• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                          License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16 // Third party copyrights are property of their respective owners.
17 //
18 // Redistribution and use in source and binary forms, with or without modification,
19 // are permitted provided that the following conditions are met:
20 //
21 //   * Redistribution's of source code must retain the above copyright notice,
22 //     this list of conditions and the following disclaimer.
23 //
24 //   * Redistribution's in binary form must reproduce the above copyright notice,
25 //     this list of conditions and the following disclaimer in the documentation
26 //     and/or other materials provided with the distribution.
27 //
28 //   * The name of the copyright holders may not be used to endorse or promote products
29 //     derived from this software without specific prior written permission.
30 //
31 // This software is provided by the copyright holders and contributors "as is" and
32 // any express or implied warranties, including, but not limited to, the implied
33 // warranties of merchantability and fitness for a particular purpose are disclaimed.
34 // In no event shall the Intel Corporation or contributors be liable for any direct,
35 // indirect, incidental, special, exemplary, or consequential damages
36 // (including, but not limited to, procurement of substitute goods or services;
37 // loss of use, data, or profits; or business interruption) however caused
38 // and on any theory of liability, whether in contract, strict liability,
39 // or tort (including negligence or otherwise) arising in any way out of
40 // the use of this software, even if advised of the possibility of such damage.
41 //
42 //M*/
43 
44 #ifndef __OPENCV_CORE_CUDA_HPP__
45 #define __OPENCV_CORE_CUDA_HPP__
46 
47 #ifndef __cplusplus
48 #  error cuda.hpp header must be compiled as C++
49 #endif
50 
51 #include "opencv2/core.hpp"
52 #include "opencv2/core/cuda_types.hpp"
53 
54 /**
55   @defgroup cuda CUDA-accelerated Computer Vision
56   @{
57     @defgroup cudacore Core part
58     @{
59       @defgroup cudacore_init Initalization and Information
60       @defgroup cudacore_struct Data Structures
61     @}
62   @}
63  */
64 
65 namespace cv { namespace cuda {
66 
67 //! @addtogroup cudacore_struct
68 //! @{
69 
70 //===================================================================================
71 // GpuMat
72 //===================================================================================
73 
74 /** @brief Base storage class for GPU memory with reference counting.
75 
76 Its interface matches the Mat interface with the following limitations:
77 
78 -   no arbitrary dimensions support (only 2D)
79 -   no functions that return references to their data (because references on GPU are not valid for
80     CPU)
81 -   no expression templates technique support
82 
83 Beware that the latter limitation may lead to overloaded matrix operators that cause memory
84 allocations. The GpuMat class is convertible to cuda::PtrStepSz and cuda::PtrStep so it can be
85 passed directly to the kernel.
86 
87 @note In contrast with Mat, in most cases GpuMat::isContinuous() == false . This means that rows are
88 aligned to a size depending on the hardware. Single-row GpuMat is always a continuous matrix.
89 
90 @note You are not recommended to leave static or global GpuMat variables allocated, that is, to rely
91 on its destructor. The destruction order of such variables and CUDA context is undefined. GPU memory
92 release function returns error if the CUDA context has been destroyed before.
