• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for C++ declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/CXXFieldCollector.h"
33 #include "clang/Sema/DeclSpec.h"
34 #include "clang/Sema/Initialization.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedTemplate.h"
37 #include "clang/Sema/Scope.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/Template.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/ADT/SmallString.h"
42 #include <map>
43 #include <set>
44 
45 using namespace clang;
46 
47 //===----------------------------------------------------------------------===//
48 // CheckDefaultArgumentVisitor
49 //===----------------------------------------------------------------------===//
50 
51 namespace {
52   /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
53   /// the default argument of a parameter to determine whether it
54   /// contains any ill-formed subexpressions. For example, this will
55   /// diagnose the use of local variables or parameters within the
56   /// default argument expression.
57   class CheckDefaultArgumentVisitor
58     : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
59     Expr *DefaultArg;
60     Sema *S;
61 
62   public:
CheckDefaultArgumentVisitor(Expr * defarg,Sema * s)63     CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
64       : DefaultArg(defarg), S(s) {}
65 
66     bool VisitExpr(Expr *Node);
67     bool VisitDeclRefExpr(DeclRefExpr *DRE);
68     bool VisitCXXThisExpr(CXXThisExpr *ThisE);
69     bool VisitLambdaExpr(LambdaExpr *Lambda);
70     bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
71   };
72 
73   /// VisitExpr - Visit all of the children of this expression.
VisitExpr(Expr * Node)74   bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
75     bool IsInvalid = false;
76     for (Stmt *SubStmt : Node->children())
77       IsInvalid |= Visit(SubStmt);
78     return IsInvalid;
79   }
80 
81   /// VisitDeclRefExpr - Visit a reference to a declaration, to
82   /// determine whether this declaration can be used in the default
83   /// argument expression.
VisitDeclRefExpr(DeclRefExpr * DRE)84   bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
85     NamedDecl *Decl = DRE->getDecl();
86     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
87       // C++ [dcl.fct.default]p9
88       //   Default arguments are evaluated each time the function is
89       //   called. The order of evaluation of function arguments is
90       //   unspecified. Consequently, parameters of a function shall not
91       //   be used in default argument expressions, even if they are not
92       //   evaluated. Parameters of a function declared before a default
93       //   argument expression are in scope and can hide namespace and
94       //   class member names.
95       return S->Diag(DRE->getLocStart(),
96                      diag::err_param_default_argument_references_param)
97          << Param->getDeclName() << DefaultArg->getSourceRange();
98     } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
99       // C++ [dcl.fct.default]p7
100       //   Local variables shall not be used in default argument
101       //   expressions.
102       if (VDecl->isLocalVarDecl())
103         return S->Diag(DRE->getLocStart(),
104                        diag::err_param_default_argument_references_local)
105           << VDecl->getDeclName() << DefaultArg->getSourceRange();
106     }
107 
108     return false;
109   }
110 
111   /// VisitCXXThisExpr - Visit a C++ "this" expression.
VisitCXXThisExpr(CXXThisExpr * ThisE)112   bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
113     // C++ [dcl.fct.default]p8:
114     //   The keyword this shall not be used in a default argument of a
115     //   member function.
116     return S->Diag(ThisE->getLocStart(),
117                    diag::err_param_default_argument_references_this)
118                << ThisE->getSourceRange();
119   }
120 
VisitPseudoObjectExpr(PseudoObjectExpr * POE)121   bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
122     bool Invalid = false;
123     for (PseudoObjectExpr::semantics_iterator
124            i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
125       Expr *E = *i;
126 
127       // Look through bindings.
128       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
129         E = OVE->getSourceExpr();
130         assert(E && "pseudo-object binding without source expression?");
131       }
132 
133       Invalid |= Visit(E);
134     }
135     return Invalid;
136   }
137 
VisitLambdaExpr(LambdaExpr * Lambda)138   bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
139     // C++11 [expr.lambda.prim]p13:
140     //   A lambda-expression appearing in a default argument shall not
141     //   implicitly or explicitly capture any entity.
142     if (Lambda->capture_begin() == Lambda->capture_end())
143       return false;
144 
145     return S->Diag(Lambda->getLocStart(),
146                    diag::err_lambda_capture_default_arg);
147   }
148 }
149 
150 void
CalledDecl(SourceLocation CallLoc,const CXXMethodDecl * Method)151 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
152                                                  const CXXMethodDecl *Method) {
153   // If we have an MSAny spec already, don't bother.
154   if (!Method || ComputedEST == EST_MSAny)
155     return;
156 
157   const FunctionProtoType *Proto
158     = Method->getType()->getAs<FunctionProtoType>();
159   Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
160   if (!Proto)
161     return;
162 
163   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
164 
165   // If we have a throw-all spec at this point, ignore the function.
166   if (ComputedEST == EST_None)
167     return;
168 
169   switch(EST) {
170   // If this function can throw any exceptions, make a note of that.
171   case EST_MSAny:
172   case EST_None:
173     ClearExceptions();
174     ComputedEST = EST;
175     return;
176   // FIXME: If the call to this decl is using any of its default arguments, we
177   // need to search them for potentially-throwing calls.
178   // If this function has a basic noexcept, it doesn't affect the outcome.
179   case EST_BasicNoexcept:
180     return;
181   // If we're still at noexcept(true) and there's a nothrow() callee,
182   // change to that specification.
183   case EST_DynamicNone:
184     if (ComputedEST == EST_BasicNoexcept)
185       ComputedEST = EST_DynamicNone;
186     return;
187   // Check out noexcept specs.
188   case EST_ComputedNoexcept:
189   {
190     FunctionProtoType::NoexceptResult NR =
191         Proto->getNoexceptSpec(Self->Context);
192     assert(NR != FunctionProtoType::NR_NoNoexcept &&
193            "Must have noexcept result for EST_ComputedNoexcept.");
194     assert(NR != FunctionProtoType::NR_Dependent &&
195            "Should not generate implicit declarations for dependent cases, "
196            "and don't know how to handle them anyway.");
197     // noexcept(false) -> no spec on the new function
198     if (NR == FunctionProtoType::NR_Throw) {
199       ClearExceptions();
200       ComputedEST = EST_None;
201     }
202     // noexcept(true) won't change anything either.
203     return;
204   }
205   default:
206     break;
207   }
208   assert(EST == EST_Dynamic && "EST case not considered earlier.");
209   assert(ComputedEST != EST_None &&
210          "Shouldn't collect exceptions when throw-all is guaranteed.");
211   ComputedEST = EST_Dynamic;
212   // Record the exceptions in this function's exception specification.
213   for (const auto &E : Proto->exceptions())
214     if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
215       Exceptions.push_back(E);
216 }
217 
CalledExpr(Expr * E)218 void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
219   if (!E || ComputedEST == EST_MSAny)
220     return;
221 
222   // FIXME:
223   //
224   // C++0x [except.spec]p14:
225   //   [An] implicit exception-specification specifies the type-id T if and
226   // only if T is allowed by the exception-specification of a function directly
227   // invoked by f's implicit definition; f shall allow all exceptions if any
228   // function it directly invokes allows all exceptions, and f shall allow no
229   // exceptions if every function it directly invokes allows no exceptions.
230   //
231   // Note in particular that if an implicit exception-specification is generated
232   // for a function containing a throw-expression, that specification can still
233   // be noexcept(true).
234   //
235   // Note also that 'directly invoked' is not defined in the standard, and there
236   // is no indication that we should only consider potentially-evaluated calls.
237   //
238   // Ultimately we should implement the intent of the standard: the exception
239   // specification should be the set of exceptions which can be thrown by the
240   // implicit definition. For now, we assume that any non-nothrow expression can
241   // throw any exception.
242 
243   if (Self->canThrow(E))
244     ComputedEST = EST_None;
245 }
246 
247 bool
SetParamDefaultArgument(ParmVarDecl * Param,Expr * Arg,SourceLocation EqualLoc)248 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
249                               SourceLocation EqualLoc) {
250   if (RequireCompleteType(Param->getLocation(), Param->getType(),
251                           diag::err_typecheck_decl_incomplete_type)) {
252     Param->setInvalidDecl();
253     return true;
254   }
255 
256   // C++ [dcl.fct.default]p5
257   //   A default argument expression is implicitly converted (clause
258   //   4) to the parameter type. The default argument expression has
259   //   the same semantic constraints as the initializer expression in
260   //   a declaration of a variable of the parameter type, using the
261   //   copy-initialization semantics (8.5).
262   InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
263                                                                     Param);
264   InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
265                                                            EqualLoc);
266   InitializationSequence InitSeq(*this, Entity, Kind, Arg);
267   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
268   if (Result.isInvalid())
269     return true;
270   Arg = Result.getAs<Expr>();
271 
272   CheckCompletedExpr(Arg, EqualLoc);
273   Arg = MaybeCreateExprWithCleanups(Arg);
274 
275   // Okay: add the default argument to the parameter
276   Param->setDefaultArg(Arg);
277 
278   // We have already instantiated this parameter; provide each of the
279   // instantiations with the uninstantiated default argument.
280   UnparsedDefaultArgInstantiationsMap::iterator InstPos
281     = UnparsedDefaultArgInstantiations.find(Param);
282   if (InstPos != UnparsedDefaultArgInstantiations.end()) {
283     for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
284       InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
285 
286     // We're done tracking this parameter's instantiations.
287     UnparsedDefaultArgInstantiations.erase(InstPos);
288   }
289 
290   return false;
291 }
292 
293 /// ActOnParamDefaultArgument - Check whether the default argument
294 /// provided for a function parameter is well-formed. If so, attach it
295 /// to the parameter declaration.
296 void
ActOnParamDefaultArgument(Decl * param,SourceLocation EqualLoc,Expr * DefaultArg)297 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
298                                 Expr *DefaultArg) {
299   if (!param || !DefaultArg)
300     return;
301 
302   ParmVarDecl *Param = cast<ParmVarDecl>(param);
303   UnparsedDefaultArgLocs.erase(Param);
304 
305   // Default arguments are only permitted in C++
306   if (!getLangOpts().CPlusPlus) {
307     Diag(EqualLoc, diag::err_param_default_argument)
308       << DefaultArg->getSourceRange();
309     Param->setInvalidDecl();
310     return;
311   }
312 
313   // Check for unexpanded parameter packs.
314   if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
315     Param->setInvalidDecl();
316     return;
317   }
318 
319   // C++11 [dcl.fct.default]p3
320   //   A default argument expression [...] shall not be specified for a
321   //   parameter pack.
322   if (Param->isParameterPack()) {
323     Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
324         << DefaultArg->getSourceRange();
325     return;
326   }
327 
328   // Check that the default argument is well-formed
329   CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
330   if (DefaultArgChecker.Visit(DefaultArg)) {
331     Param->setInvalidDecl();
332     return;
333   }
334 
335   SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
336 }
337 
338 /// ActOnParamUnparsedDefaultArgument - We've seen a default
339 /// argument for a function parameter, but we can't parse it yet
340 /// because we're inside a class definition. Note that this default
341 /// argument will be parsed later.
ActOnParamUnparsedDefaultArgument(Decl * param,SourceLocation EqualLoc,SourceLocation ArgLoc)342 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
343                                              SourceLocation EqualLoc,
344                                              SourceLocation ArgLoc) {
345   if (!param)
346     return;
347 
348   ParmVarDecl *Param = cast<ParmVarDecl>(param);
349   Param->setUnparsedDefaultArg();
350   UnparsedDefaultArgLocs[Param] = ArgLoc;
351 }
352 
353 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
354 /// the default argument for the parameter param failed.
ActOnParamDefaultArgumentError(Decl * param,SourceLocation EqualLoc)355 void Sema::ActOnParamDefaultArgumentError(Decl *param,
356                                           SourceLocation EqualLoc) {
357   if (!param)
358     return;
359 
360   ParmVarDecl *Param = cast<ParmVarDecl>(param);
361   Param->setInvalidDecl();
362   UnparsedDefaultArgLocs.erase(Param);
363   Param->setDefaultArg(new(Context)
364                        OpaqueValueExpr(EqualLoc,
365                                        Param->getType().getNonReferenceType(),
366                                        VK_RValue));
367 }
368 
369 /// CheckExtraCXXDefaultArguments - Check for any extra default
370 /// arguments in the declarator, which is not a function declaration
371 /// or definition and therefore is not permitted to have default
372 /// arguments. This routine should be invoked for every declarator
373 /// that is not a function declaration or definition.
CheckExtraCXXDefaultArguments(Declarator & D)374 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
375   // C++ [dcl.fct.default]p3
376   //   A default argument expression shall be specified only in the
377   //   parameter-declaration-clause of a function declaration or in a
378   //   template-parameter (14.1). It shall not be specified for a
379   //   parameter pack. If it is specified in a
380   //   parameter-declaration-clause, it shall not occur within a
381   //   declarator or abstract-declarator of a parameter-declaration.
382   bool MightBeFunction = D.isFunctionDeclarationContext();
383   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
384     DeclaratorChunk &chunk = D.getTypeObject(i);
385     if (chunk.Kind == DeclaratorChunk::Function) {
386       if (MightBeFunction) {
387         // This is a function declaration. It can have default arguments, but
388         // keep looking in case its return type is a function type with default
389         // arguments.
390         MightBeFunction = false;
391         continue;
392       }
393       for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
394            ++argIdx) {
395         ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
396         if (Param->hasUnparsedDefaultArg()) {
397           CachedTokens *Toks = chunk.Fun.Params[argIdx].DefaultArgTokens;
398           SourceRange SR;
399           if (Toks->size() > 1)
400             SR = SourceRange((*Toks)[1].getLocation(),
401                              Toks->back().getLocation());
402           else
403             SR = UnparsedDefaultArgLocs[Param];
404           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
405             << SR;
406           delete Toks;
407           chunk.Fun.Params[argIdx].DefaultArgTokens = nullptr;
408         } else if (Param->getDefaultArg()) {
409           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
410             << Param->getDefaultArg()->getSourceRange();
411           Param->setDefaultArg(nullptr);
412         }
413       }
414     } else if (chunk.Kind != DeclaratorChunk::Paren) {
415       MightBeFunction = false;
416     }
417   }
418 }
419 
functionDeclHasDefaultArgument(const FunctionDecl * FD)420 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
421   for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
422     const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
423     if (!PVD->hasDefaultArg())
424       return false;
425     if (!PVD->hasInheritedDefaultArg())
426       return true;
427   }
428   return false;
429 }
430 
431 /// MergeCXXFunctionDecl - Merge two declarations of the same C++
432 /// function, once we already know that they have the same
433 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an
434 /// error, false otherwise.
MergeCXXFunctionDecl(FunctionDecl * New,FunctionDecl * Old,Scope * S)435 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
436                                 Scope *S) {
437   bool Invalid = false;
438 
439   // The declaration context corresponding to the scope is the semantic
440   // parent, unless this is a local function declaration, in which case
441   // it is that surrounding function.
442   DeclContext *ScopeDC = New->isLocalExternDecl()
443                              ? New->getLexicalDeclContext()
444                              : New->getDeclContext();
445 
446   // Find the previous declaration for the purpose of default arguments.
447   FunctionDecl *PrevForDefaultArgs = Old;
448   for (/**/; PrevForDefaultArgs;
449        // Don't bother looking back past the latest decl if this is a local
450        // extern declaration; nothing else could work.
451        PrevForDefaultArgs = New->isLocalExternDecl()
452                                 ? nullptr
453                                 : PrevForDefaultArgs->getPreviousDecl()) {
454     // Ignore hidden declarations.
455     if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
456       continue;
457 
458     if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
459         !New->isCXXClassMember()) {
460       // Ignore default arguments of old decl if they are not in
461       // the same scope and this is not an out-of-line definition of
462       // a member function.
463       continue;
464     }
465 
466     if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
467       // If only one of these is a local function declaration, then they are
468       // declared in different scopes, even though isDeclInScope may think
469       // they're in the same scope. (If both are local, the scope check is
470       // sufficent, and if neither is local, then they are in the same scope.)
471       continue;
472     }
473 
474     // We found our guy.
475     break;
476   }
477 
478   // C++ [dcl.fct.default]p4:
479   //   For non-template functions, default arguments can be added in
480   //   later declarations of a function in the same
481   //   scope. Declarations in different scopes have completely
482   //   distinct sets of default arguments. That is, declarations in
483   //   inner scopes do not acquire default arguments from
484   //   declarations in outer scopes, and vice versa. In a given
485   //   function declaration, all parameters subsequent to a
486   //   parameter with a default argument shall have default
487   //   arguments supplied in this or previous declarations. A
488   //   default argument shall not be redefined by a later
489   //   declaration (not even to the same value).
