• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "image_space.h"
18 
19 #include <lz4.h>
20 #include <random>
21 #include <sys/statvfs.h>
22 #include <sys/types.h>
23 #include <unistd.h>
24 
25 #include "art_method.h"
26 #include "base/macros.h"
27 #include "base/stl_util.h"
28 #include "base/scoped_flock.h"
29 #include "base/systrace.h"
30 #include "base/time_utils.h"
31 #include "gc/accounting/space_bitmap-inl.h"
32 #include "image-inl.h"
33 #include "image_space_fs.h"
34 #include "mirror/class-inl.h"
35 #include "mirror/object-inl.h"
36 #include "oat_file.h"
37 #include "os.h"
38 #include "space-inl.h"
39 #include "utils.h"
40 
41 namespace art {
42 namespace gc {
43 namespace space {
44 
45 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
46 
ImageSpace(const std::string & image_filename,const char * image_location,MemMap * mem_map,accounting::ContinuousSpaceBitmap * live_bitmap,uint8_t * end)47 ImageSpace::ImageSpace(const std::string& image_filename,
48                        const char* image_location,
49                        MemMap* mem_map,
50                        accounting::ContinuousSpaceBitmap* live_bitmap,
51                        uint8_t* end)
52     : MemMapSpace(image_filename,
53                   mem_map,
54                   mem_map->Begin(),
55                   end,
56                   end,
57                   kGcRetentionPolicyNeverCollect),
58       oat_file_non_owned_(nullptr),
59       image_location_(image_location) {
60   DCHECK(live_bitmap != nullptr);
61   live_bitmap_.reset(live_bitmap);
62 }
63 
ChooseRelocationOffsetDelta(int32_t min_delta,int32_t max_delta)64 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
65   CHECK_ALIGNED(min_delta, kPageSize);
66   CHECK_ALIGNED(max_delta, kPageSize);
67   CHECK_LT(min_delta, max_delta);
68 
69   int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
70   if (r % 2 == 0) {
71     r = RoundUp(r, kPageSize);
72   } else {
73     r = RoundDown(r, kPageSize);
74   }
75   CHECK_LE(min_delta, r);
76   CHECK_GE(max_delta, r);
77   CHECK_ALIGNED(r, kPageSize);
78   return r;
79 }
80 
GenerateImage(const std::string & image_filename,InstructionSet image_isa,std::string * error_msg)81 static bool GenerateImage(const std::string& image_filename, InstructionSet image_isa,
82                           std::string* error_msg) {
83   const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString());
84   std::vector<std::string> boot_class_path;
85   Split(boot_class_path_string, ':', &boot_class_path);
86   if (boot_class_path.empty()) {
87     *error_msg = "Failed to generate image because no boot class path specified";
88     return false;
89   }
90   // We should clean up so we are more likely to have room for the image.
91   if (Runtime::Current()->IsZygote()) {
92     LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
93     PruneDalvikCache(image_isa);
94   }
95 
96   std::vector<std::string> arg_vector;
97 
98   std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
99   arg_vector.push_back(dex2oat);
100 
101   std::string image_option_string("--image=");
102   image_option_string += image_filename;
103   arg_vector.push_back(image_option_string);
104 
105   for (size_t i = 0; i < boot_class_path.size(); i++) {
106     arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
107   }
108 
109   std::string oat_file_option_string("--oat-file=");
110   oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
111   arg_vector.push_back(oat_file_option_string);
112 
113   // Note: we do not generate a fully debuggable boot image so we do not pass the
114   // compiler flag --debuggable here.
115 
116   Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
117   CHECK_EQ(image_isa, kRuntimeISA)
118       << "We should always be generating an image for the current isa.";
119 
120   int32_t base_offset = ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA,
121                                                     ART_BASE_ADDRESS_MAX_DELTA);
122   LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
123             << "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
124   arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));
125 
126   if (!kIsTargetBuild) {
127     arg_vector.push_back("--host");
128   }
129 
130   const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
131   for (size_t i = 0; i < compiler_options.size(); ++i) {
132     arg_vector.push_back(compiler_options[i].c_str());
133   }
134 
135   std::string command_line(Join(arg_vector, ' '));
136   LOG(INFO) << "GenerateImage: " << command_line;
137   return Exec(arg_vector, error_msg);
138 }
139 
FindImageFilename(const char * image_location,const InstructionSet image_isa,std::string * system_filename,bool * has_system,std::string * cache_filename,bool * dalvik_cache_exists,bool * has_cache,bool * is_global_cache)140 bool ImageSpace::FindImageFilename(const char* image_location,
141                                    const InstructionSet image_isa,
142                                    std::string* system_filename,
143                                    bool* has_system,
144                                    std::string* cache_filename,
145                                    bool* dalvik_cache_exists,
146                                    bool* has_cache,
147                                    bool* is_global_cache) {
148   *has_system = false;
149   *has_cache = false;
150   // image_location = /system/framework/boot.art
151   // system_image_location = /system/framework/<image_isa>/boot.art
152   std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
153   if (OS::FileExists(system_image_filename.c_str())) {
154     *system_filename = system_image_filename;
155     *has_system = true;
156   }
157 
158   bool have_android_data = false;
159   *dalvik_cache_exists = false;
160   std::string dalvik_cache;
161   GetDalvikCache(GetInstructionSetString(image_isa), true, &dalvik_cache,
162                  &have_android_data, dalvik_cache_exists, is_global_cache);
163 
164   if (have_android_data && *dalvik_cache_exists) {
165     // Always set output location even if it does not exist,
166     // so that the caller knows where to create the image.
167     //
168     // image_location = /system/framework/boot.art
169     // *image_filename = /data/dalvik-cache/<image_isa>/boot.art
170     std::string error_msg;
171     if (!GetDalvikCacheFilename(image_location, dalvik_cache.c_str(), cache_filename, &error_msg)) {
172       LOG(WARNING) << error_msg;
173       return *has_system;
174     }
175     *has_cache = OS::FileExists(cache_filename->c_str());
176   }
177   return *has_system || *has_cache;
178 }
179 
ReadSpecificImageHeader(const char * filename,ImageHeader * image_header)180 static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
181     std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
182     if (image_file.get() == nullptr) {
183       return false;
184     }
185     const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
186     if (!success || !image_header->IsValid()) {
187       return false;
188     }
189     return true;
190 }
191 
192 // Relocate the image at image_location to dest_filename and relocate it by a random amount.
RelocateImage(const char * image_location,const char * dest_filename,InstructionSet isa,std::string * error_msg)193 static bool RelocateImage(const char* image_location, const char* dest_filename,
194                                InstructionSet isa, std::string* error_msg) {
195   // We should clean up so we are more likely to have room for the image.
