• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
15 // Copyright (C) 2015, OpenCV Foundation, all rights reserved.
16 // Copyright (C) 2015, Itseez Inc., all rights reserved.
17 // Third party copyrights are property of their respective owners.
18 //
19 // Redistribution and use in source and binary forms, with or without modification,
20 // are permitted provided that the following conditions are met:
21 //
22 //   * Redistribution's of source code must retain the above copyright notice,
23 //     this list of conditions and the following disclaimer.
24 //
25 //   * Redistribution's in binary form must reproduce the above copyright notice,
26 //     this list of conditions and the following disclaimer in the documentation
27 //     and/or other materials provided with the distribution.
28 //
29 //   * The name of the copyright holders may not be used to endorse or promote products
30 //     derived from this software without specific prior written permission.
31 //
32 // This software is provided by the copyright holders and contributors "as is" and
33 // any express or implied warranties, including, but not limited to, the implied
34 // warranties of merchantability and fitness for a particular purpose are disclaimed.
35 // In no event shall the Intel Corporation or contributors be liable for any direct,
36 // indirect, incidental, special, exemplary, or consequential damages
37 // (including, but not limited to, procurement of substitute goods or services;
38 // loss of use, data, or profits; or business interruption) however caused
39 // and on any theory of liability, whether in contract, strict liability,
40 // or tort (including negligence or otherwise) arising in any way out of
41 // the use of this software, even if advised of the possibility of such damage.
42 //
43 //M*/
44 
45 #ifndef __OPENCV_CORE_HPP__
46 #define __OPENCV_CORE_HPP__
47 
48 #ifndef __cplusplus
49 #  error core.hpp header must be compiled as C++
50 #endif
51 
52 #include "opencv2/core/cvdef.h"
53 #include "opencv2/core/version.hpp"
54 #include "opencv2/core/base.hpp"
55 #include "opencv2/core/cvstd.hpp"
56 #include "opencv2/core/traits.hpp"
57 #include "opencv2/core/matx.hpp"
58 #include "opencv2/core/types.hpp"
59 #include "opencv2/core/mat.hpp"
60 #include "opencv2/core/persistence.hpp"
61 
62 /**
63 @defgroup core Core functionality
64 @{
65     @defgroup core_basic Basic structures
66     @defgroup core_c C structures and operations
67     @{
68         @defgroup core_c_glue Connections with C++
69     @}
70     @defgroup core_array Operations on arrays
71     @defgroup core_xml XML/YAML Persistence
72     @defgroup core_cluster Clustering
73     @defgroup core_utils Utility and system functions and macros
74     @{
75         @defgroup core_utils_neon NEON utilities
76     @}
77     @defgroup core_opengl OpenGL interoperability
78     @defgroup core_ipp Intel IPP Asynchronous C/C++ Converters
79     @defgroup core_optim Optimization Algorithms
80     @defgroup core_directx DirectX interoperability
81     @defgroup core_eigen Eigen support
82     @defgroup core_opencl OpenCL support
83 @}
84  */
85 
86 namespace cv {
87 
88 //! @addtogroup core_utils
89 //! @{
90 
91 /*! @brief Class passed to an error.
92 
93 This class encapsulates all or almost all necessary
94 information about the error happened in the program. The exception is
95 usually constructed and thrown implicitly via CV_Error and CV_Error_ macros.
96 @see error
97  */
98 class CV_EXPORTS Exception : public std::exception
99 {
100 public:
101     /*!
102      Default constructor
103      */
104     Exception();
105     /*!
106      Full constructor. Normally the constuctor is not called explicitly.
107      Instead, the macros CV_Error(), CV_Error_() and CV_Assert() are used.
108     */
109     Exception(int _code, const String& _err, const String& _func, const String& _file, int _line);
110     virtual ~Exception() throw();
111 
112     /*!
113      \return the error description and the context as a text string.
114     */
115     virtual const char *what() const throw();
116     void formatMessage();
117 
118     String msg; ///< the formatted error message
119 
120     int code; ///< error code @see CVStatus
121     String err; ///< error description
122     String func; ///< function name. Available only when the compiler supports getting it
123     String file; ///< source file name where the error has occured
124     int line; ///< line number in the source file where the error has occured
125 };
126 
127 /*! @brief Signals an error and raises the exception.
128 
129 By default the function prints information about the error to stderr,
130 then it either stops if cv::setBreakOnError() had been called before or raises the exception.
131 It is possible to alternate error processing by using cv::redirectError().
132 @param exc the exception raisen.
133 @deprecated drop this version
134  */
135 CV_EXPORTS void error( const Exception& exc );
136 
137 enum SortFlags { SORT_EVERY_ROW    = 0, //!< each matrix row is sorted independently
138                  SORT_EVERY_COLUMN = 1, //!< each matrix column is sorted
139                                         //!< independently; this flag and the previous one are
140                                         //!< mutually exclusive.
141                  SORT_ASCENDING    = 0, //!< each matrix row is sorted in the ascending
142                                         //!< order.
143                  SORT_DESCENDING   = 16 //!< each matrix row is sorted in the
144                                         //!< descending order; this flag and the previous one are also
145                                         //!< mutually exclusive.
146                };
147 
148 //! @} core_utils
149 
150 //! @addtogroup core
151 //! @{
152 
153 //! Covariation flags
154 enum CovarFlags {
155     /** The output covariance matrix is calculated as:
156        \f[\texttt{scale}   \cdot  [  \texttt{vects}  [0]-  \texttt{mean}  , \texttt{vects}  [1]-  \texttt{mean}  ,...]^T  \cdot  [ \texttt{vects}  [0]- \texttt{mean}  , \texttt{vects}  [1]- \texttt{mean}  ,...],\f]
157        The covariance matrix will be nsamples x nsamples. Such an unusual covariance matrix is used
158        for fast PCA of a set of very large vectors (see, for example, the EigenFaces technique for
159        face recognition). Eigenvalues of this "scrambled" matrix match the eigenvalues of the true
160        covariance matrix. The "true" eigenvectors can be easily calculated from the eigenvectors of
161        the "scrambled" covariance matrix. */
162     COVAR_SCRAMBLED = 0,
163     /**The output covariance matrix is calculated as:
164         \f[\texttt{scale}   \cdot  [  \texttt{vects}  [0]-  \texttt{mean}  , \texttt{vects}  [1]-  \texttt{mean}  ,...]  \cdot  [ \texttt{vects}  [0]- \texttt{mean}  , \texttt{vects}  [1]- \texttt{mean}  ,...]^T,\f]
165         covar will be a square matrix of the same size as the total number of elements in each input
166         vector. One and only one of COVAR_SCRAMBLED and COVAR_NORMAL must be specified.*/
167     COVAR_NORMAL    = 1,
168     /** If the flag is specified, the function does not calculate mean from
169         the input vectors but, instead, uses the passed mean vector. This is useful if mean has been
170         pre-calculated or known in advance, or if the covariance matrix is calculated by parts. In
171         this case, mean is not a mean vector of the input sub-set of vectors but rather the mean
172         vector of the whole set.*/
173     COVAR_USE_AVG   = 2,
174     /** If the flag is specified, the covariance matrix is scaled. In the
175         "normal" mode, scale is 1./nsamples . In the "scrambled" mode, scale is the reciprocal of the
176         total number of elements in each input vector. By default (if the flag is not specified), the
177         covariance matrix is not scaled ( scale=1 ).*/
178     COVAR_SCALE     = 4,
179     /** If the flag is
180         specified, all the input vectors are stored as rows of the samples matrix. mean should be a
181         single-row vector in this case.*/
182     COVAR_ROWS      = 8,
183     /** If the flag is
184         specified, all the input vectors are stored as columns of the samples matrix. mean should be a
185         single-column vector in this case.*/
186     COVAR_COLS      = 16
187 };
188 
189 //! k-Means flags
190 enum KmeansFlags {
191     /** Select random initial centers in each attempt.*/
192     KMEANS_RANDOM_CENTERS     = 0,
193     /** Use kmeans++ center initialization by Arthur and Vassilvitskii [Arthur2007].*/
194     KMEANS_PP_CENTERS         = 2,
195     /** During the first (and possibly the only) attempt, use the
196         user-supplied labels instead of computing them from the initial centers. For the second and
197         further attempts, use the random or semi-random centers. Use one of KMEANS_\*_CENTERS flag
198         to specify the exact method.*/
199     KMEANS_USE_INITIAL_LABELS = 1
200 };
201 
202 //! type of line
203 enum LineTypes {
204     FILLED  = -1,
205     LINE_4  = 4, //!< 4-connected line
206     LINE_8  = 8, //!< 8-connected line
207     LINE_AA = 16 //!< antialiased line
208 };
209 
210 //! Only a subset of Hershey fonts
211 //! <http://sources.isc.org/utils/misc/hershey-font.txt> are supported
212 enum HersheyFonts {
213     FONT_HERSHEY_SIMPLEX        = 0, //!< normal size sans-serif font
214     FONT_HERSHEY_PLAIN          = 1, //!< small size sans-serif font
215     FONT_HERSHEY_DUPLEX         = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX)
216     FONT_HERSHEY_COMPLEX        = 3, //!< normal size serif font
217     FONT_HERSHEY_TRIPLEX        = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX)
218     FONT_HERSHEY_COMPLEX_SMALL  = 5, //!< smaller version of FONT_HERSHEY_COMPLEX
219     FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font
220     FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX
221     FONT_ITALIC                 = 16 //!< flag for italic font
222 };
223 
224 enum ReduceTypes { REDUCE_SUM = 0, //!< the output is the sum of all rows/columns of the matrix.
225                    REDUCE_AVG = 1, //!< the output is the mean vector of all rows/columns of the matrix.
226                    REDUCE_MAX = 2, //!< the output is the maximum (column/row-wise) of all rows/columns of the matrix.
227                    REDUCE_MIN = 3  //!< the output is the minimum (column/row-wise) of all rows/columns of the matrix.
228                  };
229 
230 
231 /** @brief Swaps two matrices
232 */
233 CV_EXPORTS void swap(Mat& a, Mat& b);
234 /** @overload */
235 CV_EXPORTS void swap( UMat& a, UMat& b );
236 
237 //! @} core
238 
239 //! @addtogroup core_array
240 //! @{
241 
242 /** @brief Computes the source location of an extrapolated pixel.
243 
244 The function computes and returns the coordinate of a donor pixel corresponding to the specified
245 extrapolated pixel when using the specified extrapolation border mode. For example, if you use
246 cv::BORDER_WRAP mode in the horizontal direction, cv::BORDER_REFLECT_101 in the vertical direction and
247 want to compute value of the "virtual" pixel Point(-5, 100) in a floating-point image img , it
248 looks like:
249 @code{.cpp}
250     float val = img.at<float>(borderInterpolate(100, img.rows, cv::BORDER_REFLECT_101),
251                               borderInterpolate(-5, img.cols, cv::BORDER_WRAP));
252 @endcode
253 Normally, the function is not called directly. It is used inside filtering functions and also in
254 copyMakeBorder.
255 @param p 0-based coordinate of the extrapolated pixel along one of the axes, likely \<0 or \>= len
256 @param len Length of the array along the corresponding axis.
257 @param borderType Border type, one of the cv::BorderTypes, except for cv::BORDER_TRANSPARENT and
258 cv::BORDER_ISOLATED . When borderType==cv::BORDER_CONSTANT , the function always returns -1, regardless
259 of p and len.
260 
261 @sa copyMakeBorder
262 */
263 CV_EXPORTS_W int borderInterpolate(int p, int len, int borderType);
264 
265 /** @brief Forms a border around an image.
266 
267 The function copies the source image into the middle of the destination image. The areas to the
268 left, to the right, above and below the copied source image will be filled with extrapolated
269 pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but
270 what other more complex functions, including your own, may do to simplify image boundary handling.
271 
272 The function supports the mode when src is already in the middle of dst . In this case, the
273 function does not copy src itself but simply constructs the border, for example:
274 
275 @code{.cpp}
276     // let border be the same in all directions
277     int border=2;
278     // constructs a larger image to fit both the image and the border
279     Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
280     // select the middle part of it w/o copying data
281     Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
282     // convert image from RGB to grayscale
283     cvtColor(rgb, gray, COLOR_RGB2GRAY);
284     // form a border in-place
285     copyMakeBorder(gray, gray_buf, border, border,
286                    border, border, BORDER_REPLICATE);
287     // now do some custom filtering ...
288     ...
289 @endcode
290 @note When the source image is a part (ROI) of a bigger image, the function will try to use the
291 pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as
292 if src was not a ROI, use borderType | BORDER_ISOLATED.
293 
294 @param src Source image.
295 @param dst Destination image of the same type as src and the size Size(src.cols+left+right,
296 src.rows+top+bottom) .
297 @param top
298 @param bottom
299 @param left
300 @param right Parameter specifying how many pixels in each direction from the source image rectangle
301 to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs
302 to be built.
303 @param borderType Border type. See borderInterpolate for details.
304 @param value Border value if borderType==BORDER_CONSTANT .
305 
306 @sa  borderInterpolate
307 */
308 CV_EXPORTS_W void copyMakeBorder(InputArray src, OutputArray dst,
309                                  int top, int bottom, int left, int right,
310                                  int borderType, const Scalar& value = Scalar() );
311 
312 /** @brief Calculates the per-element sum of two arrays or an array and a scalar.
313 
314 The function add calculates:
315 - Sum of two arrays when both input arrays have the same size and the same number of channels:
316 \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) +  \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
317 - Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of
318 elements as `src1.channels()`:
319 \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) +  \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f]
320 - Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of
321 elements as `src2.channels()`:
322 \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1} +  \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f]
323 where `I` is a multi-dimensional index of array elements. In case of multi-channel arrays, each
324 channel is processed independently.
325 
326 The first function in the list above can be replaced with matrix expressions:
327 @code{.cpp}
328     dst = src1 + src2;
329     dst += src1; // equivalent to add(dst, src1, dst);
330 @endcode
331 The input arrays and the output array can all have the same or different depths. For example, you
332 can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit
333 floating-point array. Depth of the output array is determined by the dtype parameter. In the second
334 and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can
335 be set to the default -1. In this case, the output array will have the same depth as the input
336 array, be it src1, src2 or both.
337 @note Saturation is not applied when the output array has the depth CV_32S. You may even get
338 result of an incorrect sign in the case of overflow.
339 @param src1 first input array or a scalar.
340 @param src2 second input array or a scalar.
341 @param dst output array that has the same size and number of channels as the input array(s); the
342 depth is defined by dtype or src1/src2.
343 @param mask optional operation mask - 8-bit single channel array, that specifies elements of the
344 output array to be changed.
345 @param dtype optional depth of the output array (see the discussion below).
346 @sa subtract, addWeighted, scaleAdd, Mat::convertTo
347 */
348 CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst,
349                       InputArray mask = noArray(), int dtype = -1);
350 
351 /** @brief Calculates the per-element difference between two arrays or array and a scalar.
352 
353 The function subtract calculates:
354 - Difference between two arrays, when both input arrays have the same size and the same number of
355 channels:
356     \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) -  \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
357 - Difference between an array and a scalar, when src2 is constructed from Scalar or has the same
358 number of elements as `src1.channels()`:
359     \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) -  \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f]
360 - Difference between a scalar and an array, when src1 is constructed from Scalar or has the same
361 number of elements as `src2.channels()`:
362     \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1} -  \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f]
363 - The reverse difference between a scalar and an array in the case of `SubRS`:
364     \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src2} -  \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0\f]
365 where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
366 channel is processed independently.
367 
368 The first function in the list above can be replaced with matrix expressions:
369 @code{.cpp}
370     dst = src1 - src2;
371     dst -= src1; // equivalent to subtract(dst, src1, dst);
372 @endcode
373 The input arrays and the output array can all have the same or different depths. For example, you
374 can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of
375 the output array is determined by dtype parameter. In the second and third cases above, as well as
376 in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this
377 case the output array will have the same depth as the input array, be it src1, src2 or both.
378 @note Saturation is not applied when the output array has the depth CV_32S. You may even get
379 result of an incorrect sign in the case of overflow.
380 @param src1 first input array or a scalar.
381 @param src2 second input array or a scalar.
382 @param dst output array of the same size and the same number of channels as the input array.
383 @param mask optional operation mask; this is an 8-bit single channel array that specifies elements
384 of the output array to be changed.
385 @param dtype optional depth of the output array
386 @sa  add, addWeighted, scaleAdd, Mat::convertTo
387   */
388 CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst,
389                            InputArray mask = noArray(), int dtype = -1);
390 
391 
392 /** @brief Calculates the per-element scaled product of two arrays.