490   //
491   // C++ [dcl.fct.default]p6:
492   //   Except for member functions of class templates, the default arguments
493   //   in a member function definition that appears outside of the class
494   //   definition are added to the set of default arguments provided by the
495   //   member function declaration in the class definition.
496   for (unsigned p = 0, NumParams = PrevForDefaultArgs
497                                        ? PrevForDefaultArgs->getNumParams()
498                                        : 0;
499        p < NumParams; ++p) {
500     ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
501     ParmVarDecl *NewParam = New->getParamDecl(p);
502 
503     bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
504     bool NewParamHasDfl = NewParam->hasDefaultArg();
505 
506     if (OldParamHasDfl && NewParamHasDfl) {
507       unsigned DiagDefaultParamID =
508         diag::err_param_default_argument_redefinition;
509 
510       // MSVC accepts that default parameters be redefined for member functions
511       // of template class. The new default parameter's value is ignored.
512       Invalid = true;
513       if (getLangOpts().MicrosoftExt) {
514         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
515         if (MD && MD->getParent()->getDescribedClassTemplate()) {
516           // Merge the old default argument into the new parameter.
517           NewParam->setHasInheritedDefaultArg();
518           if (OldParam->hasUninstantiatedDefaultArg())
519             NewParam->setUninstantiatedDefaultArg(
520                                       OldParam->getUninstantiatedDefaultArg());
521           else
522             NewParam->setDefaultArg(OldParam->getInit());
523           DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
524           Invalid = false;
525         }
526       }
527 
528       // FIXME: If we knew where the '=' was, we could easily provide a fix-it
529       // hint here. Alternatively, we could walk the type-source information
530       // for NewParam to find the last source location in the type... but it
531       // isn't worth the effort right now. This is the kind of test case that
532       // is hard to get right:
533       //   int f(int);
534       //   void g(int (*fp)(int) = f);
535       //   void g(int (*fp)(int) = &f);
536       Diag(NewParam->getLocation(), DiagDefaultParamID)
537         << NewParam->getDefaultArgRange();
538 
539       // Look for the function declaration where the default argument was
540       // actually written, which may be a declaration prior to Old.
541       for (auto Older = PrevForDefaultArgs;
542            OldParam->hasInheritedDefaultArg(); /**/) {
543         Older = Older->getPreviousDecl();
544         OldParam = Older->getParamDecl(p);
545       }
546 
547       Diag(OldParam->getLocation(), diag::note_previous_definition)
548         << OldParam->getDefaultArgRange();
549     } else if (OldParamHasDfl) {
550       // Merge the old default argument into the new parameter.
551       // It's important to use getInit() here;  getDefaultArg()
552       // strips off any top-level ExprWithCleanups.
553       NewParam->setHasInheritedDefaultArg();
554       if (OldParam->hasUnparsedDefaultArg())
555         NewParam->setUnparsedDefaultArg();
556       else if (OldParam->hasUninstantiatedDefaultArg())
557         NewParam->setUninstantiatedDefaultArg(
558                                       OldParam->getUninstantiatedDefaultArg());
559       else
560         NewParam->setDefaultArg(OldParam->getInit());
561     } else if (NewParamHasDfl) {
562       if (New->getDescribedFunctionTemplate()) {
563         // Paragraph 4, quoted above, only applies to non-template functions.
564         Diag(NewParam->getLocation(),
565              diag::err_param_default_argument_template_redecl)
566           << NewParam->getDefaultArgRange();
567         Diag(PrevForDefaultArgs->getLocation(),
568              diag::note_template_prev_declaration)
569             << false;
570       } else if (New->getTemplateSpecializationKind()
571                    != TSK_ImplicitInstantiation &&
572                  New->getTemplateSpecializationKind() != TSK_Undeclared) {
573         // C++ [temp.expr.spec]p21:
574         //   Default function arguments shall not be specified in a declaration
575         //   or a definition for one of the following explicit specializations:
576         //     - the explicit specialization of a function template;
577         //     - the explicit specialization of a member function template;
578         //     - the explicit specialization of a member function of a class
579         //       template where the class template specialization to which the
580         //       member function specialization belongs is implicitly
581         //       instantiated.
582         Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
583           << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
584           << New->getDeclName()
585           << NewParam->getDefaultArgRange();
586       } else if (New->getDeclContext()->isDependentContext()) {
587         // C++ [dcl.fct.default]p6 (DR217):
588         //   Default arguments for a member function of a class template shall
589         //   be specified on the initial declaration of the member function
590         //   within the class template.
591         //
592         // Reading the tea leaves a bit in DR217 and its reference to DR205
593         // leads me to the conclusion that one cannot add default function
594         // arguments for an out-of-line definition of a member function of a
595         // dependent type.
596         int WhichKind = 2;
597         if (CXXRecordDecl *Record
598               = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
599           if (Record->getDescribedClassTemplate())
600             WhichKind = 0;
601           else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
602             WhichKind = 1;
603           else
604             WhichKind = 2;
605         }
606 
607         Diag(NewParam->getLocation(),
608              diag::err_param_default_argument_member_template_redecl)
609           << WhichKind
610           << NewParam->getDefaultArgRange();
611       }
612     }
613   }
614 
615   // DR1344: If a default argument is added outside a class definition and that
616   // default argument makes the function a special member function, the program
617   // is ill-formed. This can only happen for constructors.
618   if (isa<CXXConstructorDecl>(New) &&
619       New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
620     CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
621                      OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
622     if (NewSM != OldSM) {
623       ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
624       assert(NewParam->hasDefaultArg());
625       Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
626         << NewParam->getDefaultArgRange() << NewSM;
627       Diag(Old->getLocation(), diag::note_previous_declaration);
628     }
629   }
630 
631   const FunctionDecl *Def;
632   // C++11 [dcl.constexpr]p1: If any declaration of a function or function
633   // template has a constexpr specifier then all its declarations shall
634   // contain the constexpr specifier.
635   if (New->isConstexpr() != Old->isConstexpr()) {
636     Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
637       << New << New->isConstexpr();
638     Diag(Old->getLocation(), diag::note_previous_declaration);
639     Invalid = true;
640   } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
641              Old->isDefined(Def)) {
642     // C++11 [dcl.fcn.spec]p4:
643     //   If the definition of a function appears in a translation unit before its
644     //   first declaration as inline, the program is ill-formed.
645     Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
646     Diag(Def->getLocation(), diag::note_previous_definition);
647     Invalid = true;
648   }
649 
650   // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
651   // argument expression, that declaration shall be a definition and shall be
652   // the only declaration of the function or function template in the
653   // translation unit.
654   if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
655       functionDeclHasDefaultArgument(Old)) {
656     Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
657     Diag(Old->getLocation(), diag::note_previous_declaration);
658     Invalid = true;
659   }
660 
661   if (CheckEquivalentExceptionSpec(Old, New))
662     Invalid = true;
663 
664   return Invalid;
665 }
666 
667 /// \brief Merge the exception specifications of two variable declarations.
668 ///
669 /// This is called when there's a redeclaration of a VarDecl. The function
670 /// checks if the redeclaration might have an exception specification and
671 /// validates compatibility and merges the specs if necessary.
MergeVarDeclExceptionSpecs(VarDecl * New,VarDecl * Old)672 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
673   // Shortcut if exceptions are disabled.
674   if (!getLangOpts().CXXExceptions)
675     return;
676 
677   assert(Context.hasSameType(New->getType(), Old->getType()) &&
678          "Should only be called if types are otherwise the same.");
679 
680   QualType NewType = New->getType();
681   QualType OldType = Old->getType();
682 
683   // We're only interested in pointers and references to functions, as well
684   // as pointers to member functions.
685   if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
686     NewType = R->getPointeeType();
687     OldType = OldType->getAs<ReferenceType>()->getPointeeType();
688   } else if (const PointerType *P = NewType->getAs<PointerType>()) {
689     NewType = P->getPointeeType();
690     OldType = OldType->getAs<PointerType>()->getPointeeType();
691   } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
692     NewType = M->getPointeeType();
693     OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
694   }
695 
696   if (!NewType->isFunctionProtoType())
697     return;
698 
699   // There's lots of special cases for functions. For function pointers, system
700   // libraries are hopefully not as broken so that we don't need these
701   // workarounds.
702   if (CheckEquivalentExceptionSpec(
703         OldType->getAs<FunctionProtoType>(), Old->getLocation(),
704         NewType->getAs<FunctionProtoType>(), New->getLocation())) {
705     New->setInvalidDecl();
706   }
707 }
708 
709 /// CheckCXXDefaultArguments - Verify that the default arguments for a
710 /// function declaration are well-formed according to C++
711 /// [dcl.fct.default].
CheckCXXDefaultArguments(FunctionDecl * FD)712 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
713   unsigned NumParams = FD->getNumParams();
714   unsigned p;
715 
716   // Find first parameter with a default argument
717   for (p = 0; p < NumParams; ++p) {
718     ParmVarDecl *Param = FD->getParamDecl(p);
719     if (Param->hasDefaultArg())
720       break;
721   }
722 
723   // C++11 [dcl.fct.default]p4:
724   //   In a given function declaration, each parameter subsequent to a parameter
725   //   with a default argument shall have a default argument supplied in this or
726   //   a previous declaration or shall be a function parameter pack. A default
727   //   argument shall not be redefined by a later declaration (not even to the
728   //   same value).
729   unsigned LastMissingDefaultArg = 0;
730   for (; p < NumParams; ++p) {
731     ParmVarDecl *Param = FD->getParamDecl(p);
732     if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
733       if (Param->isInvalidDecl())
734         /* We already complained about this parameter. */;
735       else if (Param->getIdentifier())
736         Diag(Param->getLocation(),
737              diag::err_param_default_argument_missing_name)
738           << Param->getIdentifier();
739       else
740         Diag(Param->getLocation(),
741              diag::err_param_default_argument_missing);
742 
743       LastMissingDefaultArg = p;
744     }
745   }
746 
747   if (LastMissingDefaultArg > 0) {
748     // Some default arguments were missing. Clear out all of the
749     // default arguments up to (and including) the last missing
750     // default argument, so that we leave the function parameters
751     // in a semantically valid state.
752     for (p = 0; p <= LastMissingDefaultArg; ++p) {
753       ParmVarDecl *Param = FD->getParamDecl(p);
754       if (Param->hasDefaultArg()) {
755         Param->setDefaultArg(nullptr);
756       }
757     }
758   }
759 }
760 
761 // CheckConstexprParameterTypes - Check whether a function's parameter types
762 // are all literal types. If so, return true. If not, produce a suitable
763 // diagnostic and return false.
CheckConstexprParameterTypes(Sema & SemaRef,const FunctionDecl * FD)764 static bool CheckConstexprParameterTypes(Sema &SemaRef,
765                                          const FunctionDecl *FD) {
766   unsigned ArgIndex = 0;
767   const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
768   for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
769                                               e = FT->param_type_end();
770        i != e; ++i, ++ArgIndex) {
771     const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
772     SourceLocation ParamLoc = PD->getLocation();
773     if (!(*i)->isDependentType() &&
774         SemaRef.RequireLiteralType(ParamLoc, *i,
775                                    diag::err_constexpr_non_literal_param,
776                                    ArgIndex+1, PD->getSourceRange(),
777                                    isa<CXXConstructorDecl>(FD)))
778       return false;
779   }
780   return true;
781 }
782 
783 /// \brief Get diagnostic %select index for tag kind for
784 /// record diagnostic message.
785 /// WARNING: Indexes apply to particular diagnostics only!
786 ///
787 /// \returns diagnostic %select index.
getRecordDiagFromTagKind(TagTypeKind Tag)788 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
789   switch (Tag) {
790   case TTK_Struct: return 0;
791   case TTK_Interface: return 1;
792   case TTK_Class:  return 2;
793   default: llvm_unreachable("Invalid tag kind for record diagnostic!");
794   }
795 }
796 
797 // CheckConstexprFunctionDecl - Check whether a function declaration satisfies
798 // the requirements of a constexpr function definition or a constexpr
799 // constructor definition. If so, return true. If not, produce appropriate
800 // diagnostics and return false.
801 //
802 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
CheckConstexprFunctionDecl(const FunctionDecl * NewFD)803 bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
804   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
805   if (MD && MD->isInstance()) {
806     // C++11 [dcl.constexpr]p4:
807     //  The definition of a constexpr constructor shall satisfy the following
808     //  constraints:
809     //  - the class shall not have any virtual base classes;
810     const CXXRecordDecl *RD = MD->getParent();
811     if (RD->getNumVBases()) {
812       Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
813         << isa<CXXConstructorDecl>(NewFD)
814         << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
815       for (const auto &I : RD->vbases())
816         Diag(I.getLocStart(),
817              diag::note_constexpr_virtual_base_here) << I.getSourceRange();
818       return false;
819     }
820   }
821 
822   if (!isa<CXXConstructorDecl>(NewFD)) {
823     // C++11 [dcl.constexpr]p3:
824     //  The definition of a constexpr function shall satisfy the following
825     //  constraints:
826     // - it shall not be virtual;
827     const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
828     if (Method && Method->isVirtual()) {
829       Method = Method->getCanonicalDecl();
830       Diag(Method->getLocation(), diag::err_constexpr_virtual);
831 
832       // If it's not obvious why this function is virtual, find an overridden
833       // function which uses the 'virtual' keyword.
834       const CXXMethodDecl *WrittenVirtual = Method;
835       while (!WrittenVirtual->isVirtualAsWritten())
836         WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
837       if (WrittenVirtual != Method)
838         Diag(WrittenVirtual->getLocation(),
839              diag::note_overridden_virtual_function);
840       return false;
841     }
842 
843     // - its return type shall be a literal type;
844     QualType RT = NewFD->getReturnType();
845     if (!RT->isDependentType() &&
846         RequireLiteralType(NewFD->getLocation(), RT,
847                            diag::err_constexpr_non_literal_return))
848       return false;
849   }
850 
851   // - each of its parameter types shall be a literal type;
852   if (!CheckConstexprParameterTypes(*this, NewFD))
853     return false;
854 
855   return true;
856 }
857 
858 /// Check the given declaration statement is legal within a constexpr function
859 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
860 ///
861 /// \return true if the body is OK (maybe only as an extension), false if we
862 ///         have diagnosed a problem.
CheckConstexprDeclStmt(Sema & SemaRef,const FunctionDecl * Dcl,DeclStmt * DS,SourceLocation & Cxx1yLoc)863 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
864                                    DeclStmt *DS, SourceLocation &Cxx1yLoc) {
865   // C++11 [dcl.constexpr]p3 and p4:
866   //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
867   //  contain only
868   for (const auto *DclIt : DS->decls()) {
869     switch (DclIt->getKind()) {
870     case Decl::StaticAssert:
871     case Decl::Using:
872     case Decl::UsingShadow:
873     case Decl::UsingDirective:
874     case Decl::UnresolvedUsingTypename:
875     case Decl::UnresolvedUsingValue:
876       //   - static_assert-declarations
877       //   - using-declarations,
878       //   - using-directives,
879       continue;
880 
881     case Decl::Typedef:
882     case Decl::TypeAlias: {
883       //   - typedef declarations and alias-declarations that do not define
884       //     classes or enumerations,
885       const auto *TN = cast<TypedefNameDecl>(DclIt);
886       if (TN->getUnderlyingType()->isVariablyModifiedType()) {
887         // Don't allow variably-modified types in constexpr functions.
888         TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
889         SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
890           << TL.getSourceRange() << TL.getType()
891           << isa<CXXConstructorDecl>(Dcl);
892         return false;
893       }
894       continue;
895     }
896 
897     case Decl::Enum:
898     case Decl::CXXRecord:
899       // C++1y allows types to be defined, not just declared.
900       if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
901         SemaRef.Diag(DS->getLocStart(),
902                      SemaRef.getLangOpts().CPlusPlus14
903                        ? diag::warn_cxx11_compat_constexpr_type_definition
904                        : diag::ext_constexpr_type_definition)
905           << isa<CXXConstructorDecl>(Dcl);
906       continue;
907 
908     case Decl::EnumConstant:
909     case Decl::IndirectField:
910     case Decl::ParmVar:
911       // These can only appear with other declarations which are banned in
912       // C++11 and permitted in C++1y, so ignore them.
913       continue;
914 
915     case Decl::Var: {
916       // C++1y [dcl.constexpr]p3 allows anything except:
917       //   a definition of a variable of non-literal type or of static or
918       //   thread storage duration or for which no initialization is performed.