93 
94 @sa Mat
95  */
96 class CV_EXPORTS GpuMat
97 {
98 public:
99     class CV_EXPORTS Allocator
100     {
101     public:
~Allocator()102         virtual ~Allocator() {}
103 
104         // allocator must fill data, step and refcount fields
105         virtual bool allocate(GpuMat* mat, int rows, int cols, size_t elemSize) = 0;
106         virtual void free(GpuMat* mat) = 0;
107     };
108 
109     //! default allocator
110     static Allocator* defaultAllocator();
111     static void setDefaultAllocator(Allocator* allocator);
112 
113     //! default constructor
114     explicit GpuMat(Allocator* allocator = defaultAllocator());
115 
116     //! constructs GpuMat of the specified size and type
117     GpuMat(int rows, int cols, int type, Allocator* allocator = defaultAllocator());
118     GpuMat(Size size, int type, Allocator* allocator = defaultAllocator());
119 
120     //! constucts GpuMat and fills it with the specified value _s
121     GpuMat(int rows, int cols, int type, Scalar s, Allocator* allocator = defaultAllocator());
122     GpuMat(Size size, int type, Scalar s, Allocator* allocator = defaultAllocator());
123 
124     //! copy constructor
125     GpuMat(const GpuMat& m);
126 
127     //! constructor for GpuMat headers pointing to user-allocated data
128     GpuMat(int rows, int cols, int type, void* data, size_t step = Mat::AUTO_STEP);
129     GpuMat(Size size, int type, void* data, size_t step = Mat::AUTO_STEP);
130 
131     //! creates a GpuMat header for a part of the bigger matrix
132     GpuMat(const GpuMat& m, Range rowRange, Range colRange);
133     GpuMat(const GpuMat& m, Rect roi);
134 
135     //! builds GpuMat from host memory (Blocking call)
136     explicit GpuMat(InputArray arr, Allocator* allocator = defaultAllocator());
137 
138     //! destructor - calls release()
139     ~GpuMat();
140 
141     //! assignment operators
142     GpuMat& operator =(const GpuMat& m);
143 
144     //! allocates new GpuMat data unless the GpuMat already has specified size and type
145     void create(int rows, int cols, int type);
146     void create(Size size, int type);
147 
148     //! decreases reference counter, deallocate the data when reference counter reaches 0
149     void release();
150 
151     //! swaps with other smart pointer
152     void swap(GpuMat& mat);
153 
154     //! pefroms upload data to GpuMat (Blocking call)
155     void upload(InputArray arr);
156 
157     //! pefroms upload data to GpuMat (Non-Blocking call)
158     void upload(InputArray arr, Stream& stream);
159 
160     //! pefroms download data from device to host memory (Blocking call)
161     void download(OutputArray dst) const;
162 
163     //! pefroms download data from device to host memory (Non-Blocking call)
164     void download(OutputArray dst, Stream& stream) const;
165 
166     //! returns deep copy of the GpuMat, i.e. the data is copied
167     GpuMat clone() const;
168 
169     //! copies the GpuMat content to device memory (Blocking call)
170     void copyTo(OutputArray dst) const;
171 
172     //! copies the GpuMat content to device memory (Non-Blocking call)
173     void copyTo(OutputArray dst, Stream& stream) const;
174 
175     //! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Blocking call)
176     void copyTo(OutputArray dst, InputArray mask) const;
177 
178     //! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Non-Blocking call)
179     void copyTo(OutputArray dst, InputArray mask, Stream& stream) const;
180 
181     //! sets some of the GpuMat elements to s (Blocking call)
182     GpuMat& setTo(Scalar s);
183 
184     //! sets some of the GpuMat elements to s (Non-Blocking call)
185     GpuMat& setTo(Scalar s, Stream& stream);
186 
187     //! sets some of the GpuMat elements to s, according to the mask (Blocking call)
188     GpuMat& setTo(Scalar s, InputArray mask);
189 
190     //! sets some of the GpuMat elements to s, according to the mask (Non-Blocking call)
191     GpuMat& setTo(Scalar s, InputArray mask, Stream& stream);
192 
193     //! converts GpuMat to another datatype (Blocking call)
194     void convertTo(OutputArray dst, int rtype) const;
195 
196     //! converts GpuMat to another datatype (Non-Blocking call)
197     void convertTo(OutputArray dst, int rtype, Stream& stream) const;
198 
199     //! converts GpuMat to another datatype with scaling (Blocking call)
200     void convertTo(OutputArray dst, int rtype, double alpha, double beta = 0.0) const;
201 
202     //! converts GpuMat to another datatype with scaling (Non-Blocking call)
203     void convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const;
204 
205     //! converts GpuMat to another datatype with scaling (Non-Blocking call)
206     void convertTo(OutputArray dst, int rtype, double alpha, double beta, Stream& stream) const;
207 
208     void assignTo(GpuMat& m, int type=-1) const;
209 
210     //! returns pointer to y-th row
211     uchar* ptr(int y = 0);
212     const uchar* ptr(int y = 0) const;
213 
214     //! template version of the above method
215     template<typename _Tp> _Tp* ptr(int y = 0);
216     template<typename _Tp> const _Tp* ptr(int y = 0) const;
217 
218     template <typename _Tp> operator PtrStepSz<_Tp>() const;
219     template <typename _Tp> operator PtrStep<_Tp>() const;
220 
221     //! returns a new GpuMat header for the specified row
222     GpuMat row(int y) const;
223 
224     //! returns a new GpuMat header for the specified column
225     GpuMat col(int x) const;
226 
227     //! ... for the specified row span
228     GpuMat rowRange(int startrow, int endrow) const;
229     GpuMat rowRange(Range r) const;
230 
231     //! ... for the specified column span
232     GpuMat colRange(int startcol, int endcol) const;
233     GpuMat colRange(Range r) const;
234 
235     //! extracts a rectangular sub-GpuMat (this is a generalized form of row, rowRange etc.)