393 
394 The function multiply calculates the per-element product of two arrays:
395 
396 \f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I)  \cdot \texttt{src2} (I))\f]
397 
398 There is also a @ref MatrixExpressions -friendly variant of the first function. See Mat::mul .
399 
400 For a not-per-element matrix product, see gemm .
401 
402 @note Saturation is not applied when the output array has the depth
403 CV_32S. You may even get result of an incorrect sign in the case of
404 overflow.
405 @param src1 first input array.
406 @param src2 second input array of the same size and the same type as src1.
407 @param dst output array of the same size and type as src1.
408 @param scale optional scale factor.
409 @param dtype optional depth of the output array
410 @sa add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare,
411 Mat::convertTo
412 */
413 CV_EXPORTS_W void multiply(InputArray src1, InputArray src2,
414                            OutputArray dst, double scale = 1, int dtype = -1);
415 
416 /** @brief Performs per-element division of two arrays or a scalar by an array.
417 
418 The functions divide divide one array by another:
419 \f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f]
420 or a scalar by an array when there is no src1 :
421 \f[\texttt{dst(I) = saturate(scale/src2(I))}\f]
422 
423 When src2(I) is zero, dst(I) will also be zero. Different channels of
424 multi-channel arrays are processed independently.
425 
426 @note Saturation is not applied when the output array has the depth CV_32S. You may even get
427 result of an incorrect sign in the case of overflow.
428 @param src1 first input array.
429 @param src2 second input array of the same size and type as src1.
430 @param scale scalar factor.
431 @param dst output array of the same size and type as src2.
432 @param dtype optional depth of the output array; if -1, dst will have depth src2.depth(), but in
433 case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth().
434 @sa  multiply, add, subtract
435 */
436 CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst,
437                          double scale = 1, int dtype = -1);
438 
439 /** @overload */
440 CV_EXPORTS_W void divide(double scale, InputArray src2,
441                          OutputArray dst, int dtype = -1);
442 
443 /** @brief Calculates the sum of a scaled array and another array.
444 
445 The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY
446 or SAXPY in [BLAS](http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms). It calculates
447 the sum of a scaled array and another array:
448 \f[\texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) +  \texttt{src2} (I)\f]
449 The function can also be emulated with a matrix expression, for example:
450 @code{.cpp}
451     Mat A(3, 3, CV_64F);
452     ...
453     A.row(0) = A.row(1)*2 + A.row(2);
454 @endcode
455 @param src1 first input array.
456 @param alpha scale factor for the first array.
457 @param src2 second input array of the same size and type as src1.
458 @param dst output array of the same size and type as src1.
459 @sa add, addWeighted, subtract, Mat::dot, Mat::convertTo
460 */
461 CV_EXPORTS_W void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst);
462 
463 /** @brief Calculates the weighted sum of two arrays.
464 
465 The function addWeighted calculates the weighted sum of two arrays as follows:
466 \f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} +  \texttt{src2} (I)* \texttt{beta} +  \texttt{gamma} )\f]
467 where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
468 channel is processed independently.
469 The function can be replaced with a matrix expression:
470 @code{.cpp}
471     dst = src1*alpha + src2*beta + gamma;
472 @endcode
473 @note Saturation is not applied when the output array has the depth CV_32S. You may even get
474 result of an incorrect sign in the case of overflow.
475 @param src1 first input array.
476 @param alpha weight of the first array elements.
477 @param src2 second input array of the same size and channel number as src1.
478 @param beta weight of the second array elements.
479 @param gamma scalar added to each sum.
480 @param dst output array that has the same size and number of channels as the input arrays.
481 @param dtype optional depth of the output array; when both input arrays have the same depth, dtype
482 can be set to -1, which will be equivalent to src1.depth().
483 @sa  add, subtract, scaleAdd, Mat::convertTo
484 */
485 CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2,
486                               double beta, double gamma, OutputArray dst, int dtype = -1);
487 
488 /** @brief Scales, calculates absolute values, and converts the result to 8-bit.
489 
490 On each element of the input array, the function convertScaleAbs
491 performs three operations sequentially: scaling, taking an absolute
492 value, conversion to an unsigned 8-bit type:
493 \f[\texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} +  \texttt{beta} |)\f]
494 In case of multi-channel arrays, the function processes each channel
495 independently. When the output is not 8-bit, the operation can be
496 emulated by calling the Mat::convertTo method (or by using matrix
497 expressions) and then by calculating an absolute value of the result.
498 For example:
499 @code{.cpp}
500     Mat_<float> A(30,30);
501     randu(A, Scalar(-100), Scalar(100));
502     Mat_<float> B = A*5 + 3;
503     B = abs(B);
504     // Mat_<float> B = abs(A*5+3) will also do the job,
505     // but it will allocate a temporary matrix
506 @endcode
507 @param src input array.
508 @param dst output array.
509 @param alpha optional scale factor.
510 @param beta optional delta added to the scaled values.
511 @sa  Mat::convertTo, cv::abs(const Mat&)
512 */
513 CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst,
514                                   double alpha = 1, double beta = 0);
515 
516 /** @brief Performs a look-up table transform of an array.
517 
518 The function LUT fills the output array with values from the look-up table. Indices of the entries
519 are taken from the input array. That is, the function processes each element of src as follows:
520 \f[\texttt{dst} (I)  \leftarrow \texttt{lut(src(I) + d)}\f]
521 where
522 \f[d =  \fork{0}{if \texttt{src} has depth \texttt{CV\_8U}}{128}{if \texttt{src} has depth \texttt{CV\_8S}}\f]
523 @param src input array of 8-bit elements.
524 @param lut look-up table of 256 elements; in case of multi-channel input array, the table should
525 either have a single channel (in this case the same table is used for all channels) or the same
526 number of channels as in the input array.
527 @param dst output array of the same size and number of channels as src, and the same depth as lut.
528 @sa  convertScaleAbs, Mat::convertTo
529 */
530 CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst);
531 
532 /** @brief Calculates the sum of array elements.
533 
534 The functions sum calculate and return the sum of array elements,
535 independently for each channel.
536 @param src input array that must have from 1 to 4 channels.
537 @sa  countNonZero, mean, meanStdDev, norm, minMaxLoc, reduce
538 */
539 CV_EXPORTS_AS(sumElems) Scalar sum(InputArray src);
540 
541 /** @brief Counts non-zero array elements.
542 
543 The function returns the number of non-zero elements in src :
544 \f[\sum _{I: \; \texttt{src} (I) \ne0 } 1\f]
545 @param src single-channel array.
546 @sa  mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix
547 */
548 CV_EXPORTS_W int countNonZero( InputArray src );
549 
550 /** @brief Returns the list of locations of non-zero pixels
551 
552 Given a binary matrix (likely returned from an operation such
553 as threshold(), compare(), >, ==, etc, return all of
554 the non-zero indices as a cv::Mat or std::vector<cv::Point> (x,y)
555 For example:
556 @code{.cpp}
557     cv::Mat binaryImage; // input, binary image
558     cv::Mat locations;   // output, locations of non-zero pixels
559     cv::findNonZero(binaryImage, locations);
560 
561     // access pixel coordinates
562     Point pnt = locations.at<Point>(i);
563 @endcode
564 or
565 @code{.cpp}
566     cv::Mat binaryImage; // input, binary image
567     vector<Point> locations;   // output, locations of non-zero pixels
568     cv::findNonZero(binaryImage, locations);
569 
570     // access pixel coordinates
571     Point pnt = locations[i];
572 @endcode
573 @param src single-channel array (type CV_8UC1)
574 @param idx the output array, type of cv::Mat or std::vector<Point>, corresponding to non-zero indices in the input
575 */
576 CV_EXPORTS_W void findNonZero( InputArray src, OutputArray idx );
577 
578 /** @brief Calculates an average (mean) of array elements.
579 
580 The function mean calculates the mean value M of array elements,
581 independently for each channel, and return it:
582 \f[\begin{array}{l} N =  \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c =  \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}\f]
583 When all the mask elements are 0's, the functions return Scalar::all(0)
584 @param src input array that should have from 1 to 4 channels so that the result can be stored in
585 Scalar_ .
586 @param mask optional operation mask.
587 @sa  countNonZero, meanStdDev, norm, minMaxLoc
588 */
589 CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask = noArray());
590 
591 /** Calculates a mean and standard deviation of array elements.
592 
593 The function meanStdDev calculates the mean and the standard deviation M
594 of array elements independently for each channel and returns it via the
595 output parameters:
596 \f[\begin{array}{l} N =  \sum _{I, \texttt{mask} (I)  \ne 0} 1 \\ \texttt{mean} _c =  \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c =  \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c -  \texttt{mean} _c \right )^2}{N}} \end{array}\f]
597 When all the mask elements are 0's, the functions return
598 mean=stddev=Scalar::all(0).
599 @note The calculated standard deviation is only the diagonal of the
600 complete normalized covariance matrix. If the full matrix is needed, you
601 can reshape the multi-channel array M x N to the single-channel array
602 M\*N x mtx.channels() (only possible when the matrix is continuous) and
603 then pass the matrix to calcCovarMatrix .
604 @param src input array that should have from 1 to 4 channels so that the results can be stored in
605 Scalar_ 's.
606 @param mean output parameter: calculated mean value.
607 @param stddev output parameter: calculateded standard deviation.
608 @param mask optional operation mask.
609 @sa  countNonZero, mean, norm, minMaxLoc, calcCovarMatrix
610 */
611 CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev,
612                              InputArray mask=noArray());
613 
614 /** @brief Calculates an absolute array norm, an absolute difference norm, or a
615 relative difference norm.
616 
617 The functions norm calculate an absolute norm of src1 (when there is no
618 src2 ):
619 
620 \f[norm =  \forkthree{\|\texttt{src1}\|_{L_{\infty}} =  \max _I | \texttt{src1} (I)|}{if  \(\texttt{normType} = \texttt{NORM\_INF}\) }
621 { \| \texttt{src1} \| _{L_1} =  \sum _I | \texttt{src1} (I)|}{if  \(\texttt{normType} = \texttt{NORM\_L1}\) }
622 { \| \texttt{src1} \| _{L_2} =  \sqrt{\sum_I \texttt{src1}(I)^2} }{if  \(\texttt{normType} = \texttt{NORM\_L2}\) }\f]
623 
624 or an absolute or relative difference norm if src2 is there:
625 
626 \f[norm =  \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} =  \max _I | \texttt{src1} (I) -  \texttt{src2} (I)|}{if  \(\texttt{normType} = \texttt{NORM\_INF}\) }
627 { \| \texttt{src1} - \texttt{src2} \| _{L_1} =  \sum _I | \texttt{src1} (I) -  \texttt{src2} (I)|}{if  \(\texttt{normType} = \texttt{NORM\_L1}\) }
628 { \| \texttt{src1} - \texttt{src2} \| _{L_2} =  \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if  \(\texttt{normType} = \texttt{NORM\_L2}\) }\f]
629 
630 or
631 
632 \f[norm =  \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}}    }{\|\texttt{src2}\|_{L_{\infty}} }}{if  \(\texttt{normType} = \texttt{NORM\_RELATIVE\_INF}\) }
633 { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if  \(\texttt{normType} = \texttt{NORM\_RELATIVE\_L1}\) }
634 { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if  \(\texttt{normType} = \texttt{NORM\_RELATIVE\_L2}\) }\f]
635 
636 The functions norm return the calculated norm.
637 
638 When the mask parameter is specified and it is not empty, the norm is
639 calculated only over the region specified by the mask.
640 
641 A multi-channel input arrays are treated as a single-channel, that is,
642 the results for all channels are combined.
643 
644 @param src1 first input array.
645 @param normType type of the norm (see cv::NormTypes).
646 @param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
647 */
648 CV_EXPORTS_W double norm(InputArray src1, int normType = NORM_L2, InputArray mask = noArray());
649 
650 /** @overload
651 @param src1 first input array.
652 @param src2 second input array of the same size and the same type as src1.
653 @param normType type of the norm (cv::NormTypes).
654 @param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
655 */
656 CV_EXPORTS_W double norm(InputArray src1, InputArray src2,
657                          int normType = NORM_L2, InputArray mask = noArray());
658 /** @overload
659 @param src first input array.
660 @param normType type of the norm (see cv::NormTypes).
661 */
662 CV_EXPORTS double norm( const SparseMat& src, int normType );
663 
664 /** @brief computes PSNR image/video quality metric
665 
666 see http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio for details
667 @todo document
668   */
669 CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2);
670 
671 /** @brief naive nearest neighbor finder
672 
673 see http://en.wikipedia.org/wiki/Nearest_neighbor_search
674 @todo document
675   */
676 CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2,
677                                 OutputArray dist, int dtype, OutputArray nidx,
678                                 int normType = NORM_L2, int K = 0,
679                                 InputArray mask = noArray(), int update = 0,
680                                 bool crosscheck = false);
681 
682 /** @brief Normalizes the norm or value range of an array.
683 
684 The functions normalize scale and shift the input array elements so that
685 \f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f]
686 (where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
687 \f[\min _I  \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I  \texttt{dst} (I)= \texttt{beta}\f]
688 
689 when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be
690 normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this
691 sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or
692 min-max but modify the whole array, you can use norm and Mat::convertTo.
693 
694 In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this,
695 the range transformation for sparse matrices is not allowed since it can shift the zero level.
696 
697 @param src input array.
698 @param dst output array of the same size as src .
699 @param alpha norm value to normalize to or the lower range boundary in case of the range
700 normalization.
701 @param beta upper range boundary in case of the range normalization; it is not used for the norm
702 normalization.
703 @param norm_type normalization type (see cv::NormTypes).
704 @param dtype when negative, the output array has the same type as src; otherwise, it has the same
705 number of channels as src and the depth =CV_MAT_DEPTH(dtype).
706 @param mask optional operation mask.
707 @sa norm, Mat::convertTo, SparseMat::convertTo
708 */
709 CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0,
710                              int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray());
711 
712 /** @overload
713 @param src input array.
714 @param dst output array of the same size as src .
715 @param alpha norm value to normalize to or the lower range boundary in case of the range
716 normalization.
717 @param normType normalization type (see cv::NormTypes).
718 */
719 CV_EXPORTS void normalize( const SparseMat& src, SparseMat& dst, double alpha, int normType );
720 
721 /** @brief Finds the global minimum and maximum in an array.
722 
723 The functions minMaxLoc find the minimum and maximum element values and their positions. The
724 extremums are searched across the whole array or, if mask is not an empty array, in the specified
725 array region.
726 
727 The functions do not work with multi-channel arrays. If you need to find minimum or maximum
728 elements across all the channels, use Mat::reshape first to reinterpret the array as
729 single-channel. Or you may extract the particular channel using either extractImageCOI , or
730 mixChannels , or split .
731 @param src input single-channel array.
732 @param minVal pointer to the returned minimum value; NULL is used if not required.
733 @param maxVal pointer to the returned maximum value; NULL is used if not required.
734 @param minLoc pointer to the returned minimum location (in 2D case); NULL is used if not required.
735 @param maxLoc pointer to the returned maximum location (in 2D case); NULL is used if not required.
736 @param mask optional mask used to select a sub-array.
737 @sa max, min, compare, inRange, extractImageCOI, mixChannels, split, Mat::reshape
738 */
739 CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double* minVal,
740                             CV_OUT double* maxVal = 0, CV_OUT Point* minLoc = 0,
741                             CV_OUT Point* maxLoc = 0, InputArray mask = noArray());
742 
743 
744 /** @brief Finds the global minimum and maximum in an array
745 
746 The function minMaxIdx finds the minimum and maximum element values and their positions. The
747 extremums are searched across the whole array or, if mask is not an empty array, in the specified
748 array region. The function does not work with multi-channel arrays. If you need to find minimum or
749 maximum elements across all the channels, use Mat::reshape first to reinterpret the array as
750 single-channel. Or you may extract the particular channel using either extractImageCOI , or
751 mixChannels , or split . In case of a sparse matrix, the minimum is found among non-zero elements
752 only.
753 @note When minIdx is not NULL, it must have at least 2 elements (as well as maxIdx), even if src is
754 a single-row or single-column matrix. In OpenCV (following MATLAB) each array has at least 2
755 dimensions, i.e. single-column matrix is Mx1 matrix (and therefore minIdx/maxIdx will be
756 (i1,0)/(i2,0)) and single-row matrix is 1xN matrix (and therefore minIdx/maxIdx will be
757 (0,j1)/(0,j2)).
758 @param src input single-channel array.
759 @param minVal pointer to the returned minimum value; NULL is used if not required.
760 @param maxVal pointer to the returned maximum value; NULL is used if not required.
761 @param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required;
762 Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element
763 in each dimension are stored there sequentially.
764 @param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required.
765 @param mask specified array region
766 */
767 CV_EXPORTS void minMaxIdx(InputArray src, double* minVal, double* maxVal = 0,
768                           int* minIdx = 0, int* maxIdx = 0, InputArray mask = noArray());
769 
770 /** @overload
771 @param a input single-channel array.