919       const auto *VD = cast<VarDecl>(DclIt);
920       if (VD->isThisDeclarationADefinition()) {
921         if (VD->isStaticLocal()) {
922           SemaRef.Diag(VD->getLocation(),
923                        diag::err_constexpr_local_var_static)
924             << isa<CXXConstructorDecl>(Dcl)
925             << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
926           return false;
927         }
928         if (!VD->getType()->isDependentType() &&
929             SemaRef.RequireLiteralType(
930               VD->getLocation(), VD->getType(),
931               diag::err_constexpr_local_var_non_literal_type,
932               isa<CXXConstructorDecl>(Dcl)))
933           return false;
934         if (!VD->getType()->isDependentType() &&
935             !VD->hasInit() && !VD->isCXXForRangeDecl()) {
936           SemaRef.Diag(VD->getLocation(),
937                        diag::err_constexpr_local_var_no_init)
938             << isa<CXXConstructorDecl>(Dcl);
939           return false;
940         }
941       }
942       SemaRef.Diag(VD->getLocation(),
943                    SemaRef.getLangOpts().CPlusPlus14
944                     ? diag::warn_cxx11_compat_constexpr_local_var
945                     : diag::ext_constexpr_local_var)
946         << isa<CXXConstructorDecl>(Dcl);
947       continue;
948     }
949 
950     case Decl::NamespaceAlias:
951     case Decl::Function:
952       // These are disallowed in C++11 and permitted in C++1y. Allow them
953       // everywhere as an extension.
954       if (!Cxx1yLoc.isValid())
955         Cxx1yLoc = DS->getLocStart();
956       continue;
957 
958     default:
959       SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
960         << isa<CXXConstructorDecl>(Dcl);
961       return false;
962     }
963   }
964 
965   return true;
966 }
967 
968 /// Check that the given field is initialized within a constexpr constructor.
969 ///
970 /// \param Dcl The constexpr constructor being checked.
971 /// \param Field The field being checked. This may be a member of an anonymous
972 ///        struct or union nested within the class being checked.
973 /// \param Inits All declarations, including anonymous struct/union members and
974 ///        indirect members, for which any initialization was provided.
975 /// \param Diagnosed Set to true if an error is produced.
CheckConstexprCtorInitializer(Sema & SemaRef,const FunctionDecl * Dcl,FieldDecl * Field,llvm::SmallSet<Decl *,16> & Inits,bool & Diagnosed)976 static void CheckConstexprCtorInitializer(Sema &SemaRef,
977                                           const FunctionDecl *Dcl,
978                                           FieldDecl *Field,
979                                           llvm::SmallSet<Decl*, 16> &Inits,
980                                           bool &Diagnosed) {
981   if (Field->isInvalidDecl())
982     return;
983 
984   if (Field->isUnnamedBitfield())
985     return;
986 
987   // Anonymous unions with no variant members and empty anonymous structs do not
988   // need to be explicitly initialized. FIXME: Anonymous structs that contain no
989   // indirect fields don't need initializing.
990   if (Field->isAnonymousStructOrUnion() &&
991       (Field->getType()->isUnionType()
992            ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
993            : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
994     return;
995 
996   if (!Inits.count(Field)) {
997     if (!Diagnosed) {
998       SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
999       Diagnosed = true;
1000     }
1001     SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
1002   } else if (Field->isAnonymousStructOrUnion()) {
1003     const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
1004     for (auto *I : RD->fields())
1005       // If an anonymous union contains an anonymous struct of which any member
1006       // is initialized, all members must be initialized.
1007       if (!RD->isUnion() || Inits.count(I))
1008         CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
1009   }
1010 }
1011 
1012 /// Check the provided statement is allowed in a constexpr function
1013 /// definition.
1014 static bool
CheckConstexprFunctionStmt(Sema & SemaRef,const FunctionDecl * Dcl,Stmt * S,SmallVectorImpl<SourceLocation> & ReturnStmts,SourceLocation & Cxx1yLoc)1015 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
1016                            SmallVectorImpl<SourceLocation> &ReturnStmts,
1017                            SourceLocation &Cxx1yLoc) {
1018   // - its function-body shall be [...] a compound-statement that contains only
1019   switch (S->getStmtClass()) {
1020   case Stmt::NullStmtClass:
1021     //   - null statements,
1022     return true;
1023 
1024   case Stmt::DeclStmtClass:
1025     //   - static_assert-declarations
1026     //   - using-declarations,
1027     //   - using-directives,
1028     //   - typedef declarations and alias-declarations that do not define
1029     //     classes or enumerations,
1030     if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
1031       return false;
1032     return true;
1033 
1034   case Stmt::ReturnStmtClass:
1035     //   - and exactly one return statement;
1036     if (isa<CXXConstructorDecl>(Dcl)) {
1037       // C++1y allows return statements in constexpr constructors.
1038       if (!Cxx1yLoc.isValid())
1039         Cxx1yLoc = S->getLocStart();
1040       return true;
1041     }
1042 
1043     ReturnStmts.push_back(S->getLocStart());
1044     return true;
1045 
1046   case Stmt::CompoundStmtClass: {
1047     // C++1y allows compound-statements.
1048     if (!Cxx1yLoc.isValid())
1049       Cxx1yLoc = S->getLocStart();
1050 
1051     CompoundStmt *CompStmt = cast<CompoundStmt>(S);
1052     for (auto *BodyIt : CompStmt->body()) {
1053       if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
1054                                       Cxx1yLoc))
1055         return false;
1056     }
1057     return true;
1058   }
1059 
1060   case Stmt::AttributedStmtClass:
1061     if (!Cxx1yLoc.isValid())
1062       Cxx1yLoc = S->getLocStart();
1063     return true;
1064 
1065   case Stmt::IfStmtClass: {
1066     // C++1y allows if-statements.
1067     if (!Cxx1yLoc.isValid())
1068       Cxx1yLoc = S->getLocStart();
1069 
1070     IfStmt *If = cast<IfStmt>(S);
1071     if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1072                                     Cxx1yLoc))
1073       return false;
1074     if (If->getElse() &&
1075         !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1076                                     Cxx1yLoc))
1077       return false;
1078     return true;
1079   }
1080 
1081   case Stmt::WhileStmtClass:
1082   case Stmt::DoStmtClass:
1083   case Stmt::ForStmtClass:
1084   case Stmt::CXXForRangeStmtClass:
1085   case Stmt::ContinueStmtClass:
1086     // C++1y allows all of these. We don't allow them as extensions in C++11,
1087     // because they don't make sense without variable mutation.
1088     if (!SemaRef.getLangOpts().CPlusPlus14)
1089       break;
1090     if (!Cxx1yLoc.isValid())
1091       Cxx1yLoc = S->getLocStart();
1092     for (Stmt *SubStmt : S->children())
1093       if (SubStmt &&
1094           !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1095                                       Cxx1yLoc))
1096         return false;
1097     return true;
1098 
1099   case Stmt::SwitchStmtClass:
1100   case Stmt::CaseStmtClass:
1101   case Stmt::DefaultStmtClass:
1102   case Stmt::BreakStmtClass:
1103     // C++1y allows switch-statements, and since they don't need variable
1104     // mutation, we can reasonably allow them in C++11 as an extension.
1105     if (!Cxx1yLoc.isValid())
1106       Cxx1yLoc = S->getLocStart();
1107     for (Stmt *SubStmt : S->children())
1108       if (SubStmt &&
1109           !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1110                                       Cxx1yLoc))
1111         return false;
1112     return true;
1113 
1114   default:
1115     if (!isa<Expr>(S))
1116       break;
1117 
1118     // C++1y allows expression-statements.
1119     if (!Cxx1yLoc.isValid())
1120       Cxx1yLoc = S->getLocStart();
1121     return true;
1122   }
1123 
1124   SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1125     << isa<CXXConstructorDecl>(Dcl);
1126   return false;
1127 }
1128 
1129 /// Check the body for the given constexpr function declaration only contains
1130 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1131 ///
1132 /// \return true if the body is OK, false if we have diagnosed a problem.
CheckConstexprFunctionBody(const FunctionDecl * Dcl,Stmt * Body)1133 bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1134   if (isa<CXXTryStmt>(Body)) {
1135     // C++11 [dcl.constexpr]p3:
1136     //  The definition of a constexpr function shall satisfy the following
1137     //  constraints: [...]
1138     // - its function-body shall be = delete, = default, or a
1139     //   compound-statement
1140     //
1141     // C++11 [dcl.constexpr]p4:
1142     //  In the definition of a constexpr constructor, [...]
1143     // - its function-body shall not be a function-try-block;
1144     Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1145       << isa<CXXConstructorDecl>(Dcl);
1146     return false;
1147   }
1148 
1149   SmallVector<SourceLocation, 4> ReturnStmts;
1150 
1151   // - its function-body shall be [...] a compound-statement that contains only
1152   //   [... list of cases ...]
1153   CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1154   SourceLocation Cxx1yLoc;
1155   for (auto *BodyIt : CompBody->body()) {
1156     if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
1157       return false;
1158   }
1159 
1160   if (Cxx1yLoc.isValid())
1161     Diag(Cxx1yLoc,
1162          getLangOpts().CPlusPlus14
1163            ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1164            : diag::ext_constexpr_body_invalid_stmt)
1165       << isa<CXXConstructorDecl>(Dcl);
1166 
1167   if (const CXXConstructorDecl *Constructor
1168         = dyn_cast<CXXConstructorDecl>(Dcl)) {
1169     const CXXRecordDecl *RD = Constructor->getParent();
1170     // DR1359:
1171     // - every non-variant non-static data member and base class sub-object
1172     //   shall be initialized;
1173     // DR1460:
1174     // - if the class is a union having variant members, exactly one of them
1175     //   shall be initialized;
1176     if (RD->isUnion()) {
1177       if (Constructor->getNumCtorInitializers() == 0 &&
1178           RD->hasVariantMembers()) {
1179         Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1180         return false;
1181       }
1182     } else if (!Constructor->isDependentContext() &&
1183                !Constructor->isDelegatingConstructor()) {
1184       assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1185 
1186       // Skip detailed checking if we have enough initializers, and we would
1187       // allow at most one initializer per member.
1188       bool AnyAnonStructUnionMembers = false;
1189       unsigned Fields = 0;
1190       for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1191            E = RD->field_end(); I != E; ++I, ++Fields) {
1192         if (I->isAnonymousStructOrUnion()) {
1193           AnyAnonStructUnionMembers = true;
1194           break;
1195         }
1196       }
1197       // DR1460:
1198       // - if the class is a union-like class, but is not a union, for each of
1199       //   its anonymous union members having variant members, exactly one of
1200       //   them shall be initialized;
1201       if (AnyAnonStructUnionMembers ||
1202           Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1203         // Check initialization of non-static data members. Base classes are
1204         // always initialized so do not need to be checked. Dependent bases
1205         // might not have initializers in the member initializer list.
1206         llvm::SmallSet<Decl*, 16> Inits;
1207         for (const auto *I: Constructor->inits()) {
1208           if (FieldDecl *FD = I->getMember())
1209             Inits.insert(FD);
1210           else if (IndirectFieldDecl *ID = I->getIndirectMember())
1211             Inits.insert(ID->chain_begin(), ID->chain_end());
1212         }
1213 
1214         bool Diagnosed = false;
1215         for (auto *I : RD->fields())
1216           CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
1217         if (Diagnosed)
1218           return false;
1219       }
1220     }
1221   } else {
1222     if (ReturnStmts.empty()) {
1223       // C++1y doesn't require constexpr functions to contain a 'return'
1224       // statement. We still do, unless the return type might be void, because
1225       // otherwise if there's no return statement, the function cannot
1226       // be used in a core constant expression.
1227       bool OK = getLangOpts().CPlusPlus14 &&
1228                 (Dcl->getReturnType()->isVoidType() ||
1229                  Dcl->getReturnType()->isDependentType());
1230       Diag(Dcl->getLocation(),
1231            OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1232               : diag::err_constexpr_body_no_return);
1233       if (!OK)
1234         return false;
1235     } else if (ReturnStmts.size() > 1) {
1236       Diag(ReturnStmts.back(),
1237            getLangOpts().CPlusPlus14
1238              ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1239              : diag::ext_constexpr_body_multiple_return);
1240       for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1241         Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1242     }
1243   }
1244 
1245   // C++11 [dcl.constexpr]p5:
1246   //   if no function argument values exist such that the function invocation
1247   //   substitution would produce a constant expression, the program is
1248   //   ill-formed; no diagnostic required.
1249   // C++11 [dcl.constexpr]p3:
1250   //   - every constructor call and implicit conversion used in initializing the
1251   //     return value shall be one of those allowed in a constant expression.
1252   // C++11 [dcl.constexpr]p4:
1253   //   - every constructor involved in initializing non-static data members and
1254   //     base class sub-objects shall be a constexpr constructor.
1255   SmallVector<PartialDiagnosticAt, 8> Diags;
1256   if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1257     Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1258       << isa<CXXConstructorDecl>(Dcl);
1259     for (size_t I = 0, N = Diags.size(); I != N; ++I)
1260       Diag(Diags[I].first, Diags[I].second);
1261     // Don't return false here: we allow this for compatibility in
1262     // system headers.
1263   }
1264 
1265   return true;
1266 }
1267 
1268 /// isCurrentClassName - Determine whether the identifier II is the
1269 /// name of the class type currently being defined. In the case of
1270 /// nested classes, this will only return true if II is the name of
1271 /// the innermost class.
isCurrentClassName(const IdentifierInfo & II,Scope *,const CXXScopeSpec * SS)1272 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1273                               const CXXScopeSpec *SS) {
1274   assert(getLangOpts().CPlusPlus && "No class names in C!");
1275 
1276   CXXRecordDecl *CurDecl;
1277   if (SS && SS->isSet() && !SS->isInvalid()) {
1278     DeclContext *DC = computeDeclContext(*SS, true);
1279     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1280   } else
1281     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1282 
1283   if (CurDecl && CurDecl->getIdentifier())
1284     return &II == CurDecl->getIdentifier();
1285   return false;
1286 }
1287 
1288 /// \brief Determine whether the identifier II is a typo for the name of
1289 /// the class type currently being defined. If so, update it to the identifier
1290 /// that should have been used.
isCurrentClassNameTypo(IdentifierInfo * & II,const CXXScopeSpec * SS)1291 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
1292   assert(getLangOpts().CPlusPlus && "No class names in C!");
1293 
1294   if (!getLangOpts().SpellChecking)
1295     return false;
1296 
1297   CXXRecordDecl *CurDecl;
1298   if (SS && SS->isSet() && !SS->isInvalid()) {
1299     DeclContext *DC = computeDeclContext(*SS, true);
1300     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1301   } else
1302     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1303 
1304   if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
1305       3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
1306           < II->getLength()) {
1307     II = CurDecl->getIdentifier();
1308     return true;
1309   }
1310 
1311   return false;
1312 }
1313 
1314 /// \brief Determine whether the given class is a base class of the given
1315 /// class, including looking at dependent bases.
findCircularInheritance(const CXXRecordDecl * Class,const CXXRecordDecl * Current)1316 static bool findCircularInheritance(const CXXRecordDecl *Class,
1317                                     const CXXRecordDecl *Current) {
1318   SmallVector<const CXXRecordDecl*, 8> Queue;
1319 
1320   Class = Class->getCanonicalDecl();
1321   while (true) {
1322     for (const auto &I : Current->bases()) {
1323       CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
1324       if (!Base)
1325         continue;
1326 
1327       Base = Base->getDefinition();
1328       if (!Base)
1329         continue;
1330 
1331       if (Base->getCanonicalDecl() == Class)
1332         return true;
1333 
1334       Queue.push_back(Base);
1335     }
1336 
1337     if (Queue.empty())
1338       return false;
1339 
1340     Current = Queue.pop_back_val();
1341   }
1342 
1343   return false;
1344 }
1345 
1346 /// \brief Check the validity of a C++ base class specifier.
1347 ///
1348 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1349 /// and returns NULL otherwise.
1350 CXXBaseSpecifier *
CheckBaseSpecifier(CXXRecordDecl * Class,SourceRange SpecifierRange,bool Virtual,AccessSpecifier Access,TypeSourceInfo * TInfo,SourceLocation EllipsisLoc)1351 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1352                          SourceRange SpecifierRange,
1353                          bool Virtual, AccessSpecifier Access,
1354                          TypeSourceInfo *TInfo,
1355                          SourceLocation EllipsisLoc) {
1356   QualType BaseType = TInfo->getType();
1357 
1358   // C++ [class.union]p1:
1359   //   A union shall not have base classes.
