtMethod** methods = dex_cache->GetResolvedMethods();
1085 if (methods != nullptr) {
1086 ArtMethod** new_methods = fixup_adapter.ForwardObject(methods);
1087 if (methods != new_methods) {
1088 dex_cache->SetResolvedMethods(new_methods);
1089 }
1090 for (size_t j = 0, num = dex_cache->NumResolvedMethods(); j != num; ++j) {
1091 ArtMethod* orig = mirror::DexCache::GetElementPtrSize(new_methods, j, pointer_size);
1092 ArtMethod* copy = fixup_adapter.ForwardObject(orig);
1093 if (orig != copy) {
1094 mirror::DexCache::SetElementPtrSize(new_methods, j, copy, pointer_size);
1095 }
1096 }
1097 }
1098 ArtField** fields = dex_cache->GetResolvedFields();
1099 if (fields != nullptr) {
1100 ArtField** new_fields = fixup_adapter.ForwardObject(fields);
1101 if (fields != new_fields) {
1102 dex_cache->SetResolvedFields(new_fields);
1103 }
1104 for (size_t j = 0, num = dex_cache->NumResolvedFields(); j != num; ++j) {
1105 ArtField* orig = mirror::DexCache::GetElementPtrSize(new_fields, j, pointer_size);
1106 ArtField* copy = fixup_adapter.ForwardObject(orig);
1107 if (orig != copy) {
1108 mirror::DexCache::SetElementPtrSize(new_fields, j, copy, pointer_size);
1109 }
1110 }
1111 }
1112 }
1113 }
1114 {
1115 // Only touches objects in the app image, no need for mutator lock.
1116 TimingLogger::ScopedTiming timing("Fixup methods", &logger);
1117 FixupArtMethodVisitor method_visitor(fixup_image,
1118 pointer_size,
1119 boot_image,
1120 boot_oat,
1121 app_image,
1122 app_oat);
1123 image_header.VisitPackedArtMethods(&method_visitor, target_base, pointer_size);
1124 }
1125 if (fixup_image) {
1126 {
1127 // Only touches objects in the app image, no need for mutator lock.
1128 TimingLogger::ScopedTiming timing("Fixup fields", &logger);
1129 FixupArtFieldVisitor field_visitor(boot_image, boot_oat, app_image, app_oat);
1130 image_header.VisitPackedArtFields(&field_visitor, target_base);
1131 }
1132 {
1133 TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
1134 image_header.VisitPackedImtConflictTables(fixup_adapter, target_base, pointer_size);
1135 }
1136 // In the app image case, the image methods are actually in the boot image.
1137 image_header.RelocateImageMethods(boot_image.Delta());
1138 const auto& class_table_section = image_header.GetImageSection(ImageHeader::kSectionClassTable);
1139 if (class_table_section.Size() > 0u) {
1140 // Note that we require that ReadFromMemory does not make an internal copy of the elements.
1141 // This also relies on visit roots not doing any verification which could fail after we update
1142 // the roots to be the image addresses.
1143 ScopedObjectAccess soa(Thread::Current());
1144 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1145 ClassTable temp_table;
1146 temp_table.ReadFromMemory(target_base + class_table_section.Offset());
1147 FixupRootVisitor root_visitor(boot_image, boot_oat, app_image, app_oat);
1148 temp_table.VisitRoots(root_visitor);
1149 }
1150 }
1151 if (VLOG_IS_ON(image)) {
1152 logger.Dump(LOG(INFO));
1153 }
1154 return true;
1155 }
1156
Init(const char * image_filename,const char * image_location,bool validate_oat_file,const OatFile * oat_file,std::string * error_msg)1157 ImageSpace* ImageSpace::Init(const char* image_filename,
1158 const char* image_location,
1159 bool validate_oat_file,
1160 const OatFile* oat_file,
1161 std::string* error_msg) {
1162 CHECK(image_filename != nullptr);
1163 CHECK(image_location != nullptr);
1164
1165 TimingLogger logger(__PRETTY_FUNCTION__, true, VLOG_IS_ON(image));
1166 VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
1167
1168 std::unique_ptr<File> file;
1169 {
1170 TimingLogger::ScopedTiming timing("OpenImageFile", &logger);
1171 file.reset(OS::OpenFileForReading(image_filename));
1172 if (file == nullptr) {
1173 *error_msg = StringPrintf("Failed to open '%s'", image_filename);
1174 return nullptr;
1175 }
1176 }
1177 ImageHeader temp_image_header;
1178 ImageHeader* image_header = &temp_image_header;
1179 {
1180 TimingLogger::ScopedTiming timing("ReadImageHeader", &logger);
1181 bool success = file->ReadFully(image_header, sizeof(*image_header));
1182 if (!success || !image_header->IsValid()) {
1183 *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
1184 return nullptr;
1185 }
1186 }
1187 // Check that the file is larger or equal to the header size + data size.