772 @param minVal pointer to the returned minimum value; NULL is used if not required.
773 @param maxVal pointer to the returned maximum value; NULL is used if not required.
774 @param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required;
775 Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element
776 in each dimension are stored there sequentially.
777 @param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required.
778 */
779 CV_EXPORTS void minMaxLoc(const SparseMat& a, double* minVal,
780                           double* maxVal, int* minIdx = 0, int* maxIdx = 0);
781 
782 /** @brief Reduces a matrix to a vector.
783 
784 The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
785 1D vectors and performing the specified operation on the vectors until a single row/column is
786 obtained. For example, the function can be used to compute horizontal and vertical projections of a
787 raster image. In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element
788 bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction
789 modes.
790 @param src input 2D matrix.
791 @param dst output vector. Its size and type is defined by dim and dtype parameters.
792 @param dim dimension index along which the matrix is reduced. 0 means that the matrix is reduced to
793 a single row. 1 means that the matrix is reduced to a single column.
794 @param rtype reduction operation that could be one of cv::ReduceTypes
795 @param dtype when negative, the output vector will have the same type as the input matrix,
796 otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()).
797 @sa repeat
798 */
799 CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, int dtype = -1);
800 
801 /** @brief Creates one multichannel array out of several single-channel ones.
802 
803 The functions merge merge several arrays to make a single multi-channel array. That is, each
804 element of the output array will be a concatenation of the elements of the input arrays, where
805 elements of i-th input array are treated as mv[i].channels()-element vectors.
806 
807 The function split does the reverse operation. If you need to shuffle channels in some other
808 advanced way, use mixChannels .
809 @param mv input array of matrices to be merged; all the matrices in mv must have the same
810 size and the same depth.
811 @param count number of input matrices when mv is a plain C array; it must be greater than zero.
812 @param dst output array of the same size and the same depth as mv[0]; The number of channels will
813 be the total number of channels in the matrix array.
814 @sa  mixChannels, split, Mat::reshape
815 */
816 CV_EXPORTS void merge(const Mat* mv, size_t count, OutputArray dst);
817 
818 /** @overload
819 @param mv input vector of matrices to be merged; all the matrices in mv must have the same
820 size and the same depth.
821 @param dst output array of the same size and the same depth as mv[0]; The number of channels will
822 be the total number of channels in the matrix array.
823   */
824 CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst);
825 
826 /** @brief Divides a multi-channel array into several single-channel arrays.
827 
828 The functions split split a multi-channel array into separate single-channel arrays:
829 \f[\texttt{mv} [c](I) =  \texttt{src} (I)_c\f]
830 If you need to extract a single channel or do some other sophisticated channel permutation, use
831 mixChannels .
832 @param src input multi-channel array.
833 @param mvbegin output array; the number of arrays must match src.channels(); the arrays themselves are
834 reallocated, if needed.
835 @sa merge, mixChannels, cvtColor
836 */
837 CV_EXPORTS void split(const Mat& src, Mat* mvbegin);
838 
839 /** @overload
840 @param m input multi-channel array.
841 @param mv output vector of arrays; the arrays themselves are reallocated, if needed.
842 */
843 CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv);
844 
845 /** @brief Copies specified channels from input arrays to the specified channels of
846 output arrays.
847 
848 The functions mixChannels provide an advanced mechanism for shuffling image channels.
849 
850 split and merge and some forms of cvtColor are partial cases of mixChannels .
851 
852 In the example below, the code splits a 4-channel RGBA image into a 3-channel BGR (with R and B
853 channels swapped) and a separate alpha-channel image:
854 @code{.cpp}
855     Mat rgba( 100, 100, CV_8UC4, Scalar(1,2,3,4) );
856     Mat bgr( rgba.rows, rgba.cols, CV_8UC3 );
857     Mat alpha( rgba.rows, rgba.cols, CV_8UC1 );
858 
859     // forming an array of matrices is a quite efficient operation,
860     // because the matrix data is not copied, only the headers
861     Mat out[] = { bgr, alpha };
862     // rgba[0] -> bgr[2], rgba[1] -> bgr[1],
863     // rgba[2] -> bgr[0], rgba[3] -> alpha[0]
864     int from_to[] = { 0,2, 1,1, 2,0, 3,3 };
865     mixChannels( &rgba, 1, out, 2, from_to, 4 );
866 @endcode
867 @note Unlike many other new-style C++ functions in OpenCV (see the introduction section and
868 Mat::create ), mixChannels requires the output arrays to be pre-allocated before calling the
869 function.
870 @param src input array or vector of matricesl; all of the matrices must have the same size and the
871 same depth.
872 @param nsrcs number of matrices in src.
873 @param dst output array or vector of matrices; all the matrices *must be allocated*; their size and
874 depth must be the same as in src[0].
875 @param ndsts number of matrices in dst.
876 @param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
877 a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
878 dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
879 src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
880 src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
881 channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
882 filled with zero .
883 @param npairs number of index pairs in fromTo.
884 @sa split, merge, cvtColor
885 */
886 CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts,
887                             const int* fromTo, size_t npairs);
888 
889 /** @overload
890 @param src input array or vector of matricesl; all of the matrices must have the same size and the
891 same depth.
892 @param dst output array or vector of matrices; all the matrices *must be allocated*; their size and
893 depth must be the same as in src[0].
894 @param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
895 a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
896 dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
897 src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
898 src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
899 channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
900 filled with zero .
901 @param npairs number of index pairs in fromTo.
902 */
903 CV_EXPORTS void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
904                             const int* fromTo, size_t npairs);
905 
906 /** @overload
907 @param src input array or vector of matricesl; all of the matrices must have the same size and the
908 same depth.
909 @param dst output array or vector of matrices; all the matrices *must be allocated*; their size and
910 depth must be the same as in src[0].
911 @param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
912 a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
913 dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
914 src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
915 src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
916 channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
917 filled with zero .
918 */
919 CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
920                               const std::vector<int>& fromTo);
921 
922 /** @brief extracts a single channel from src (coi is 0-based index)
923 @todo document
924 */
925 CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi);
926 
927 /** @brief inserts a single channel to dst (coi is 0-based index)
928 @todo document
929 */
930 CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi);
931 
932 /** @brief Flips a 2D array around vertical, horizontal, or both axes.
933 
934 The function flip flips the array in one of three different ways (row
935 and column indices are 0-based):
936 \f[\texttt{dst} _{ij} =
937 \left\{
938 \begin{array}{l l}
939 \texttt{src} _{\texttt{src.rows}-i-1,j} & if\;  \texttt{flipCode} = 0 \\
940 \texttt{src} _{i, \texttt{src.cols} -j-1} & if\;  \texttt{flipCode} > 0 \\
941 \texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\
942 \end{array}
943 \right.\f]
944 The example scenarios of using the function are the following:
945 *   Vertical flipping of the image (flipCode == 0) to switch between
946     top-left and bottom-left image origin. This is a typical operation
947     in video processing on Microsoft Windows\* OS.
948 *   Horizontal flipping of the image with the subsequent horizontal
949     shift and absolute difference calculation to check for a
950     vertical-axis symmetry (flipCode \> 0).
951 *   Simultaneous horizontal and vertical flipping of the image with
952     the subsequent shift and absolute difference calculation to check
953     for a central symmetry (flipCode \< 0).
954 *   Reversing the order of point arrays (flipCode \> 0 or
955     flipCode == 0).
956 @param src input array.
957 @param dst output array of the same size and type as src.
958 @param flipCode a flag to specify how to flip the array; 0 means
959 flipping around the x-axis and positive value (for example, 1) means
960 flipping around y-axis. Negative value (for example, -1) means flipping
961 around both axes.
962 @sa transpose , repeat , completeSymm
963 */
964 CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode);
965 
966 /** @brief Fills the output array with repeated copies of the input array.
967 
968 The functions repeat duplicate the input array one or more times along each of the two axes:
969 \f[\texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }\f]
970 The second variant of the function is more convenient to use with @ref MatrixExpressions.
971 @param src input array to replicate.
972 @param dst output array of the same type as src.
973 @param ny Flag to specify how many times the src is repeated along the
974 vertical axis.
975 @param nx Flag to specify how many times the src is repeated along the
976 horizontal axis.
977 @sa reduce
978 */
979 CV_EXPORTS_W void repeat(InputArray src, int ny, int nx, OutputArray dst);
980 
981 /** @overload
982 @param src input array to replicate.
983 @param ny Flag to specify how many times the src is repeated along the
984 vertical axis.
985 @param nx Flag to specify how many times the src is repeated along the
986 horizontal axis.
987   */
988 CV_EXPORTS Mat repeat(const Mat& src, int ny, int nx);
989 
990 /** @brief Applies horizontal concatenation to given matrices.
991 
992 The function horizontally concatenates two or more cv::Mat matrices (with the same number of rows).
993 @code{.cpp}
994     cv::Mat matArray[] = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
995                            cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
996                            cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
997 
998     cv::Mat out;
999     cv::hconcat( matArray, 3, out );
1000     //out:
1001     //[1, 2, 3;
1002     // 1, 2, 3;
1003     // 1, 2, 3;
1004     // 1, 2, 3]
1005 @endcode
1006 @param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.
1007 @param nsrc number of matrices in src.
1008 @param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src.
1009 @sa cv::vconcat(const Mat*, size_t, OutputArray), @sa cv::vconcat(InputArrayOfArrays, OutputArray) and @sa cv::vconcat(InputArray, InputArray, OutputArray)
1010 */
1011 CV_EXPORTS void hconcat(const Mat* src, size_t nsrc, OutputArray dst);
1012 /** @overload
1013  @code{.cpp}
1014     cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 4,
1015                                                   2, 5,
1016                                                   3, 6);
1017     cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 7, 10,
1018                                                   8, 11,
1019                                                   9, 12);
1020 
1021     cv::Mat C;
1022     cv::hconcat(A, B, C);
1023     //C:
1024     //[1, 4, 7, 10;
1025     // 2, 5, 8, 11;
1026     // 3, 6, 9, 12]
1027  @endcode
1028  @param src1 first input array to be considered for horizontal concatenation.
1029  @param src2 second input array to be considered for horizontal concatenation.
1030  @param dst output array. It has the same number of rows and depth as the src1 and src2, and the sum of cols of the src1 and src2.
1031  */
1032 CV_EXPORTS void hconcat(InputArray src1, InputArray src2, OutputArray dst);
1033 /** @overload
1034  @code{.cpp}
1035     std::vector<cv::Mat> matrices = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
1036                                       cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
1037                                       cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
1038 
1039     cv::Mat out;
1040     cv::hconcat( matrices, out );
1041     //out:
1042     //[1, 2, 3;
1043     // 1, 2, 3;
1044     // 1, 2, 3;
1045     // 1, 2, 3]
1046  @endcode
1047  @param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.
1048  @param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src.
1049 same depth.
1050  */
1051 CV_EXPORTS_W void hconcat(InputArrayOfArrays src, OutputArray dst);
1052 
1053 /** @brief Applies vertical concatenation to given matrices.
1054 
1055 The function vertically concatenates two or more cv::Mat matrices (with the same number of cols).
1056 @code{.cpp}
1057     cv::Mat matArray[] = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
1058                            cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
1059                            cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
1060 
1061     cv::Mat out;
1062     cv::vconcat( matArray, 3, out );
1063     //out:
1064     //[1,   1,   1,   1;
1065     // 2,   2,   2,   2;
1066     // 3,   3,   3,   3]
1067 @endcode
1068 @param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth.
1069 @param nsrc number of matrices in src.
1070 @param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src.
1071 @sa cv::hconcat(const Mat*, size_t, OutputArray), @sa cv::hconcat(InputArrayOfArrays, OutputArray) and @sa cv::hconcat(InputArray, InputArray, OutputArray)
1072 */
1073 CV_EXPORTS void vconcat(const Mat* src, size_t nsrc, OutputArray dst);
1074 /** @overload
1075  @code{.cpp}
1076     cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 7,
1077                                                   2, 8,
1078                                                   3, 9);
1079     cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 4, 10,
1080                                                   5, 11,
1081                                                   6, 12);
1082 
1083     cv::Mat C;
1084     cv::vconcat(A, B, C);
1085     //C:
1086     //[1, 7;
1087     // 2, 8;
1088     // 3, 9;
1089     // 4, 10;
1090     // 5, 11;
1091     // 6, 12]
1092  @endcode
1093  @param src1 first input array to be considered for vertical concatenation.
1094  @param src2 second input array to be considered for vertical concatenation.
1095  @param dst output array. It has the same number of cols and depth as the src1 and src2, and the sum of rows of the src1 and src2.
1096  */
1097 CV_EXPORTS void vconcat(InputArray src1, InputArray src2, OutputArray dst);
1098 /** @overload
1099  @code{.cpp}
1100     std::vector<cv::Mat> matrices = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
1101                                       cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
1102                                       cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
1103 
1104     cv::Mat out;
1105     cv::vconcat( matrices, out );
1106     //out:
1107     //[1,   1,   1,   1;
1108     // 2,   2,   2,   2;
1109     // 3,   3,   3,   3]
1110  @endcode
1111  @param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth
1112  @param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src.
1113 same depth.
1114  */
1115 CV_EXPORTS_W void vconcat(InputArrayOfArrays src, OutputArray dst);
1116 
1117 /** @brief computes bitwise conjunction of the two arrays (dst = src1 & src2)
1118 Calculates the per-element bit-wise conjunction of two arrays or an
1119 array and a scalar.
1120 
1121 The function calculates the per-element bit-wise logical conjunction for:
1122 *   Two arrays when src1 and src2 have the same size:
1123     \f[\texttt{dst} (I) =  \texttt{src1} (I)  \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1124 *   An array and a scalar when src2 is constructed from Scalar or has
1125     the same number of elements as `src1.channels()`:
1126     \f[\texttt{dst} (I) =  \texttt{src1} (I)  \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
1127 *   A scalar and an array when src1 is constructed from Scalar or has
1128     the same number of elements as `src2.channels()`:
1129     \f[\texttt{dst} (I) =  \texttt{src1}  \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1130 In case of floating-point arrays, their machine-specific bit
1131 representations (usually IEEE754-compliant) are used for the operation.
1132 In case of multi-channel arrays, each channel is processed
1133 independently. In the second and third cases above, the scalar is first
1134 converted to the array type.
1135 @param src1 first input array or a scalar.
1136 @param src2 second input array or a scalar.
1137 @param dst output array that has the same size and type as the input
1138 arrays.
1139 @param mask optional operation mask, 8-bit single channel array, that
1140 specifies elements of the output array to be changed.
1141 */
1142 CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2,
1143                               OutputArray dst, InputArray mask = noArray());
1144 
1145 /** @brief Calculates the per-element bit-wise disjunction of two arrays or an
1146 array and a scalar.
1147 
1148 The function calculates the per-element bit-wise logical disjunction for:
1149 *   Two arrays when src1 and src2 have the same size:
1150     \f[\texttt{dst} (I) =  \texttt{src1} (I)  \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1151 *   An array and a scalar when src2 is constructed from Scalar or has
1152     the same number of elements as `src1.channels()`:
1153     \f[\texttt{dst} (I) =  \texttt{src1} (I)  \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
1154 *   A scalar and an array when src1 is constructed from Scalar or has
1155     the same number of elements as `src2.channels()`:
1156     \f[\texttt{dst} (I) =  \texttt{src1}  \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1157 In case of floating-point arrays, their machine-specific bit
1158 representations (usually IEEE754-compliant) are used for the operation.
1159 In case of multi-channel arrays, each channel is processed
1160 independently. In the second and third cases above, the scalar is first
1161 converted to the array type.
1162 @param src1 first input array or a scalar.
1163 @param src2 second input array or a scalar.
1164 @param dst output array that has the same size and type as the input
1165 arrays.
1166 @param mask optional operation mask, 8-bit single channel array, that
1167 specifies elements of the output array to be changed.
1168 */
1169 CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2,
1170                              OutputArray dst, InputArray mask = noArray());
1171 
1172 /** @brief Calculates the per-element bit-wise "exclusive or" operation on two
1173 arrays or an array and a scalar.
1174 
1175 The function calculates the per-element bit-wise logical "exclusive-or"
1176 operation for:
1177 *   Two arrays when src1 and src2 have the same size:
1178     \f[\texttt{dst} (I) =  \texttt{src1} (I)  \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1179 *   An array and a scalar when src2 is constructed from Scalar or has
1180     the same number of elements as `src1.channels()`:
1181     \f[\texttt{dst} (I) =  \texttt{src1} (I)  \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
1182 *   A scalar and an array when src1 is constructed from Scalar or has
1183     the same number of elements as `src2.channels()`:
1184     \f[\texttt{dst} (I) =  \texttt{src1}  \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1185 In case of floating-point arrays, their machine-specific bit
1186 representations (usually IEEE754-compliant) are used for the operation.