236     GpuMat operator ()(Range rowRange, Range colRange) const;
237     GpuMat operator ()(Rect roi) const;
238 
239     //! creates alternative GpuMat header for the same data, with different
240     //! number of channels and/or different number of rows
241     GpuMat reshape(int cn, int rows = 0) const;
242 
243     //! locates GpuMat header within a parent GpuMat
244     void locateROI(Size& wholeSize, Point& ofs) const;
245 
246     //! moves/resizes the current GpuMat ROI inside the parent GpuMat
247     GpuMat& adjustROI(int dtop, int dbottom, int dleft, int dright);
248 
249     //! returns true iff the GpuMat data is continuous
250     //! (i.e. when there are no gaps between successive rows)
251     bool isContinuous() const;
252 
253     //! returns element size in bytes
254     size_t elemSize() const;
255 
256     //! returns the size of element channel in bytes
257     size_t elemSize1() const;
258 
259     //! returns element type
260     int type() const;
261 
262     //! returns element type
263     int depth() const;
264 
265     //! returns number of channels
266     int channels() const;
267 
268     //! returns step/elemSize1()
269     size_t step1() const;
270 
271     //! returns GpuMat size : width == number of columns, height == number of rows
272     Size size() const;
273 
274     //! returns true if GpuMat data is NULL
275     bool empty() const;
276 
277     /*! includes several bit-fields:
278     - the magic signature
279     - continuity flag
280     - depth
281     - number of channels
282     */
283     int flags;
284 
285     //! the number of rows and columns
286     int rows, cols;
287 
288     //! a distance between successive rows in bytes; includes the gap if any
289     size_t step;
290 
291     //! pointer to the data
292     uchar* data;
293 
294     //! pointer to the reference counter;
295     //! when GpuMat points to user-allocated data, the pointer is NULL
296     int* refcount;
297 
298     //! helper fields used in locateROI and adjustROI
299     uchar* datastart;
300     const uchar* dataend;
301 
302     //! allocator
303     Allocator* allocator;
304 };
305 
306 /** @brief Creates a continuous matrix.
307 
308 @param rows Row count.
309 @param cols Column count.
310 @param type Type of the matrix.
311 @param arr Destination matrix. This parameter changes only if it has a proper type and area (
312 \f$\texttt{rows} \times \texttt{cols}\f$ ).
313 
314 Matrix is called continuous if its elements are stored continuously, that is, without gaps at the
315 end of each row.
316  */
317 CV_EXPORTS void createContinuous(int rows, int cols, int type, OutputArray arr);
318 
319 /** @brief Ensures that the size of a matrix is big enough and the matrix has a proper type.
320 
321 @param rows Minimum desired number of rows.
322 @param cols Minimum desired number of columns.
323 @param type Desired matrix type.
324 @param arr Destination matrix.
325 
326 The function does not reallocate memory if the matrix has proper attributes already.
327  */
328 CV_EXPORTS void ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr);
329 
330 //! BufferPool management (must be called before Stream creation)
331 CV_EXPORTS void setBufferPoolUsage(bool on);
332 CV_EXPORTS void setBufferPoolConfig(int deviceId, size_t stackSize, int stackCount);
333 
334 //===================================================================================
335 // HostMem
336 //===================================================================================
337 
338 /** @brief Class with reference counting wrapping special memory type allocation functions from CUDA.
339 
340 Its interface is also Mat-like but with additional memory type parameters.
341 
342 -   **PAGE_LOCKED** sets a page locked memory type used commonly for fast and asynchronous
343     uploading/downloading data from/to GPU.
344 -   **SHARED** specifies a zero copy memory allocation that enables mapping the host memory to GPU
345     address space, if supported.
346 -   **WRITE_COMBINED** sets the write combined buffer that is not cached by CPU. Such buffers are
347     used to supply GPU with data when GPU only reads it. The advantage is a better CPU cache
348     utilization.