1188 const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
1189 if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) {
1190 *error_msg = StringPrintf("Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
1191 image_file_size,
1192 sizeof(ImageHeader) + image_header->GetDataSize());
1193 return nullptr;
1194 }
1195
1196 if (oat_file != nullptr) {
1197 // If we have an oat file, check the oat file checksum. The oat file is only non-null for the
1198 // app image case. Otherwise, we open the oat file after the image and check the checksum there.
1199 const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
1200 const uint32_t image_oat_checksum = image_header->GetOatChecksum();
1201 if (oat_checksum != image_oat_checksum) {
1202 *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
1203 oat_checksum,
1204 image_oat_checksum,
1205 image_filename);
1206 return nullptr;
1207 }
1208 }
1209
1210 if (VLOG_IS_ON(startup)) {
1211 LOG(INFO) << "Dumping image sections";
1212 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
1213 const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
1214 auto& section = image_header->GetImageSection(section_idx);
1215 LOG(INFO) << section_idx << " start="
1216 << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " "
1217 << section;
1218 }
1219 }
1220
1221 const auto& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
1222 // The location we want to map from is the first aligned page after the end of the stored
1223 // (possibly compressed) data.
1224 const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(),
1225 kPageSize);
1226 const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
1227 if (end_of_bitmap != image_file_size) {
1228 *error_msg = StringPrintf(
1229 "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size,
1230 end_of_bitmap);
1231 return nullptr;
1232 }
1233
1234 // The preferred address to map the image, null specifies any address. If we manage to map the
1235 // image at the image begin, the amount of fixup work required is minimized.
1236 std::vector<uint8_t*> addresses(1, image_header->GetImageBegin());
1237 if (image_header->IsPic()) {
1238 // Can also map at a random low_4gb address since we can relocate in-place.
1239 addresses.push_back(nullptr);
1240 }
1241
1242 // Note: The image header is part of the image due to mmap page alignment required of offset.
1243 std::unique_ptr<MemMap> map;
1244 std::string temp_error_msg;
1245 for (uint8_t* address : addresses) {
1246 TimingLogger::ScopedTiming timing("MapImageFile", &logger);
1247 // Only care about the error message for the last address in addresses. We want to avoid the
1248 // overhead of printing the process maps if we can relocate.
1249 std::string* out_error_msg = (address == addresses.back()) ? &temp_error_msg : nullptr;
1250 const ImageHeader::StorageMode storage_mode = image_header->GetStorageMode();
1251 if (storage_mode == ImageHeader::kStorageModeUncompressed) {
1252 map.reset(MemMap::MapFileAtAddress(address,
1253 image_header->GetImageSize(),
1254 PROT_READ | PROT_WRITE,
1255 MAP_PRIVATE,
1256 file->Fd(),
1257 0,
1258 /*low_4gb*/true,
1259 /*reuse*/false,
1260 image_filename,
1261 /*out*/out_error_msg));
1262 } else {
1263 if (storage_mode != ImageHeader::kStorageModeLZ4 &&
1264 storage_mode != ImageHeader::kStorageModeLZ4HC) {
1265 *error_msg = StringPrintf("Invalid storage mode in image header %d",
1266 static_cast<int>(storage_mode));
1267 return nullptr;
1268 }
1269 // Reserve output and decompress into it.
1270 map.reset(MemMap::MapAnonymous(image_location,
1271 address,
1272 image_header->GetImageSize(),
1273 PROT_READ | PROT_WRITE,
1274 /*low_4gb*/true,
1275 /*reuse*/false,
1276 /*out*/out_error_msg));
1277 if (map != nullptr) {
1278 const size_t stored_size = image_header->GetDataSize();
1279 const size_t decompress_offset = sizeof(ImageHeader); // Skip the header.