1187 In case of multi-channel arrays, each channel is processed
1188 independently. In the 2nd and 3rd cases above, the scalar is first
1189 converted to the array type.
1190 @param src1 first input array or a scalar.
1191 @param src2 second input array or a scalar.
1192 @param dst output array that has the same size and type as the input
1193 arrays.
1194 @param mask optional operation mask, 8-bit single channel array, that
1195 specifies elements of the output array to be changed.
1196 */
1197 CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2,
1198                               OutputArray dst, InputArray mask = noArray());
1199 
1200 /** @brief  Inverts every bit of an array.
1201 
1202 The function calculates per-element bit-wise inversion of the input
1203 array:
1204 \f[\texttt{dst} (I) =  \neg \texttt{src} (I)\f]
1205 In case of a floating-point input array, its machine-specific bit
1206 representation (usually IEEE754-compliant) is used for the operation. In
1207 case of multi-channel arrays, each channel is processed independently.
1208 @param src input array.
1209 @param dst output array that has the same size and type as the input
1210 array.
1211 @param mask optional operation mask, 8-bit single channel array, that
1212 specifies elements of the output array to be changed.
1213 */
1214 CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst,
1215                               InputArray mask = noArray());
1216 
1217 /** @brief Calculates the per-element absolute difference between two arrays or between an array and a scalar.
1218 
1219 The function absdiff calculates:
1220 *   Absolute difference between two arrays when they have the same
1221     size and type:
1222     \f[\texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1}(I) -  \texttt{src2}(I)|)\f]
1223 *   Absolute difference between an array and a scalar when the second
1224     array is constructed from Scalar or has as many elements as the
1225     number of channels in `src1`:
1226     \f[\texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1}(I) -  \texttt{src2} |)\f]
1227 *   Absolute difference between a scalar and an array when the first
1228     array is constructed from Scalar or has as many elements as the
1229     number of channels in `src2`:
1230     \f[\texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1} -  \texttt{src2}(I) |)\f]
1231     where I is a multi-dimensional index of array elements. In case of
1232     multi-channel arrays, each channel is processed independently.
1233 @note Saturation is not applied when the arrays have the depth CV_32S.
1234 You may even get a negative value in the case of overflow.
1235 @param src1 first input array or a scalar.
1236 @param src2 second input array or a scalar.
1237 @param dst output array that has the same size and type as input arrays.
1238 @sa cv::abs(const Mat&)
1239 */
1240 CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst);
1241 
1242 /** @brief  Checks if array elements lie between the elements of two other arrays.
1243 
1244 The function checks the range as follows:
1245 -   For every element of a single-channel input array:
1246     \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0  \leq \texttt{src} (I)_0 \leq  \texttt{upperb} (I)_0\f]
1247 -   For two-channel arrays:
1248     \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0  \leq \texttt{src} (I)_0 \leq  \texttt{upperb} (I)_0  \land \texttt{lowerb} (I)_1  \leq \texttt{src} (I)_1 \leq  \texttt{upperb} (I)_1\f]
1249 -   and so forth.
1250 
1251 That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the
1252 specified 1D, 2D, 3D, ... box and 0 otherwise.
1253 
1254 When the lower and/or upper boundary parameters are scalars, the indexes
1255 (I) at lowerb and upperb in the above formulas should be omitted.
1256 @param src first input array.
1257 @param lowerb inclusive lower boundary array or a scalar.
1258 @param upperb inclusive upper boundary array or a scalar.
1259 @param dst output array of the same size as src and CV_8U type.
1260 */
1261 CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb,
1262                           InputArray upperb, OutputArray dst);
1263 
1264 /** @brief Performs the per-element comparison of two arrays or an array and scalar value.
1265 
1266 The function compares:
1267 *   Elements of two arrays when src1 and src2 have the same size:
1268     \f[\texttt{dst} (I) =  \texttt{src1} (I)  \,\texttt{cmpop}\, \texttt{src2} (I)\f]
1269 *   Elements of src1 with a scalar src2 when src2 is constructed from
1270     Scalar or has a single element:
1271     \f[\texttt{dst} (I) =  \texttt{src1}(I) \,\texttt{cmpop}\,  \texttt{src2}\f]
1272 *   src1 with elements of src2 when src1 is constructed from Scalar or
1273     has a single element:
1274     \f[\texttt{dst} (I) =  \texttt{src1}  \,\texttt{cmpop}\, \texttt{src2} (I)\f]
1275 When the comparison result is true, the corresponding element of output
1276 array is set to 255. The comparison operations can be replaced with the
1277 equivalent matrix expressions:
1278 @code{.cpp}
1279     Mat dst1 = src1 >= src2;
1280     Mat dst2 = src1 < 8;
1281     ...
1282 @endcode
1283 @param src1 first input array or a scalar; when it is an array, it must have a single channel.
1284 @param src2 second input array or a scalar; when it is an array, it must have a single channel.
1285 @param dst output array of type ref CV_8U that has the same size and the same number of channels as
1286     the input arrays.
1287 @param cmpop a flag, that specifies correspondence between the arrays (cv::CmpTypes)
1288 @sa checkRange, min, max, threshold
1289 */
1290 CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop);
1291 
1292 /** @brief Calculates per-element minimum of two arrays or an array and a scalar.
1293 
1294 The functions min calculate the per-element minimum of two arrays:
1295 \f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))\f]
1296 or array and a scalar:
1297 \f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )\f]
1298 @param src1 first input array.
1299 @param src2 second input array of the same size and type as src1.
1300 @param dst output array of the same size and type as src1.
1301 @sa max, compare, inRange, minMaxLoc
1302 */
1303 CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst);
1304 /** @overload
1305 needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
1306 */
1307 CV_EXPORTS void min(const Mat& src1, const Mat& src2, Mat& dst);
1308 /** @overload
1309 needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
1310 */
1311 CV_EXPORTS void min(const UMat& src1, const UMat& src2, UMat& dst);
1312 
1313 /** @brief Calculates per-element maximum of two arrays or an array and a scalar.
1314 
1315 The functions max calculate the per-element maximum of two arrays:
1316 \f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))\f]
1317 or array and a scalar:
1318 \f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )\f]
1319 @param src1 first input array.
1320 @param src2 second input array of the same size and type as src1 .
1321 @param dst output array of the same size and type as src1.
1322 @sa  min, compare, inRange, minMaxLoc, @ref MatrixExpressions
1323 */
1324 CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst);
1325 /** @overload
1326 needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
1327 */
1328 CV_EXPORTS void max(const Mat& src1, const Mat& src2, Mat& dst);
1329 /** @overload
1330 needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
1331 */
1332 CV_EXPORTS void max(const UMat& src1, const UMat& src2, UMat& dst);
1333 
1334 /** @brief Calculates a square root of array elements.
1335 
1336 The functions sqrt calculate a square root of each input array element.
1337 In case of multi-channel arrays, each channel is processed
1338 independently. The accuracy is approximately the same as of the built-in
1339 std::sqrt .
1340 @param src input floating-point array.
1341 @param dst output array of the same size and type as src.
1342 */
1343 CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst);
1344 
1345 /** @brief Raises every array element to a power.
1346 
1347 The function pow raises every element of the input array to power :
1348 \f[\texttt{dst} (I) =  \fork{\texttt{src}(I)^power}{if \texttt{power} is integer}{|\texttt{src}(I)|^power}{otherwise}\f]
1349 
1350 So, for a non-integer power exponent, the absolute values of input array
1351 elements are used. However, it is possible to get true values for
1352 negative values using some extra operations. In the example below,
1353 computing the 5th root of array src shows:
1354 @code{.cpp}
1355     Mat mask = src < 0;
1356     pow(src, 1./5, dst);
1357     subtract(Scalar::all(0), dst, dst, mask);
1358 @endcode
1359 For some values of power, such as integer values, 0.5 and -0.5,
1360 specialized faster algorithms are used.
1361 
1362 Special values (NaN, Inf) are not handled.
1363 @param src input array.
1364 @param power exponent of power.
1365 @param dst output array of the same size and type as src.
1366 @sa sqrt, exp, log, cartToPolar, polarToCart
1367 */
1368 CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst);
1369 
1370 /** @brief Calculates the exponent of every array element.
1371 
1372 The function exp calculates the exponent of every element of the input
1373 array:
1374 \f[\texttt{dst} [I] = e^{ src(I) }\f]
1375 
1376 The maximum relative error is about 7e-6 for single-precision input and
1377 less than 1e-10 for double-precision input. Currently, the function
1378 converts denormalized values to zeros on output. Special values (NaN,
1379 Inf) are not handled.
1380 @param src input array.
1381 @param dst output array of the same size and type as src.
1382 @sa log , cartToPolar , polarToCart , phase , pow , sqrt , magnitude
1383 */
1384 CV_EXPORTS_W void exp(InputArray src, OutputArray dst);
1385 
1386 /** @brief Calculates the natural logarithm of every array element.
1387 
1388 The function log calculates the natural logarithm of the absolute value
1389 of every element of the input array:
1390 \f[\texttt{dst} (I) =  \fork{\log |\texttt{src}(I)|}{if \(\texttt{src}(I) \ne 0\) }{\texttt{C}}{otherwise}\f]
1391 
1392 where C is a large negative number (about -700 in the current
1393 implementation). The maximum relative error is about 7e-6 for
1394 single-precision input and less than 1e-10 for double-precision input.
1395 Special values (NaN, Inf) are not handled.
1396 @param src input array.
1397 @param dst output array of the same size and type as src .
1398 @sa exp, cartToPolar, polarToCart, phase, pow, sqrt, magnitude
1399 */
1400 CV_EXPORTS_W void log(InputArray src, OutputArray dst);
1401 
1402 /** @brief Calculates x and y coordinates of 2D vectors from their magnitude and angle.
1403 
1404 The function polarToCart calculates the Cartesian coordinates of each 2D
1405 vector represented by the corresponding elements of magnitude and angle:
1406 \f[\begin{array}{l} \texttt{x} (I) =  \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) =  \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\f]
1407 
1408 The relative accuracy of the estimated coordinates is about 1e-6.
1409 @param magnitude input floating-point array of magnitudes of 2D vectors;
1410 it can be an empty matrix (=Mat()), in this case, the function assumes
1411 that all the magnitudes are =1; if it is not empty, it must have the
1412 same size and type as angle.
1413 @param angle input floating-point array of angles of 2D vectors.
1414 @param x output array of x-coordinates of 2D vectors; it has the same
1415 size and type as angle.
1416 @param y output array of y-coordinates of 2D vectors; it has the same
1417 size and type as angle.
1418 @param angleInDegrees when true, the input angles are measured in
1419 degrees, otherwise, they are measured in radians.
1420 @sa cartToPolar, magnitude, phase, exp, log, pow, sqrt
1421 */
1422 CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle,
1423                               OutputArray x, OutputArray y, bool angleInDegrees = false);
1424 
1425 /** @brief Calculates the magnitude and angle of 2D vectors.
1426 
1427 The function cartToPolar calculates either the magnitude, angle, or both
1428 for every 2D vector (x(I),y(I)):
1429 \f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\f]
1430 
1431 The angles are calculated with accuracy about 0.3 degrees. For the point
1432 (0,0), the angle is set to 0.
1433 @param x array of x-coordinates; this must be a single-precision or
1434 double-precision floating-point array.
1435 @param y array of y-coordinates, that must have the same size and same type as x.
1436 @param magnitude output array of magnitudes of the same size and type as x.
1437 @param angle output array of angles that has the same size and type as
1438 x; the angles are measured in radians (from 0 to 2\*Pi) or in degrees (0 to 360 degrees).
1439 @param angleInDegrees a flag, indicating whether the angles are measured
1440 in radians (which is by default), or in degrees.
1441 @sa Sobel, Scharr
1442 */
1443 CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y,
1444                               OutputArray magnitude, OutputArray angle,
1445                               bool angleInDegrees = false);
1446 
1447 /** @brief Calculates the rotation angle of 2D vectors.
1448 
1449 The function phase calculates the rotation angle of each 2D vector that
1450 is formed from the corresponding elements of x and y :
1451 \f[\texttt{angle} (I) =  \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\f]
1452 
1453 The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 ,
1454 the corresponding angle(I) is set to 0.
1455 @param x input floating-point array of x-coordinates of 2D vectors.
1456 @param y input array of y-coordinates of 2D vectors; it must have the
1457 same size and the same type as x.
1458 @param angle output array of vector angles; it has the same size and
1459 same type as x .
1460 @param angleInDegrees when true, the function calculates the angle in
1461 degrees, otherwise, they are measured in radians.
1462 */
1463 CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle,
1464                         bool angleInDegrees = false);
1465 
1466 /** @brief Calculates the magnitude of 2D vectors.
1467 
1468 The function magnitude calculates the magnitude of 2D vectors formed
1469 from the corresponding elements of x and y arrays:
1470 \f[\texttt{dst} (I) =  \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}\f]
1471 @param x floating-point array of x-coordinates of the vectors.
1472 @param y floating-point array of y-coordinates of the vectors; it must
1473 have the same size as x.
1474 @param magnitude output array of the same size and type as x.
1475 @sa cartToPolar, polarToCart, phase, sqrt
1476 */
1477 CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude);
1478 
1479 /** @brief Checks every element of an input array for invalid values.
1480 
1481 The functions checkRange check that every array element is neither NaN nor infinite. When minVal \<
1482 -DBL_MAX and maxVal \< DBL_MAX, the functions also check that each value is between minVal and
1483 maxVal. In case of multi-channel arrays, each channel is processed independently. If some values
1484 are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the
1485 functions either return false (when quiet=true) or throw an exception.
1486 @param a input array.
1487 @param quiet a flag, indicating whether the functions quietly return false when the array elements
1488 are out of range or they throw an exception.
1489 @param pos optional output parameter, when not NULL, must be a pointer to array of src.dims
1490 elements.
1491 @param minVal inclusive lower boundary of valid values range.
1492 @param maxVal exclusive upper boundary of valid values range.
1493 */
1494 CV_EXPORTS_W bool checkRange(InputArray a, bool quiet = true, CV_OUT Point* pos = 0,
1495                             double minVal = -DBL_MAX, double maxVal = DBL_MAX);
1496 
1497 /** @brief converts NaN's to the given number
1498 */
1499 CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val = 0);
1500 
1501 /** @brief Performs generalized matrix multiplication.
1502 
1503 The function performs generalized matrix multiplication similar to the
1504 gemm functions in BLAS level 3. For example,
1505 `gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`
1506 corresponds to
1507 \f[\texttt{dst} =  \texttt{alpha} \cdot \texttt{src1} ^T  \cdot \texttt{src2} +  \texttt{beta} \cdot \texttt{src3} ^T\f]
1508 
1509 In case of complex (two-channel) data, performed a complex matrix
1510 multiplication.
1511 
1512 The function can be replaced with a matrix expression. For example, the
1513 above call can be replaced with:
1514 @code{.cpp}
1515     dst = alpha*src1.t()*src2 + beta*src3.t();
1516 @endcode
1517 @param src1 first multiplied input matrix that could be real(CV_32FC1,
1518 CV_64FC1) or complex(CV_32FC2, CV_64FC2).
1519 @param src2 second multiplied input matrix of the same type as src1.
1520 @param alpha weight of the matrix product.
1521 @param src3 third optional delta matrix added to the matrix product; it
1522 should have the same type as src1 and src2.
1523 @param beta weight of src3.
1524 @param dst output matrix; it has the proper size and the same type as
1525 input matrices.
1526 @param flags operation flags (cv::GemmFlags)
1527 @sa mulTransposed , transform
1528 */
1529 CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha,
1530                        InputArray src3, double beta, OutputArray dst, int flags = 0);
1531 
1532 /** @brief Calculates the product of a matrix and its transposition.
1533 
1534 The function mulTransposed calculates the product of src and its
1535 transposition:
1536 \f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\f]
1537 if aTa=true , and
1538 \f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T\f]
1539 otherwise. The function is used to calculate the covariance matrix. With
1540 zero delta, it can be used as a faster substitute for general matrix
1541 product A\*B when B=A'
1542 @param src input single-channel matrix. Note that unlike gemm, the
1543 function can multiply not only floating-point matrices.
1544 @param dst output square matrix.
1545 @param aTa Flag specifying the multiplication ordering. See the
1546 description below.
1547 @param delta Optional delta matrix subtracted from src before the
1548 multiplication. When the matrix is empty ( delta=noArray() ), it is
1549 assumed to be zero, that is, nothing is subtracted. If it has the same
1550 size as src , it is simply subtracted. Otherwise, it is "repeated" (see
1551 repeat ) to cover the full src and then subtracted. Type of the delta
1552 matrix, when it is not empty, must be the same as the type of created
1553 output matrix. See the dtype parameter description below.