196   if (Runtime::Current()->IsZygote()) {
197     LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile";
198     PruneDalvikCache(isa);
199   }
200 
201   std::string patchoat(Runtime::Current()->GetPatchoatExecutable());
202 
203   std::string input_image_location_arg("--input-image-location=");
204   input_image_location_arg += image_location;
205 
206   std::string output_image_filename_arg("--output-image-file=");
207   output_image_filename_arg += dest_filename;
208 
209   std::string instruction_set_arg("--instruction-set=");
210   instruction_set_arg += GetInstructionSetString(isa);
211 
212   std::string base_offset_arg("--base-offset-delta=");
213   StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA,
214                                                                     ART_BASE_ADDRESS_MAX_DELTA));
215 
216   std::vector<std::string> argv;
217   argv.push_back(patchoat);
218 
219   argv.push_back(input_image_location_arg);
220   argv.push_back(output_image_filename_arg);
221 
222   argv.push_back(instruction_set_arg);
223   argv.push_back(base_offset_arg);
224 
225   std::string command_line(Join(argv, ' '));
226   LOG(INFO) << "RelocateImage: " << command_line;
227   return Exec(argv, error_msg);
228 }
229 
ReadSpecificImageHeader(const char * filename,std::string * error_msg)230 static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) {
231   std::unique_ptr<ImageHeader> hdr(new ImageHeader);
232   if (!ReadSpecificImageHeader(filename, hdr.get())) {
233     *error_msg = StringPrintf("Unable to read image header for %s", filename);
234     return nullptr;
235   }
236   return hdr.release();
237 }
238 
ReadImageHeaderOrDie(const char * image_location,const InstructionSet image_isa)239 ImageHeader* ImageSpace::ReadImageHeaderOrDie(const char* image_location,
240                                               const InstructionSet image_isa) {
241   std::string error_msg;
242   ImageHeader* image_header = ReadImageHeader(image_location, image_isa, &error_msg);
243   if (image_header == nullptr) {
244     LOG(FATAL) << error_msg;
245   }
246   return image_header;
247 }
248 
ReadImageHeader(const char * image_location,const InstructionSet image_isa,std::string * error_msg)249 ImageHeader* ImageSpace::ReadImageHeader(const char* image_location,
250                                          const InstructionSet image_isa,
251                                          std::string* error_msg) {
252   std::string system_filename;
253   bool has_system = false;
254   std::string cache_filename;
255   bool has_cache = false;
256   bool dalvik_cache_exists = false;
257   bool is_global_cache = false;
258   if (FindImageFilename(image_location, image_isa, &system_filename, &has_system,
259                         &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) {
260     if (Runtime::Current()->ShouldRelocate()) {
261       if (has_system && has_cache) {
262         std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader);
263         std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader);
264         if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) {
265           *error_msg = StringPrintf("Unable to read image header for %s at %s",
266                                     image_location, system_filename.c_str());
267           return nullptr;
268         }
269         if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) {
270           *error_msg = StringPrintf("Unable to read image header for %s at %s",
271                                     image_location, cache_filename.c_str());
272           return nullptr;
273         }
274         if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) {
275           *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
276                                     image_location);
277           return nullptr;
278         }
279         return cache_hdr.release();
280       } else if (!has_cache) {
281         *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
282                                   image_location);
283         return nullptr;
284       } else if (!has_system && has_cache) {
285         // This can probably just use the cache one.
286         return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
287       }
288     } else {
289       // We don't want to relocate, Just pick the appropriate one if we have it and return.
290       if (has_system && has_cache) {
291         // We want the cache if the checksum matches, otherwise the system.
292         std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(),
293                                                                     error_msg));
294         std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(),
295                                                                    error_msg));
296         if (system.get() == nullptr ||
297             (cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) {
298           return cache.release();
299         } else {
300           return system.release();
301         }
302       } else if (has_system) {
303         return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
304       } else if (has_cache) {
305         return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
306       }
307     }
308   }
309 
310   *error_msg = StringPrintf("Unable to find image file for %s", image_location);
311   return nullptr;
312 }
313 
ChecksumsMatch(const char * image_a,const char * image_b)314 static bool ChecksumsMatch(const char* image_a, const char* image_b) {
315   ImageHeader hdr_a;
316   ImageHeader hdr_b;
317   return ReadSpecificImageHeader(image_a, &hdr_a) && ReadSpecificImageHeader(image_b, &hdr_b)
318       && hdr_a.GetOatChecksum() == hdr_b.GetOatChecksum();
319 }
320 
ImageCreationAllowed(bool is_global_cache,std::string * error_msg)321 static bool ImageCreationAllowed(bool is_global_cache, std::string* error_msg) {
322   // Anyone can write into a "local" cache.
323   if (!is_global_cache) {
324     return true;
325   }
326 
327   // Only the zygote is allowed to create the global boot image.
328   if (Runtime::Current()->IsZygote()) {
329     return true;
330   }
331 
332   *error_msg = "Only the zygote can create the global boot image.";
333   return false;
334 }
335 
336 static constexpr uint64_t kLowSpaceValue = 50 * MB;
337 static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;
338 
339 // Read the free space of the cache partition and make a decision whether to keep the generated
340 // image. This is to try to mitigate situations where the system might run out of space later.
CheckSpace(const std::string & cache_filename,std::string * error_msg)341 static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
342   // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
343   struct statvfs buf;
344 
345   int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
346   if (res != 0) {
347     // Could not stat. Conservatively tell the system to delete the image.
348     *error_msg = "Could not stat the filesystem, assuming low-memory situation.";
349     return false;
350   }
351 
352   uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
353   // Zygote is privileged, but other things are not. Use bavail.
354   uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);
355 
356   // Take the overall size as an indicator for a tmpfs, which is being used for the decryption
357   // environment. We do not want to fail quickening the boot image there, as it is beneficial
358   // for time-to-UI.
359   if (fs_overall_size > kTmpFsSentinelValue) {
360     if (fs_free_size < kLowSpaceValue) {
361       *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available after image"
362                                 " generation, need at least %" PRIu64 ".",
363                                 static_cast<double>(fs_free_size) / MB,
364                                 kLowSpaceValue / MB);
365       return false;
366     }
367   }
368   return true;
369 }
370 
CreateBootImage(const char * image_location,const InstructionSet image_isa,bool secondary_image,std::string * error_msg)371 ImageSpace* ImageSpace::CreateBootImage(const char* image_location,
372                                         const InstructionSet image_isa,
373                                         bool secondary_image,
374                                         std::string* error_msg) {
375   ScopedTrace trace(__FUNCTION__);
376   std::string system_filename;
377   bool has_system = false;
378   std::string cache_filename;
379   bool has_cache = false;
380   bool dalvik_cache_exists = false;
381   bool is_global_cache = true;
382   bool found_image = FindImageFilename(image_location, image_isa, &system_filename,
383                                        &has_system, &cache_filename, &dalvik_cache_exists,
384                                        &has_cache, &is_global_cache);
385 
386   // If we're starting with the global cache, and we're the zygote, try to see whether there are
387   // OTA artifacts from the A/B OTA preopting to move over.
388   // (It is structurally simpler to check this here, instead of complicating the compile/relocate
389   // logic below.)
390   const bool is_zygote = Runtime::Current()->IsZygote();
391   if (is_global_cache && is_zygote) {
392     VLOG(startup) << "Checking for A/B OTA data.";
393     TryMoveOTAArtifacts(cache_filename, dalvik_cache_exists);
394 
395     // Retry. There are two cases where the old info is outdated:
396     // * There wasn't a boot image before (e.g., some failure on boot), but now the OTA preopted
397     //   image has been moved in-place.
398     // * There was a boot image before, and we tried to move the OTA preopted image, but a failure
399     //   happened and there is no file anymore.
400     found_image = FindImageFilename(image_location,
401                                     image_isa,
402                                     &system_filename,
403                                     &has_system,
404                                     &cache_filename,
405                                     &dalvik_cache_exists,
406                                     &has_cache,
407                                     &is_global_cache);
408   }
409 
410   if (is_zygote && !secondary_image) {
411     MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots());
412   }
413 
414   ImageSpace* space;
415   bool relocate = Runtime::Current()->ShouldRelocate();
416   bool can_compile = Runtime::Current()->IsImageDex2OatEnabled();
417   if (found_image) {
418     const std::string* image_filename;
419     bool is_system = false;
420     bool relocated_version_used = false;
421     if (relocate) {
422       if (!dalvik_cache_exists) {
423         *error_msg = StringPrintf("Requiring relocation for image '%s' at '%s' but we do not have "
424                                   "any dalvik_cache to find/place it in.",
425                                   image_location, system_filename.c_str());
426         return nullptr;
427       }
428       if (has_system) {
429         if (has_cache && ChecksumsMatch(system_filename.c_str(), cache_filename.c_str())) {
430           // We already have a relocated version
431           image_filename = &cache_filename;
432           relocated_version_used = true;
433         } else {
434           // We cannot have a relocated version, Relocate the system one and use it.
435 
436           std::string reason;
437           bool success;
438 
439           // Check whether we are allowed to relocate.
440           if (!can_compile) {
441             reason = "Image dex2oat disabled by -Xnoimage-dex2oat.";
442             success = false;
443           } else if (!ImageCreationAllowed(is_global_cache, &reason)) {
444             // Whether we can write to the cache.
445             success = false;
446           } else if (secondary_image) {
447             if (is_zygote) {
448               // Secondary image is out of date. Clear cache and exit to let it retry from scratch.