1280 std::unique_ptr<MemMap> temp_map(MemMap::MapFile(sizeof(ImageHeader) + stored_size,
1281 PROT_READ,
1282 MAP_PRIVATE,
1283 file->Fd(),
1284 /*offset*/0,
1285 /*low_4gb*/false,
1286 image_filename,
1287 out_error_msg));
1288 if (temp_map == nullptr) {
1289 DCHECK(!out_error_msg->empty());
1290 return nullptr;
1291 }
1292 memcpy(map->Begin(), image_header, sizeof(ImageHeader));
1293 const uint64_t start = NanoTime();
1294 // LZ4HC and LZ4 have same internal format, both use LZ4_decompress.
1295 TimingLogger::ScopedTiming timing2("LZ4 decompress image", &logger);
1296 const size_t decompressed_size = LZ4_decompress_safe(
1297 reinterpret_cast<char*>(temp_map->Begin()) + sizeof(ImageHeader),
1298 reinterpret_cast<char*>(map->Begin()) + decompress_offset,
1299 stored_size,
1300 map->Size() - decompress_offset);
1301 VLOG(image) << "Decompressing image took " << PrettyDuration(NanoTime() - start);
1302 if (decompressed_size + sizeof(ImageHeader) != image_header->GetImageSize()) {
1303 *error_msg = StringPrintf(
1304 "Decompressed size does not match expected image size %zu vs %zu",
1305 decompressed_size + sizeof(ImageHeader),
1306 image_header->GetImageSize());
1307 return nullptr;
1308 }
1309 }
1310 }
1311 if (map != nullptr) {
1312 break;
1313 }
1314 }
1315
1316 if (map == nullptr) {
1317 DCHECK(!temp_error_msg.empty());
1318 *error_msg = temp_error_msg;
1319 return nullptr;
1320 }
1321 DCHECK_EQ(0, memcmp(image_header, map->Begin(), sizeof(ImageHeader)));
1322
1323 std::unique_ptr<MemMap> image_bitmap_map(MemMap::MapFileAtAddress(nullptr,
1324 bitmap_section.Size(),
1325 PROT_READ, MAP_PRIVATE,
1326 file->Fd(),
1327 image_bitmap_offset,
1328 /*low_4gb*/false,
1329 /*reuse*/false,
1330 image_filename,
1331 error_msg));
1332 if (image_bitmap_map == nullptr) {
1333 *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
1334 return nullptr;
1335 }
1336 // Loaded the map, use the image header from the file now in case we patch it with
1337 // RelocateInPlace.
1338 image_header = reinterpret_cast<ImageHeader*>(map->Begin());
1339 const uint32_t bitmap_index = bitmap_index_.FetchAndAddSequentiallyConsistent(1);
1340 std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
1341 image_filename,
1342 bitmap_index));
1343 // Bitmap only needs to cover until the end of the mirror objects section.
1344 const ImageSection& image_objects = image_header->GetImageSection(ImageHeader::kSectionObjects);
1345 // We only want the mirror object, not the ArtFields and ArtMethods.
1346 uint8_t* const image_end = map->Begin() + image_objects.End();
1347 std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap;
1348 {
1349 TimingLogger::ScopedTiming timing("CreateImageBitmap", &logger);
1350 bitmap.reset(
1351 accounting::ContinuousSpaceBitmap::CreateFromMemMap(
1352 bitmap_name,
1353 image_bitmap_map.release(),
1354 reinterpret_cast<uint8_t*>(map->Begin()),
1355 image_objects.End()));
1356 if (bitmap == nullptr) {
1357 *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
1358 return nullptr;
1359 }
1360 }
1361 {
1362 TimingLogger::ScopedTiming timing("RelocateImage", &logger);
1363 if (!RelocateInPlace(*image_header,
1364 map->Begin(),
1365 bitmap.get(),
1366 oat_file,
1367 error_msg)) {
1368 return nullptr;
1369 }
1370 }
1371 // We only want the mirror object, not the ArtFields and ArtMethods.
1372 std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
1373 image_location,
1374 map.release(),
1375 bitmap.release(),
1376 image_end));
1377
1378 // VerifyImageAllocations() will be called later in Runtime::Init()
1379 // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
1380 // and ArtField::java_lang_reflect_ArtField_, which are used from
1381 // Object::SizeOf() which VerifyImageAllocations() calls, are not
1382 // set yet at this point.