1554 @param scale Optional scale factor for the matrix product.
1555 @param dtype Optional type of the output matrix. When it is negative,
1556 the output matrix will have the same type as src . Otherwise, it will be
1557 type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F .
1558 @sa calcCovarMatrix, gemm, repeat, reduce
1559 */
1560 CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa,
1561                                  InputArray delta = noArray(),
1562                                  double scale = 1, int dtype = -1 );
1563 
1564 /** @brief Transposes a matrix.
1565 
1566 The function transpose transposes the matrix src :
1567 \f[\texttt{dst} (i,j) =  \texttt{src} (j,i)\f]
1568 @note No complex conjugation is done in case of a complex matrix. It it
1569 should be done separately if needed.
1570 @param src input array.
1571 @param dst output array of the same type as src.
1572 */
1573 CV_EXPORTS_W void transpose(InputArray src, OutputArray dst);
1574 
1575 /** @brief Performs the matrix transformation of every array element.
1576 
1577 The function transform performs the matrix transformation of every
1578 element of the array src and stores the results in dst :
1579 \f[\texttt{dst} (I) =  \texttt{m} \cdot \texttt{src} (I)\f]
1580 (when m.cols=src.channels() ), or
1581 \f[\texttt{dst} (I) =  \texttt{m} \cdot [ \texttt{src} (I); 1]\f]
1582 (when m.cols=src.channels()+1 )
1583 
1584 Every element of the N -channel array src is interpreted as N -element
1585 vector that is transformed using the M x N or M x (N+1) matrix m to
1586 M-element vector - the corresponding element of the output array dst .
1587 
1588 The function may be used for geometrical transformation of
1589 N -dimensional points, arbitrary linear color space transformation (such
1590 as various kinds of RGB to YUV transforms), shuffling the image
1591 channels, and so forth.
1592 @param src input array that must have as many channels (1 to 4) as
1593 m.cols or m.cols-1.
1594 @param dst output array of the same size and depth as src; it has as
1595 many channels as m.rows.
1596 @param m transformation 2x2 or 2x3 floating-point matrix.
1597 @sa perspectiveTransform, getAffineTransform, estimateRigidTransform, warpAffine, warpPerspective
1598 */
1599 CV_EXPORTS_W void transform(InputArray src, OutputArray dst, InputArray m );
1600 
1601 /** @brief Performs the perspective matrix transformation of vectors.
1602 
1603 The function perspectiveTransform transforms every element of src by
1604 treating it as a 2D or 3D vector, in the following way:
1605 \f[(x, y, z)  \rightarrow (x'/w, y'/w, z'/w)\f]
1606 where
1607 \f[(x', y', z', w') =  \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1  \end{bmatrix}\f]
1608 and
1609 \f[w =  \fork{w'}{if \(w' \ne 0\)}{\infty}{otherwise}\f]
1610 
1611 Here a 3D vector transformation is shown. In case of a 2D vector
1612 transformation, the z component is omitted.
1613 
1614 @note The function transforms a sparse set of 2D or 3D vectors. If you
1615 want to transform an image using perspective transformation, use
1616 warpPerspective . If you have an inverse problem, that is, you want to
1617 compute the most probable perspective transformation out of several
1618 pairs of corresponding points, you can use getPerspectiveTransform or
1619 findHomography .
1620 @param src input two-channel or three-channel floating-point array; each
1621 element is a 2D/3D vector to be transformed.
1622 @param dst output array of the same size and type as src.
1623 @param m 3x3 or 4x4 floating-point transformation matrix.
1624 @sa  transform, warpPerspective, getPerspectiveTransform, findHomography
1625 */
1626 CV_EXPORTS_W void perspectiveTransform(InputArray src, OutputArray dst, InputArray m );
1627 
1628 /** @brief Copies the lower or the upper half of a square matrix to another half.
1629 
1630 The function completeSymm copies the lower half of a square matrix to
1631 its another half. The matrix diagonal remains unchanged:
1632 *   \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i > j\f$ if
1633     lowerToUpper=false
1634 *   \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i < j\f$ if
1635     lowerToUpper=true
1636 @param mtx input-output floating-point square matrix.
1637 @param lowerToUpper operation flag; if true, the lower half is copied to
1638 the upper half. Otherwise, the upper half is copied to the lower half.
1639 @sa flip, transpose
1640 */
1641 CV_EXPORTS_W void completeSymm(InputOutputArray mtx, bool lowerToUpper = false);
1642 
1643 /** @brief Initializes a scaled identity matrix.
1644 
1645 The function setIdentity initializes a scaled identity matrix:
1646 \f[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if \(i=j\)}{0}{otherwise}\f]
1647 
1648 The function can also be emulated using the matrix initializers and the
1649 matrix expressions:
1650 @code
1651     Mat A = Mat::eye(4, 3, CV_32F)*5;
1652     // A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
1653 @endcode
1654 @param mtx matrix to initialize (not necessarily square).
1655 @param s value to assign to diagonal elements.
1656 @sa Mat::zeros, Mat::ones, Mat::setTo, Mat::operator=
1657 */
1658 CV_EXPORTS_W void setIdentity(InputOutputArray mtx, const Scalar& s = Scalar(1));
1659 
1660 /** @brief Returns the determinant of a square floating-point matrix.
1661 
1662 The function determinant calculates and returns the determinant of the
1663 specified matrix. For small matrices ( mtx.cols=mtx.rows\<=3 ), the
1664 direct method is used. For larger matrices, the function uses LU
1665 factorization with partial pivoting.
1666 
1667 For symmetric positively-determined matrices, it is also possible to use
1668 eigen decomposition to calculate the determinant.
1669 @param mtx input matrix that must have CV_32FC1 or CV_64FC1 type and
1670 square size.
1671 @sa trace, invert, solve, eigen, @ref MatrixExpressions
1672 */
1673 CV_EXPORTS_W double determinant(InputArray mtx);
1674 
1675 /** @brief Returns the trace of a matrix.
1676 
1677 The function trace returns the sum of the diagonal elements of the
1678 matrix mtx .
1679 \f[\mathrm{tr} ( \texttt{mtx} ) =  \sum _i  \texttt{mtx} (i,i)\f]
1680 @param mtx input matrix.
1681 */
1682 CV_EXPORTS_W Scalar trace(InputArray mtx);
1683 
1684 /** @brief Finds the inverse or pseudo-inverse of a matrix.
1685 
1686 The function invert inverts the matrix src and stores the result in dst
1687 . When the matrix src is singular or non-square, the function calculates
1688 the pseudo-inverse matrix (the dst matrix) so that norm(src\*dst - I) is
1689 minimal, where I is an identity matrix.
1690 
1691 In case of the DECOMP_LU method, the function returns non-zero value if
1692 the inverse has been successfully calculated and 0 if src is singular.
1693 
1694 In case of the DECOMP_SVD method, the function returns the inverse
1695 condition number of src (the ratio of the smallest singular value to the
1696 largest singular value) and 0 if src is singular. The SVD method
1697 calculates a pseudo-inverse matrix if src is singular.
1698 
1699 Similarly to DECOMP_LU, the method DECOMP_CHOLESKY works only with
1700 non-singular square matrices that should also be symmetrical and
1701 positively defined. In this case, the function stores the inverted
1702 matrix in dst and returns non-zero. Otherwise, it returns 0.
1703 
1704 @param src input floating-point M x N matrix.
1705 @param dst output matrix of N x M size and the same type as src.
1706 @param flags inversion method (cv::DecompTypes)
1707 @sa solve, SVD
1708 */
1709 CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags = DECOMP_LU);
1710 
1711 /** @brief Solves one or more linear systems or least-squares problems.
1712 
1713 The function solve solves a linear system or least-squares problem (the
1714 latter is possible with SVD or QR methods, or by specifying the flag
1715 DECOMP_NORMAL ):
1716 \f[\texttt{dst} =  \arg \min _X \| \texttt{src1} \cdot \texttt{X} -  \texttt{src2} \|\f]
1717 
1718 If DECOMP_LU or DECOMP_CHOLESKY method is used, the function returns 1
1719 if src1 (or \f$\texttt{src1}^T\texttt{src1}\f$ ) is non-singular. Otherwise,
1720 it returns 0. In the latter case, dst is not valid. Other methods find a
1721 pseudo-solution in case of a singular left-hand side part.
1722 
1723 @note If you want to find a unity-norm solution of an under-defined
1724 singular system \f$\texttt{src1}\cdot\texttt{dst}=0\f$ , the function solve
1725 will not do the work. Use SVD::solveZ instead.
1726 
1727 @param src1 input matrix on the left-hand side of the system.
1728 @param src2 input matrix on the right-hand side of the system.
1729 @param dst output solution.
1730 @param flags solution (matrix inversion) method (cv::DecompTypes)
1731 @sa invert, SVD, eigen
1732 */
1733 CV_EXPORTS_W bool solve(InputArray src1, InputArray src2,
1734                         OutputArray dst, int flags = DECOMP_LU);
1735 
1736 /** @brief Sorts each row or each column of a matrix.
1737 
1738 The function sort sorts each matrix row or each matrix column in
1739 ascending or descending order. So you should pass two operation flags to
1740 get desired behaviour. If you want to sort matrix rows or columns
1741 lexicographically, you can use STL std::sort generic function with the
1742 proper comparison predicate.
1743 
1744 @param src input single-channel array.
1745 @param dst output array of the same size and type as src.
1746 @param flags operation flags, a combination of cv::SortFlags
1747 @sa sortIdx, randShuffle
1748 */
1749 CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags);
1750 
1751 /** @brief Sorts each row or each column of a matrix.
1752 
1753 The function sortIdx sorts each matrix row or each matrix column in the
1754 ascending or descending order. So you should pass two operation flags to
1755 get desired behaviour. Instead of reordering the elements themselves, it
1756 stores the indices of sorted elements in the output array. For example:
1757 @code
1758     Mat A = Mat::eye(3,3,CV_32F), B;
1759     sortIdx(A, B, SORT_EVERY_ROW + SORT_ASCENDING);
1760     // B will probably contain
1761     // (because of equal elements in A some permutations are possible):
1762     // [[1, 2, 0], [0, 2, 1], [0, 1, 2]]
1763 @endcode
1764 @param src input single-channel array.
1765 @param dst output integer array of the same size as src.
1766 @param flags operation flags that could be a combination of cv::SortFlags
1767 @sa sort, randShuffle
1768 */
1769 CV_EXPORTS_W void sortIdx(InputArray src, OutputArray dst, int flags);
1770 
1771 /** @brief Finds the real roots of a cubic equation.
1772 
1773 The function solveCubic finds the real roots of a cubic equation:
1774 -   if coeffs is a 4-element vector:
1775 \f[\texttt{coeffs} [0] x^3 +  \texttt{coeffs} [1] x^2 +  \texttt{coeffs} [2] x +  \texttt{coeffs} [3] = 0\f]
1776 -   if coeffs is a 3-element vector:
1777 \f[x^3 +  \texttt{coeffs} [0] x^2 +  \texttt{coeffs} [1] x +  \texttt{coeffs} [2] = 0\f]
1778 
1779 The roots are stored in the roots array.
1780 @param coeffs equation coefficients, an array of 3 or 4 elements.
1781 @param roots output array of real roots that has 1 or 3 elements.
1782 */
1783 CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots);
1784 
1785 /** @brief Finds the real or complex roots of a polynomial equation.
1786 
1787 The function solvePoly finds real and complex roots of a polynomial equation:
1788 \f[\texttt{coeffs} [n] x^{n} +  \texttt{coeffs} [n-1] x^{n-1} + ... +  \texttt{coeffs} [1] x +  \texttt{coeffs} [0] = 0\f]
1789 @param coeffs array of polynomial coefficients.
1790 @param roots output (complex) array of roots.
1791 @param maxIters maximum number of iterations the algorithm does.
1792 */
1793 CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters = 300);
1794 
1795 /** @brief Calculates eigenvalues and eigenvectors of a symmetric matrix.
1796 
1797 The functions eigen calculate just eigenvalues, or eigenvalues and eigenvectors of the symmetric
1798 matrix src:
1799 @code
1800     src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
1801 @endcode
1802 @note in the new and the old interfaces different ordering of eigenvalues and eigenvectors
1803 parameters is used.
1804 @param src input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical
1805 (src ^T^ == src).
1806 @param eigenvalues output vector of eigenvalues of the same type as src; the eigenvalues are stored
1807 in the descending order.
1808 @param eigenvectors output matrix of eigenvectors; it has the same size and type as src; the
1809 eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding
1810 eigenvalues.
1811 @sa completeSymm , PCA
1812 */
1813 CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues,
1814                         OutputArray eigenvectors = noArray());
1815 
1816 /** @brief Calculates the covariance matrix of a set of vectors.
1817 
1818 The functions calcCovarMatrix calculate the covariance matrix and, optionally, the mean vector of
1819 the set of input vectors.
1820 @param samples samples stored as separate matrices
1821 @param nsamples number of samples
1822 @param covar output covariance matrix of the type ctype and square size.
1823 @param mean input or output (depending on the flags) array as the average value of the input vectors.
1824 @param flags operation flags as a combination of cv::CovarFlags
1825 @param ctype type of the matrixl; it equals 'CV_64F' by default.
1826 @sa PCA, mulTransposed, Mahalanobis
1827 @todo InputArrayOfArrays
1828 */
1829 CV_EXPORTS void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean,
1830                                  int flags, int ctype = CV_64F);
1831 
1832 /** @overload
1833 @note use cv::COVAR_ROWS or cv::COVAR_COLS flag
1834 @param samples samples stored as rows/columns of a single matrix.
1835 @param covar output covariance matrix of the type ctype and square size.
1836 @param mean input or output (depending on the flags) array as the average value of the input vectors.
1837 @param flags operation flags as a combination of cv::CovarFlags
1838 @param ctype type of the matrixl; it equals 'CV_64F' by default.
1839 */
1840 CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar,
1841                                    InputOutputArray mean, int flags, int ctype = CV_64F);
1842 
1843 /** wrap PCA::operator() */
1844 CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
1845                              OutputArray eigenvectors, int maxComponents = 0);
1846 
1847 /** wrap PCA::operator() */
1848 CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
1849                              OutputArray eigenvectors, double retainedVariance);
1850 
1851 /** wrap PCA::project */
1852 CV_EXPORTS_W void PCAProject(InputArray data, InputArray mean,
1853                              InputArray eigenvectors, OutputArray result);
1854 
1855 /** wrap PCA::backProject */
1856 CV_EXPORTS_W void PCABackProject(InputArray data, InputArray mean,
1857                                  InputArray eigenvectors, OutputArray result);
1858 
1859 /** wrap SVD::compute */
1860 CV_EXPORTS_W void SVDecomp( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags = 0 );
1861 
1862 /** wrap SVD::backSubst */
1863 CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt,
1864                                InputArray rhs, OutputArray dst );
1865 
1866 /** @brief Calculates the Mahalanobis distance between two vectors.
1867 
1868 The function Mahalanobis calculates and returns the weighted distance between two vectors:
1869 \f[d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }\f]
1870 The covariance matrix may be calculated using the cv::calcCovarMatrix function and then inverted using
1871 the invert function (preferably using the cv::DECOMP_SVD method, as the most accurate).
1872 @param v1 first 1D input vector.
1873 @param v2 second 1D input vector.
1874 @param icovar inverse covariance matrix.
1875 */
1876 CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar);
1877 
1878 /** @brief Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
1879 
1880 The function performs one of the following:
1881 -   Forward the Fourier transform of a 1D vector of N elements:
1882     \f[Y = F^{(N)}  \cdot X,\f]
1883     where \f$F^{(N)}_{jk}=\exp(-2\pi i j k/N)\f$ and \f$i=\sqrt{-1}\f$
1884 -   Inverse the Fourier transform of a 1D vector of N elements:
1885     \f[\begin{array}{l} X'=  \left (F^{(N)} \right )^{-1}  \cdot Y =  \left (F^{(N)} \right )^*  \cdot y  \\ X = (1/N)  \cdot X, \end{array}\f]
1886     where \f$F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T\f$
1887 -   Forward the 2D Fourier transform of a M x N matrix:
1888     \f[Y = F^{(M)}  \cdot X  \cdot F^{(N)}\f]
1889 -   Inverse the 2D Fourier transform of a M x N matrix:
1890     \f[\begin{array}{l} X'=  \left (F^{(M)} \right )^*  \cdot Y  \cdot \left (F^{(N)} \right )^* \\ X =  \frac{1}{M \cdot N} \cdot X' \end{array}\f]
1891 
1892 In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input
1893 spectrum of the inverse Fourier transform can be represented in a packed format called *CCS*
1894 (complex-conjugate-symmetrical). It was borrowed from IPL (Intel\* Image Processing Library). Here
1895 is how 2D *CCS* spectrum looks:
1896 \f[\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} &  \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2}  \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} &  \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2}  \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} &  \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2}  \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} &  Re Y_{M-3,1}  & Im Y_{M-3,1} &  \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2}  \\ Im Y_{M/2-1,0} &  Re Y_{M-2,1}  & Im Y_{M-2,1} &  \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2}  \\ Re Y_{M/2,0}  &  Re Y_{M-1,1} &  Im Y_{M-1,1} &  \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}\f]
1897 
1898 In case of 1D transform of a real vector, the output looks like the first row of the matrix above.
1899 
1900 So, the function chooses an operation mode depending on the flags and size of the input array:
1901 -   If DFT_ROWS is set or the input array has a single row or single column, the function
1902     performs a 1D forward or inverse transform of each row of a matrix when DFT_ROWS is set.