449               LOG(ERROR) << "Cannot patch secondary image '" << image_location
450                          << "', clearing dalvik_cache and restarting zygote.";
451               PruneDalvikCache(image_isa);
452               _exit(1);
453             } else {
454               reason = "Should not have to patch secondary image.";
455               success = false;
456             }
457           } else {
458             // Try to relocate.
459             success = RelocateImage(image_location, cache_filename.c_str(), image_isa, &reason);
460           }
461 
462           if (success) {
463             relocated_version_used = true;
464             image_filename = &cache_filename;
465           } else {
466             *error_msg = StringPrintf("Unable to relocate image '%s' from '%s' to '%s': %s",
467                                       image_location, system_filename.c_str(),
468                                       cache_filename.c_str(), reason.c_str());
469             // We failed to create files, remove any possibly garbage output.
470             // Since ImageCreationAllowed was true above, we are the zygote
471             // and therefore the only process expected to generate these for
472             // the device.
473             PruneDalvikCache(image_isa);
474             return nullptr;
475           }
476         }
477       } else {
478         CHECK(has_cache);
479         // We can just use cache's since it should be fine. This might or might not be relocated.
480         image_filename = &cache_filename;
481       }
482     } else {
483       if (has_system && has_cache) {
484         // Check they have the same cksum. If they do use the cache. Otherwise system.
485         if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str())) {
486           image_filename = &cache_filename;
487           relocated_version_used = true;
488         } else {
489           image_filename = &system_filename;
490           is_system = true;
491         }
492       } else if (has_system) {
493         image_filename = &system_filename;
494         is_system = true;
495       } else {
496         CHECK(has_cache);
497         image_filename = &cache_filename;
498       }
499     }
500     {
501       // Note that we must not use the file descriptor associated with
502       // ScopedFlock::GetFile to Init the image file. We want the file
503       // descriptor (and the associated exclusive lock) to be released when
504       // we leave Create.
505       ScopedFlock image_lock;
506       // Should this be a RDWR lock? This is only a defensive measure, as at
507       // this point the image should exist.
508       // However, only the zygote can write into the global dalvik-cache, so
509       // restrict to zygote processes, or any process that isn't using
510       // /data/dalvik-cache (which we assume to be allowed to write there).
511       const bool rw_lock = is_zygote || !is_global_cache;
512       image_lock.Init(image_filename->c_str(),
513                       rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY /* flags */,
514                       true /* block */,
515                       error_msg);
516       VLOG(startup) << "Using image file " << image_filename->c_str() << " for image location "
517                     << image_location;
518       // If we are in /system we can assume the image is good. We can also
519       // assume this if we are using a relocated image (i.e. image checksum
520       // matches) since this is only different by the offset. We need this to
521       // make sure that host tests continue to work.
522       // Since we are the boot image, pass null since we load the oat file from the boot image oat
523       // file name.
524       space = ImageSpace::Init(image_filename->c_str(),
525                                image_location,
526                                !(is_system || relocated_version_used),
527                                /* oat_file */nullptr,
528                                error_msg);
529     }
530     if (space != nullptr) {
531       return space;
532     }
533 
534     if (relocated_version_used) {
535       // Something is wrong with the relocated copy (even though checksums match). Cleanup.
536       // This can happen if the .oat is corrupt, since the above only checks the .art checksums.
537       // TODO: Check the oat file validity earlier.
538       *error_msg = StringPrintf("Attempted to use relocated version of %s at %s generated from %s "
539                                 "but image failed to load: %s",
540                                 image_location, cache_filename.c_str(), system_filename.c_str(),
541                                 error_msg->c_str());
542       PruneDalvikCache(image_isa);
543       return nullptr;
544     } else if (is_system) {
545       // If the /system file exists, it should be up-to-date, don't try to generate it.
546       *error_msg = StringPrintf("Failed to load /system image '%s': %s",
547                                 image_filename->c_str(), error_msg->c_str());
548       return nullptr;
549     } else {
550       // Otherwise, log a warning and fall through to GenerateImage.
551       LOG(WARNING) << *error_msg;
552     }
553   }
554 
555   if (!can_compile) {
556     *error_msg = "Not attempting to compile image because -Xnoimage-dex2oat";
557     return nullptr;
558   } else if (!dalvik_cache_exists) {
559     *error_msg = StringPrintf("No place to put generated image.");
560     return nullptr;
561   } else if (!ImageCreationAllowed(is_global_cache, error_msg)) {
562     return nullptr;
563   } else if (secondary_image) {
564     *error_msg = "Cannot compile a secondary image.";
565     return nullptr;
566   } else if (!GenerateImage(cache_filename, image_isa, error_msg)) {
567     *error_msg = StringPrintf("Failed to generate image '%s': %s",
568                               cache_filename.c_str(), error_msg->c_str());
569     // We failed to create files, remove any possibly garbage output.
570     // Since ImageCreationAllowed was true above, we are the zygote
571     // and therefore the only process expected to generate these for
572     // the device.
573     PruneDalvikCache(image_isa);
574     return nullptr;
575   } else {
576     // Check whether there is enough space left over after we have generated the image.
577     if (!CheckSpace(cache_filename, error_msg)) {
578       // No. Delete the generated image and try to run out of the dex files.
579       PruneDalvikCache(image_isa);
580       return nullptr;
581     }
582 
583     // Note that we must not use the file descriptor associated with
584     // ScopedFlock::GetFile to Init the image file. We want the file
585     // descriptor (and the associated exclusive lock) to be released when
586     // we leave Create.
587     ScopedFlock image_lock;
588     image_lock.Init(cache_filename.c_str(), error_msg);
589     space = ImageSpace::Init(cache_filename.c_str(), image_location, true, nullptr, error_msg);
590     if (space == nullptr) {
591       *error_msg = StringPrintf("Failed to load generated image '%s': %s",
592                                 cache_filename.c_str(), error_msg->c_str());
593     }
594     return space;
595   }
596 }
597 
VerifyImageAllocations()598 void ImageSpace::VerifyImageAllocations() {
599   uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
600   while (current < End()) {
601     CHECK_ALIGNED(current, kObjectAlignment);
602     auto* obj = reinterpret_cast<mirror::Object*>(current);
603     CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
604     CHECK(live_bitmap_->Test(obj)) << PrettyTypeOf(obj);
605     if (kUseBakerOrBrooksReadBarrier) {
606       obj->AssertReadBarrierPointer();
607     }
608     current += RoundUp(obj->SizeOf(), kObjectAlignment);
609   }
610 }
611 
612 // Helper class for relocating from one range of memory to another.
613 class RelocationRange {
614  public:
615   RelocationRange() = default;
616   RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source,uintptr_t dest,uintptr_t length)617   RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
618       : source_(source),
619         dest_(dest),
620         length_(length) {}
621 
InSource(uintptr_t address) const622   bool InSource(uintptr_t address) const {
623     return address - source_ < length_;
624   }
625 
InDest(uintptr_t address) const626   bool InDest(uintptr_t address) const {
627     return address - dest_ < length_;
628   }
629 
630   // Translate a source address to the destination space.
ToDest(uintptr_t address) const631   uintptr_t ToDest(uintptr_t address) const {
632     DCHECK(InSource(address));
633     return address + Delta();
634   }
635 
636   // Returns the delta between the dest from the source.
Delta() const637   uintptr_t Delta() const {
638     return dest_ - source_;
639   }
640 
Source() const641   uintptr_t Source() const {
642     return source_;
643   }
644 
Dest() const645   uintptr_t Dest() const {
646     return dest_;
647   }
648 
Length() const649   uintptr_t Length() const {
650     return length_;
651   }
652 
653  private:
654   const uintptr_t source_;
655   const uintptr_t dest_;
656   const uintptr_t length_;
657 };
658 
operator <<(std::ostream & os,const RelocationRange & reloc)659 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
660   return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
661             << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
662             << reinterpret_cast<const void*>(reloc.Dest()) << "-"
663             << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
664 }
665 
666 class FixupVisitor : public ValueObject {
667  public:
FixupVisitor(const RelocationRange & boot_image,const RelocationRange & boot_oat,const RelocationRange & app_image,const RelocationRange & app_oat)668   FixupVisitor(const RelocationRange& boot_image,
669                const RelocationRange& boot_oat,
670                const RelocationRange& app_image,
671                const RelocationRange& app_oat)
672       : boot_image_(boot_image),
673         boot_oat_(boot_oat),
674         app_image_(app_image),
675         app_oat_(app_oat) {}
676 
677   // Return the relocated address of a heap object.