349 
350 @note Allocation size of such memory types is usually limited. For more details, see *CUDA 2.2
351 Pinned Memory APIs* document or *CUDA C Programming Guide*.
352  */
353 class CV_EXPORTS HostMem
354 {
355 public:
356     enum AllocType { PAGE_LOCKED = 1, SHARED = 2, WRITE_COMBINED = 4 };
357 
358     static MatAllocator* getAllocator(AllocType alloc_type = PAGE_LOCKED);
359 
360     explicit HostMem(AllocType alloc_type = PAGE_LOCKED);
361 
362     HostMem(const HostMem& m);
363 
364     HostMem(int rows, int cols, int type, AllocType alloc_type = PAGE_LOCKED);
365     HostMem(Size size, int type, AllocType alloc_type = PAGE_LOCKED);
366 
367     //! creates from host memory with coping data
368     explicit HostMem(InputArray arr, AllocType alloc_type = PAGE_LOCKED);
369 
370     ~HostMem();
371 
372     HostMem& operator =(const HostMem& m);
373 
374     //! swaps with other smart pointer
375     void swap(HostMem& b);
376 
377     //! returns deep copy of the matrix, i.e. the data is copied
378     HostMem clone() const;
379 
380     //! allocates new matrix data unless the matrix already has specified size and type.
381     void create(int rows, int cols, int type);
382     void create(Size size, int type);
383 
384     //! creates alternative HostMem header for the same data, with different
385     //! number of channels and/or different number of rows
386     HostMem reshape(int cn, int rows = 0) const;
387 
388     //! decrements reference counter and released memory if needed.
389     void release();
390 
391     //! returns matrix header with disabled reference counting for HostMem data.
392     Mat createMatHeader() const;
393 
394     /** @brief Maps CPU memory to GPU address space and creates the cuda::GpuMat header without reference counting
395     for it.
396 
397     This can be done only if memory was allocated with the SHARED flag and if it is supported by the
398     hardware. Laptops often share video and CPU memory, so address spaces can be mapped, which
399     eliminates an extra copy.
400      */
401     GpuMat createGpuMatHeader() const;
402 
403     // Please see cv::Mat for descriptions
404     bool isContinuous() const;
405     size_t elemSize() const;
406     size_t elemSize1() const;
407     int type() const;
408     int depth() const;
409     int channels() const;
410     size_t step1() const;
411     Size size() const;
412     bool empty() const;
413 
414     // Please see cv::Mat for descriptions
415     int flags;
416     int rows, cols;
417     size_t step;
418 
419     uchar* data;
420     int* refcount;
421 
422     uchar* datastart;
423     const uchar* dataend;
424 
425     AllocType alloc_type;
426 };
427 
428 /** @brief Page-locks the memory of matrix and maps it for the device(s).
429 
430 @param m Input matrix.
431  */
432 CV_EXPORTS void registerPageLocked(Mat& m);
433 
434 /** @brief Unmaps the memory of matrix and makes it pageable again.
435 
436 @param m Input matrix.
437  */
438 CV_EXPORTS void unregisterPageLocked(Mat& m);
439 
440 //===================================================================================
441 // Stream
442 //===================================================================================
443 
444 /** @brief This class encapsulates a queue of asynchronous calls.
445 
446 @note Currently, you may face problems if an operation is enqueued twice with different data. Some
447 functions use the constant GPU memory, and next call may update the memory before the previous one
448 has been finished. But calling different operations asynchronously is safe because each operation
449 has its own constant buffer. Memory copy/upload/download/set operations to the buffers you hold are
450 also safe. :
451  */
452 class CV_EXPORTS Stream
453 {
454     typedef void (Stream::*bool_type)() const;
this_type_does_not_support_comparisons() const455     void this_type_does_not_support_comparisons() const {}
456 
457 public:
458     typedef void (*StreamCallback)(int status, void* userData);
459 
460     //! creates a new asynchronous stream
461     Stream();
462 
463     /** @brief Returns true if the current stream queue is finished. Otherwise, it returns false.
464     */
465     bool queryIfComplete() const;
466 
467     /** @brief Blocks the current CPU thread until all operations in the stream are complete.
468     */
469     void waitForCompletion();
470 
471     /** @brief Makes a compute stream wait on an event.