1903     Otherwise, it performs a 2D transform.
1904 -   If the input array is real and DFT_INVERSE is not set, the function performs a forward 1D or
1905     2D transform:
1906     -   When DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as
1907         input.
1908     -   When DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as
1909         input. In case of 2D transform, it uses the packed format as shown above. In case of a
1910         single 1D transform, it looks like the first row of the matrix above. In case of
1911         multiple 1D transforms (when using the DFT_ROWS flag), each row of the output matrix
1912         looks like the first row of the matrix above.
1913 -   If the input array is complex and either DFT_INVERSE or DFT_REAL_OUTPUT are not set, the
1914     output is a complex array of the same size as input. The function performs a forward or
1915     inverse 1D or 2D transform of the whole input array or each row of the input array
1916     independently, depending on the flags DFT_INVERSE and DFT_ROWS.
1917 -   When DFT_INVERSE is set and the input array is real, or it is complex but DFT_REAL_OUTPUT
1918     is set, the output is a real array of the same size as input. The function performs a 1D or 2D
1919     inverse transformation of the whole input array or each individual row, depending on the flags
1920     DFT_INVERSE and DFT_ROWS.
1921 
1922 If DFT_SCALE is set, the scaling is done after the transformation.
1923 
1924 Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed
1925 efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the
1926 current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize
1927 method.
1928 
1929 The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays:
1930 @code
1931     void convolveDFT(InputArray A, InputArray B, OutputArray C)
1932     {
1933         // reallocate the output array if needed
1934         C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
1935         Size dftSize;
1936         // calculate the size of DFT transform
1937         dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
1938         dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
1939 
1940         // allocate temporary buffers and initialize them with 0's
1941         Mat tempA(dftSize, A.type(), Scalar::all(0));
1942         Mat tempB(dftSize, B.type(), Scalar::all(0));
1943 
1944         // copy A and B to the top-left corners of tempA and tempB, respectively
1945         Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
1946         A.copyTo(roiA);
1947         Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
1948         B.copyTo(roiB);
1949 
1950         // now transform the padded A & B in-place;
1951         // use "nonzeroRows" hint for faster processing
1952         dft(tempA, tempA, 0, A.rows);
1953         dft(tempB, tempB, 0, B.rows);
1954 
1955         // multiply the spectrums;
1956         // the function handles packed spectrum representations well
1957         mulSpectrums(tempA, tempB, tempA);
1958 
1959         // transform the product back from the frequency domain.
1960         // Even though all the result rows will be non-zero,
1961         // you need only the first C.rows of them, and thus you
1962         // pass nonzeroRows == C.rows
1963         dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
1964 
1965         // now copy the result back to C.
1966         tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
1967 
1968         // all the temporary buffers will be deallocated automatically
1969     }
1970 @endcode
1971 To optimize this sample, consider the following approaches:
1972 -   Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to
1973     the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole
1974     tempA and tempB. It is only necessary to clear the tempA.cols - A.cols ( tempB.cols - B.cols)
1975     rightmost columns of the matrices.
1976 -   This DFT-based convolution does not have to be applied to the whole big arrays, especially if B
1977     is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts.
1978     To do this, you need to split the output array C into multiple tiles. For each tile, estimate
1979     which parts of A and B are required to calculate convolution in this tile. If the tiles in C are
1980     too small, the speed will decrease a lot because of repeated work. In the ultimate case, when
1981     each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution
1982     algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and
1983     there is also a slowdown because of bad cache locality. So, there is an optimal tile size
1984     somewhere in the middle.
1985 -   If different tiles in C can be calculated in parallel and, thus, the convolution is done by
1986     parts, the loop can be threaded.
1987 
1988 All of the above improvements have been implemented in matchTemplate and filter2D . Therefore, by
1989 using them, you can get the performance even better than with the above theoretically optimal
1990 implementation. Though, those two functions actually calculate cross-correlation, not convolution,
1991 so you need to "flip" the second convolution operand B vertically and horizontally using flip .
1992 @note
1993 -   An example using the discrete fourier transform can be found at
1994     opencv_source_code/samples/cpp/dft.cpp
1995 -   (Python) An example using the dft functionality to perform Wiener deconvolution can be found
1996     at opencv_source/samples/python2/deconvolution.py
1997 -   (Python) An example rearranging the quadrants of a Fourier image can be found at
1998     opencv_source/samples/python2/dft.py
1999 @param src input array that could be real or complex.
2000 @param dst output array whose size and type depends on the flags .
2001 @param flags transformation flags, representing a combination of the cv::DftFlags
2002 @param nonzeroRows when the parameter is not zero, the function assumes that only the first
2003 nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first nonzeroRows of the
2004 output array (DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the
2005 rows more efficiently and save some time; this technique is very useful for calculating array
2006 cross-correlation or convolution using DFT.
2007 @sa dct , getOptimalDFTSize , mulSpectrums, filter2D , matchTemplate , flip , cartToPolar ,
2008 magnitude , phase
2009 */
2010 CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
2011 
2012 /** @brief Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
2013 
2014 idft(src, dst, flags) is equivalent to dft(src, dst, flags | DFT_INVERSE) .
2015 @note None of dft and idft scales the result by default. So, you should pass DFT_SCALE to one of
2016 dft or idft explicitly to make these transforms mutually inverse.
2017 @sa dft, dct, idct, mulSpectrums, getOptimalDFTSize
2018 @param src input floating-point real or complex array.
2019 @param dst output array whose size and type depend on the flags.
2020 @param flags operation flags (see dft and cv::DftFlags).
2021 @param nonzeroRows number of dst rows to process; the rest of the rows have undefined content (see
2022 the convolution sample in dft description.
2023 */
2024 CV_EXPORTS_W void idft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
2025 
2026 /** @brief Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
2027 
2028 The function dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D
2029 floating-point array:
2030 -   Forward Cosine transform of a 1D vector of N elements:
2031     \f[Y = C^{(N)}  \cdot X\f]
2032     where
2033     \f[C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )\f]
2034     and
2035     \f$\alpha_0=1\f$, \f$\alpha_j=2\f$ for *j \> 0*.
2036 -   Inverse Cosine transform of a 1D vector of N elements:
2037     \f[X =  \left (C^{(N)} \right )^{-1}  \cdot Y =  \left (C^{(N)} \right )^T  \cdot Y\f]
2038     (since \f$C^{(N)}\f$ is an orthogonal matrix, \f$C^{(N)} \cdot \left(C^{(N)}\right)^T = I\f$ )
2039 -   Forward 2D Cosine transform of M x N matrix:
2040     \f[Y = C^{(N)}  \cdot X  \cdot \left (C^{(N)} \right )^T\f]
2041 -   Inverse 2D Cosine transform of M x N matrix:
2042     \f[X =  \left (C^{(N)} \right )^T  \cdot X  \cdot C^{(N)}\f]
2043 
2044 The function chooses the mode of operation by looking at the flags and size of the input array:
2045 -   If (flags & DCT_INVERSE) == 0 , the function does a forward 1D or 2D transform. Otherwise, it
2046     is an inverse 1D or 2D transform.
2047 -   If (flags & DCT_ROWS) != 0 , the function performs a 1D transform of each row.
2048 -   If the array is a single column or a single row, the function performs a 1D transform.
2049 -   If none of the above is true, the function performs a 2D transform.
2050 
2051 @note Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you
2052 can pad the array when necessary.
2053 Also, the function performance depends very much, and not monotonically, on the array size (see
2054 getOptimalDFTSize ). In the current implementation DCT of a vector of size N is calculated via DFT
2055 of a vector of size N/2 . Thus, the optimal DCT size N1 \>= N can be calculated as:
2056 @code
2057     size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
2058     N1 = getOptimalDCTSize(N);
2059 @endcode
2060 @param src input floating-point array.
2061 @param dst output array of the same size and type as src .
2062 @param flags transformation flags as a combination of cv::DftFlags (DCT_*)
2063 @sa dft , getOptimalDFTSize , idct
2064 */
2065 CV_EXPORTS_W void dct(InputArray src, OutputArray dst, int flags = 0);
2066 
2067 /** @brief Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
2068 
2069 idct(src, dst, flags) is equivalent to dct(src, dst, flags | DCT_INVERSE).
2070 @param src input floating-point single-channel array.
2071 @param dst output array of the same size and type as src.
2072 @param flags operation flags.
2073 @sa  dct, dft, idft, getOptimalDFTSize
2074 */
2075 CV_EXPORTS_W void idct(InputArray src, OutputArray dst, int flags = 0);
2076 
2077 /** @brief Performs the per-element multiplication of two Fourier spectrums.
2078 
2079 The function mulSpectrums performs the per-element multiplication of the two CCS-packed or complex
2080 matrices that are results of a real or complex Fourier transform.
2081 
2082 The function, together with dft and idft , may be used to calculate convolution (pass conjB=false )
2083 or correlation (pass conjB=true ) of two arrays rapidly. When the arrays are complex, they are
2084 simply multiplied (per element) with an optional conjugation of the second-array elements. When the
2085 arrays are real, they are assumed to be CCS-packed (see dft for details).
2086 @param a first input array.
2087 @param b second input array of the same size and type as src1 .
2088 @param c output array of the same size and type as src1 .
2089 @param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
2090 each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
2091 @param conjB optional flag that conjugates the second input array before the multiplication (true)
2092 or not (false).
2093 */
2094 CV_EXPORTS_W void mulSpectrums(InputArray a, InputArray b, OutputArray c,
2095                                int flags, bool conjB = false);
2096 
2097 /** @brief Returns the optimal DFT size for a given vector size.
2098 
2099 DFT performance is not a monotonic function of a vector size. Therefore, when you calculate
2100 convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to
2101 pad the input data with zeros to get a bit larger array that can be transformed much faster than the
2102 original one. Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process.
2103 Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5\*5\*3\*2\*2)
2104 are also processed quite efficiently.
2105 
2106 The function getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize
2107 so that the DFT of a vector of size N can be processed efficiently. In the current implementation N
2108 = 2 ^p^ \* 3 ^q^ \* 5 ^r^ for some integer p, q, r.
2109 
2110 The function returns a negative number if vecsize is too large (very close to INT_MAX ).
2111 
2112 While the function cannot be used directly to estimate the optimal vector size for DCT transform
2113 (since the current DCT implementation supports only even-size vectors), it can be easily processed
2114 as getOptimalDFTSize((vecsize+1)/2)\*2.
2115 @param vecsize vector size.
2116 @sa dft , dct , idft , idct , mulSpectrums
2117 */
2118 CV_EXPORTS_W int getOptimalDFTSize(int vecsize);
2119 
2120 /** @brief Returns the default random number generator.
2121 
2122 The function theRNG returns the default random number generator. For each thread, there is a
2123 separate random number generator, so you can use the function safely in multi-thread environments.
2124 If you just need to get a single random number using this generator or initialize an array, you can
2125 use randu or randn instead. But if you are going to generate many random numbers inside a loop, it
2126 is much faster to use this function to retrieve the generator and then use RNG::operator _Tp() .
2127 @sa RNG, randu, randn
2128 */
2129 CV_EXPORTS RNG& theRNG();
2130 
2131 /** @brief Generates a single uniformly-distributed random number or an array of random numbers.
2132 
2133 Non-template variant of the function fills the matrix dst with uniformly-distributed
2134 random numbers from the specified range:
2135 \f[\texttt{low} _c  \leq \texttt{dst} (I)_c <  \texttt{high} _c\f]
2136 @param dst output array of random numbers; the array must be pre-allocated.
2137 @param low inclusive lower boundary of the generated random numbers.
2138 @param high exclusive upper boundary of the generated random numbers.
2139 @sa RNG, randn, theRNG
2140 */
2141 CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high);
2142 
2143 /** @brief Fills the array with normally distributed random numbers.
2144 
2145 The function randn fills the matrix dst with normally distributed random numbers with the specified
2146 mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the
2147 value range of the output array data type.
2148 @param dst output array of random numbers; the array must be pre-allocated and have 1 to 4 channels.
2149 @param mean mean value (expectation) of the generated random numbers.
2150 @param stddev standard deviation of the generated random numbers; it can be either a vector (in
2151 which case a diagonal standard deviation matrix is assumed) or a square matrix.
2152 @sa RNG, randu
2153 */
2154 CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev);
2155 
2156 /** @brief Shuffles the array elements randomly.
2157 
2158 The function randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and
2159 swapping them. The number of such swap operations will be dst.rows\*dst.cols\*iterFactor .
2160 @param dst input/output numerical 1D array.
2161 @param iterFactor scale factor that determines the number of random swap operations (see the details
2162 below).
2163 @param rng optional random number generator used for shuffling; if it is zero, theRNG () is used
2164 instead.
2165 @sa RNG, sort
2166 */
2167 CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0);
2168 
2169 /** @brief Principal Component Analysis
2170 
2171 The class is used to calculate a special basis for a set of vectors. The
2172 basis will consist of eigenvectors of the covariance matrix calculated
2173 from the input set of vectors. The class %PCA can also transform
2174 vectors to/from the new coordinate space defined by the basis. Usually,
2175 in this new coordinate system, each vector from the original set (and
2176 any linear combination of such vectors) can be quite accurately
2177 approximated by taking its first few components, corresponding to the
2178 eigenvectors of the largest eigenvalues of the covariance matrix.
2179 Geometrically it means that you calculate a projection of the vector to
2180 a subspace formed by a few eigenvectors corresponding to the dominant
2181 eigenvalues of the covariance matrix. And usually such a projection is
2182 very close to the original vector. So, you can represent the original
2183 vector from a high-dimensional space with a much shorter vector
2184 consisting of the projected vector's coordinates in the subspace. Such a
2185 transformation is also known as Karhunen-Loeve Transform, or KLT.
2186 See http://en.wikipedia.org/wiki/Principal_component_analysis
2187 
2188 The sample below is the function that takes two matrices. The first
2189 function stores a set of vectors (a row per vector) that is used to
2190 calculate PCA. The second function stores another "test" set of vectors
2191 (a row per vector). First, these vectors are compressed with PCA, then
2192 reconstructed back, and then the reconstruction error norm is computed
2193 and printed for each vector. :
2194 
2195 @code{.cpp}
2196 using namespace cv;
2197 
2198 PCA compressPCA(const Mat& pcaset, int maxComponents,
2199                 const Mat& testset, Mat& compressed)
2200 {
2201     PCA pca(pcaset, // pass the data
2202             Mat(), // we do not have a pre-computed mean vector,
2203                    // so let the PCA engine to compute it
2204             PCA::DATA_AS_ROW, // indicate that the vectors
2205                                 // are stored as matrix rows
2206                                 // (use PCA::DATA_AS_COL if the vectors are
2207                                 // the matrix columns)
2208             maxComponents // specify, how many principal components to retain
2209             );
2210     // if there is no test data, just return the computed basis, ready-to-use
2211     if( !testset.data )
2212         return pca;
2213     CV_Assert( testset.cols == pcaset.cols );
2214 
2215     compressed.create(testset.rows, maxComponents, testset.type());
2216 
2217     Mat reconstructed;
2218     for( int i = 0; i < testset.rows; i++ )
2219     {
2220         Mat vec = testset.row(i), coeffs = compressed.row(i), reconstructed;
2221         // compress the vector, the result will be stored
2222         // in the i-th row of the output matrix
2223         pca.project(vec, coeffs);
2224         // and then reconstruct it
2225         pca.backProject(coeffs, reconstructed);
2226         // and measure the error
2227         printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2));
2228     }
2229     return pca;
2230 }
2231 @endcode
2232 @sa calcCovarMatrix, mulTransposed, SVD, dft, dct
2233 */
2234 class CV_EXPORTS PCA
2235 {
2236 public:
2237     enum Flags { DATA_AS_ROW = 0, //!< indicates that the input samples are stored as matrix rows
2238                  DATA_AS_COL = 1, //!< indicates that the input samples are stored as matrix columns
2239                  USE_AVG     = 2  //!
2240                };
2241 
2242     /** @brief default constructor
2243 
2244     The default constructor initializes an empty %PCA structure. The other
2245     constructors initialize the structure and call PCA::operator()().