1360   if (Class->isUnion()) {
1361     Diag(Class->getLocation(), diag::err_base_clause_on_union)
1362       << SpecifierRange;
1363     return nullptr;
1364   }
1365 
1366   if (EllipsisLoc.isValid() &&
1367       !TInfo->getType()->containsUnexpandedParameterPack()) {
1368     Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1369       << TInfo->getTypeLoc().getSourceRange();
1370     EllipsisLoc = SourceLocation();
1371   }
1372 
1373   SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1374 
1375   if (BaseType->isDependentType()) {
1376     // Make sure that we don't have circular inheritance among our dependent
1377     // bases. For non-dependent bases, the check for completeness below handles
1378     // this.
1379     if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1380       if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1381           ((BaseDecl = BaseDecl->getDefinition()) &&
1382            findCircularInheritance(Class, BaseDecl))) {
1383         Diag(BaseLoc, diag::err_circular_inheritance)
1384           << BaseType << Context.getTypeDeclType(Class);
1385 
1386         if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1387           Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1388             << BaseType;
1389 
1390         return nullptr;
1391       }
1392     }
1393 
1394     return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1395                                           Class->getTagKind() == TTK_Class,
1396                                           Access, TInfo, EllipsisLoc);
1397   }
1398 
1399   // Base specifiers must be record types.
1400   if (!BaseType->isRecordType()) {
1401     Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1402     return nullptr;
1403   }
1404 
1405   // C++ [class.union]p1:
1406   //   A union shall not be used as a base class.
1407   if (BaseType->isUnionType()) {
1408     Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1409     return nullptr;
1410   }
1411 
1412   // For the MS ABI, propagate DLL attributes to base class templates.
1413   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1414     if (Attr *ClassAttr = getDLLAttr(Class)) {
1415       if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
1416               BaseType->getAsCXXRecordDecl())) {
1417         propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
1418                                             BaseLoc);
1419       }
1420     }
1421   }
1422 
1423   // C++ [class.derived]p2:
1424   //   The class-name in a base-specifier shall not be an incompletely
1425   //   defined class.
1426   if (RequireCompleteType(BaseLoc, BaseType,
1427                           diag::err_incomplete_base_class, SpecifierRange)) {
1428     Class->setInvalidDecl();
1429     return nullptr;
1430   }
1431 
1432   // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1433   RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1434   assert(BaseDecl && "Record type has no declaration");
1435   BaseDecl = BaseDecl->getDefinition();
1436   assert(BaseDecl && "Base type is not incomplete, but has no definition");
1437   CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1438   assert(CXXBaseDecl && "Base type is not a C++ type");
1439 
1440   // A class which contains a flexible array member is not suitable for use as a
1441   // base class:
1442   //   - If the layout determines that a base comes before another base,
1443   //     the flexible array member would index into the subsequent base.
1444   //   - If the layout determines that base comes before the derived class,
1445   //     the flexible array member would index into the derived class.
1446   if (CXXBaseDecl->hasFlexibleArrayMember()) {
1447     Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
1448       << CXXBaseDecl->getDeclName();
1449     return nullptr;
1450   }
1451 
1452   // C++ [class]p3:
1453   //   If a class is marked final and it appears as a base-type-specifier in
1454   //   base-clause, the program is ill-formed.
1455   if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
1456     Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1457       << CXXBaseDecl->getDeclName()
1458       << FA->isSpelledAsSealed();
1459     Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
1460         << CXXBaseDecl->getDeclName() << FA->getRange();
1461     return nullptr;
1462   }
1463 
1464   if (BaseDecl->isInvalidDecl())
1465     Class->setInvalidDecl();
1466 
1467   // Create the base specifier.
1468   return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1469                                         Class->getTagKind() == TTK_Class,
1470                                         Access, TInfo, EllipsisLoc);
1471 }
1472 
1473 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1474 /// one entry in the base class list of a class specifier, for
1475 /// example:
1476 ///    class foo : public bar, virtual private baz {
1477 /// 'public bar' and 'virtual private baz' are each base-specifiers.
1478 BaseResult
ActOnBaseSpecifier(Decl * classdecl,SourceRange SpecifierRange,ParsedAttributes & Attributes,bool Virtual,AccessSpecifier Access,ParsedType basetype,SourceLocation BaseLoc,SourceLocation EllipsisLoc)1479 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1480                          ParsedAttributes &Attributes,
1481                          bool Virtual, AccessSpecifier Access,
1482                          ParsedType basetype, SourceLocation BaseLoc,
1483                          SourceLocation EllipsisLoc) {
1484   if (!classdecl)
1485     return true;
1486 
1487   AdjustDeclIfTemplate(classdecl);
1488   CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1489   if (!Class)
1490     return true;
1491 
1492   // We haven't yet attached the base specifiers.
1493   Class->setIsParsingBaseSpecifiers();
1494 
1495   // We do not support any C++11 attributes on base-specifiers yet.
1496   // Diagnose any attributes we see.
1497   if (!Attributes.empty()) {
1498     for (AttributeList *Attr = Attributes.getList(); Attr;
1499          Attr = Attr->getNext()) {
1500       if (Attr->isInvalid() ||
1501           Attr->getKind() == AttributeList::IgnoredAttribute)
1502         continue;
1503       Diag(Attr->getLoc(),
1504            Attr->getKind() == AttributeList::UnknownAttribute
1505              ? diag::warn_unknown_attribute_ignored
1506              : diag::err_base_specifier_attribute)
1507         << Attr->getName();
1508     }
1509   }
1510 
1511   TypeSourceInfo *TInfo = nullptr;
1512   GetTypeFromParser(basetype, &TInfo);
1513 
1514   if (EllipsisLoc.isInvalid() &&
1515       DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1516                                       UPPC_BaseType))
1517     return true;
1518 
1519   if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1520                                                       Virtual, Access, TInfo,
1521                                                       EllipsisLoc))
1522     return BaseSpec;
1523   else
1524     Class->setInvalidDecl();
1525 
1526   return true;
1527 }
1528 
1529 /// Use small set to collect indirect bases.  As this is only used
1530 /// locally, there's no need to abstract the small size parameter.
1531 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
1532 
1533 /// \brief Recursively add the bases of Type.  Don't add Type itself.
1534 static void
NoteIndirectBases(ASTContext & Context,IndirectBaseSet & Set,const QualType & Type)1535 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
1536                   const QualType &Type)
1537 {
1538   // Even though the incoming type is a base, it might not be
1539   // a class -- it could be a template parm, for instance.
1540   if (auto Rec = Type->getAs<RecordType>()) {
1541     auto Decl = Rec->getAsCXXRecordDecl();
1542 
1543     // Iterate over its bases.
1544     for (const auto &BaseSpec : Decl->bases()) {
1545       QualType Base = Context.getCanonicalType(BaseSpec.getType())
1546         .getUnqualifiedType();
1547       if (Set.insert(Base).second)
1548         // If we've not already seen it, recurse.
1549         NoteIndirectBases(Context, Set, Base);
1550     }
1551   }
1552 }
1553 
1554 /// \brief Performs the actual work of attaching the given base class
1555 /// specifiers to a C++ class.
AttachBaseSpecifiers(CXXRecordDecl * Class,CXXBaseSpecifier ** Bases,unsigned NumBases)1556 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1557                                 unsigned NumBases) {
1558  if (NumBases == 0)
1559     return false;
1560 
1561   // Used to keep track of which base types we have already seen, so
1562   // that we can properly diagnose redundant direct base types. Note
1563   // that the key is always the unqualified canonical type of the base
1564   // class.
1565   std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1566 
1567   // Used to track indirect bases so we can see if a direct base is
1568   // ambiguous.
1569   IndirectBaseSet IndirectBaseTypes;
1570 
1571   // Copy non-redundant base specifiers into permanent storage.
1572   unsigned NumGoodBases = 0;
1573   bool Invalid = false;
1574   for (unsigned idx = 0; idx < NumBases; ++idx) {
1575     QualType NewBaseType
1576       = Context.getCanonicalType(Bases[idx]->getType());
1577     NewBaseType = NewBaseType.getLocalUnqualifiedType();
1578 
1579     CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1580     if (KnownBase) {
1581       // C++ [class.mi]p3:
1582       //   A class shall not be specified as a direct base class of a
1583       //   derived class more than once.
1584       Diag(Bases[idx]->getLocStart(),
1585            diag::err_duplicate_base_class)
1586         << KnownBase->getType()
1587         << Bases[idx]->getSourceRange();
1588 
1589       // Delete the duplicate base class specifier; we're going to
1590       // overwrite its pointer later.
1591       Context.Deallocate(Bases[idx]);
1592 
1593       Invalid = true;
1594     } else {
1595       // Okay, add this new base class.
1596       KnownBase = Bases[idx];
1597       Bases[NumGoodBases++] = Bases[idx];
1598 
1599       // Note this base's direct & indirect bases, if there could be ambiguity.
1600       if (NumBases > 1)
1601         NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
1602 
1603       if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1604         const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1605         if (Class->isInterface() &&
1606               (!RD->isInterface() ||
1607                KnownBase->getAccessSpecifier() != AS_public)) {
1608           // The Microsoft extension __interface does not permit bases that
1609           // are not themselves public interfaces.
1610           Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1611             << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1612             << RD->getSourceRange();
1613           Invalid = true;
1614         }
1615         if (RD->hasAttr<WeakAttr>())
1616           Class->addAttr(WeakAttr::CreateImplicit(Context));
1617       }
1618     }
1619   }
1620 
1621   // Attach the remaining base class specifiers to the derived class.
1622   Class->setBases(Bases, NumGoodBases);
1623 
1624   for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
1625     // Check whether this direct base is inaccessible due to ambiguity.
1626     QualType BaseType = Bases[idx]->getType();
1627     CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
1628       .getUnqualifiedType();
1629 
1630     if (IndirectBaseTypes.count(CanonicalBase)) {
1631       CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1632                          /*DetectVirtual=*/true);
1633       bool found
1634         = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
1635       assert(found);
1636       (void)found;
1637 
1638       if (Paths.isAmbiguous(CanonicalBase))
1639         Diag(Bases[idx]->getLocStart (), diag::warn_inaccessible_base_class)
1640           << BaseType << getAmbiguousPathsDisplayString(Paths)
1641           << Bases[idx]->getSourceRange();
1642       else
1643         assert(Bases[idx]->isVirtual());
1644     }
1645 
1646     // Delete the base class specifier, since its data has been copied
1647     // into the CXXRecordDecl.
1648     Context.Deallocate(Bases[idx]);
1649   }
1650 
1651   return Invalid;
1652 }
1653 
1654 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
1655 /// class, after checking whether there are any duplicate base
1656 /// classes.
ActOnBaseSpecifiers(Decl * ClassDecl,CXXBaseSpecifier ** Bases,unsigned NumBases)1657 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1658                                unsigned NumBases) {
1659   if (!ClassDecl || !Bases || !NumBases)
1660     return;
1661 
1662   AdjustDeclIfTemplate(ClassDecl);
1663   AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
1664 }
1665 
1666 /// \brief Determine whether the type \p Derived is a C++ class that is
1667 /// derived from the type \p Base.
IsDerivedFrom(SourceLocation Loc,QualType Derived,QualType Base)1668 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
1669   if (!getLangOpts().CPlusPlus)
1670     return false;
1671 
1672   CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1673   if (!DerivedRD)
1674     return false;
1675 
1676   CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1677   if (!BaseRD)
1678     return false;
1679 
1680   // If either the base or the derived type is invalid, don't try to
1681   // check whether one is derived from the other.
1682   if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1683     return false;
1684 
1685   // FIXME: In a modules build, do we need the entire path to be visible for us
1686   // to be able to use the inheritance relationship?
1687   if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
1688     return false;
1689 
1690   return DerivedRD->isDerivedFrom(BaseRD);
1691 }
1692 
1693 /// \brief Determine whether the type \p Derived is a C++ class that is
1694 /// derived from the type \p Base.
IsDerivedFrom(SourceLocation Loc,QualType Derived,QualType Base,CXXBasePaths & Paths)1695 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
1696                          CXXBasePaths &Paths) {
1697   if (!getLangOpts().CPlusPlus)
1698     return false;
1699 
1700   CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1701   if (!DerivedRD)
1702     return false;
1703 
1704   CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1705   if (!BaseRD)
1706     return false;
1707 
1708   if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
1709     return false;
1710 
1711   return DerivedRD->isDerivedFrom(BaseRD, Paths);
1712 }
1713 
BuildBasePathArray(const CXXBasePaths & Paths,CXXCastPath & BasePathArray)1714 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1715                               CXXCastPath &BasePathArray) {
1716   assert(BasePathArray.empty() && "Base path array must be empty!");
1717   assert(Paths.isRecordingPaths() && "Must record paths!");
1718 
1719   const CXXBasePath &Path = Paths.front();
1720 
1721   // We first go backward and check if we have a virtual base.
1722   // FIXME: It would be better if CXXBasePath had the base specifier for
1723   // the nearest virtual base.
1724   unsigned Start = 0;
1725   for (unsigned I = Path.size(); I != 0; --I) {
1726     if (Path[I - 1].Base->isVirtual()) {
1727       Start = I - 1;
1728       break;
1729     }
1730   }
1731 
1732   // Now add all bases.
1733   for (unsigned I = Start, E = Path.size(); I != E; ++I)
1734     BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1735 }
1736 
1737 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1738 /// conversion (where Derived and Base are class types) is
1739 /// well-formed, meaning that the conversion is unambiguous (and
1740 /// that all of the base classes are accessible). Returns true
1741 /// and emits a diagnostic if the code is ill-formed, returns false
1742 /// otherwise. Loc is the location where this routine should point to
1743 /// if there is an error, and Range is the source range to highlight
1744 /// if there is an error.
1745 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,unsigned InaccessibleBaseID,unsigned AmbigiousBaseConvID,SourceLocation Loc,SourceRange Range,DeclarationName Name,CXXCastPath * BasePath)1746 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1747                                    unsigned InaccessibleBaseID,
1748                                    unsigned AmbigiousBaseConvID,
1749                                    SourceLocation Loc, SourceRange Range,
1750                                    DeclarationName Name,
1751                                    CXXCastPath *BasePath) {
1752   // First, determine whether the path from Derived to Base is
1753   // ambiguous. This is slightly more expensive than checking whether
1754   // the Derived to Base conversion exists, because here we need to
1755   // explore multiple paths to determine if there is an ambiguity.
1756   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1757                      /*DetectVirtual=*/false);
1758   bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
1759   assert(DerivationOkay &&
1760          "Can only be used with a derived-to-base conversion");
1761   (void)DerivationOkay;
1762 
1763   if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1764     if (InaccessibleBaseID) {
1765       // Check that the base class can be accessed.
1766       switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1767                                    InaccessibleBaseID)) {
1768         case AR_inaccessible:
1769           return true;
1770         case AR_accessible:
1771         case AR_dependent:
1772         case AR_delayed:
1773           break;
1774       }
1775     }
1776 
1777     // Build a base path if necessary.
1778     if (BasePath)
1779       BuildBasePathArray(Paths, *BasePath);
1780     return false;
1781   }
1782 
1783   if (AmbigiousBaseConvID) {
1784     // We know that the derived-to-base conversion is ambiguous, and
1785     // we're going to produce a diagnostic. Perform the derived-to-base
1786     // search just one more time to compute all of the possible paths so
1787     // that we can print them out. This is more expensive than any of
1788     // the previous derived-to-base checks we've done, but at this point
1789     // performance isn't as much of an issue.
1790     Paths.clear();
1791     Paths.setRecordingPaths(true);
1792     bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
1793     assert(StillOkay && "Can only be used with a derived-to-base conversion");
1794     (void)StillOkay;
1795 
1796     // Build up a textual representation of the ambiguous paths, e.g.,
1797     // D -> B -> A, that will be used to illustrate the ambiguous
1798     // conversions in the diagnostic. We only print one of the paths
1799     // to each base class subobject.
1800     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1801 
1802     Diag(Loc, AmbigiousBaseConvID)
1803     << Derived << Base << PathDisplayStr << Range << Name;
1804   }
1805   return true;
1806 }
1807 
1808 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,SourceLocation Loc,SourceRange Range,CXXCastPath * BasePath,bool IgnoreAccess)1809 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1810                                    SourceLocation Loc, SourceRange Range,
1811                                    CXXCastPath *BasePath,
1812                                    bool IgnoreAccess) {
1813   return CheckDerivedToBaseConversion(Derived, Base,
1814                                       IgnoreAccess ? 0
1815                                        : diag::err_upcast_to_inaccessible_base,
1816                                       diag::err_ambiguous_derived_to_base_conv,
1817                                       Loc, Range, DeclarationName(),
1818                                       BasePath);
1819 }
1820 
1821 
1822 /// @brief Builds a string representing ambiguous paths from a
1823 /// specific derived class to different subobjects of the same base
1824 /// class.