472     */
473     void waitEvent(const Event& event);
474 
475     /** @brief Adds a callback to be called on the host after all currently enqueued items in the stream have
476     completed.
477 
478     @note Callbacks must not make any CUDA API calls. Callbacks must not perform any synchronization
479     that may depend on outstanding device work or other callbacks that are not mandated to run earlier.
480     Callbacks without a mandated order (in independent streams) execute in undefined order and may be
481     serialized.
482      */
483     void enqueueHostCallback(StreamCallback callback, void* userData);
484 
485     //! return Stream object for default CUDA stream
486     static Stream& Null();
487 
488     //! returns true if stream object is not default (!= 0)
489     operator bool_type() const;
490 
491     class Impl;
492 
493 private:
494     Ptr<Impl> impl_;
495     Stream(const Ptr<Impl>& impl);
496 
497     friend struct StreamAccessor;
498     friend class BufferPool;
499     friend class DefaultDeviceInitializer;
500 };
501 
502 class CV_EXPORTS Event
503 {
504 public:
505     enum CreateFlags
506     {
507         DEFAULT        = 0x00,  /**< Default event flag */
508         BLOCKING_SYNC  = 0x01,  /**< Event uses blocking synchronization */
509         DISABLE_TIMING = 0x02,  /**< Event will not record timing data */
510         INTERPROCESS   = 0x04   /**< Event is suitable for interprocess use. DisableTiming must be set */
511     };
512 
513     explicit Event(CreateFlags flags = DEFAULT);
514 
515     //! records an event
516     void record(Stream& stream = Stream::Null());
517 
518     //! queries an event's status
519     bool queryIfComplete() const;
520 
521     //! waits for an event to complete
522     void waitForCompletion();
523 
524     //! computes the elapsed time between events
525     static float elapsedTime(const Event& start, const Event& end);
526 
527     class Impl;
528 
529 private:
530     Ptr<Impl> impl_;
531 
532     friend struct EventAccessor;
533 };
534 
535 //! @} cudacore_struct
536 
537 //===================================================================================
538 // Initialization & Info
539 //===================================================================================
540 
541 //! @addtogroup cudacore_init
542 //! @{
543 
544 /** @brief Returns the number of installed CUDA-enabled devices.
545 
546 Use this function before any other CUDA functions calls. If OpenCV is compiled without CUDA support,
547 this function returns 0.
548  */
549 CV_EXPORTS int getCudaEnabledDeviceCount();
550 
551 /** @brief Sets a device and initializes it for the current thread.
552 
553 @param device System index of a CUDA device starting with 0.
554 
555 If the call of this function is omitted, a default device is initialized at the fist CUDA usage.
556  */
557 CV_EXPORTS void setDevice(int device);
558 
559 /** @brief Returns the current device index set by cuda::setDevice or initialized by default.
560  */
561 CV_EXPORTS int getDevice();
562 
563 /** @brief Explicitly destroys and cleans up all resources associated with the current device in the current
564 process.
565 
566 Any subsequent API call to this device will reinitialize the device.
567  */
568 CV_EXPORTS void resetDevice();
569 
570 /** @brief Enumeration providing CUDA computing features.
571  */
572 enum FeatureSet
573 {
574     FEATURE_SET_COMPUTE_10 = 10,
575     FEATURE_SET_COMPUTE_11 = 11,
576     FEATURE_SET_COMPUTE_12 = 12,
577     FEATURE_SET_COMPUTE_13 = 13,
578     FEATURE_SET_COMPUTE_20 = 20,
579     FEATURE_SET_COMPUTE_21 = 21,
580     FEATURE_SET_COMPUTE_30 = 30,
581     FEATURE_SET_COMPUTE_32 = 32,
582     FEATURE_SET_COMPUTE_35 = 35,
583     FEATURE_SET_COMPUTE_50 = 50,
584 
585     GLOBAL_ATOMICS = FEATURE_SET_COMPUTE_11,
586     SHARED_ATOMICS = FEATURE_SET_COMPUTE_12,
587     NATIVE_DOUBLE = FEATURE_SET_COMPUTE_13,
588     WARP_SHUFFLE_FUNCTIONS = FEATURE_SET_COMPUTE_30,
589     DYNAMIC_PARALLELISM = FEATURE_SET_COMPUTE_35
590 };
591 
592 //! checks whether current device supports the given feature
593 CV_EXPORTS bool deviceSupports(FeatureSet feature_set);
594 
595 /** @brief Class providing a set of static methods to check what NVIDIA\* card architecture the CUDA module was
596 built for.