2246     */
2247     PCA();
2248 
2249     /** @overload
2250     @param data input samples stored as matrix rows or matrix columns.
2251     @param mean optional mean value; if the matrix is empty (@c noArray()),
2252     the mean is computed from the data.
2253     @param flags operation flags; currently the parameter is only used to
2254     specify the data layout (PCA::Flags)
2255     @param maxComponents maximum number of components that %PCA should
2256     retain; by default, all the components are retained.
2257     */
2258     PCA(InputArray data, InputArray mean, int flags, int maxComponents = 0);
2259 
2260     /** @overload
2261     @param data input samples stored as matrix rows or matrix columns.
2262     @param mean optional mean value; if the matrix is empty (noArray()),
2263     the mean is computed from the data.
2264     @param flags operation flags; currently the parameter is only used to
2265     specify the data layout (PCA::Flags)
2266     @param retainedVariance Percentage of variance that PCA should retain.
2267     Using this parameter will let the PCA decided how many components to
2268     retain but it will always keep at least 2.
2269     */
2270     PCA(InputArray data, InputArray mean, int flags, double retainedVariance);
2271 
2272     /** @brief performs %PCA
2273 
2274     The operator performs %PCA of the supplied dataset. It is safe to reuse
2275     the same PCA structure for multiple datasets. That is, if the structure
2276     has been previously used with another dataset, the existing internal
2277     data is reclaimed and the new eigenvalues, @ref eigenvectors , and @ref
2278     mean are allocated and computed.
2279 
2280     The computed eigenvalues are sorted from the largest to the smallest and
2281     the corresponding eigenvectors are stored as eigenvectors rows.
2282 
2283     @param data input samples stored as the matrix rows or as the matrix
2284     columns.
2285     @param mean optional mean value; if the matrix is empty (noArray()),
2286     the mean is computed from the data.
2287     @param flags operation flags; currently the parameter is only used to
2288     specify the data layout. (Flags)
2289     @param maxComponents maximum number of components that PCA should
2290     retain; by default, all the components are retained.
2291     */
2292     PCA& operator()(InputArray data, InputArray mean, int flags, int maxComponents = 0);
2293 
2294     /** @overload
2295     @param data input samples stored as the matrix rows or as the matrix
2296     columns.
2297     @param mean optional mean value; if the matrix is empty (noArray()),
2298     the mean is computed from the data.
2299     @param flags operation flags; currently the parameter is only used to
2300     specify the data layout. (PCA::Flags)
2301     @param retainedVariance Percentage of variance that %PCA should retain.
2302     Using this parameter will let the %PCA decided how many components to
2303     retain but it will always keep at least 2.
2304      */
2305     PCA& operator()(InputArray data, InputArray mean, int flags, double retainedVariance);
2306 
2307     /** @brief Projects vector(s) to the principal component subspace.
2308 
2309     The methods project one or more vectors to the principal component
2310     subspace, where each vector projection is represented by coefficients in
2311     the principal component basis. The first form of the method returns the
2312     matrix that the second form writes to the result. So the first form can
2313     be used as a part of expression while the second form can be more
2314     efficient in a processing loop.
2315     @param vec input vector(s); must have the same dimensionality and the
2316     same layout as the input data used at %PCA phase, that is, if
2317     DATA_AS_ROW are specified, then `vec.cols==data.cols`
2318     (vector dimensionality) and `vec.rows` is the number of vectors to
2319     project, and the same is true for the PCA::DATA_AS_COL case.
2320     */
2321     Mat project(InputArray vec) const;
2322 
2323     /** @overload
2324     @param vec input vector(s); must have the same dimensionality and the
2325     same layout as the input data used at PCA phase, that is, if
2326     DATA_AS_ROW are specified, then `vec.cols==data.cols`
2327     (vector dimensionality) and `vec.rows` is the number of vectors to
2328     project, and the same is true for the PCA::DATA_AS_COL case.
2329     @param result output vectors; in case of PCA::DATA_AS_COL, the
2330     output matrix has as many columns as the number of input vectors, this
2331     means that `result.cols==vec.cols` and the number of rows match the
2332     number of principal components (for example, `maxComponents` parameter
2333     passed to the constructor).
2334      */
2335     void project(InputArray vec, OutputArray result) const;
2336 
2337     /** @brief Reconstructs vectors from their PC projections.
2338 
2339     The methods are inverse operations to PCA::project. They take PC
2340     coordinates of projected vectors and reconstruct the original vectors.
2341     Unless all the principal components have been retained, the
2342     reconstructed vectors are different from the originals. But typically,
2343     the difference is small if the number of components is large enough (but
2344     still much smaller than the original vector dimensionality). As a
2345     result, PCA is used.
2346     @param vec coordinates of the vectors in the principal component
2347     subspace, the layout and size are the same as of PCA::project output
2348     vectors.
2349      */
2350     Mat backProject(InputArray vec) const;
2351 
2352     /** @overload
2353     @param vec coordinates of the vectors in the principal component
2354     subspace, the layout and size are the same as of PCA::project output
2355     vectors.
2356     @param result reconstructed vectors; the layout and size are the same as
2357     of PCA::project input vectors.
2358      */
2359     void backProject(InputArray vec, OutputArray result) const;
2360 
2361     /** @brief write and load PCA matrix
2362 
2363 */
2364     void write(FileStorage& fs ) const;
2365     void read(const FileNode& fs);
2366 
2367     Mat eigenvectors; //!< eigenvectors of the covariation matrix
2368     Mat eigenvalues; //!< eigenvalues of the covariation matrix
2369     Mat mean; //!< mean value subtracted before the projection and added after the back projection
2370 };
2371 
2372 /** @example pca.cpp
2373   An example using %PCA for dimensionality reduction while maintaining an amount of variance
2374  */
2375 
2376 /**
2377    @brief Linear Discriminant Analysis
2378    @todo document this class
2379  */
2380 class CV_EXPORTS LDA
2381 {
2382 public:
2383     /** @brief constructor
2384     Initializes a LDA with num_components (default 0) and specifies how
2385     samples are aligned (default dataAsRow=true).
2386     */
2387     explicit LDA(int num_components = 0);
2388 
2389     /** Initializes and performs a Discriminant Analysis with Fisher's
2390      Optimization Criterion on given data in src and corresponding labels
2391      in labels. If 0 (or less) number of components are given, they are
2392      automatically determined for given data in computation.
2393     */
2394     LDA(InputArrayOfArrays src, InputArray labels, int num_components = 0);
2395 
2396     /** Serializes this object to a given filename.
2397       */
2398     void save(const String& filename) const;
2399 
2400     /** Deserializes this object from a given filename.
2401       */
2402     void load(const String& filename);
2403 
2404     /** Serializes this object to a given cv::FileStorage.
2405       */
2406     void save(FileStorage& fs) const;
2407 
2408     /** Deserializes this object from a given cv::FileStorage.
2409       */
2410     void load(const FileStorage& node);
2411 
2412     /** destructor
2413       */
2414     ~LDA();
2415 
2416     /** Compute the discriminants for data in src and labels.
2417       */
2418     void compute(InputArrayOfArrays src, InputArray labels);
2419 
2420     /** Projects samples into the LDA subspace.
2421       */
2422     Mat project(InputArray src);
2423 
2424     /** Reconstructs projections from the LDA subspace.
2425       */
2426     Mat reconstruct(InputArray src);
2427 
2428     /** Returns the eigenvectors of this LDA.
2429       */
eigenvectors() const2430     Mat eigenvectors() const { return _eigenvectors; }
2431 
2432     /** Returns the eigenvalues of this LDA.
2433       */
eigenvalues() const2434     Mat eigenvalues() const { return _eigenvalues; }
2435 
2436     static Mat subspaceProject(InputArray W, InputArray mean, InputArray src);
2437     static Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src);
2438 
2439 protected:
2440     bool _dataAsRow;
2441     int _num_components;
2442     Mat _eigenvectors;
2443     Mat _eigenvalues;
2444 
2445     void lda(InputArrayOfArrays src, InputArray labels);
2446 };
2447 
2448 /** @brief Singular Value Decomposition
2449 
2450 Class for computing Singular Value Decomposition of a floating-point
2451 matrix. The Singular Value Decomposition is used to solve least-square
2452 problems, under-determined linear systems, invert matrices, compute
2453 condition numbers, and so on.
2454 
2455 If you want to compute a condition number of a matrix or an absolute value of
2456 its determinant, you do not need `u` and `vt`. You can pass
2457 flags=SVD::NO_UV|... . Another flag SVD::FULL_UV indicates that full-size u
2458 and vt must be computed, which is not necessary most of the time.
2459 
2460 @sa invert, solve, eigen, determinant
2461 */
2462 class CV_EXPORTS SVD
2463 {
2464 public:
2465     enum Flags {
2466         /** allow the algorithm to modify the decomposed matrix; it can save space and speed up
2467             processing. currently ignored. */
2468         MODIFY_A = 1,
2469         /** indicates that only a vector of singular values `w` is to be processed, while u and vt
2470             will be set to empty matrices */
2471         NO_UV    = 2,
2472         /** when the matrix is not square, by default the algorithm produces u and vt matrices of
2473             sufficiently large size for the further A reconstruction; if, however, FULL_UV flag is
2474             specified, u and vt will be full-size square orthogonal matrices.*/
2475         FULL_UV  = 4
2476     };
2477 
2478     /** @brief the default constructor
2479 
2480     initializes an empty SVD structure
2481       */
2482     SVD();
2483 
2484     /** @overload
2485     initializes an empty SVD structure and then calls SVD::operator()
2486     @param src decomposed matrix.
2487     @param flags operation flags (SVD::Flags)
2488       */
2489     SVD( InputArray src, int flags = 0 );
2490 
2491     /** @brief the operator that performs SVD. The previously allocated u, w and vt are released.
2492 
2493     The operator performs the singular value decomposition of the supplied
2494     matrix. The u,`vt` , and the vector of singular values w are stored in
2495     the structure. The same SVD structure can be reused many times with
2496     different matrices. Each time, if needed, the previous u,`vt` , and w
2497     are reclaimed and the new matrices are created, which is all handled by
2498     Mat::create.
2499     @param src decomposed matrix.
2500     @param flags operation flags (SVD::Flags)
2501       */
2502     SVD& operator ()( InputArray src, int flags = 0 );
2503 
2504     /** @brief decomposes matrix and stores the results to user-provided matrices
2505 
2506     The methods/functions perform SVD of matrix. Unlike SVD::SVD constructor
2507     and SVD::operator(), they store the results to the user-provided
2508     matrices:
2509 
2510     @code{.cpp}
2511     Mat A, w, u, vt;
2512     SVD::compute(A, w, u, vt);
2513     @endcode
2514 
2515     @param src decomposed matrix
2516     @param w calculated singular values
2517     @param u calculated left singular vectors
2518     @param vt transposed matrix of right singular values
2519     @param flags operation flags - see SVD::SVD.
2520       */
2521     static void compute( InputArray src, OutputArray w,
2522                          OutputArray u, OutputArray vt, int flags = 0 );
2523 
2524     /** @overload
2525     computes singular values of a matrix
2526     @param src decomposed matrix
2527     @param w calculated singular values
2528     @param flags operation flags - see SVD::Flags.
2529       */
2530     static void compute( InputArray src, OutputArray w, int flags = 0 );
2531 
2532     /** @brief performs back substitution
2533       */
2534     static void backSubst( InputArray w, InputArray u,
2535                            InputArray vt, InputArray rhs,
2536                            OutputArray dst );
2537 
2538     /** @brief solves an under-determined singular linear system
2539 
2540     The method finds a unit-length solution x of a singular linear system
2541     A\*x = 0. Depending on the rank of A, there can be no solutions, a
2542     single solution or an infinite number of solutions. In general, the
2543     algorithm solves the following problem:
2544     \f[dst =  \arg \min _{x:  \| x \| =1}  \| src  \cdot x  \|\f]
2545     @param src left-hand-side matrix.
2546     @param dst found solution.
2547       */
2548     static void solveZ( InputArray src, OutputArray dst );
2549 
2550     /** @brief performs a singular value back substitution.
2551 
2552     The method calculates a back substitution for the specified right-hand
2553     side:
2554 
2555     \f[\texttt{x} =  \texttt{vt} ^T  \cdot diag( \texttt{w} )^{-1}  \cdot \texttt{u} ^T  \cdot \texttt{rhs} \sim \texttt{A} ^{-1}  \cdot \texttt{rhs}\f]
2556 
2557     Using this technique you can either get a very accurate solution of the
2558     convenient linear system, or the best (in the least-squares terms)
2559     pseudo-solution of an overdetermined linear system.
2560 
2561     @param rhs right-hand side of a linear system (u\*w\*v')\*dst = rhs to
2562     be solved, where A has been previously decomposed.
2563 
2564     @param dst found solution of the system.
2565 
2566     @note Explicit SVD with the further back substitution only makes sense
2567     if you need to solve many linear systems with the same left-hand side
2568     (for example, src ). If all you need is to solve a single system
2569     (possibly with multiple rhs immediately available), simply call solve
2570     add pass DECOMP_SVD there. It does absolutely the same thing.
2571       */
2572     void backSubst( InputArray rhs, OutputArray dst ) const;
2573 
2574     /** @todo document */
2575     template<typename _Tp, int m, int n, int nm> static
2576     void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt );
2577 
2578     /** @todo document */
2579     template<typename _Tp, int m, int n, int nm> static
2580     void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w );
2581 
2582     /** @todo document */
2583     template<typename _Tp, int m, int n, int nm, int nb> static
2584     void backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u, const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, Matx<_Tp, n, nb>& dst );
2585 
2586     Mat u, w, vt;
2587 };
2588 
2589 /** @brief Random Number Generator
2590 
2591 Random number generator. It encapsulates the state (currently, a 64-bit
2592 integer) and has methods to return scalar random values and to fill
2593 arrays with random values. Currently it supports uniform and Gaussian
2594 (normal) distributions. The generator uses Multiply-With-Carry
2595 algorithm, introduced by G. Marsaglia (
2596 <http://en.wikipedia.org/wiki/Multiply-with-carry> ).
2597 Gaussian-distribution random numbers are generated using the Ziggurat
2598 algorithm ( <http://en.wikipedia.org/wiki/Ziggurat_algorithm> ),
2599 introduced by G. Marsaglia and W. W. Tsang.
2600 */
2601 class CV_EXPORTS RNG
2602 {
2603 public:
2604     enum { UNIFORM = 0,
2605            NORMAL  = 1
2606          };
2607 
2608     /** @brief constructor
2609 
2610     These are the RNG constructors. The first form sets the state to some
2611     pre-defined value, equal to 2\*\*32-1 in the current implementation. The
2612     second form sets the state to the specified value. If you passed state=0
2613     , the constructor uses the above default value instead to avoid the
2614     singular random number sequence, consisting of all zeros.
2615     */
2616     RNG();
2617     /** @overload
2618     @param state 64-bit value used to initialize the RNG.
2619     */
2620     RNG(uint64 state);
2621     /**The method updates the state using the MWC algorithm and returns the
2622     next 32-bit random number.*/
2623     unsigned next();
2624 
2625     /**Each of the methods updates the state using the MWC algorithm and
2626     returns the next random number of the specified type. In case of integer
2627     types, the returned number is from the available value range for the
2628     specified type. In case of floating-point types, the returned value is
2629     from [0,1) range.
2630     */
2631     operator uchar();
2632     /** @overload */
2633     operator schar();
2634     /** @overload */
2635     operator ushort();
2636     /** @overload */
2637     operator short();
2638     /** @overload */
2639     operator unsigned();
2640     /** @overload */
2641     operator int();
2642     /** @overload */
2643     operator float();
2644     /** @overload */
2645     operator double();
2646 
2647     /** @brief returns a random integer sampled uniformly from [0, N).
2648 
2649     The methods transform the state using the MWC algorithm and return the
2650     next random number. The first form is equivalent to RNG::next . The
2651     second form returns the random number modulo N , which means that the
2652     result is in the range [0, N) .
2653     */
2654     unsigned operator ()();
2655     /** @overload
2656     @param N upper non-inclusive boundary of the returned random number.