1383 if (oat_file == nullptr) {
1384 TimingLogger::ScopedTiming timing("OpenOatFile", &logger);
1385 space->oat_file_.reset(space->OpenOatFile(image_filename, error_msg));
1386 if (space->oat_file_ == nullptr) {
1387 DCHECK(!error_msg->empty());
1388 return nullptr;
1389 }
1390 space->oat_file_non_owned_ = space->oat_file_.get();
1391 } else {
1392 space->oat_file_non_owned_ = oat_file;
1393 }
1394
1395 if (validate_oat_file) {
1396 TimingLogger::ScopedTiming timing("ValidateOatFile", &logger);
1397 if (!space->ValidateOatFile(error_msg)) {
1398 DCHECK(!error_msg->empty());
1399 return nullptr;
1400 }
1401 }
1402
1403 Runtime* runtime = Runtime::Current();
1404
1405 // If oat_file is null, then it is the boot image space. Use oat_file_non_owned_ from the space
1406 // to set the runtime methods.
1407 CHECK_EQ(oat_file != nullptr, image_header->IsAppImage());
1408 if (image_header->IsAppImage()) {
1409 CHECK_EQ(runtime->GetResolutionMethod(),
1410 image_header->GetImageMethod(ImageHeader::kResolutionMethod));
1411 CHECK_EQ(runtime->GetImtConflictMethod(),
1412 image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
1413 CHECK_EQ(runtime->GetImtUnimplementedMethod(),
1414 image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
1415 CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveAll),
1416 image_header->GetImageMethod(ImageHeader::kCalleeSaveMethod));
1417 CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kRefsOnly),
1418 image_header->GetImageMethod(ImageHeader::kRefsOnlySaveMethod));
1419 CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs),
1420 image_header->GetImageMethod(ImageHeader::kRefsAndArgsSaveMethod));
1421 } else if (!runtime->HasResolutionMethod()) {
1422 runtime->SetInstructionSet(space->oat_file_non_owned_->GetOatHeader().GetInstructionSet());
1423 runtime->SetResolutionMethod(image_header->GetImageMethod(ImageHeader::kResolutionMethod));
1424 runtime->SetImtConflictMethod(image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
1425 runtime->SetImtUnimplementedMethod(
1426 image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
1427 runtime->SetCalleeSaveMethod(
1428 image_header->GetImageMethod(ImageHeader::kCalleeSaveMethod), Runtime::kSaveAll);
1429 runtime->SetCalleeSaveMethod(
1430 image_header->GetImageMethod(ImageHeader::kRefsOnlySaveMethod), Runtime::kRefsOnly);
1431 runtime->SetCalleeSaveMethod(
1432 image_header->GetImageMethod(ImageHeader::kRefsAndArgsSaveMethod), Runtime::kRefsAndArgs);
1433 }
1434
1435 VLOG(image) << "ImageSpace::Init exiting " << *space.get();
1436 if (VLOG_IS_ON(image)) {
1437 logger.Dump(LOG(INFO));
1438 }
1439 return space.release();
1440 }
1441
OpenOatFile(const char * image_path,std::string * error_msg) const1442 OatFile* ImageSpace::OpenOatFile(const char* image_path, std::string* error_msg) const {
1443 const ImageHeader& image_header = GetImageHeader();
1444 std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path);
1445
1446 CHECK(image_header.GetOatDataBegin() != nullptr);
1447
1448 OatFile* oat_file = OatFile::Open(oat_filename,
1449 oat_filename,
1450 image_header.GetOatDataBegin(),
1451 image_header.GetOatFileBegin(),
1452 !Runtime::Current()->IsAotCompiler(),
1453 /*low_4gb*/false,
1454 nullptr,
1455 error_msg);
1456 if (oat_file == nullptr) {
1457 *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
1458 oat_filename.c_str(), GetName(), error_msg->c_str());
1459 return nullptr;
1460 }
1461 uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
1462 uint32_t image_oat_checksum = image_header.GetOatChecksum();
1463 if (oat_checksum != image_oat_checksum) {
1464 *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x"
1465 " in image %s", oat_checksum, image_oat_checksum, GetName());
1466 return nullptr;
1467 }
1468 int32_t image_patch_delta = image_header.GetPatchDelta();
1469 int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta();
1470 if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) {
1471 // We should have already relocated by this point. Bail out.