678   template <typename T>
ForwardObject(T * src) const679   ALWAYS_INLINE T* ForwardObject(T* src) const {
680     const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
681     if (boot_image_.InSource(uint_src)) {
682       return reinterpret_cast<T*>(boot_image_.ToDest(uint_src));
683     }
684     if (app_image_.InSource(uint_src)) {
685       return reinterpret_cast<T*>(app_image_.ToDest(uint_src));
686     }
687     // Since we are fixing up the app image, there should only be pointers to the app image and
688     // boot image.
689     DCHECK(src == nullptr) << reinterpret_cast<const void*>(src);
690     return src;
691   }
692 
693   // Return the relocated address of a code pointer (contained by an oat file).
ForwardCode(const void * src) const694   ALWAYS_INLINE const void* ForwardCode(const void* src) const {
695     const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
696     if (boot_oat_.InSource(uint_src)) {
697       return reinterpret_cast<const void*>(boot_oat_.ToDest(uint_src));
698     }
699     if (app_oat_.InSource(uint_src)) {
700       return reinterpret_cast<const void*>(app_oat_.ToDest(uint_src));
701     }
702     DCHECK(src == nullptr) << src;
703     return src;
704   }
705 
706   // Must be called on pointers that already have been relocated to the destination relocation.
IsInAppImage(mirror::Object * object) const707   ALWAYS_INLINE bool IsInAppImage(mirror::Object* object) const {
708     return app_image_.InDest(reinterpret_cast<uintptr_t>(object));
709   }
710 
711  protected:
712   // Source section.
713   const RelocationRange boot_image_;
714   const RelocationRange boot_oat_;
715   const RelocationRange app_image_;
716   const RelocationRange app_oat_;
717 };
718 
719 // Adapt for mirror::Class::FixupNativePointers.
720 class FixupObjectAdapter : public FixupVisitor {
721  public:
722   template<typename... Args>
FixupObjectAdapter(Args...args)723   explicit FixupObjectAdapter(Args... args) : FixupVisitor(args...) {}
724 
725   template <typename T>
operator ()(T * obj) const726   T* operator()(T* obj) const {
727     return ForwardObject(obj);
728   }
729 };
730 
731 class FixupRootVisitor : public FixupVisitor {
732  public:
733   template<typename... Args>
FixupRootVisitor(Args...args)734   explicit FixupRootVisitor(Args... args) : FixupVisitor(args...) {}
735 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const736   ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
737       SHARED_REQUIRES(Locks::mutator_lock_) {
738     if (!root->IsNull()) {
739       VisitRoot(root);
740     }
741   }
742 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const743   ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
744       SHARED_REQUIRES(Locks::mutator_lock_) {
745     mirror::Object* ref = root->AsMirrorPtr();
746     mirror::Object* new_ref = ForwardObject(ref);
747     if (ref != new_ref) {
748       root->Assign(new_ref);
749     }
750   }
751 };
752 
753 class FixupObjectVisitor : public FixupVisitor {
754  public:
755   template<typename... Args>
FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap * visited,const size_t pointer_size,Args...args)756   explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
757                               const size_t pointer_size,
758                               Args... args)
759       : FixupVisitor(args...),
760         pointer_size_(pointer_size),
761         visited_(visited) {}
762 
763   // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const764   ALWAYS_INLINE void VisitRootIfNonNull(
765       mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
766 
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const767   ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
768       const {}
769 
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const770   ALWAYS_INLINE void operator()(mirror::Object* obj,
771                                 MemberOffset offset,
772                                 bool is_static ATTRIBUTE_UNUSED) const
773       NO_THREAD_SAFETY_ANALYSIS {
774     // There could be overlap between ranges, we must avoid visiting the same reference twice.
775     // Avoid the class field since we already fixed it up in FixupClassVisitor.
776     if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
777       // Space is not yet added to the heap, don't do a read barrier.
778       mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
779           offset);
780       // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
781       // image.
782       obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, ForwardObject(ref));
783     }
784   }
785 
786   // Visit a pointer array and forward corresponding native data. Ignores pointer arrays in the
787   // boot image. Uses the bitmap to ensure the same array is not visited multiple times.
788   template <typename Visitor>
UpdatePointerArrayContents(mirror::PointerArray * array,const Visitor & visitor) const789   void UpdatePointerArrayContents(mirror::PointerArray* array, const Visitor& visitor) const
790       NO_THREAD_SAFETY_ANALYSIS {
791     DCHECK(array != nullptr);
792     DCHECK(visitor.IsInAppImage(array));
793     // The bit for the array contents is different than the bit for the array. Since we may have
794     // already visited the array as a long / int array from walking the bitmap without knowing it
795     // was a pointer array.
796     static_assert(kObjectAlignment == 8u, "array bit may be in another object");
797     mirror::Object* const contents_bit = reinterpret_cast<mirror::Object*>(
798         reinterpret_cast<uintptr_t>(array) + kObjectAlignment);
799     // If the bit is not set then the contents have not yet been updated.
800     if (!visited_->Test(contents_bit)) {
801       array->Fixup<kVerifyNone, kWithoutReadBarrier>(array, pointer_size_, visitor);
802       visited_->Set(contents_bit);
803     }
804   }
805 
806   // java.lang.ref.Reference visitor.
operator ()(mirror::Class * klass ATTRIBUTE_UNUSED,mirror::Reference * ref) const807   void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
808       SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
809     mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>();
810     ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
811         mirror::Reference::ReferentOffset(),
812         ForwardObject(obj));
813   }
814 
operator ()(mirror::Object * obj) const815   void operator()(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
816     if (visited_->Test(obj)) {
817       // Already visited.
818       return;
819     }
820     visited_->Set(obj);
821 
822     // Handle class specially first since we need it to be updated to properly visit the rest of
823     // the instance fields.
824     {
825       mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
826       DCHECK(klass != nullptr) << "Null class in image";
827       // No AsClass since our fields aren't quite fixed up yet.
828       mirror::Class* new_klass = down_cast<mirror::Class*>(ForwardObject(klass));
829       if (klass != new_klass) {
830         obj->SetClass<kVerifyNone>(new_klass);
831       }
832       if (new_klass != klass && IsInAppImage(new_klass)) {
833         // Make sure the klass contents are fixed up since we depend on it to walk the fields.
834         operator()(new_klass);
835       }
836     }
837 
838     obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
839         *this,
840         *this);
841     // Note that this code relies on no circular dependencies.
842     // We want to use our own class loader and not the one in the image.
843     if (obj->IsClass<kVerifyNone, kWithoutReadBarrier>()) {
844       mirror::Class* as_klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
845       FixupObjectAdapter visitor(boot_image_, boot_oat_, app_image_, app_oat_);
846       as_klass->FixupNativePointers<kVerifyNone, kWithoutReadBarrier>(as_klass,
847                                                                       pointer_size_,
848                                                                       visitor);
849       // Deal with the pointer arrays. Use the helper function since multiple classes can reference
850       // the same arrays.
851       mirror::PointerArray* const vtable = as_klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
852       if (vtable != nullptr && IsInAppImage(vtable)) {
853         operator()(vtable);
854         UpdatePointerArrayContents(vtable, visitor);
855       }
856       mirror::IfTable* iftable = as_klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
857       // Ensure iftable arrays are fixed up since we need GetMethodArray to return the valid
858       // contents.