2657     */
2658     unsigned operator ()(unsigned N);
2659 
2660     /** @brief returns uniformly distributed integer random number from [a,b) range
2661 
2662     The methods transform the state using the MWC algorithm and return the
2663     next uniformly-distributed random number of the specified type, deduced
2664     from the input parameter type, from the range [a, b) . There is a nuance
2665     illustrated by the following sample:
2666 
2667     @code{.cpp}
2668     RNG rng;
2669 
2670     // always produces 0
2671     double a = rng.uniform(0, 1);
2672 
2673     // produces double from [0, 1)
2674     double a1 = rng.uniform((double)0, (double)1);
2675 
2676     // produces float from [0, 1)
2677     double b = rng.uniform(0.f, 1.f);
2678 
2679     // produces double from [0, 1)
2680     double c = rng.uniform(0., 1.);
2681 
2682     // may cause compiler error because of ambiguity:
2683     //  RNG::uniform(0, (int)0.999999)? or RNG::uniform((double)0, 0.99999)?
2684     double d = rng.uniform(0, 0.999999);
2685     @endcode
2686 
2687     The compiler does not take into account the type of the variable to
2688     which you assign the result of RNG::uniform . The only thing that
2689     matters to the compiler is the type of a and b parameters. So, if you
2690     want a floating-point random number, but the range boundaries are
2691     integer numbers, either put dots in the end, if they are constants, or
2692     use explicit type cast operators, as in the a1 initialization above.
2693     @param a lower inclusive boundary of the returned random numbers.
2694     @param b upper non-inclusive boundary of the returned random numbers.
2695       */
2696     int uniform(int a, int b);
2697     /** @overload */
2698     float uniform(float a, float b);
2699     /** @overload */
2700     double uniform(double a, double b);
2701 
2702     /** @brief Fills arrays with random numbers.
2703 
2704     @param mat 2D or N-dimensional matrix; currently matrices with more than
2705     4 channels are not supported by the methods, use Mat::reshape as a
2706     possible workaround.
2707     @param distType distribution type, RNG::UNIFORM or RNG::NORMAL.
2708     @param a first distribution parameter; in case of the uniform
2709     distribution, this is an inclusive lower boundary, in case of the normal
2710     distribution, this is a mean value.
2711     @param b second distribution parameter; in case of the uniform
2712     distribution, this is a non-inclusive upper boundary, in case of the
2713     normal distribution, this is a standard deviation (diagonal of the
2714     standard deviation matrix or the full standard deviation matrix).
2715     @param saturateRange pre-saturation flag; for uniform distribution only;
2716     if true, the method will first convert a and b to the acceptable value
2717     range (according to the mat datatype) and then will generate uniformly
2718     distributed random numbers within the range [saturate(a), saturate(b)),
2719     if saturateRange=false, the method will generate uniformly distributed
2720     random numbers in the original range [a, b) and then will saturate them,
2721     it means, for example, that
2722     <tt>theRNG().fill(mat_8u, RNG::UNIFORM, -DBL_MAX, DBL_MAX)</tt> will likely
2723     produce array mostly filled with 0's and 255's, since the range (0, 255)
2724     is significantly smaller than [-DBL_MAX, DBL_MAX).
2725 
2726     Each of the methods fills the matrix with the random values from the
2727     specified distribution. As the new numbers are generated, the RNG state
2728     is updated accordingly. In case of multiple-channel images, every
2729     channel is filled independently, which means that RNG cannot generate
2730     samples from the multi-dimensional Gaussian distribution with
2731     non-diagonal covariance matrix directly. To do that, the method
2732     generates samples from multi-dimensional standard Gaussian distribution
2733     with zero mean and identity covariation matrix, and then transforms them
2734     using transform to get samples from the specified Gaussian distribution.
2735     */
2736     void fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange = false );
2737 
2738     /** @brief Returns the next random number sampled from the Gaussian distribution
2739     @param sigma standard deviation of the distribution.
2740 
2741     The method transforms the state using the MWC algorithm and returns the
2742     next random number from the Gaussian distribution N(0,sigma) . That is,
2743     the mean value of the returned random numbers is zero and the standard
2744     deviation is the specified sigma .
2745     */
2746     double gaussian(double sigma);
2747 
2748     uint64 state;
2749 };
2750 
2751 /** @brief Mersenne Twister random number generator
2752 
2753 Inspired by http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c
2754 @todo document
2755  */
2756 class CV_EXPORTS RNG_MT19937
2757 {
2758 public:
2759     RNG_MT19937();
2760     RNG_MT19937(unsigned s);
2761     void seed(unsigned s);
2762 
2763     unsigned next();
2764 
2765     operator int();
2766     operator unsigned();
2767     operator float();
2768     operator double();
2769 
2770     unsigned operator ()(unsigned N);
2771     unsigned operator ()();
2772 
2773     /** @brief returns uniformly distributed integer random number from [a,b) range
2774 
2775 */
2776     int uniform(int a, int b);
2777     /** @brief returns uniformly distributed floating-point random number from [a,b) range
2778 
2779 */
2780     float uniform(float a, float b);
2781     /** @brief returns uniformly distributed double-precision floating-point random number from [a,b) range
2782 
2783 */
2784     double uniform(double a, double b);
2785 
2786 private:
2787     enum PeriodParameters {N = 624, M = 397};
2788     unsigned state[N];
2789     int mti;
2790 };
2791 
2792 //! @} core_array
2793 
2794 //! @addtogroup core_cluster
2795 //!  @{
2796 
2797 /** @example kmeans.cpp
2798   An example on K-means clustering
2799 */
2800 
2801 /** @brief Finds centers of clusters and groups input samples around the clusters.
2802 
2803 The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters
2804 and groups the input samples around the clusters. As an output, \f$\texttt{labels}_i\f$ contains a
2805 0-based cluster index for the sample stored in the \f$i^{th}\f$ row of the samples matrix.
2806 
2807 @note
2808 -   (Python) An example on K-means clustering can be found at
2809     opencv_source_code/samples/python2/kmeans.py
2810 @param data Data for clustering. An array of N-Dimensional points with float coordinates is needed.
2811 Examples of this array can be:
2812 -   Mat points(count, 2, CV_32F);
2813 -   Mat points(count, 1, CV_32FC2);
2814 -   Mat points(1, count, CV_32FC2);
2815 -   std::vector\<cv::Point2f\> points(sampleCount);
2816 @param K Number of clusters to split the set by.
2817 @param bestLabels Input/output integer array that stores the cluster indices for every sample.
2818 @param criteria The algorithm termination criteria, that is, the maximum number of iterations and/or
2819 the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster
2820 centers moves by less than criteria.epsilon on some iteration, the algorithm stops.
2821 @param attempts Flag to specify the number of times the algorithm is executed using different
2822 initial labellings. The algorithm returns the labels that yield the best compactness (see the last
2823 function parameter).
2824 @param flags Flag that can take values of cv::KmeansFlags
2825 @param centers Output matrix of the cluster centers, one row per each cluster center.
2826 @return The function returns the compactness measure that is computed as
2827 \f[\sum _i  \| \texttt{samples} _i -  \texttt{centers} _{ \texttt{labels} _i} \| ^2\f]
2828 after every attempt. The best (minimum) value is chosen and the corresponding labels and the
2829 compactness value are returned by the function. Basically, you can use only the core of the
2830 function, set the number of attempts to 1, initialize labels each time using a custom algorithm,
2831 pass them with the ( flags = KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best
2832 (most-compact) clustering.
2833 */
2834 CV_EXPORTS_W double kmeans( InputArray data, int K, InputOutputArray bestLabels,
2835                             TermCriteria criteria, int attempts,
2836                             int flags, OutputArray centers = noArray() );
2837 
2838 //! @} core_cluster
2839 
2840 //! @addtogroup core_basic
2841 //! @{
2842 
2843 /////////////////////////////// Formatted output of cv::Mat ///////////////////////////
2844 
2845 /** @todo document */
2846 class CV_EXPORTS Formatted
2847 {
2848 public:
2849     virtual const char* next() = 0;
2850     virtual void reset() = 0;
2851     virtual ~Formatted();
2852 };
2853 
2854 /** @todo document */
2855 class CV_EXPORTS Formatter
2856 {
2857 public:
2858     enum { FMT_DEFAULT = 0,
2859            FMT_MATLAB  = 1,
2860            FMT_CSV     = 2,
2861            FMT_PYTHON  = 3,
2862            FMT_NUMPY   = 4,
2863            FMT_C       = 5
2864          };
2865 
2866     virtual ~Formatter();
2867 
2868     virtual Ptr<Formatted> format(const Mat& mtx) const = 0;
2869 
2870     virtual void set32fPrecision(int p = 8) = 0;
2871     virtual void set64fPrecision(int p = 16) = 0;
2872     virtual void setMultiline(bool ml = true) = 0;
2873 
2874     static Ptr<Formatter> get(int fmt = FMT_DEFAULT);
2875 
2876 };
2877 
2878 //////////////////////////////////////// Algorithm ////////////////////////////////////
2879 
2880 class CV_EXPORTS Algorithm;
2881 
2882 template<typename _Tp> struct ParamType {};
2883 
2884 
2885 /** @brief This is a base class for all more or less complex algorithms in OpenCV
2886 
2887 especially for classes of algorithms, for which there can be multiple implementations. The examples
2888 are stereo correspondence (for which there are algorithms like block matching, semi-global block
2889 matching, graph-cut etc.), background subtraction (which can be done using mixture-of-gaussians
2890 models, codebook-based algorithm etc.), optical flow (block matching, Lucas-Kanade, Horn-Schunck
2891 etc.).
2892 
2893 Here is example of SIFT use in your application via Algorithm interface:
2894 @code
2895     #include "opencv2/opencv.hpp"
2896     #include "opencv2/xfeatures2d.hpp"
2897     using namespace cv::xfeatures2d;
2898 
2899     Ptr<Feature2D> sift = SIFT::create();
2900     FileStorage fs("sift_params.xml", FileStorage::READ);
2901     if( fs.isOpened() ) // if we have file with parameters, read them
2902     {
2903         sift->read(fs["sift_params"]);
2904         fs.release();
2905     }
2906     else // else modify the parameters and store them; user can later edit the file to use different parameters
2907     {
2908         sift->setContrastThreshold(0.01f); // lower the contrast threshold, compared to the default value
2909         {
2910             WriteStructContext ws(fs, "sift_params", CV_NODE_MAP);
2911             sift->write(fs);
2912         }
2913     }
2914     Mat image = imread("myimage.png", 0), descriptors;
2915     vector<KeyPoint> keypoints;
2916     sift->detectAndCompute(image, noArray(), keypoints, descriptors);
2917 @endcode
2918  */
2919 class CV_EXPORTS_W Algorithm
2920 {
2921 public:
2922     Algorithm();
2923     virtual ~Algorithm();
2924 
2925     /** @brief Clears the algorithm state
2926     */
clear()2927     CV_WRAP virtual void clear() {}
2928 
2929     /** @brief Stores algorithm parameters in a file storage
2930     */
write(FileStorage & fs) const2931     virtual void write(FileStorage& fs) const { (void)fs; }
2932 
2933     /** @brief Reads algorithm parameters from a file storage
2934     */
read(const FileNode & fn)2935     virtual void read(const FileNode& fn) { (void)fn; }
2936 
2937     /** @brief Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
2938      */
empty() const2939     virtual bool empty() const { return false; }
2940 
2941     /** @brief Reads algorithm from the file node
2942 
2943      This is static template method of Algorithm. It's usage is following (in the case of SVM):
2944      @code
2945      Ptr<SVM> svm = Algorithm::read<SVM>(fn);
2946      @endcode
2947      In order to make this method work, the derived class must overwrite Algorithm::read(const
2948      FileNode& fn) and also have static create() method without parameters
2949      (or with all the optional parameters)
2950      */
read(const FileNode & fn)2951     template<typename _Tp> static Ptr<_Tp> read(const FileNode& fn)
2952     {
2953         Ptr<_Tp> obj = _Tp::create();
2954         obj->read(fn);
2955         return !obj->empty() ? obj : Ptr<_Tp>();
2956     }
2957 
2958     /** @brief Loads algorithm from the file
2959 
2960      @param filename Name of the file to read.
2961      @param objname The optional name of the node to read (if empty, the first top-level node will be used)
2962 
2963      This is static template method of Algorithm. It's usage is following (in the case of SVM):
2964      @code
2965      Ptr<SVM> svm = Algorithm::load<SVM>("my_svm_model.xml");
2966      @endcode
2967      In order to make this method work, the derived class must overwrite Algorithm::read(const
2968      FileNode& fn).
2969      */
load(const String & filename,const String & objname=String ())2970     template<typename _Tp> static Ptr<_Tp> load(const String& filename, const String& objname=String())
2971     {
2972         FileStorage fs(filename, FileStorage::READ);
2973         FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname];
2974         Ptr<_Tp> obj = _Tp::create();
2975         obj->read(fn);
2976         return !obj->empty() ? obj : Ptr<_Tp>();
2977     }
2978 
2979     /** @brief Loads algorithm from a String
2980 
2981      @param strModel The string variable containing the model you want to load.
2982      @param objname The optional name of the node to read (if empty, the first top-level node will be used)
2983 
2984      This is static template method of Algorithm. It's usage is following (in the case of SVM):
2985      @code
2986      Ptr<SVM> svm = Algorithm::loadFromString<SVM>(myStringModel);
2987      @endcode
2988      */
loadFromString(const String & strModel,const String & objname=String ())2989     template<typename _Tp> static Ptr<_Tp> loadFromString(const String& strModel, const String& objname=String())
2990     {
2991         FileStorage fs(strModel, FileStorage::READ + FileStorage::MEMORY);
2992         FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname];
2993         Ptr<_Tp> obj = _Tp::create();
2994         obj->read(fn);
2995         return !obj->empty() ? obj : Ptr<_Tp>();
2996     }
2997 
2998     /** Saves the algorithm to a file.
2999      In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs). */
3000     CV_WRAP virtual void save(const String& filename) const;
3001 
3002     /** Returns the algorithm string identifier.
3003      This string is used as top level xml/yml node tag when the object is saved to a file or string. */
3004     CV_WRAP virtual String getDefaultName() const;
3005 };
3006 
3007 struct Param {
3008     enum { INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7,
3009            UNSIGNED_INT=8, UINT64=9, UCHAR=11 };
3010 };
3011 
3012 
3013 
3014 template<> struct ParamType<bool>
3015 {
3016     typedef bool const_param_type;
3017     typedef bool member_type;
3018 
3019     enum { type = Param::BOOLEAN };
3020 };
3021 
3022 template<> struct ParamType<int>
3023 {
3024     typedef int const_param_type;
3025     typedef int member_type;
3026 
3027     enum { type = Param::INT };
3028 };
3029 
3030 template<> struct ParamType<double>
3031 {
3032     typedef double const_param_type;
3033     typedef double member_type;
3034 
3035     enum { type = Param::REAL };
3036 };
3037 
3038 template<> struct ParamType<String>
3039 {
3040     typedef const String& const_param_type;
3041     typedef String member_type;
3042 
3043     enum { type = Param::STRING };
3044 };
3045 
3046 template<> struct ParamType<Mat>
3047 {
3048     typedef const Mat& const_param_type;
3049     typedef Mat member_type;
3050 
3051     enum { type = Param::MAT };
3052 };
3053 
3054 template<> struct ParamType<std::vector<Mat> >
3055 {
3056     typedef const std::vector<Mat>& const_param_type;
3057     typedef std::vector<Mat> member_type;
3058 
3059     enum { type = Param::MAT_VECTOR };
3060 };
3061 
3062 template<> struct ParamType<Algorithm>
3063 {
3064     typedef const Ptr<Algorithm>& const_param_type;
3065     typedef Ptr<Algorithm> member_type;
3066 
3067     enum { type = Param::ALGORITHM };
3068 };
3069 
3070 template<> struct ParamType<float>
3071 {
3072     typedef float const_param_type;
3073     typedef float member_type;
3074 
3075     enum { type = Param::FLOAT };
3076 };
3077 
3078 template<> struct ParamType<unsigned>
3079 {
3080     typedef unsigned const_param_type;
3081     typedef unsigned member_type;
3082 
3083     enum { type = Param::UNSIGNED_INT };
3084 };
3085 
3086 template<> struct ParamType<uint64>
3087 {
3088     typedef uint64 const_param_type;
3089     typedef uint64 member_type;
3090 
3091     enum { type = Param::UINT64 };
3092 };
3093 
3094 template<> struct ParamType<uchar>
3095 {
3096     typedef uchar const_param_type;
3097     typedef uchar member_type;
3098 
3099     enum { type = Param::UCHAR };
3100 };
3101 
3102 //! @} core_basic
3103 
3104 } //namespace cv
3105 
3106 #include "opencv2/core/operations.hpp"
3107 #include "opencv2/core/cvstd.inl.hpp"
3108 #include "opencv2/core/utility.hpp"
3109 #include "opencv2/core/optim.hpp"
3110 
3111 #endif /*__OPENCV_CORE_HPP__*/
3112