1825 ///
1826 /// This function builds a string that can be used in error messages
1827 /// to show the different paths that one can take through the
1828 /// inheritance hierarchy to go from the derived class to different
1829 /// subobjects of a base class. The result looks something like this:
1830 /// @code
1831 /// struct D -> struct B -> struct A
1832 /// struct D -> struct C -> struct A
1833 /// @endcode
getAmbiguousPathsDisplayString(CXXBasePaths & Paths)1834 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1835   std::string PathDisplayStr;
1836   std::set<unsigned> DisplayedPaths;
1837   for (CXXBasePaths::paths_iterator Path = Paths.begin();
1838        Path != Paths.end(); ++Path) {
1839     if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1840       // We haven't displayed a path to this particular base
1841       // class subobject yet.
1842       PathDisplayStr += "\n    ";
1843       PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1844       for (CXXBasePath::const_iterator Element = Path->begin();
1845            Element != Path->end(); ++Element)
1846         PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1847     }
1848   }
1849 
1850   return PathDisplayStr;
1851 }
1852 
1853 //===----------------------------------------------------------------------===//
1854 // C++ class member Handling
1855 //===----------------------------------------------------------------------===//
1856 
1857 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
ActOnAccessSpecifier(AccessSpecifier Access,SourceLocation ASLoc,SourceLocation ColonLoc,AttributeList * Attrs)1858 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1859                                 SourceLocation ASLoc,
1860                                 SourceLocation ColonLoc,
1861                                 AttributeList *Attrs) {
1862   assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1863   AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1864                                                   ASLoc, ColonLoc);
1865   CurContext->addHiddenDecl(ASDecl);
1866   return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1867 }
1868 
1869 /// CheckOverrideControl - Check C++11 override control semantics.
CheckOverrideControl(NamedDecl * D)1870 void Sema::CheckOverrideControl(NamedDecl *D) {
1871   if (D->isInvalidDecl())
1872     return;
1873 
1874   // We only care about "override" and "final" declarations.
1875   if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
1876     return;
1877 
1878   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1879 
1880   // We can't check dependent instance methods.
1881   if (MD && MD->isInstance() &&
1882       (MD->getParent()->hasAnyDependentBases() ||
1883        MD->getType()->isDependentType()))
1884     return;
1885 
1886   if (MD && !MD->isVirtual()) {
1887     // If we have a non-virtual method, check if if hides a virtual method.
1888     // (In that case, it's most likely the method has the wrong type.)
1889     SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
1890     FindHiddenVirtualMethods(MD, OverloadedMethods);
1891 
1892     if (!OverloadedMethods.empty()) {
1893       if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1894         Diag(OA->getLocation(),
1895              diag::override_keyword_hides_virtual_member_function)
1896           << "override" << (OverloadedMethods.size() > 1);
1897       } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1898         Diag(FA->getLocation(),
1899              diag::override_keyword_hides_virtual_member_function)
1900           << (FA->isSpelledAsSealed() ? "sealed" : "final")
1901           << (OverloadedMethods.size() > 1);
1902       }
1903       NoteHiddenVirtualMethods(MD, OverloadedMethods);
1904       MD->setInvalidDecl();
1905       return;
1906     }
1907     // Fall through into the general case diagnostic.
1908     // FIXME: We might want to attempt typo correction here.
1909   }
1910 
1911   if (!MD || !MD->isVirtual()) {
1912     if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1913       Diag(OA->getLocation(),
1914            diag::override_keyword_only_allowed_on_virtual_member_functions)
1915         << "override" << FixItHint::CreateRemoval(OA->getLocation());
1916       D->dropAttr<OverrideAttr>();
1917     }
1918     if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1919       Diag(FA->getLocation(),
1920            diag::override_keyword_only_allowed_on_virtual_member_functions)
1921         << (FA->isSpelledAsSealed() ? "sealed" : "final")
1922         << FixItHint::CreateRemoval(FA->getLocation());
1923       D->dropAttr<FinalAttr>();
1924     }
1925     return;
1926   }
1927 
1928   // C++11 [class.virtual]p5:
1929   //   If a function is marked with the virt-specifier override and
1930   //   does not override a member function of a base class, the program is
1931   //   ill-formed.
1932   bool HasOverriddenMethods =
1933     MD->begin_overridden_methods() != MD->end_overridden_methods();
1934   if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1935     Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1936       << MD->getDeclName();
1937 }
1938 
DiagnoseAbsenceOfOverrideControl(NamedDecl * D)1939 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
1940   if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
1941     return;
1942   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1943   if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>() ||
1944       isa<CXXDestructorDecl>(MD))
1945     return;
1946 
1947   SourceLocation Loc = MD->getLocation();
1948   SourceLocation SpellingLoc = Loc;
1949   if (getSourceManager().isMacroArgExpansion(Loc))
1950     SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).first;
1951   SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
1952   if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
1953       return;
1954 
1955   if (MD->size_overridden_methods() > 0) {
1956     Diag(MD->getLocation(), diag::warn_function_marked_not_override_overriding)
1957       << MD->getDeclName();
1958     const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
1959     Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
1960   }
1961 }
1962 
1963 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1964 /// function overrides a virtual member function marked 'final', according to
1965 /// C++11 [class.virtual]p4.
CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl * New,const CXXMethodDecl * Old)1966 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1967                                                   const CXXMethodDecl *Old) {
1968   FinalAttr *FA = Old->getAttr<FinalAttr>();
1969   if (!FA)
1970     return false;
1971 
1972   Diag(New->getLocation(), diag::err_final_function_overridden)
1973     << New->getDeclName()
1974     << FA->isSpelledAsSealed();
1975   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1976   return true;
1977 }
1978 
InitializationHasSideEffects(const FieldDecl & FD)1979 static bool InitializationHasSideEffects(const FieldDecl &FD) {
1980   const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1981   // FIXME: Destruction of ObjC lifetime types has side-effects.
1982   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1983     return !RD->isCompleteDefinition() ||
1984            !RD->hasTrivialDefaultConstructor() ||
1985            !RD->hasTrivialDestructor();
1986   return false;
1987 }
1988 
getMSPropertyAttr(AttributeList * list)1989 static AttributeList *getMSPropertyAttr(AttributeList *list) {
1990   for (AttributeList *it = list; it != nullptr; it = it->getNext())
1991     if (it->isDeclspecPropertyAttribute())
1992       return it;
1993   return nullptr;
1994 }
1995 
1996 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1997 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1998 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
1999 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is
2000 /// present (but parsing it has been deferred).
2001 NamedDecl *
ActOnCXXMemberDeclarator(Scope * S,AccessSpecifier AS,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,Expr * BW,const VirtSpecifiers & VS,InClassInitStyle InitStyle)2002 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
2003                                MultiTemplateParamsArg TemplateParameterLists,
2004                                Expr *BW, const VirtSpecifiers &VS,
2005                                InClassInitStyle InitStyle) {
2006   const DeclSpec &DS = D.getDeclSpec();
2007   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2008   DeclarationName Name = NameInfo.getName();
2009   SourceLocation Loc = NameInfo.getLoc();
2010 
2011   // For anonymous bitfields, the location should point to the type.
2012   if (Loc.isInvalid())
2013     Loc = D.getLocStart();
2014 
2015   Expr *BitWidth = static_cast<Expr*>(BW);
2016 
2017   assert(isa<CXXRecordDecl>(CurContext));
2018   assert(!DS.isFriendSpecified());
2019 
2020   bool isFunc = D.isDeclarationOfFunction();
2021 
2022   if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
2023     // The Microsoft extension __interface only permits public member functions
2024     // and prohibits constructors, destructors, operators, non-public member
2025     // functions, static methods and data members.
2026     unsigned InvalidDecl;
2027     bool ShowDeclName = true;
2028     if (!isFunc)
2029       InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
2030     else if (AS != AS_public)
2031       InvalidDecl = 2;
2032     else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
2033       InvalidDecl = 3;
2034     else switch (Name.getNameKind()) {
2035       case DeclarationName::CXXConstructorName:
2036         InvalidDecl = 4;
2037         ShowDeclName = false;
2038         break;
2039 
2040       case DeclarationName::CXXDestructorName:
2041         InvalidDecl = 5;
2042         ShowDeclName = false;
2043         break;
2044 
2045       case DeclarationName::CXXOperatorName:
2046       case DeclarationName::CXXConversionFunctionName:
2047         InvalidDecl = 6;
2048         break;
2049 
2050       default:
2051         InvalidDecl = 0;
2052         break;
2053     }
2054 
2055     if (InvalidDecl) {
2056       if (ShowDeclName)
2057         Diag(Loc, diag::err_invalid_member_in_interface)
2058           << (InvalidDecl-1) << Name;
2059       else
2060         Diag(Loc, diag::err_invalid_member_in_interface)
2061           << (InvalidDecl-1) << "";
2062       return nullptr;
2063     }
2064   }
2065 
2066   // C++ 9.2p6: A member shall not be declared to have automatic storage
2067   // duration (auto, register) or with the extern storage-class-specifier.
2068   // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
2069   // data members and cannot be applied to names declared const or static,
2070   // and cannot be applied to reference members.
2071   switch (DS.getStorageClassSpec()) {
2072   case DeclSpec::SCS_unspecified:
2073   case DeclSpec::SCS_typedef:
2074   case DeclSpec::SCS_static:
2075     break;
2076   case DeclSpec::SCS_mutable:
2077     if (isFunc) {
2078       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
2079 
2080       // FIXME: It would be nicer if the keyword was ignored only for this
2081       // declarator. Otherwise we could get follow-up errors.
2082       D.getMutableDeclSpec().ClearStorageClassSpecs();
2083     }
2084     break;
2085   default:
2086     Diag(DS.getStorageClassSpecLoc(),
2087          diag::err_storageclass_invalid_for_member);
2088     D.getMutableDeclSpec().ClearStorageClassSpecs();
2089     break;
2090   }
2091 
2092   bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
2093                        DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
2094                       !isFunc);
2095 
2096   if (DS.isConstexprSpecified() && isInstField) {
2097     SemaDiagnosticBuilder B =
2098         Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
2099     SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
2100     if (InitStyle == ICIS_NoInit) {
2101       B << 0 << 0;
2102       if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
2103         B << FixItHint::CreateRemoval(ConstexprLoc);
2104       else {
2105         B << FixItHint::CreateReplacement(ConstexprLoc, "const");
2106         D.getMutableDeclSpec().ClearConstexprSpec();
2107         const char *PrevSpec;
2108         unsigned DiagID;
2109         bool Failed = D.getMutableDeclSpec().SetTypeQual(
2110             DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
2111         (void)Failed;
2112         assert(!Failed && "Making a constexpr member const shouldn't fail");
2113       }
2114     } else {
2115       B << 1;
2116       const char *PrevSpec;
2117       unsigned DiagID;
2118       if (D.getMutableDeclSpec().SetStorageClassSpec(
2119           *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
2120           Context.getPrintingPolicy())) {
2121         assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
2122                "This is the only DeclSpec that should fail to be applied");
2123         B << 1;
2124       } else {
2125         B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
2126         isInstField = false;
2127       }
2128     }
2129   }
2130 
2131   NamedDecl *Member;
2132   if (isInstField) {
2133     CXXScopeSpec &SS = D.getCXXScopeSpec();
2134 
2135     // Data members must have identifiers for names.
2136     if (!Name.isIdentifier()) {
2137       Diag(Loc, diag::err_bad_variable_name)
2138         << Name;
2139       return nullptr;
2140     }
2141 
2142     IdentifierInfo *II = Name.getAsIdentifierInfo();
2143 
2144     // Member field could not be with "template" keyword.
2145     // So TemplateParameterLists should be empty in this case.
2146     if (TemplateParameterLists.size()) {
2147       TemplateParameterList* TemplateParams = TemplateParameterLists[0];
2148       if (TemplateParams->size()) {
2149         // There is no such thing as a member field template.
2150         Diag(D.getIdentifierLoc(), diag::err_template_member)
2151             << II
2152             << SourceRange(TemplateParams->getTemplateLoc(),
2153                 TemplateParams->getRAngleLoc());
2154       } else {
2155         // There is an extraneous 'template<>' for this member.
2156         Diag(TemplateParams->getTemplateLoc(),
2157             diag::err_template_member_noparams)
2158             << II
2159             << SourceRange(TemplateParams->getTemplateLoc(),
2160                 TemplateParams->getRAngleLoc());
2161       }
2162       return nullptr;
2163     }
2164 
2165     if (SS.isSet() && !SS.isInvalid()) {
2166       // The user provided a superfluous scope specifier inside a class
2167       // definition:
2168       //
2169       // class X {
2170       //   int X::member;
2171       // };
2172       if (DeclContext *DC = computeDeclContext(SS, false))
2173         diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
2174       else
2175         Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2176           << Name << SS.getRange();
2177 
2178       SS.clear();
2179     }
2180 
2181     AttributeList *MSPropertyAttr =
2182       getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
2183     if (MSPropertyAttr) {
2184       Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
2185                                 BitWidth, InitStyle, AS, MSPropertyAttr);
2186       if (!Member)
2187         return nullptr;
2188       isInstField = false;
2189     } else {
2190       Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
2191                                 BitWidth, InitStyle, AS);
2192       assert(Member && "HandleField never returns null");
2193     }
2194   } else {
2195     Member = HandleDeclarator(S, D, TemplateParameterLists);
2196     if (!Member)
2197       return nullptr;
2198 
2199     // Non-instance-fields can't have a bitfield.
2200     if (BitWidth) {
2201       if (Member->isInvalidDecl()) {
2202         // don't emit another diagnostic.
2203       } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
2204         // C++ 9.6p3: A bit-field shall not be a static member.
2205         // "static member 'A' cannot be a bit-field"
2206         Diag(Loc, diag::err_static_not_bitfield)
2207           << Name << BitWidth->getSourceRange();
2208       } else if (isa<TypedefDecl>(Member)) {
2209         // "typedef member 'x' cannot be a bit-field"
2210         Diag(Loc, diag::err_typedef_not_bitfield)
2211           << Name << BitWidth->getSourceRange();
2212       } else {
2213         // A function typedef ("typedef int f(); f a;").
2214         // C++ 9.6p3: A bit-field shall have integral or enumeration type.
2215         Diag(Loc, diag::err_not_integral_type_bitfield)
2216           << Name << cast<ValueDecl>(Member)->getType()
2217           << BitWidth->getSourceRange();
2218       }
2219 
2220       BitWidth = nullptr;
2221       Member->setInvalidDecl();
2222     }
2223 
2224     Member->setAccess(AS);
2225 
2226     // If we have declared a member function template or static data member
2227     // template, set the access of the templated declaration as well.
2228     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
2229       FunTmpl->getTemplatedDecl()->setAccess(AS);
2230     else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
2231       VarTmpl->getTemplatedDecl()->setAccess(AS);
2232   }
2233 
2234   if (VS.isOverrideSpecified())
2235     Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
2236   if (VS.isFinalSpecified())
2237     Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
2238                                             VS.isFinalSpelledSealed()));
2239 
2240   if (VS.getLastLocation().isValid()) {
2241     // Update the end location of a method that has a virt-specifiers.
2242     if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
2243       MD->setRangeEnd(VS.getLastLocation());
2244   }
2245 
2246   CheckOverrideControl(Member);
2247 
2248   assert((Name || isInstField) && "No identifier for non-field ?");
2249 
2250   if (isInstField) {
2251     FieldDecl *FD = cast<FieldDecl>(Member);
2252     FieldCollector->Add(FD);
2253 
2254     if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
2255       // Remember all explicit private FieldDecls that have a name, no side
2256       // effects and are not part of a dependent type declaration.
2257       if (!FD->isImplicit() && FD->getDeclName() &&
2258           FD->getAccess() == AS_private &&
2259           !FD->hasAttr<UnusedAttr>() &&
2260           !FD->getParent()->isDependentContext() &&
2261           !InitializationHasSideEffects(*FD))
2262         UnusedPrivateFields.insert(FD);
2263     }
2264   }
2265 
2266   return Member;
2267 }
2268 
2269 namespace {
2270   class UninitializedFieldVisitor
2271       : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2272     Sema &S;
2273     // List of Decls to generate a warning on.  Also remove Decls that become
2274     // initialized.
2275     llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
2276     // List of base classes of the record.  Classes are removed after their
2277     // initializers.