859       if (iftable != nullptr && IsInAppImage(iftable)) {
860         operator()(iftable);
861         for (int32_t i = 0, count = iftable->Count(); i < count; ++i) {
862           if (iftable->GetMethodArrayCount<kVerifyNone, kWithoutReadBarrier>(i) > 0) {
863             mirror::PointerArray* methods =
864                 iftable->GetMethodArray<kVerifyNone, kWithoutReadBarrier>(i);
865             if (visitor.IsInAppImage(methods)) {
866               operator()(methods);
867               DCHECK(methods != nullptr);
868               UpdatePointerArrayContents(methods, visitor);
869             }
870           }
871         }
872       }
873     }
874   }
875 
876  private:
877   const size_t pointer_size_;
878   gc::accounting::ContinuousSpaceBitmap* const visited_;
879 };
880 
881 class ForwardObjectAdapter {
882  public:
ForwardObjectAdapter(const FixupVisitor * visitor)883   ALWAYS_INLINE ForwardObjectAdapter(const FixupVisitor* visitor) : visitor_(visitor) {}
884 
885   template <typename T>
operator ()(T * src) const886   ALWAYS_INLINE T* operator()(T* src) const {
887     return visitor_->ForwardObject(src);
888   }
889 
890  private:
891   const FixupVisitor* const visitor_;
892 };
893 
894 class ForwardCodeAdapter {
895  public:
ForwardCodeAdapter(const FixupVisitor * visitor)896   ALWAYS_INLINE ForwardCodeAdapter(const FixupVisitor* visitor)
897       : visitor_(visitor) {}
898 
899   template <typename T>
operator ()(T * src) const900   ALWAYS_INLINE T* operator()(T* src) const {
901     return visitor_->ForwardCode(src);
902   }
903 
904  private:
905   const FixupVisitor* const visitor_;
906 };
907 
908 class FixupArtMethodVisitor : public FixupVisitor, public ArtMethodVisitor {
909  public:
910   template<typename... Args>
FixupArtMethodVisitor(bool fixup_heap_objects,size_t pointer_size,Args...args)911   explicit FixupArtMethodVisitor(bool fixup_heap_objects, size_t pointer_size, Args... args)
912       : FixupVisitor(args...),
913         fixup_heap_objects_(fixup_heap_objects),
914         pointer_size_(pointer_size) {}
915 
Visit(ArtMethod * method)916   virtual void Visit(ArtMethod* method) NO_THREAD_SAFETY_ANALYSIS {
917     // TODO: Separate visitor for runtime vs normal methods.
918     if (UNLIKELY(method->IsRuntimeMethod())) {
919       ImtConflictTable* table = method->GetImtConflictTable(pointer_size_);
920       if (table != nullptr) {
921         ImtConflictTable* new_table = ForwardObject(table);
922         if (table != new_table) {
923           method->SetImtConflictTable(new_table, pointer_size_);
924         }
925       }
926       const void* old_code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size_);
927       const void* new_code = ForwardCode(old_code);
928       if (old_code != new_code) {
929         method->SetEntryPointFromQuickCompiledCodePtrSize(new_code, pointer_size_);
930       }
931     } else {
932       if (fixup_heap_objects_) {
933         method->UpdateObjectsForImageRelocation(ForwardObjectAdapter(this), pointer_size_);
934       }
935       method->UpdateEntrypoints<kWithoutReadBarrier>(ForwardCodeAdapter(this), pointer_size_);
936     }
937   }
938 
939  private:
940   const bool fixup_heap_objects_;
941   const size_t pointer_size_;
942 };
943 
944 class FixupArtFieldVisitor : public FixupVisitor, public ArtFieldVisitor {
945  public:
946   template<typename... Args>
FixupArtFieldVisitor(Args...args)947   explicit FixupArtFieldVisitor(Args... args) : FixupVisitor(args...) {}
948 
Visit(ArtField * field)949   virtual void Visit(ArtField* field) NO_THREAD_SAFETY_ANALYSIS {
950     field->UpdateObjects(ForwardObjectAdapter(this));
951   }
952 };
953 
954 // Relocate an image space mapped at target_base which possibly used to be at a different base
955 // address. Only needs a single image space, not one for both source and destination.
956 // In place means modifying a single ImageSpace in place rather than relocating from one ImageSpace
957 // to another.
RelocateInPlace(ImageHeader & image_header,uint8_t * target_base,accounting::ContinuousSpaceBitmap * bitmap,const OatFile * app_oat_file,std::string * error_msg)958 static bool RelocateInPlace(ImageHeader& image_header,
959                             uint8_t* target_base,
960                             accounting::ContinuousSpaceBitmap* bitmap,
961                             const OatFile* app_oat_file,
962                             std::string* error_msg) {
963   DCHECK(error_msg != nullptr);
964   if (!image_header.IsPic()) {
965     if (image_header.GetImageBegin() == target_base) {
966       return true;
967     }
968     *error_msg = StringPrintf("Cannot relocate non-pic image for oat file %s",
969                               (app_oat_file != nullptr) ? app_oat_file->GetLocation().c_str() : "");
970     return false;
971   }
972   // Set up sections.
973   uint32_t boot_image_begin = 0;
974   uint32_t boot_image_end = 0;
975   uint32_t boot_oat_begin = 0;
976   uint32_t boot_oat_end = 0;
977   const size_t pointer_size = image_header.GetPointerSize();
978   gc::Heap* const heap = Runtime::Current()->GetHeap();
979   heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
980   if (boot_image_begin == boot_image_end) {
981     *error_msg = "Can not relocate app image without boot image space";
982     return false;
983   }
984   if (boot_oat_begin == boot_oat_end) {
985     *error_msg = "Can not relocate app image without boot oat file";
986     return false;
987   }
988   const uint32_t boot_image_size = boot_image_end - boot_image_begin;
989   const uint32_t boot_oat_size = boot_oat_end - boot_oat_begin;
990   const uint32_t image_header_boot_image_size = image_header.GetBootImageSize();
991   const uint32_t image_header_boot_oat_size = image_header.GetBootOatSize();
992   if (boot_image_size != image_header_boot_image_size) {
993     *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %"
994                                   PRIu64,
995                               static_cast<uint64_t>(boot_image_size),
996                               static_cast<uint64_t>(image_header_boot_image_size));
997     return false;
998   }
999   if (boot_oat_size != image_header_boot_oat_size) {
1000     *error_msg = StringPrintf("Boot oat size %" PRIu64 " does not match expected size %"
1001                                   PRIu64,
1002                               static_cast<uint64_t>(boot_oat_size),
1003                               static_cast<uint64_t>(image_header_boot_oat_size));
1004     return false;
1005   }
1006   TimingLogger logger(__FUNCTION__, true, false);
1007   RelocationRange boot_image(image_header.GetBootImageBegin(),
1008                              boot_image_begin,
1009                              boot_image_size);
1010   RelocationRange boot_oat(image_header.GetBootOatBegin(),
1011                            boot_oat_begin,
1012                            boot_oat_size);
1013   RelocationRange app_image(reinterpret_cast<uintptr_t>(image_header.GetImageBegin()),
1014                             reinterpret_cast<uintptr_t>(target_base),
1015                             image_header.GetImageSize());
1016   // Use the oat data section since this is where the OatFile::Begin is.
1017   RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()),
1018                           // Not necessarily in low 4GB.
1019                           reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
1020                           image_header.GetOatDataEnd() - image_header.GetOatDataBegin());
1021   VLOG(image) << "App image " << app_image;
1022   VLOG(image) << "App oat " << app_oat;
1023   VLOG(image) << "Boot image " << boot_image;
1024   VLOG(image) << "Boot oat " << boot_oat;
1025   // True if we need to fixup any heap pointers, otherwise only code pointers.
1026   const bool fixup_image = boot_image.Delta() != 0 || app_image.Delta() != 0;
1027   const bool fixup_code = boot_oat.Delta() != 0 || app_oat.Delta() != 0;
1028   if (!fixup_image && !fixup_code) {
1029     // Nothing to fix up.
1030     return true;
1031   }
1032   ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1033   // Need to update the image to be at the target base.
1034   const ImageSection& objects_section = image_header.GetImageSection(ImageHeader::kSectionObjects);
1035   uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
1036   uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
1037   FixupObjectAdapter fixup_adapter(boot_image, boot_oat, app_image, app_oat);
1038   if (fixup_image) {
1039     // Two pass approach, fix up all classes first, then fix up non class-objects.