597 
598 According to the CUDA C Programming Guide Version 3.2: "PTX code produced for some specific compute
599 capability can always be compiled to binary code of greater or equal compute capability".
600  */
601 class CV_EXPORTS TargetArchs
602 {
603 public:
604     /** @brief The following method checks whether the module was built with the support of the given feature:
605 
606     @param feature_set Features to be checked. See :ocvcuda::FeatureSet.
607      */
608     static bool builtWith(FeatureSet feature_set);
609 
610     /** @brief There is a set of methods to check whether the module contains intermediate (PTX) or binary CUDA
611     code for the given architecture(s):
612 
613     @param major Major compute capability version.
614     @param minor Minor compute capability version.
615      */
616     static bool has(int major, int minor);
617     static bool hasPtx(int major, int minor);
618     static bool hasBin(int major, int minor);
619 
620     static bool hasEqualOrLessPtx(int major, int minor);
621     static bool hasEqualOrGreater(int major, int minor);
622     static bool hasEqualOrGreaterPtx(int major, int minor);
623     static bool hasEqualOrGreaterBin(int major, int minor);
624 };
625 
626 /** @brief Class providing functionality for querying the specified GPU properties.
627  */
628 class CV_EXPORTS DeviceInfo
629 {
630 public:
631     //! creates DeviceInfo object for the current GPU
632     DeviceInfo();
633 
634     /** @brief The constructors.
635 
636     @param device_id System index of the CUDA device starting with 0.
637 
638     Constructs the DeviceInfo object for the specified device. If device_id parameter is missed, it
639     constructs an object for the current device.
640      */
641     DeviceInfo(int device_id);
642 
643     /** @brief Returns system index of the CUDA device starting with 0.
644     */
645     int deviceID() const;
646 
647     //! ASCII string identifying device
648     const char* name() const;
649 
650     //! global memory available on device in bytes
651     size_t totalGlobalMem() const;
652 
653     //! shared memory available per block in bytes
654     size_t sharedMemPerBlock() const;
655 
656     //! 32-bit registers available per block
657     int regsPerBlock() const;
658 
659     //! warp size in threads
660     int warpSize() const;
661 
662     //! maximum pitch in bytes allowed by memory copies
663     size_t memPitch() const;
664 
665     //! maximum number of threads per block
666     int maxThreadsPerBlock() const;
667 
668     //! maximum size of each dimension of a block
669     Vec3i maxThreadsDim() const;
670 
671     //! maximum size of each dimension of a grid
672     Vec3i maxGridSize() const;
673 
674     //! clock frequency in kilohertz
675     int clockRate() const;
676 
677     //! constant memory available on device in bytes
678     size_t totalConstMem() const;
679 
680     //! major compute capability
681     int majorVersion() const;
682 
683     //! minor compute capability
684     int minorVersion() const;
685 
686     //! alignment requirement for textures
687     size_t textureAlignment() const;
688 
689     //! pitch alignment requirement for texture references bound to pitched memory
690     size_t texturePitchAlignment() const;
691 
692     //! number of multiprocessors on device
693     int multiProcessorCount() const;
694 
695     //! specified whether there is a run time limit on kernels
696     bool kernelExecTimeoutEnabled() const;
697 
698     //! device is integrated as opposed to discrete
699     bool integrated() const;
700 
701     //! device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer
702     bool canMapHostMemory() const;
703 
704     enum ComputeMode
705     {
706         ComputeModeDefault,         /**< default compute mode (Multiple threads can use cudaSetDevice with this device) */
707         ComputeModeExclusive,       /**< compute-exclusive-thread mode (Only one thread in one process will be able to use cudaSetDevice with this device) */
708         ComputeModeProhibited,      /**< compute-prohibited mode (No threads can use cudaSetDevice with this device) */
709         ComputeModeExclusiveProcess /**< compute-exclusive-process mode (Many threads in one process will be able to use cudaSetDevice with this device) */