2278     llvm::SmallPtrSetImpl<QualType> &BaseClasses;
2279     // Vector of decls to be removed from the Decl set prior to visiting the
2280     // nodes.  These Decls may have been initialized in the prior initializer.
2281     llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
2282     // If non-null, add a note to the warning pointing back to the constructor.
2283     const CXXConstructorDecl *Constructor;
2284     // Variables to hold state when processing an initializer list.  When
2285     // InitList is true, special case initialization of FieldDecls matching
2286     // InitListFieldDecl.
2287     bool InitList;
2288     FieldDecl *InitListFieldDecl;
2289     llvm::SmallVector<unsigned, 4> InitFieldIndex;
2290 
2291   public:
2292     typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
UninitializedFieldVisitor(Sema & S,llvm::SmallPtrSetImpl<ValueDecl * > & Decls,llvm::SmallPtrSetImpl<QualType> & BaseClasses)2293     UninitializedFieldVisitor(Sema &S,
2294                               llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
2295                               llvm::SmallPtrSetImpl<QualType> &BaseClasses)
2296       : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
2297         Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
2298 
2299     // Returns true if the use of ME is not an uninitialized use.
IsInitListMemberExprInitialized(MemberExpr * ME,bool CheckReferenceOnly)2300     bool IsInitListMemberExprInitialized(MemberExpr *ME,
2301                                          bool CheckReferenceOnly) {
2302       llvm::SmallVector<FieldDecl*, 4> Fields;
2303       bool ReferenceField = false;
2304       while (ME) {
2305         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
2306         if (!FD)
2307           return false;
2308         Fields.push_back(FD);
2309         if (FD->getType()->isReferenceType())
2310           ReferenceField = true;
2311         ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
2312       }
2313 
2314       // Binding a reference to an unintialized field is not an
2315       // uninitialized use.
2316       if (CheckReferenceOnly && !ReferenceField)
2317         return true;
2318 
2319       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
2320       // Discard the first field since it is the field decl that is being
2321       // initialized.
2322       for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
2323         UsedFieldIndex.push_back((*I)->getFieldIndex());
2324       }
2325 
2326       for (auto UsedIter = UsedFieldIndex.begin(),
2327                 UsedEnd = UsedFieldIndex.end(),
2328                 OrigIter = InitFieldIndex.begin(),
2329                 OrigEnd = InitFieldIndex.end();
2330            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
2331         if (*UsedIter < *OrigIter)
2332           return true;
2333         if (*UsedIter > *OrigIter)
2334           break;
2335       }
2336 
2337       return false;
2338     }
2339 
HandleMemberExpr(MemberExpr * ME,bool CheckReferenceOnly,bool AddressOf)2340     void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
2341                           bool AddressOf) {
2342       if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2343         return;
2344 
2345       // FieldME is the inner-most MemberExpr that is not an anonymous struct
2346       // or union.
2347       MemberExpr *FieldME = ME;
2348 
2349       bool AllPODFields = FieldME->getType().isPODType(S.Context);
2350 
2351       Expr *Base = ME;
2352       while (MemberExpr *SubME =
2353                  dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
2354 
2355         if (isa<VarDecl>(SubME->getMemberDecl()))
2356           return;
2357 
2358         if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
2359           if (!FD->isAnonymousStructOrUnion())
2360             FieldME = SubME;
2361 
2362         if (!FieldME->getType().isPODType(S.Context))
2363           AllPODFields = false;
2364 
2365         Base = SubME->getBase();
2366       }
2367 
2368       if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
2369         return;
2370 
2371       if (AddressOf && AllPODFields)
2372         return;
2373 
2374       ValueDecl* FoundVD = FieldME->getMemberDecl();
2375 
2376       if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
2377         while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
2378           BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
2379         }
2380 
2381         if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
2382           QualType T = BaseCast->getType();
2383           if (T->isPointerType() &&
2384               BaseClasses.count(T->getPointeeType())) {
2385             S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
2386                 << T->getPointeeType() << FoundVD;
2387           }
2388         }
2389       }
2390 
2391       if (!Decls.count(FoundVD))
2392         return;
2393 
2394       const bool IsReference = FoundVD->getType()->isReferenceType();
2395 
2396       if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
2397         // Special checking for initializer lists.
2398         if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
2399           return;
2400         }
2401       } else {
2402         // Prevent double warnings on use of unbounded references.
2403         if (CheckReferenceOnly && !IsReference)
2404           return;
2405       }
2406 
2407       unsigned diag = IsReference
2408           ? diag::warn_reference_field_is_uninit
2409           : diag::warn_field_is_uninit;
2410       S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
2411       if (Constructor)
2412         S.Diag(Constructor->getLocation(),
2413                diag::note_uninit_in_this_constructor)
2414           << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
2415 
2416     }
2417 
HandleValue(Expr * E,bool AddressOf)2418     void HandleValue(Expr *E, bool AddressOf) {
2419       E = E->IgnoreParens();
2420 
2421       if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2422         HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
2423                          AddressOf /*AddressOf*/);
2424         return;
2425       }
2426 
2427       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2428         Visit(CO->getCond());
2429         HandleValue(CO->getTrueExpr(), AddressOf);
2430         HandleValue(CO->getFalseExpr(), AddressOf);
2431         return;
2432       }
2433 
2434       if (BinaryConditionalOperator *BCO =
2435               dyn_cast<BinaryConditionalOperator>(E)) {
2436         Visit(BCO->getCond());
2437         HandleValue(BCO->getFalseExpr(), AddressOf);
2438         return;
2439       }
2440 
2441       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
2442         HandleValue(OVE->getSourceExpr(), AddressOf);
2443         return;
2444       }
2445 
2446       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2447         switch (BO->getOpcode()) {
2448         default:
2449           break;
2450         case(BO_PtrMemD):
2451         case(BO_PtrMemI):
2452           HandleValue(BO->getLHS(), AddressOf);
2453           Visit(BO->getRHS());
2454           return;
2455         case(BO_Comma):
2456           Visit(BO->getLHS());
2457           HandleValue(BO->getRHS(), AddressOf);
2458           return;
2459         }
2460       }
2461 
2462       Visit(E);
2463     }
2464 
CheckInitListExpr(InitListExpr * ILE)2465     void CheckInitListExpr(InitListExpr *ILE) {
2466       InitFieldIndex.push_back(0);
2467       for (auto Child : ILE->children()) {
2468         if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
2469           CheckInitListExpr(SubList);
2470         } else {
2471           Visit(Child);
2472         }
2473         ++InitFieldIndex.back();
2474       }
2475       InitFieldIndex.pop_back();
2476     }
2477 
CheckInitializer(Expr * E,const CXXConstructorDecl * FieldConstructor,FieldDecl * Field,const Type * BaseClass)2478     void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
2479                           FieldDecl *Field, const Type *BaseClass) {
2480       // Remove Decls that may have been initialized in the previous
2481       // initializer.
2482       for (ValueDecl* VD : DeclsToRemove)
2483         Decls.erase(VD);
2484       DeclsToRemove.clear();
2485 
2486       Constructor = FieldConstructor;
2487       InitListExpr *ILE = dyn_cast<InitListExpr>(E);
2488 
2489       if (ILE && Field) {
2490         InitList = true;
2491         InitListFieldDecl = Field;
2492         InitFieldIndex.clear();
2493         CheckInitListExpr(ILE);
2494       } else {
2495         InitList = false;
2496         Visit(E);
2497       }
2498 
2499       if (Field)
2500         Decls.erase(Field);
2501       if (BaseClass)
2502         BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
2503     }
2504 
VisitMemberExpr(MemberExpr * ME)2505     void VisitMemberExpr(MemberExpr *ME) {
2506       // All uses of unbounded reference fields will warn.
2507       HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
2508     }
2509 
VisitImplicitCastExpr(ImplicitCastExpr * E)2510     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2511       if (E->getCastKind() == CK_LValueToRValue) {
2512         HandleValue(E->getSubExpr(), false /*AddressOf*/);
2513         return;
2514       }
2515 
2516       Inherited::VisitImplicitCastExpr(E);
2517     }
2518 
VisitCXXConstructExpr(CXXConstructExpr * E)2519     void VisitCXXConstructExpr(CXXConstructExpr *E) {
2520       if (E->getConstructor()->isCopyConstructor()) {
2521         Expr *ArgExpr = E->getArg(0);
2522         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
2523           if (ILE->getNumInits() == 1)
2524             ArgExpr = ILE->getInit(0);
2525         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
2526           if (ICE->getCastKind() == CK_NoOp)
2527             ArgExpr = ICE->getSubExpr();
2528         HandleValue(ArgExpr, false /*AddressOf*/);
2529         return;
2530       }
2531       Inherited::VisitCXXConstructExpr(E);
2532     }
2533 
VisitCXXMemberCallExpr(CXXMemberCallExpr * E)2534     void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2535       Expr *Callee = E->getCallee();
2536       if (isa<MemberExpr>(Callee)) {
2537         HandleValue(Callee, false /*AddressOf*/);
2538         for (auto Arg : E->arguments())
2539           Visit(Arg);
2540         return;
2541       }
2542 
2543       Inherited::VisitCXXMemberCallExpr(E);
2544     }
2545 
VisitCallExpr(CallExpr * E)2546     void VisitCallExpr(CallExpr *E) {
2547       // Treat std::move as a use.
2548       if (E->getNumArgs() == 1) {
2549         if (FunctionDecl *FD = E->getDirectCallee()) {
2550           if (FD->isInStdNamespace() && FD->getIdentifier() &&
2551               FD->getIdentifier()->isStr("move")) {
2552             HandleValue(E->getArg(0), false /*AddressOf*/);
2553             return;
2554           }
2555         }
2556       }
2557 
2558       Inherited::VisitCallExpr(E);
2559     }
2560 
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)2561     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
2562       Expr *Callee = E->getCallee();
2563 
2564       if (isa<UnresolvedLookupExpr>(Callee))
2565         return Inherited::VisitCXXOperatorCallExpr(E);
2566 
2567       Visit(Callee);
2568       for (auto Arg : E->arguments())
2569         HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
2570     }
2571 
VisitBinaryOperator(BinaryOperator * E)2572     void VisitBinaryOperator(BinaryOperator *E) {
2573       // If a field assignment is detected, remove the field from the
2574       // uninitiailized field set.
2575       if (E->getOpcode() == BO_Assign)
2576         if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
2577           if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2578             if (!FD->getType()->isReferenceType())
2579               DeclsToRemove.push_back(FD);
2580 
2581       if (E->isCompoundAssignmentOp()) {
2582         HandleValue(E->getLHS(), false /*AddressOf*/);
2583         Visit(E->getRHS());
2584         return;
2585       }
2586 
2587       Inherited::VisitBinaryOperator(E);
2588     }
2589 
VisitUnaryOperator(UnaryOperator * E)2590     void VisitUnaryOperator(UnaryOperator *E) {
2591       if (E->isIncrementDecrementOp()) {
2592         HandleValue(E->getSubExpr(), false /*AddressOf*/);
2593         return;
2594       }
2595       if (E->getOpcode() == UO_AddrOf) {
2596         if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
2597           HandleValue(ME->getBase(), true /*AddressOf*/);
2598           return;
2599         }
2600       }
2601 
2602       Inherited::VisitUnaryOperator(E);
2603     }
2604   };
2605 
2606   // Diagnose value-uses of fields to initialize themselves, e.g.
2607   //   foo(foo)
2608   // where foo is not also a parameter to the constructor.
2609   // Also diagnose across field uninitialized use such as
2610   //   x(y), y(x)
2611   // TODO: implement -Wuninitialized and fold this into that framework.
DiagnoseUninitializedFields(Sema & SemaRef,const CXXConstructorDecl * Constructor)2612   static void DiagnoseUninitializedFields(
2613       Sema &SemaRef, const CXXConstructorDecl *Constructor) {
2614 
2615     if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
2616                                            Constructor->getLocation())) {
2617       return;
2618     }
2619 
2620     if (Constructor->isInvalidDecl())
2621       return;
2622 
2623     const CXXRecordDecl *RD = Constructor->getParent();
2624 
2625     if (RD->getDescribedClassTemplate())
2626       return;
2627 
2628     // Holds fields that are uninitialized.
2629     llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
2630 
2631     // At the beginning, all fields are uninitialized.
2632     for (auto *I : RD->decls()) {
2633       if (auto *FD = dyn_cast<FieldDecl>(I)) {
2634         UninitializedFields.insert(FD);
2635       } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
2636         UninitializedFields.insert(IFD->getAnonField());
2637       }
2638     }
2639 
2640     llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
2641     for (auto I : RD->bases())
2642       UninitializedBaseClasses.insert(I.getType().getCanonicalType());
2643 
2644     if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
2645       return;
2646 
2647     UninitializedFieldVisitor UninitializedChecker(SemaRef,
2648                                                    UninitializedFields,
2649                                                    UninitializedBaseClasses);
2650 
2651     for (const auto *FieldInit : Constructor->inits()) {
2652       if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
2653         break;
2654 
2655       Expr *InitExpr = FieldInit->getInit();
2656       if (!InitExpr)
2657         continue;
2658 
2659       if (CXXDefaultInitExpr *Default =
2660               dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
2661         InitExpr = Default->getExpr();
2662         if (!InitExpr)
2663           continue;
2664         // In class initializers will point to the constructor.
2665         UninitializedChecker.CheckInitializer(InitExpr, Constructor,
2666                                               FieldInit->getAnyMember(),
2667                                               FieldInit->getBaseClass());
2668       } else {
2669         UninitializedChecker.CheckInitializer(InitExpr, nullptr,
2670                                               FieldInit->getAnyMember(),
2671                                               FieldInit->getBaseClass());
2672       }
2673     }
2674   }
2675 } // namespace
2676 
2677 /// \brief Enter a new C++ default initializer scope. After calling this, the
2678 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
2679 /// parsing or instantiating the initializer failed.
ActOnStartCXXInClassMemberInitializer()2680 void Sema::ActOnStartCXXInClassMemberInitializer() {
2681   // Create a synthetic function scope to represent the call to the constructor
2682   // that notionally surrounds a use of this initializer.
2683   PushFunctionScope();
2684 }
2685 
2686 /// \brief This is invoked after parsing an in-class initializer for a
2687 /// non-static C++ class member, and after instantiating an in-class initializer
2688 /// in a class template. Such actions are deferred until the class is complete.
ActOnFinishCXXInClassMemberInitializer(Decl * D,SourceLocation InitLoc,Expr * InitExpr)2689 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
2690                                                   SourceLocation InitLoc,
2691                                                   Expr *InitExpr) {
2692   // Pop the notional constructor scope we created earlier.
2693   PopFunctionScopeInfo(nullptr, D);
2694 
2695   FieldDecl *FD = dyn_cast<FieldDecl>(D);
2696   assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&
2697          "must set init style when field is created");
2698 
2699   if (!InitExpr) {
2700     D->setInvalidDecl();
2701     if (FD)
2702       FD->removeInClassInitializer();
2703     return;
2704   }
2705 
2706   if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2707     FD->setInvalidDecl();
2708     FD->removeInClassInitializer();
2709     return;
2710   }
2711 
2712   ExprResult Init = InitExpr;
2713   if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2714     InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2715     InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2716         ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2717         : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2718     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2719     Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2720     if (Init.isInvalid()) {
2721       FD->setInvalidDecl();
2722       return;
2723     }
2724   }
2725 
2726   // C++11 [class.base.init]p7:
2727   //   The initialization of each base and member constitutes a
2728   //   full-expression.
2729   Init = ActOnFinishFullExpr(Init.get(), InitLoc);
2730   if (Init.isInvalid()) {
2731     FD->setInvalidDecl();
2732     return;
2733   }
2734 
2735   InitExpr = Init.get();
2736 
2737   FD->setInClassInitializer(InitExpr);
2738 }
2739 
2740 /// \brief Find the direct and/or virtual base specifiers that
2741 /// correspond to the given base type, for use in base initialization
2742 /// within a constructor.
FindBaseInitializer(Sema & SemaRef,CXXRecordDecl * ClassDecl,QualType BaseType,const CXXBaseSpecifier * & DirectBaseSpec,const CXXBaseSpecifier * & VirtualBaseSpec)2743 static bool FindBaseInitializer(Sema &SemaRef,
2744                                 CXXRecordDecl *ClassDecl,
2745                                 QualType BaseType,
2746                                 const CXXBaseSpecifier *&DirectBaseSpec,
2747                                 const CXXBaseSpecifier *&VirtualBaseSpec) {
2748   // First, check for a direct base class.
2749   DirectBaseSpec = nullptr;
2750   for (const auto &Base : ClassDecl->bases()) {
2751     if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
2752       // We found a direct base of this type. That's what we're
2753       // initializing.