1040     // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
1041     std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap(
1042         gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
1043                                                       target_base,
1044                                                       image_header.GetImageSize()));
1045     FixupObjectVisitor fixup_object_visitor(visited_bitmap.get(),
1046                                             pointer_size,
1047                                             boot_image,
1048                                             boot_oat,
1049                                             app_image,
1050                                             app_oat);
1051     TimingLogger::ScopedTiming timing("Fixup classes", &logger);
1052     // Fixup objects may read fields in the boot image, use the mutator lock here for sanity. Though
1053     // its probably not required.
1054     ScopedObjectAccess soa(Thread::Current());
1055     timing.NewTiming("Fixup objects");
1056     bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
1057     // Fixup image roots.
1058     CHECK(app_image.InSource(reinterpret_cast<uintptr_t>(
1059         image_header.GetImageRoots<kWithoutReadBarrier>())));
1060     image_header.RelocateImageObjects(app_image.Delta());
1061     CHECK_EQ(image_header.GetImageBegin(), target_base);
1062     // Fix up dex cache DexFile pointers.
1063     auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)->
1064         AsObjectArray<mirror::DexCache, kVerifyNone, kWithoutReadBarrier>();
1065     for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
1066       mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
1067       // Fix up dex cache pointers.
1068       GcRoot<mirror::String>* strings = dex_cache->GetStrings();
1069       if (strings != nullptr) {
1070         GcRoot<mirror::String>* new_strings = fixup_adapter.ForwardObject(strings);
1071         if (strings != new_strings) {
1072           dex_cache->SetStrings(new_strings);
1073         }
1074         dex_cache->FixupStrings<kWithoutReadBarrier>(new_strings, fixup_adapter);
1075       }
1076       GcRoot<mirror::Class>* types = dex_cache->GetResolvedTypes();
1077       if (types != nullptr) {
1078         GcRoot<mirror::Class>* new_types = fixup_adapter.ForwardObject(types);
1079         if (types != new_types) {
1080           dex_cache->SetResolvedTypes(new_types);
1081         }
1082         dex_cache->FixupResolvedTypes<kWithoutReadBarrier>(new_types, fixup_adapter);
1083       }
1084       ArtMethod** methods = dex_cache->GetResolvedMethods();
1085       if (methods != nullptr) {
1086         ArtMethod** new_methods = fixup_adapter.ForwardObject(methods);
1087         if (methods != new_methods) {
1088           dex_cache->SetResolvedMethods(new_methods);
1089         }
1090         for (size_t j = 0, num = dex_cache->NumResolvedMethods(); j != num; ++j) {
1091           ArtMethod* orig = mirror::DexCache::GetElementPtrSize(new_methods, j, pointer_size);
1092           ArtMethod* copy = fixup_adapter.ForwardObject(orig);
1093           if (orig != copy) {
1094             mirror::DexCache::SetElementPtrSize(new_methods, j, copy, pointer_size);
1095           }
1096         }
1097       }
1098       ArtField** fields = dex_cache->GetResolvedFields();
1099       if (fields != nullptr) {
1100         ArtField** new_fields = fixup_adapter.ForwardObject(fields);
1101         if (fields != new_fields) {
1102           dex_cache->SetResolvedFields(new_fields);
1103         }
1104         for (size_t j = 0, num = dex_cache->NumResolvedFields(); j != num; ++j) {
1105           ArtField* orig = mirror::DexCache::GetElementPtrSize(new_fields, j, pointer_size);
1106           ArtField* copy = fixup_adapter.ForwardObject(orig);
1107           if (orig != copy) {
1108             mirror::DexCache::SetElementPtrSize(new_fields, j, copy, pointer_size);
1109           }
1110         }
1111       }
1112     }
1113   }
1114   {
1115     // Only touches objects in the app image, no need for mutator lock.
1116     TimingLogger::ScopedTiming timing("Fixup methods", &logger);
1117     FixupArtMethodVisitor method_visitor(fixup_image,
1118                                          pointer_size,
1119                                          boot_image,
1120                                          boot_oat,
1121                                          app_image,
1122                                          app_oat);
1123     image_header.VisitPackedArtMethods(&method_visitor, target_base, pointer_size);
1124   }
1125   if (fixup_image) {
1126     {
1127       // Only touches objects in the app image, no need for mutator lock.
1128       TimingLogger::ScopedTiming timing("Fixup fields", &logger);
1129       FixupArtFieldVisitor field_visitor(boot_image, boot_oat, app_image, app_oat);
1130       image_header.VisitPackedArtFields(&field_visitor, target_base);
1131     }
1132     {
1133       TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
1134       image_header.VisitPackedImtConflictTables(fixup_adapter, target_base, pointer_size);
1135     }
1136     // In the app image case, the image methods are actually in the boot image.
1137     image_header.RelocateImageMethods(boot_image.Delta());
1138     const auto& class_table_section = image_header.GetImageSection(ImageHeader::kSectionClassTable);
1139     if (class_table_section.Size() > 0u) {
1140       // Note that we require that ReadFromMemory does not make an internal copy of the elements.
1141       // This also relies on visit roots not doing any verification which could fail after we update
1142       // the roots to be the image addresses.
1143       ScopedObjectAccess soa(Thread::Current());
1144       WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1145       ClassTable temp_table;
1146       temp_table.ReadFromMemory(target_base + class_table_section.Offset());
1147       FixupRootVisitor root_visitor(boot_image, boot_oat, app_image, app_oat);
1148       temp_table.VisitRoots(root_visitor);
1149     }
1150   }
1151   if (VLOG_IS_ON(image)) {
1152     logger.Dump(LOG(INFO));
1153   }
1154   return true;
1155 }
1156 
Init(const char * image_filename,const char * image_location,bool validate_oat_file,const OatFile * oat_file,std::string * error_msg)1157 ImageSpace* ImageSpace::Init(const char* image_filename,
1158                              const char* image_location,
1159                              bool validate_oat_file,
1160                              const OatFile* oat_file,
1161                              std::string* error_msg) {
1162   CHECK(image_filename != nullptr);
1163   CHECK(image_location != nullptr);
1164 
1165   TimingLogger logger(__PRETTY_FUNCTION__, true, VLOG_IS_ON(image));
1166   VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
1167 
1168   std::unique_ptr<File> file;
1169   {
1170     TimingLogger::ScopedTiming timing("OpenImageFile", &logger);
1171     file.reset(OS::OpenFileForReading(image_filename));
1172     if (file == nullptr) {
1173       *error_msg = StringPrintf("Failed to open '%s'", image_filename);
1174       return nullptr;
1175     }
1176   }
1177   ImageHeader temp_image_header;
1178   ImageHeader* image_header = &temp_image_header;
1179   {
1180     TimingLogger::ScopedTiming timing("ReadImageHeader", &logger);
1181     bool success = file->ReadFully(image_header, sizeof(*image_header));
1182     if (!success || !image_header->IsValid()) {
1183       *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
1184       return nullptr;
1185     }
1186   }
1187   // Check that the file is larger or equal to the header size + data size.
1188   const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
1189   if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) {
1190     *error_msg = StringPrintf("Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
1191                               image_file_size,
1192                               sizeof(ImageHeader) + image_header->GetDataSize());
1193     return nullptr;
1194   }
1195 
1196   if (oat_file != nullptr) {
1197     // If we have an oat file, check the oat file checksum. The oat file is only non-null for the
1198     // app image case. Otherwise, we open the oat file after the image and check the checksum there.
1199     const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
1200     const uint32_t image_oat_checksum = image_header->GetOatChecksum();
1201     if (oat_checksum != image_oat_checksum) {
1202       *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
1203                                 oat_checksum,
1204                                 image_oat_checksum,
1205                                 image_filename);
1206       return nullptr;
1207     }
1208   }
1209 
1210   if (VLOG_IS_ON(startup)) {
1211     LOG(INFO) << "Dumping image sections";
1212     for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
1213       const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
1214       auto& section = image_header->GetImageSection(section_idx);
1215       LOG(INFO) << section_idx << " start="
1216                 << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " "
1217                 << section;
1218     }
1219   }
1220 
1221   const auto& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
1222   // The location we want to map from is the first aligned page after the end of the stored
1223   // (possibly compressed) data.