710     };
711 
712     //! compute mode
713     ComputeMode computeMode() const;
714 
715     //! maximum 1D texture size
716     int maxTexture1D() const;
717 
718     //! maximum 1D mipmapped texture size
719     int maxTexture1DMipmap() const;
720 
721     //! maximum size for 1D textures bound to linear memory
722     int maxTexture1DLinear() const;
723 
724     //! maximum 2D texture dimensions
725     Vec2i maxTexture2D() const;
726 
727     //! maximum 2D mipmapped texture dimensions
728     Vec2i maxTexture2DMipmap() const;
729 
730     //! maximum dimensions (width, height, pitch) for 2D textures bound to pitched memory
731     Vec3i maxTexture2DLinear() const;
732 
733     //! maximum 2D texture dimensions if texture gather operations have to be performed
734     Vec2i maxTexture2DGather() const;
735 
736     //! maximum 3D texture dimensions
737     Vec3i maxTexture3D() const;
738 
739     //! maximum Cubemap texture dimensions
740     int maxTextureCubemap() const;
741 
742     //! maximum 1D layered texture dimensions
743     Vec2i maxTexture1DLayered() const;
744 
745     //! maximum 2D layered texture dimensions
746     Vec3i maxTexture2DLayered() const;
747 
748     //! maximum Cubemap layered texture dimensions
749     Vec2i maxTextureCubemapLayered() const;
750 
751     //! maximum 1D surface size
752     int maxSurface1D() const;
753 
754     //! maximum 2D surface dimensions
755     Vec2i maxSurface2D() const;
756 
757     //! maximum 3D surface dimensions
758     Vec3i maxSurface3D() const;
759 
760     //! maximum 1D layered surface dimensions
761     Vec2i maxSurface1DLayered() const;
762 
763     //! maximum 2D layered surface dimensions
764     Vec3i maxSurface2DLayered() const;
765 
766     //! maximum Cubemap surface dimensions
767     int maxSurfaceCubemap() const;
768 
769     //! maximum Cubemap layered surface dimensions
770     Vec2i maxSurfaceCubemapLayered() const;
771 
772     //! alignment requirements for surfaces
773     size_t surfaceAlignment() const;
774 
775     //! device can possibly execute multiple kernels concurrently
776     bool concurrentKernels() const;
777 
778     //! device has ECC support enabled
779     bool ECCEnabled() const;
780 
781     //! PCI bus ID of the device
782     int pciBusID() const;
783 
784     //! PCI device ID of the device
785     int pciDeviceID() const;
786 
787     //! PCI domain ID of the device
788     int pciDomainID() const;
789 
790     //! true if device is a Tesla device using TCC driver, false otherwise
791     bool tccDriver() const;
792 
793     //! number of asynchronous engines
794     int asyncEngineCount() const;
795 
796     //! device shares a unified address space with the host
797     bool unifiedAddressing() const;
798 
799     //! peak memory clock frequency in kilohertz
800     int memoryClockRate() const;
801 
802     //! global memory bus width in bits
803     int memoryBusWidth() const;
804 
805     //! size of L2 cache in bytes
806     int l2CacheSize() const;
807 
808     //! maximum resident threads per multiprocessor
809     int maxThreadsPerMultiProcessor() const;
810 
811     //! gets free and total device memory
812     void queryMemory(size_t& totalMemory, size_t& freeMemory) const;
813     size_t freeMemory() const;
814     size_t totalMemory() const;
815 
816     /** @brief Provides information on CUDA feature support.
817 
818     @param feature_set Features to be checked. See cuda::FeatureSet.
819 
820     This function returns true if the device has the specified CUDA feature. Otherwise, it returns false
821      */
822     bool supports(FeatureSet feature_set) const;
823 
824     /** @brief Checks the CUDA module and device compatibility.
825 
826     This function returns true if the CUDA module can be run on the specified device. Otherwise, it
827     returns false .
828      */
829     bool isCompatible() const;
830 
831 private:
832     int device_id_;
833 };
834 
835 CV_EXPORTS void printCudaDeviceInfo(int device);
836 CV_EXPORTS void printShortCudaDeviceInfo(int device);
837 
838 //! @} cudacore_init
839 
840 }} // namespace cv { namespace cuda {
841 
842 
843 #include "opencv2/core/cuda.inl.hpp"
844 
845 #endif /* __OPENCV_CORE_CUDA_HPP__ */
846