2754       DirectBaseSpec = &Base;
2755       break;
2756     }
2757   }
2758 
2759   // Check for a virtual base class.
2760   // FIXME: We might be able to short-circuit this if we know in advance that
2761   // there are no virtual bases.
2762   VirtualBaseSpec = nullptr;
2763   if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2764     // We haven't found a base yet; search the class hierarchy for a
2765     // virtual base class.
2766     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2767                        /*DetectVirtual=*/false);
2768     if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
2769                               SemaRef.Context.getTypeDeclType(ClassDecl),
2770                               BaseType, Paths)) {
2771       for (CXXBasePaths::paths_iterator Path = Paths.begin();
2772            Path != Paths.end(); ++Path) {
2773         if (Path->back().Base->isVirtual()) {
2774           VirtualBaseSpec = Path->back().Base;
2775           break;
2776         }
2777       }
2778     }
2779   }
2780 
2781   return DirectBaseSpec || VirtualBaseSpec;
2782 }
2783 
2784 /// \brief Handle a C++ member initializer using braced-init-list syntax.
2785 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * InitList,SourceLocation EllipsisLoc)2786 Sema::ActOnMemInitializer(Decl *ConstructorD,
2787                           Scope *S,
2788                           CXXScopeSpec &SS,
2789                           IdentifierInfo *MemberOrBase,
2790                           ParsedType TemplateTypeTy,
2791                           const DeclSpec &DS,
2792                           SourceLocation IdLoc,
2793                           Expr *InitList,
2794                           SourceLocation EllipsisLoc) {
2795   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2796                              DS, IdLoc, InitList,
2797                              EllipsisLoc);
2798 }
2799 
2800 /// \brief Handle a C++ member initializer using parentheses syntax.
2801 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,SourceLocation LParenLoc,ArrayRef<Expr * > Args,SourceLocation RParenLoc,SourceLocation EllipsisLoc)2802 Sema::ActOnMemInitializer(Decl *ConstructorD,
2803                           Scope *S,
2804                           CXXScopeSpec &SS,
2805                           IdentifierInfo *MemberOrBase,
2806                           ParsedType TemplateTypeTy,
2807                           const DeclSpec &DS,
2808                           SourceLocation IdLoc,
2809                           SourceLocation LParenLoc,
2810                           ArrayRef<Expr *> Args,
2811                           SourceLocation RParenLoc,
2812                           SourceLocation EllipsisLoc) {
2813   Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2814                                            Args, RParenLoc);
2815   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2816                              DS, IdLoc, List, EllipsisLoc);
2817 }
2818 
2819 namespace {
2820 
2821 // Callback to only accept typo corrections that can be a valid C++ member
2822 // intializer: either a non-static field member or a base class.
2823 class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2824 public:
MemInitializerValidatorCCC(CXXRecordDecl * ClassDecl)2825   explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2826       : ClassDecl(ClassDecl) {}
2827 
ValidateCandidate(const TypoCorrection & candidate)2828   bool ValidateCandidate(const TypoCorrection &candidate) override {
2829     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2830       if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2831         return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2832       return isa<TypeDecl>(ND);
2833     }
2834     return false;
2835   }
2836 
2837 private:
2838   CXXRecordDecl *ClassDecl;
2839 };
2840 
2841 }
2842 
2843 /// \brief Handle a C++ member initializer.
2844 MemInitResult
BuildMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * Init,SourceLocation EllipsisLoc)2845 Sema::BuildMemInitializer(Decl *ConstructorD,
2846                           Scope *S,
2847                           CXXScopeSpec &SS,
2848                           IdentifierInfo *MemberOrBase,
2849                           ParsedType TemplateTypeTy,
2850                           const DeclSpec &DS,
2851                           SourceLocation IdLoc,
2852                           Expr *Init,
2853                           SourceLocation EllipsisLoc) {
2854   ExprResult Res = CorrectDelayedTyposInExpr(Init);
2855   if (!Res.isUsable())
2856     return true;
2857   Init = Res.get();
2858 
2859   if (!ConstructorD)
2860     return true;
2861 
2862   AdjustDeclIfTemplate(ConstructorD);
2863 
2864   CXXConstructorDecl *Constructor
2865     = dyn_cast<CXXConstructorDecl>(ConstructorD);
2866   if (!Constructor) {
2867     // The user wrote a constructor initializer on a function that is
2868     // not a C++ constructor. Ignore the error for now, because we may
2869     // have more member initializers coming; we'll diagnose it just
2870     // once in ActOnMemInitializers.
2871     return true;
2872   }
2873 
2874   CXXRecordDecl *ClassDecl = Constructor->getParent();
2875 
2876   // C++ [class.base.init]p2:
2877   //   Names in a mem-initializer-id are looked up in the scope of the
2878   //   constructor's class and, if not found in that scope, are looked
2879   //   up in the scope containing the constructor's definition.
2880   //   [Note: if the constructor's class contains a member with the
2881   //   same name as a direct or virtual base class of the class, a
2882   //   mem-initializer-id naming the member or base class and composed
2883   //   of a single identifier refers to the class member. A
2884   //   mem-initializer-id for the hidden base class may be specified
2885   //   using a qualified name. ]
2886   if (!SS.getScopeRep() && !TemplateTypeTy) {
2887     // Look for a member, first.
2888     DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
2889     if (!Result.empty()) {
2890       ValueDecl *Member;
2891       if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2892           (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2893         if (EllipsisLoc.isValid())
2894           Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2895             << MemberOrBase
2896             << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2897 
2898         return BuildMemberInitializer(Member, Init, IdLoc);
2899       }
2900     }
2901   }
2902   // It didn't name a member, so see if it names a class.
2903   QualType BaseType;
2904   TypeSourceInfo *TInfo = nullptr;
2905 
2906   if (TemplateTypeTy) {
2907     BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2908   } else if (DS.getTypeSpecType() == TST_decltype) {
2909     BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2910   } else {
2911     LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2912     LookupParsedName(R, S, &SS);
2913 
2914     TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2915     if (!TyD) {
2916       if (R.isAmbiguous()) return true;
2917 
2918       // We don't want access-control diagnostics here.
2919       R.suppressDiagnostics();
2920 
2921       if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2922         bool NotUnknownSpecialization = false;
2923         DeclContext *DC = computeDeclContext(SS, false);
2924         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2925           NotUnknownSpecialization = !Record->hasAnyDependentBases();
2926 
2927         if (!NotUnknownSpecialization) {
2928           // When the scope specifier can refer to a member of an unknown
2929           // specialization, we take it as a type name.
2930           BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2931                                        SS.getWithLocInContext(Context),
2932                                        *MemberOrBase, IdLoc);
2933           if (BaseType.isNull())
2934             return true;
2935 
2936           R.clear();
2937           R.setLookupName(MemberOrBase);
2938         }
2939       }
2940 
2941       // If no results were found, try to correct typos.
2942       TypoCorrection Corr;
2943       if (R.empty() && BaseType.isNull() &&
2944           (Corr = CorrectTypo(
2945                R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2946                llvm::make_unique<MemInitializerValidatorCCC>(ClassDecl),
2947                CTK_ErrorRecovery, ClassDecl))) {
2948         if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2949           // We have found a non-static data member with a similar
2950           // name to what was typed; complain and initialize that
2951           // member.
2952           diagnoseTypo(Corr,
2953                        PDiag(diag::err_mem_init_not_member_or_class_suggest)
2954                          << MemberOrBase << true);
2955           return BuildMemberInitializer(Member, Init, IdLoc);
2956         } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2957           const CXXBaseSpecifier *DirectBaseSpec;
2958           const CXXBaseSpecifier *VirtualBaseSpec;
2959           if (FindBaseInitializer(*this, ClassDecl,
2960                                   Context.getTypeDeclType(Type),
2961                                   DirectBaseSpec, VirtualBaseSpec)) {
2962             // We have found a direct or virtual base class with a
2963             // similar name to what was typed; complain and initialize
2964             // that base class.
2965             diagnoseTypo(Corr,
2966                          PDiag(diag::err_mem_init_not_member_or_class_suggest)
2967                            << MemberOrBase << false,
2968                          PDiag() /*Suppress note, we provide our own.*/);
2969 
2970             const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
2971                                                               : VirtualBaseSpec;
2972             Diag(BaseSpec->getLocStart(),
2973                  diag::note_base_class_specified_here)
2974               << BaseSpec->getType()
2975               << BaseSpec->getSourceRange();
2976 
2977             TyD = Type;
2978           }
2979         }
2980       }
2981 
2982       if (!TyD && BaseType.isNull()) {
2983         Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2984           << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2985         return true;
2986       }
2987     }
2988 
2989     if (BaseType.isNull()) {
2990       BaseType = Context.getTypeDeclType(TyD);
2991       MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
2992       if (SS.isSet()) {
2993         BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
2994                                              BaseType);
2995         TInfo = Context.CreateTypeSourceInfo(BaseType);
2996         ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
2997         TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
2998         TL.setElaboratedKeywordLoc(SourceLocation());
2999         TL.setQualifierLoc(SS.getWithLocInContext(Context));
3000       }
3001     }
3002   }
3003 
3004   if (!TInfo)
3005     TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
3006 
3007   return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
3008 }
3009 
3010 /// Checks a member initializer expression for cases where reference (or
3011 /// pointer) members are bound to by-value parameters (or their addresses).
CheckForDanglingReferenceOrPointer(Sema & S,ValueDecl * Member,Expr * Init,SourceLocation IdLoc)3012 static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
3013                                                Expr *Init,
3014                                                SourceLocation IdLoc) {
3015   QualType MemberTy = Member->getType();
3016 
3017   // We only handle pointers and references currently.
3018   // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
3019   if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
3020     return;
3021 
3022   const bool IsPointer = MemberTy->isPointerType();
3023   if (IsPointer) {
3024     if (const UnaryOperator *Op
3025           = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
3026       // The only case we're worried about with pointers requires taking the
3027       // address.
3028       if (Op->getOpcode() != UO_AddrOf)
3029         return;
3030 
3031       Init = Op->getSubExpr();
3032     } else {
3033       // We only handle address-of expression initializers for pointers.
3034       return;
3035     }
3036   }
3037 
3038   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
3039     // We only warn when referring to a non-reference parameter declaration.
3040     const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
3041     if (!Parameter || Parameter->getType()->isReferenceType())
3042       return;
3043 
3044     S.Diag(Init->getExprLoc(),
3045            IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
3046                      : diag::warn_bind_ref_member_to_parameter)
3047       << Member << Parameter << Init->getSourceRange();
3048   } else {
3049     // Other initializers are fine.
3050     return;
3051   }
3052 
3053   S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
3054     << (unsigned)IsPointer;
3055 }
3056 
3057 MemInitResult
BuildMemberInitializer(ValueDecl * Member,Expr * Init,SourceLocation IdLoc)3058 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
3059                              SourceLocation IdLoc) {
3060   FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
3061   IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
3062   assert((DirectMember || IndirectMember) &&
3063          "Member must be a FieldDecl or IndirectFieldDecl");
3064 
3065   if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
3066     return true;
3067 
3068   if (Member->isInvalidDecl())
3069     return true;
3070 
3071   MultiExprArg Args;
3072   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3073     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3074   } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
3075     Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
3076   } else {
3077     // Template instantiation doesn't reconstruct ParenListExprs for us.
3078     Args = Init;
3079   }
3080 
3081   SourceRange InitRange = Init->getSourceRange();
3082 
3083   if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
3084     // Can't check initialization for a member of dependent type or when
3085     // any of the arguments are type-dependent expressions.
3086     DiscardCleanupsInEvaluationContext();
3087   } else {
3088     bool InitList = false;
3089     if (isa<InitListExpr>(Init)) {
3090       InitList = true;
3091       Args = Init;
3092     }
3093 
3094     // Initialize the member.
3095     InitializedEntity MemberEntity =
3096       DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
3097                    : InitializedEntity::InitializeMember(IndirectMember,
3098                                                          nullptr);
3099     InitializationKind Kind =
3100       InitList ? InitializationKind::CreateDirectList(IdLoc)
3101                : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
3102                                                   InitRange.getEnd());
3103 
3104     InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
3105     ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
3106                                             nullptr);
3107     if (MemberInit.isInvalid())
3108       return true;
3109 
3110     CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
3111 
3112     // C++11 [class.base.init]p7:
3113     //   The initialization of each base and member constitutes a
3114     //   full-expression.
3115     MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
3116     if (MemberInit.isInvalid())
3117       return true;
3118 
3119     Init = MemberInit.get();
3120   }
3121 
3122   if (DirectMember) {
3123     return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
3124                                             InitRange.getBegin(), Init,
3125                                             InitRange.getEnd());
3126   } else {
3127     return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
3128                                             InitRange.getBegin(), Init,
3129                                             InitRange.getEnd());
3130   }
3131 }
3132 
3133 MemInitResult
BuildDelegatingInitializer(TypeSourceInfo * TInfo,Expr * Init,CXXRecordDecl * ClassDecl)3134 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
3135                                  CXXRecordDecl *ClassDecl) {
3136   SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
3137   if (!LangOpts.CPlusPlus11)
3138     return Diag(NameLoc, diag::err_delegating_ctor)
3139       << TInfo->getTypeLoc().getLocalSourceRange();
3140   Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
3141 
3142   bool InitList = true;
3143   MultiExprArg Args = Init;
3144   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3145     InitList = false;
3146     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3147   }
3148 
3149   SourceRange InitRange = Init->getSourceRange();
3150   // Initialize the object.
3151   InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
3152                                      QualType(ClassDecl->getTypeForDecl(), 0));
3153   InitializationKind Kind =
3154     InitList ? InitializationKind::CreateDirectList(NameLoc)
3155              : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
3156                                                 InitRange.getEnd());
3157   InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
3158   ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
3159                                               Args, nullptr);
3160   if (DelegationInit.isInvalid())
3161     return true;
3162 
3163   assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
3164          "Delegating constructor with no target?");
3165 
3166   // C++11 [class.base.init]p7:
3167   //   The initialization of each base and member constitutes a
3168   //   full-expression.
3169   DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
3170                                        InitRange.getBegin());
3171   if (DelegationInit.isInvalid())
3172     return true;
3173 
3174   // If we are in a dependent context, template instantiation will
3175   // perform this type-checking again. Just save the arguments that we
3176   // received in a ParenListExpr.
3177   // FIXME: This isn't quite ideal, since our ASTs don't capture all
3178   // of the information that we have about the base
3179   // initializer. However, deconstructing the ASTs is a dicey process,
3180   // and this approach is far more likely to get the corner cases right.
3181   if (CurContext->isDependentContext())
3182     DelegationInit = Init;
3183 
3184   return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
3185                                           DelegationInit.getAs<Expr>(),
3186                                           InitRange.getEnd());
3187 }
3188 
3189 MemInitResult
BuildBaseInitializer(QualType BaseType,TypeSourceInfo * BaseTInfo,Expr * Init,CXXRecordDecl * ClassDecl,SourceLocation EllipsisLoc)3190 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
3191                            Expr *Init, CXXRecordDecl *ClassDecl,
3192                            SourceLocation EllipsisLoc) {
3193   SourceLocation BaseLoc
3194     = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
3195 
3196   if (!BaseType->isDependentType() && !BaseType->isRecordType())
3197     return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
3198              << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
3199 
3200   // C++ [class.base.init]p2:
3201   //   [...] Unless the mem-initializer-id names a nonstatic data
3202   //   member of the constructor's class or a direct or virtual base
3203   //   of that class, the mem-initializer is ill-formed. A
3204   //   mem-initializer-list can initialize a base class using any
3205   //   name that denotes that base class type.
3206   bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
3207 
3208   SourceRange InitRange = Init->getSourceRange();
3209   if (EllipsisLoc.isValid()) {
3210     // This is a pack expansion.
3211     if (!BaseType->containsUnexpandedParameterPack())  {
3212       Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
3213         << SourceRange(BaseLoc, InitRange.getEnd());
3214 
3215       EllipsisLoc = SourceLocation();
3216     }
3217   } else {
3218     // Check for any unexpanded parameter packs.
3219     if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
3220       return true;
3221 
3222     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
3223       return true;
3224   }
3225 
3226   // Check for direct and virtual base classes.
3227   const CXXBaseSpecifier *DirectBaseSpec = nullptr;
3228   const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
3229   if (!Dependent) {
3230     if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
3231                                        BaseType))
3232       return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
3233 
3234     FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
3235                         VirtualBaseSpec);
3236 
3237     // C++ [base.class.init]p2:
3238     // Unless the mem-initializer-id names a nonstatic data member of the
3239     // constructor's class or a direct or virtual base of that class, the
3240     // mem-initializer is ill-formed.