1224   const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(),
1225                                              kPageSize);
1226   const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
1227   if (end_of_bitmap != image_file_size) {
1228     *error_msg = StringPrintf(
1229         "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size,
1230         end_of_bitmap);
1231     return nullptr;
1232   }
1233 
1234   // The preferred address to map the image, null specifies any address. If we manage to map the
1235   // image at the image begin, the amount of fixup work required is minimized.
1236   std::vector<uint8_t*> addresses(1, image_header->GetImageBegin());
1237   if (image_header->IsPic()) {
1238     // Can also map at a random low_4gb address since we can relocate in-place.
1239     addresses.push_back(nullptr);
1240   }
1241 
1242   // Note: The image header is part of the image due to mmap page alignment required of offset.
1243   std::unique_ptr<MemMap> map;
1244   std::string temp_error_msg;
1245   for (uint8_t* address : addresses) {
1246     TimingLogger::ScopedTiming timing("MapImageFile", &logger);
1247     // Only care about the error message for the last address in addresses. We want to avoid the
1248     // overhead of printing the process maps if we can relocate.
1249     std::string* out_error_msg = (address == addresses.back()) ? &temp_error_msg : nullptr;
1250     const ImageHeader::StorageMode storage_mode = image_header->GetStorageMode();
1251     if (storage_mode == ImageHeader::kStorageModeUncompressed) {
1252       map.reset(MemMap::MapFileAtAddress(address,
1253                                          image_header->GetImageSize(),
1254                                          PROT_READ | PROT_WRITE,
1255                                          MAP_PRIVATE,
1256                                          file->Fd(),
1257                                          0,
1258                                          /*low_4gb*/true,
1259                                          /*reuse*/false,
1260                                          image_filename,
1261                                          /*out*/out_error_msg));
1262     } else {
1263       if (storage_mode != ImageHeader::kStorageModeLZ4 &&
1264           storage_mode != ImageHeader::kStorageModeLZ4HC) {
1265         *error_msg = StringPrintf("Invalid storage mode in image header %d",
1266                                   static_cast<int>(storage_mode));
1267         return nullptr;
1268       }
1269       // Reserve output and decompress into it.
1270       map.reset(MemMap::MapAnonymous(image_location,
1271                                      address,
1272                                      image_header->GetImageSize(),
1273                                      PROT_READ | PROT_WRITE,
1274                                      /*low_4gb*/true,
1275                                      /*reuse*/false,
1276                                      /*out*/out_error_msg));
1277       if (map != nullptr) {
1278         const size_t stored_size = image_header->GetDataSize();
1279         const size_t decompress_offset = sizeof(ImageHeader);  // Skip the header.
1280         std::unique_ptr<MemMap> temp_map(MemMap::MapFile(sizeof(ImageHeader) + stored_size,
1281                                                          PROT_READ,
1282                                                          MAP_PRIVATE,
1283                                                          file->Fd(),
1284                                                          /*offset*/0,
1285                                                          /*low_4gb*/false,
1286                                                          image_filename,
1287                                                          out_error_msg));
1288         if (temp_map == nullptr) {
1289           DCHECK(!out_error_msg->empty());
1290           return nullptr;
1291         }
1292         memcpy(map->Begin(), image_header, sizeof(ImageHeader));
1293         const uint64_t start = NanoTime();
1294         // LZ4HC and LZ4 have same internal format, both use LZ4_decompress.
1295         TimingLogger::ScopedTiming timing2("LZ4 decompress image", &logger);
1296         const size_t decompressed_size = LZ4_decompress_safe(
1297             reinterpret_cast<char*>(temp_map->Begin()) + sizeof(ImageHeader),
1298             reinterpret_cast<char*>(map->Begin()) + decompress_offset,
1299             stored_size,
1300             map->Size() - decompress_offset);
1301         VLOG(image) << "Decompressing image took " << PrettyDuration(NanoTime() - start);
1302         if (decompressed_size + sizeof(ImageHeader) != image_header->GetImageSize()) {
1303           *error_msg = StringPrintf(
1304               "Decompressed size does not match expected image size %zu vs %zu",
1305               decompressed_size + sizeof(ImageHeader),
1306               image_header->GetImageSize());
1307           return nullptr;
1308         }
1309       }
1310     }
1311     if (map != nullptr) {
1312       break;
1313     }
1314   }
1315 
1316   if (map == nullptr) {
1317     DCHECK(!temp_error_msg.empty());
1318     *error_msg = temp_error_msg;
1319     return nullptr;
1320   }
1321   DCHECK_EQ(0, memcmp(image_header, map->Begin(), sizeof(ImageHeader)));
1322 
1323   std::unique_ptr<MemMap> image_bitmap_map(MemMap::MapFileAtAddress(nullptr,
1324                                                                     bitmap_section.Size(),
1325                                                                     PROT_READ, MAP_PRIVATE,
1326                                                                     file->Fd(),
1327                                                                     image_bitmap_offset,
1328                                                                     /*low_4gb*/false,
1329                                                                     /*reuse*/false,
1330                                                                     image_filename,
1331                                                                     error_msg));
1332   if (image_bitmap_map == nullptr) {
1333     *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
1334     return nullptr;
1335   }
1336   // Loaded the map, use the image header from the file now in case we patch it with
1337   // RelocateInPlace.
1338   image_header = reinterpret_cast<ImageHeader*>(map->Begin());
1339   const uint32_t bitmap_index = bitmap_index_.FetchAndAddSequentiallyConsistent(1);
1340   std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
1341                                        image_filename,
1342                                        bitmap_index));
1343   // Bitmap only needs to cover until the end of the mirror objects section.
1344   const ImageSection& image_objects = image_header->GetImageSection(ImageHeader::kSectionObjects);
1345   // We only want the mirror object, not the ArtFields and ArtMethods.
1346   uint8_t* const image_end = map->Begin() + image_objects.End();
1347   std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap;
1348   {
1349     TimingLogger::ScopedTiming timing("CreateImageBitmap", &logger);
1350     bitmap.reset(
1351       accounting::ContinuousSpaceBitmap::CreateFromMemMap(
1352           bitmap_name,
1353           image_bitmap_map.release(),
1354           reinterpret_cast<uint8_t*>(map->Begin()),
1355           image_objects.End()));
1356     if (bitmap == nullptr) {
1357       *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
1358       return nullptr;
1359     }
1360   }
1361   {
1362     TimingLogger::ScopedTiming timing("RelocateImage", &logger);
1363     if (!RelocateInPlace(*image_header,
1364                          map->Begin(),
1365                          bitmap.get(),
1366                          oat_file,
1367                          error_msg)) {
1368       return nullptr;
1369     }
1370   }
1371   // We only want the mirror object, not the ArtFields and ArtMethods.
1372   std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
1373                                                    image_location,
1374                                                    map.release(),
1375                                                    bitmap.release(),
1376                                                    image_end));
1377 
1378   // VerifyImageAllocations() will be called later in Runtime::Init()
1379   // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
1380   // and ArtField::java_lang_reflect_ArtField_, which are used from
1381   // Object::SizeOf() which VerifyImageAllocations() calls, are not
1382   // set yet at this point.
1383   if (oat_file == nullptr) {
1384     TimingLogger::ScopedTiming timing("OpenOatFile", &logger);
1385     space->oat_file_.reset(space->OpenOatFile(image_filename, error_msg));
1386     if (space->oat_file_ == nullptr) {
1387       DCHECK(!error_msg->empty());
1388       return nullptr;
1389     }
1390     space->oat_file_non_owned_ = space->oat_file_.get();
1391   } else {
1392     space->oat_file_non_owned_ = oat_file;
1393   }
1394 
1395   if (validate_oat_file) {
1396     TimingLogger::ScopedTiming timing("ValidateOatFile", &logger);
1397     if (!space->ValidateOatFile(error_msg)) {
1398      DCHECK(!error_msg->empty());
1399       return nullptr;
1400     }
1401   }
1402 
1403   Runtime* runtime = Runtime::Current();
1404 
1405   // If oat_file is null, then it is the boot image space. Use oat_file_non_owned_ from the space
1406   // to set the runtime methods.