1472 *error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d "
1473 "in image %s", oat_patch_delta, image_patch_delta, GetName());
1474 return nullptr;
1475 }
1476
1477 return oat_file;
1478 }
1479
ValidateOatFile(std::string * error_msg) const1480 bool ImageSpace::ValidateOatFile(std::string* error_msg) const {
1481 CHECK(oat_file_.get() != nullptr);
1482 for (const OatFile::OatDexFile* oat_dex_file : oat_file_->GetOatDexFiles()) {
1483 const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
1484 uint32_t dex_file_location_checksum;
1485 if (!DexFile::GetChecksum(dex_file_location.c_str(), &dex_file_location_checksum, error_msg)) {
1486 *error_msg = StringPrintf("Failed to get checksum of dex file '%s' referenced by image %s: "
1487 "%s", dex_file_location.c_str(), GetName(), error_msg->c_str());
1488 return false;
1489 }
1490 if (dex_file_location_checksum != oat_dex_file->GetDexFileLocationChecksum()) {
1491 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file '%s' and "
1492 "dex file '%s' (0x%x != 0x%x)",
1493 oat_file_->GetLocation().c_str(), dex_file_location.c_str(),
1494 oat_dex_file->GetDexFileLocationChecksum(),
1495 dex_file_location_checksum);
1496 return false;
1497 }
1498 }
1499 return true;
1500 }
1501
GetOatFile() const1502 const OatFile* ImageSpace::GetOatFile() const {
1503 return oat_file_non_owned_;
1504 }
1505
ReleaseOatFile()1506 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
1507 CHECK(oat_file_ != nullptr);
1508 return std::move(oat_file_);
1509 }
1510
Dump(std::ostream & os) const1511 void ImageSpace::Dump(std::ostream& os) const {
1512 os << GetType()
1513 << " begin=" << reinterpret_cast<void*>(Begin())
1514 << ",end=" << reinterpret_cast<void*>(End())
1515 << ",size=" << PrettySize(Size())
1516 << ",name=\"" << GetName() << "\"]";
1517 }
1518
CreateMultiImageLocations(const std::string & input_image_file_name,const std::string & boot_classpath,std::vector<std::string> * image_file_names)1519 void ImageSpace::CreateMultiImageLocations(const std::string& input_image_file_name,
1520 const std::string& boot_classpath,
1521 std::vector<std::string>* image_file_names) {
1522 DCHECK(image_file_names != nullptr);
1523
1524 std::vector<std::string> images;
1525 Split(boot_classpath, ':', &images);
1526
1527 // Add the rest into the list. We have to adjust locations, possibly:
1528 //
1529 // For example, image_file_name is /a/b/c/d/e.art
1530 // images[0] is f/c/d/e.art
1531 // ----------------------------------------------
1532 // images[1] is g/h/i/j.art -> /a/b/h/i/j.art
1533 const std::string& first_image = images[0];
1534 // Length of common suffix.
1535 size_t common = 0;
1536 while (common < input_image_file_name.size() &&
1537 common < first_image.size() &&
1538 *(input_image_file_name.end() - common - 1) == *(first_image.end() - common - 1)) {
1539 ++common;
1540 }
1541 // We want to replace the prefix of the input image with the prefix of the boot class path.
1542 // This handles the case where the image file contains @ separators.
1543 // Example image_file_name is oats/system@framework@boot.art
1544 // images[0] is .../arm/boot.art
1545 // means that the image name prefix will be oats/system@framework@
1546 // so that the other images are openable.
1547 const size_t old_prefix_length = first_image.size() - common;
1548 const std::string new_prefix = input_image_file_name.substr(
1549 0,
1550 input_image_file_name.size() - common);
1551
1552 // Apply pattern to images[1] .. images[n].
1553 for (size_t i = 1; i < images.size(); ++i) {
1554 const std::string& image = images[i];
1555 CHECK_GT(image.length(), old_prefix_length);
1556 std::string suffix = image.substr(old_prefix_length);
1557 image_file_names->push_back(new_prefix + suffix);
1558 }
1559 }
1560
CreateFromAppImage(const char * image,const OatFile * oat_file,std::string * error_msg)1561 ImageSpace* ImageSpace::CreateFromAppImage(const char* image,
1562 const OatFile* oat_file,
1563 std::string* error_msg) {
1564 return gc::space::ImageSpace::Init(image,
1565 image,
1566 /*validate_oat_file*/false,
1567 oat_file,
1568 /*out*/error_msg);
1569 }
1570
DumpSections(std::ostream & os) const1571 void ImageSpace::DumpSections(std::ostream& os) const {
1572 const uint8_t* base = Begin();
1573 const ImageHeader& header = GetImageHeader();
1574 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
1575 auto section_type = static_cast<ImageHeader::ImageSections>(i);
1576 const ImageSection& section = header.GetImageSection(section_type);
1577 os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
1578 << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
1579 }
1580 }
1581
1582 } // namespace space
1583 } // namespace gc
1584 } // namespace art
1585