1407   CHECK_EQ(oat_file != nullptr, image_header->IsAppImage());
1408   if (image_header->IsAppImage()) {
1409     CHECK_EQ(runtime->GetResolutionMethod(),
1410              image_header->GetImageMethod(ImageHeader::kResolutionMethod));
1411     CHECK_EQ(runtime->GetImtConflictMethod(),
1412              image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
1413     CHECK_EQ(runtime->GetImtUnimplementedMethod(),
1414              image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
1415     CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveAll),
1416              image_header->GetImageMethod(ImageHeader::kCalleeSaveMethod));
1417     CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kRefsOnly),
1418              image_header->GetImageMethod(ImageHeader::kRefsOnlySaveMethod));
1419     CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs),
1420              image_header->GetImageMethod(ImageHeader::kRefsAndArgsSaveMethod));
1421   } else if (!runtime->HasResolutionMethod()) {
1422     runtime->SetInstructionSet(space->oat_file_non_owned_->GetOatHeader().GetInstructionSet());
1423     runtime->SetResolutionMethod(image_header->GetImageMethod(ImageHeader::kResolutionMethod));
1424     runtime->SetImtConflictMethod(image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
1425     runtime->SetImtUnimplementedMethod(
1426         image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
1427     runtime->SetCalleeSaveMethod(
1428         image_header->GetImageMethod(ImageHeader::kCalleeSaveMethod), Runtime::kSaveAll);
1429     runtime->SetCalleeSaveMethod(
1430         image_header->GetImageMethod(ImageHeader::kRefsOnlySaveMethod), Runtime::kRefsOnly);
1431     runtime->SetCalleeSaveMethod(
1432         image_header->GetImageMethod(ImageHeader::kRefsAndArgsSaveMethod), Runtime::kRefsAndArgs);
1433   }
1434 
1435   VLOG(image) << "ImageSpace::Init exiting " << *space.get();
1436   if (VLOG_IS_ON(image)) {
1437     logger.Dump(LOG(INFO));
1438   }
1439   return space.release();
1440 }
1441 
OpenOatFile(const char * image_path,std::string * error_msg) const1442 OatFile* ImageSpace::OpenOatFile(const char* image_path, std::string* error_msg) const {
1443   const ImageHeader& image_header = GetImageHeader();
1444   std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path);
1445 
1446   CHECK(image_header.GetOatDataBegin() != nullptr);
1447 
1448   OatFile* oat_file = OatFile::Open(oat_filename,
1449                                     oat_filename,
1450                                     image_header.GetOatDataBegin(),
1451                                     image_header.GetOatFileBegin(),
1452                                     !Runtime::Current()->IsAotCompiler(),
1453                                     /*low_4gb*/false,
1454                                     nullptr,
1455                                     error_msg);
1456   if (oat_file == nullptr) {
1457     *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
1458                               oat_filename.c_str(), GetName(), error_msg->c_str());
1459     return nullptr;
1460   }
1461   uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
1462   uint32_t image_oat_checksum = image_header.GetOatChecksum();
1463   if (oat_checksum != image_oat_checksum) {
1464     *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x"
1465                               " in image %s", oat_checksum, image_oat_checksum, GetName());
1466     return nullptr;
1467   }
1468   int32_t image_patch_delta = image_header.GetPatchDelta();
1469   int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta();
1470   if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) {
1471     // We should have already relocated by this point. Bail out.
1472     *error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d "
1473                               "in image %s", oat_patch_delta, image_patch_delta, GetName());
1474     return nullptr;
1475   }
1476 
1477   return oat_file;
1478 }
1479 
ValidateOatFile(std::string * error_msg) const1480 bool ImageSpace::ValidateOatFile(std::string* error_msg) const {
1481   CHECK(oat_file_.get() != nullptr);
1482   for (const OatFile::OatDexFile* oat_dex_file : oat_file_->GetOatDexFiles()) {
1483     const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
1484     uint32_t dex_file_location_checksum;
1485     if (!DexFile::GetChecksum(dex_file_location.c_str(), &dex_file_location_checksum, error_msg)) {
1486       *error_msg = StringPrintf("Failed to get checksum of dex file '%s' referenced by image %s: "
1487                                 "%s", dex_file_location.c_str(), GetName(), error_msg->c_str());
1488       return false;
1489     }
1490     if (dex_file_location_checksum != oat_dex_file->GetDexFileLocationChecksum()) {
1491       *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file '%s' and "
1492                                 "dex file '%s' (0x%x != 0x%x)",
1493                                 oat_file_->GetLocation().c_str(), dex_file_location.c_str(),
1494                                 oat_dex_file->GetDexFileLocationChecksum(),
1495                                 dex_file_location_checksum);
1496       return false;
1497     }
1498   }
1499   return true;
1500 }
1501 
GetOatFile() const1502 const OatFile* ImageSpace::GetOatFile() const {
1503   return oat_file_non_owned_;
1504 }
1505 
ReleaseOatFile()1506 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
1507   CHECK(oat_file_ != nullptr);
1508   return std::move(oat_file_);
1509 }
1510 
Dump(std::ostream & os) const1511 void ImageSpace::Dump(std::ostream& os) const {
1512   os << GetType()
1513       << " begin=" << reinterpret_cast<void*>(Begin())
1514       << ",end=" << reinterpret_cast<void*>(End())
1515       << ",size=" << PrettySize(Size())
1516       << ",name=\"" << GetName() << "\"]";
1517 }
1518 
CreateMultiImageLocations(const std::string & input_image_file_name,const std::string & boot_classpath,std::vector<std::string> * image_file_names)1519 void ImageSpace::CreateMultiImageLocations(const std::string& input_image_file_name,
1520                                            const std::string& boot_classpath,
1521                                            std::vector<std::string>* image_file_names) {
1522   DCHECK(image_file_names != nullptr);
1523 
1524   std::vector<std::string> images;
1525   Split(boot_classpath, ':', &images);
1526 
1527   // Add the rest into the list. We have to adjust locations, possibly:
1528   //
1529   // For example, image_file_name is /a/b/c/d/e.art
1530   //              images[0] is          f/c/d/e.art
1531   // ----------------------------------------------
1532   //              images[1] is          g/h/i/j.art  -> /a/b/h/i/j.art
1533   const std::string& first_image = images[0];
1534   // Length of common suffix.
1535   size_t common = 0;
1536   while (common < input_image_file_name.size() &&
1537          common < first_image.size() &&
1538          *(input_image_file_name.end() - common - 1) == *(first_image.end() - common - 1)) {
1539     ++common;
1540   }
1541   // We want to replace the prefix of the input image with the prefix of the boot class path.
1542   // This handles the case where the image file contains @ separators.
1543   // Example image_file_name is oats/system@framework@boot.art
1544   // images[0] is .../arm/boot.art
1545   // means that the image name prefix will be oats/system@framework@
1546   // so that the other images are openable.
1547   const size_t old_prefix_length = first_image.size() - common;
1548   const std::string new_prefix = input_image_file_name.substr(
1549       0,
1550       input_image_file_name.size() - common);
1551 
1552   // Apply pattern to images[1] .. images[n].
1553   for (size_t i = 1; i < images.size(); ++i) {
1554     const std::string& image = images[i];
1555     CHECK_GT(image.length(), old_prefix_length);
1556     std::string suffix = image.substr(old_prefix_length);
1557     image_file_names->push_back(new_prefix + suffix);
1558   }
1559 }
1560 
CreateFromAppImage(const char * image,const OatFile * oat_file,std::string * error_msg)1561 ImageSpace* ImageSpace::CreateFromAppImage(const char* image,
1562                                            const OatFile* oat_file,
1563                                            std::string* error_msg) {
1564   return gc::space::ImageSpace::Init(image,
1565                                      image,
1566                                      /*validate_oat_file*/false,
1567                                      oat_file,
1568                                      /*out*/error_msg);
1569 }
1570 
DumpSections(std::ostream & os) const1571 void ImageSpace::DumpSections(std::ostream& os) const {
1572   const uint8_t* base = Begin();
1573   const ImageHeader& header = GetImageHeader();
1574   for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
1575     auto section_type = static_cast<ImageHeader::ImageSections>(i);
1576     const ImageSection& section = header.GetImageSection(section_type);
1577     os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
1578        << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
1579   }
1580 }
1581 
1582 }  // namespace space
1583 }  // namespace gc
1584 }  // namespace art
1585