3241     if (!DirectBaseSpec && !VirtualBaseSpec) {
3242       // If the class has any dependent bases, then it's possible that
3243       // one of those types will resolve to the same type as
3244       // BaseType. Therefore, just treat this as a dependent base
3245       // class initialization.  FIXME: Should we try to check the
3246       // initialization anyway? It seems odd.
3247       if (ClassDecl->hasAnyDependentBases())
3248         Dependent = true;
3249       else
3250         return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
3251           << BaseType << Context.getTypeDeclType(ClassDecl)
3252           << BaseTInfo->getTypeLoc().getLocalSourceRange();
3253     }
3254   }
3255 
3256   if (Dependent) {
3257     DiscardCleanupsInEvaluationContext();
3258 
3259     return new (Context) CXXCtorInitializer(Context, BaseTInfo,
3260                                             /*IsVirtual=*/false,
3261                                             InitRange.getBegin(), Init,
3262                                             InitRange.getEnd(), EllipsisLoc);
3263   }
3264 
3265   // C++ [base.class.init]p2:
3266   //   If a mem-initializer-id is ambiguous because it designates both
3267   //   a direct non-virtual base class and an inherited virtual base
3268   //   class, the mem-initializer is ill-formed.
3269   if (DirectBaseSpec && VirtualBaseSpec)
3270     return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
3271       << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
3272 
3273   const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
3274   if (!BaseSpec)
3275     BaseSpec = VirtualBaseSpec;
3276 
3277   // Initialize the base.
3278   bool InitList = true;
3279   MultiExprArg Args = Init;
3280   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3281     InitList = false;
3282     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3283   }
3284 
3285   InitializedEntity BaseEntity =
3286     InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
3287   InitializationKind Kind =
3288     InitList ? InitializationKind::CreateDirectList(BaseLoc)
3289              : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
3290                                                 InitRange.getEnd());
3291   InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
3292   ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
3293   if (BaseInit.isInvalid())
3294     return true;
3295 
3296   // C++11 [class.base.init]p7:
3297   //   The initialization of each base and member constitutes a
3298   //   full-expression.
3299   BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
3300   if (BaseInit.isInvalid())
3301     return true;
3302 
3303   // If we are in a dependent context, template instantiation will
3304   // perform this type-checking again. Just save the arguments that we
3305   // received in a ParenListExpr.
3306   // FIXME: This isn't quite ideal, since our ASTs don't capture all
3307   // of the information that we have about the base
3308   // initializer. However, deconstructing the ASTs is a dicey process,
3309   // and this approach is far more likely to get the corner cases right.
3310   if (CurContext->isDependentContext())
3311     BaseInit = Init;
3312 
3313   return new (Context) CXXCtorInitializer(Context, BaseTInfo,
3314                                           BaseSpec->isVirtual(),
3315                                           InitRange.getBegin(),
3316                                           BaseInit.getAs<Expr>(),
3317                                           InitRange.getEnd(), EllipsisLoc);
3318 }
3319 
3320 // Create a static_cast\<T&&>(expr).
CastForMoving(Sema & SemaRef,Expr * E,QualType T=QualType ())3321 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
3322   if (T.isNull()) T = E->getType();
3323   QualType TargetType = SemaRef.BuildReferenceType(
3324       T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
3325   SourceLocation ExprLoc = E->getLocStart();
3326   TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
3327       TargetType, ExprLoc);
3328 
3329   return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
3330                                    SourceRange(ExprLoc, ExprLoc),
3331                                    E->getSourceRange()).get();
3332 }
3333 
3334 /// ImplicitInitializerKind - How an implicit base or member initializer should
3335 /// initialize its base or member.
3336 enum ImplicitInitializerKind {
3337   IIK_Default,
3338   IIK_Copy,
3339   IIK_Move,
3340   IIK_Inherit
3341 };
3342 
3343 static bool
BuildImplicitBaseInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,CXXBaseSpecifier * BaseSpec,bool IsInheritedVirtualBase,CXXCtorInitializer * & CXXBaseInit)3344 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
3345                              ImplicitInitializerKind ImplicitInitKind,
3346                              CXXBaseSpecifier *BaseSpec,
3347                              bool IsInheritedVirtualBase,
3348                              CXXCtorInitializer *&CXXBaseInit) {
3349   InitializedEntity InitEntity
3350     = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
3351                                         IsInheritedVirtualBase);
3352 
3353   ExprResult BaseInit;
3354 
3355   switch (ImplicitInitKind) {
3356   case IIK_Inherit: {
3357     const CXXRecordDecl *Inherited =
3358         Constructor->getInheritedConstructor()->getParent();
3359     const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
3360     if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
3361       // C++11 [class.inhctor]p8:
3362       //   Each expression in the expression-list is of the form
3363       //   static_cast<T&&>(p), where p is the name of the corresponding
3364       //   constructor parameter and T is the declared type of p.
3365       SmallVector<Expr*, 16> Args;
3366       for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
3367         ParmVarDecl *PD = Constructor->getParamDecl(I);
3368         ExprResult ArgExpr =
3369             SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
3370                                      VK_LValue, SourceLocation());
3371         if (ArgExpr.isInvalid())
3372           return true;
3373         Args.push_back(CastForMoving(SemaRef, ArgExpr.get(), PD->getType()));
3374       }
3375 
3376       InitializationKind InitKind = InitializationKind::CreateDirect(
3377           Constructor->getLocation(), SourceLocation(), SourceLocation());
3378       InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
3379       BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
3380       break;
3381     }
3382   }
3383   // Fall through.
3384   case IIK_Default: {
3385     InitializationKind InitKind
3386       = InitializationKind::CreateDefault(Constructor->getLocation());
3387     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3388     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3389     break;
3390   }
3391 
3392   case IIK_Move:
3393   case IIK_Copy: {
3394     bool Moving = ImplicitInitKind == IIK_Move;
3395     ParmVarDecl *Param = Constructor->getParamDecl(0);
3396     QualType ParamType = Param->getType().getNonReferenceType();
3397 
3398     Expr *CopyCtorArg =
3399       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3400                           SourceLocation(), Param, false,
3401                           Constructor->getLocation(), ParamType,
3402                           VK_LValue, nullptr);
3403 
3404     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
3405 
3406     // Cast to the base class to avoid ambiguities.
3407     QualType ArgTy =
3408       SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
3409                                        ParamType.getQualifiers());
3410 
3411     if (Moving) {
3412       CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
3413     }
3414 
3415     CXXCastPath BasePath;
3416     BasePath.push_back(BaseSpec);
3417     CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
3418                                             CK_UncheckedDerivedToBase,
3419                                             Moving ? VK_XValue : VK_LValue,
3420                                             &BasePath).get();
3421 
3422     InitializationKind InitKind
3423       = InitializationKind::CreateDirect(Constructor->getLocation(),
3424                                          SourceLocation(), SourceLocation());
3425     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
3426     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
3427     break;
3428   }
3429   }
3430 
3431   BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
3432   if (BaseInit.isInvalid())
3433     return true;
3434 
3435   CXXBaseInit =
3436     new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3437                SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
3438                                                         SourceLocation()),
3439                                              BaseSpec->isVirtual(),
3440                                              SourceLocation(),
3441                                              BaseInit.getAs<Expr>(),
3442                                              SourceLocation(),
3443                                              SourceLocation());
3444 
3445   return false;
3446 }
3447 
RefersToRValueRef(Expr * MemRef)3448 static bool RefersToRValueRef(Expr *MemRef) {
3449   ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
3450   return Referenced->getType()->isRValueReferenceType();
3451 }
3452 
3453 static bool
BuildImplicitMemberInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,FieldDecl * Field,IndirectFieldDecl * Indirect,CXXCtorInitializer * & CXXMemberInit)3454 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
3455                                ImplicitInitializerKind ImplicitInitKind,
3456                                FieldDecl *Field, IndirectFieldDecl *Indirect,
3457                                CXXCtorInitializer *&CXXMemberInit) {
3458   if (Field->isInvalidDecl())
3459     return true;
3460 
3461   SourceLocation Loc = Constructor->getLocation();
3462 
3463   if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
3464     bool Moving = ImplicitInitKind == IIK_Move;
3465     ParmVarDecl *Param = Constructor->getParamDecl(0);
3466     QualType ParamType = Param->getType().getNonReferenceType();
3467 
3468     // Suppress copying zero-width bitfields.
3469     if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
3470       return false;
3471 
3472     Expr *MemberExprBase =
3473       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3474                           SourceLocation(), Param, false,
3475                           Loc, ParamType, VK_LValue, nullptr);
3476 
3477     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
3478 
3479     if (Moving) {
3480       MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
3481     }
3482 
3483     // Build a reference to this field within the parameter.
3484     CXXScopeSpec SS;
3485     LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
3486                               Sema::LookupMemberName);
3487     MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
3488                                   : cast<ValueDecl>(Field), AS_public);
3489     MemberLookup.resolveKind();
3490     ExprResult CtorArg
3491       = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
3492                                          ParamType, Loc,
3493                                          /*IsArrow=*/false,
3494                                          SS,
3495                                          /*TemplateKWLoc=*/SourceLocation(),
3496                                          /*FirstQualifierInScope=*/nullptr,
3497                                          MemberLookup,
3498                                          /*TemplateArgs=*/nullptr,
3499                                          /*S*/nullptr);
3500     if (CtorArg.isInvalid())
3501       return true;
3502 
3503     // C++11 [class.copy]p15:
3504     //   - if a member m has rvalue reference type T&&, it is direct-initialized
3505     //     with static_cast<T&&>(x.m);
3506     if (RefersToRValueRef(CtorArg.get())) {
3507       CtorArg = CastForMoving(SemaRef, CtorArg.get());
3508     }
3509 
3510     // When the field we are copying is an array, create index variables for
3511     // each dimension of the array. We use these index variables to subscript
3512     // the source array, and other clients (e.g., CodeGen) will perform the
3513     // necessary iteration with these index variables.
3514     SmallVector<VarDecl *, 4> IndexVariables;
3515     QualType BaseType = Field->getType();
3516     QualType SizeType = SemaRef.Context.getSizeType();
3517     bool InitializingArray = false;
3518     while (const ConstantArrayType *Array
3519                           = SemaRef.Context.getAsConstantArrayType(BaseType)) {
3520       InitializingArray = true;
3521       // Create the iteration variable for this array index.
3522       IdentifierInfo *IterationVarName = nullptr;
3523       {
3524         SmallString<8> Str;
3525         llvm::raw_svector_ostream OS(Str);
3526         OS << "__i" << IndexVariables.size();
3527         IterationVarName = &SemaRef.Context.Idents.get(OS.str());
3528       }
3529       VarDecl *IterationVar
3530         = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3531                           IterationVarName, SizeType,
3532                         SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3533                           SC_None);
3534       IndexVariables.push_back(IterationVar);
3535 
3536       // Create a reference to the iteration variable.
3537       ExprResult IterationVarRef
3538         = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3539       assert(!IterationVarRef.isInvalid() &&
3540              "Reference to invented variable cannot fail!");
3541       IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.get());
3542       assert(!IterationVarRef.isInvalid() &&
3543              "Conversion of invented variable cannot fail!");
3544 
3545       // Subscript the array with this iteration variable.
3546       CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.get(), Loc,
3547                                                         IterationVarRef.get(),
3548                                                         Loc);
3549       if (CtorArg.isInvalid())
3550         return true;
3551 
3552       BaseType = Array->getElementType();
3553     }
3554 
3555     // The array subscript expression is an lvalue, which is wrong for moving.
3556     if (Moving && InitializingArray)
3557       CtorArg = CastForMoving(SemaRef, CtorArg.get());
3558 
3559     // Construct the entity that we will be initializing. For an array, this
3560     // will be first element in the array, which may require several levels
3561     // of array-subscript entities.
3562     SmallVector<InitializedEntity, 4> Entities;
3563     Entities.reserve(1 + IndexVariables.size());
3564     if (Indirect)
3565       Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3566     else
3567       Entities.push_back(InitializedEntity::InitializeMember(Field));
3568     for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3569       Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3570                                                               0,
3571                                                               Entities.back()));
3572 
3573     // Direct-initialize to use the copy constructor.
3574     InitializationKind InitKind =
3575       InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3576 
3577     Expr *CtorArgE = CtorArg.getAs<Expr>();
3578     InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
3579                                    CtorArgE);
3580 
3581     ExprResult MemberInit
3582       = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3583                         MultiExprArg(&CtorArgE, 1));
3584     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3585     if (MemberInit.isInvalid())
3586       return true;
3587 
3588     if (Indirect) {
3589       assert(IndexVariables.size() == 0 &&
3590              "Indirect field improperly initialized");
3591       CXXMemberInit
3592         = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3593                                                    Loc, Loc,
3594                                                    MemberInit.getAs<Expr>(),
3595                                                    Loc);
3596     } else
3597       CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3598                                                  Loc, MemberInit.getAs<Expr>(),
3599                                                  Loc,
3600                                                  IndexVariables.data(),
3601                                                  IndexVariables.size());
3602     return false;
3603   }
3604 
3605   assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3606          "Unhandled implicit init kind!");
3607 
3608   QualType FieldBaseElementType =
3609     SemaRef.Context.getBaseElementType(Field->getType());
3610 
3611   if (FieldBaseElementType->isRecordType()) {
3612     InitializedEntity InitEntity
3613       = Indirect? InitializedEntity::InitializeMember(Indirect)
3614                 : InitializedEntity::InitializeMember(Field);
3615     InitializationKind InitKind =
3616       InitializationKind::CreateDefault(Loc);
3617 
3618     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3619     ExprResult MemberInit =
3620       InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3621 
3622     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3623     if (MemberInit.isInvalid())
3624       return true;
3625 
3626     if (Indirect)
3627       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3628                                                                Indirect, Loc,
3629                                                                Loc,
3630                                                                MemberInit.get(),
3631                                                                Loc);
3632     else
3633       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3634                                                                Field, Loc, Loc,
3635                                                                MemberInit.get(),
3636                                                                Loc);
3637     return false;
3638   }
3639 
3640   if (!Field->getParent()->isUnion()) {
3641     if (FieldBaseElementType->isReferenceType()) {
3642       SemaRef.Diag(Constructor->getLocation(),
3643                    diag::err_uninitialized_member_in_ctor)
3644       << (int)Constructor->isImplicit()
3645       << SemaRef.Context.getTagDeclType(Constructor->getParent())
3646       << 0 << Field->getDeclName();
3647       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3648       return true;
3649     }
3650 
3651     if (FieldBaseElementType.isConstQualified()) {
3652       SemaRef.Diag(Constructor->getLocation(),
3653                    diag::err_uninitialized_member_in_ctor)
3654       << (int)Constructor->isImplicit()
3655       << SemaRef.Context.getTagDeclType(Constructor->getParent())
3656       << 1 << Field->getDeclName();
3657       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3658       return true;
3659     }
3660   }
3661 
3662   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3663       FieldBaseElementType->isObjCRetainableType() &&
3664       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3665       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3666     // ARC:
3667     //   Default-initialize Objective-C pointers to NULL.
3668     CXXMemberInit
3669       = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3670                                                  Loc, Loc,
3671                  new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3672                                                  Loc);
3673     return false;
3674   }
3675 
3676   // Nothing to initialize.
3677   CXXMemberInit = nullptr;
3678   return false;
3679 }
3680 
3681 namespace {
3682 struct BaseAndFieldInfo {
3683   Sema &S;
3684   CXXConstructorDecl *Ctor;
3685   bool AnyErrorsInInits;
3686   ImplicitInitializerKind IIK;
3687   llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3688   SmallVector<CXXCtorInitializer*, 8> AllToInit;
3689   llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
3690 
BaseAndFieldInfo__anonf74ac3470411::BaseAndFieldInfo3691   BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3692     : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3693     bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3694     if (Generated && Ctor->isCopyConstructor())
3695       IIK = IIK_Copy;
3696     else if (Generated && Ctor->isMoveConstructor())
3697       IIK = IIK_Move;
3698     else if (Ctor->getInheritedConstructor())
3699       IIK = IIK_Inherit;
3700     else
3701       IIK = IIK_Default;
3702   }
3703 
isImplicitCopyOrMove__anonf74ac3470411::BaseAndFieldInfo3704   bool isImplicitCopyOrMove() const {
3705     switch (IIK) {
3706     case IIK_Copy:
3707     case IIK_Move:
3708       return true;
3709 
3710     case IIK_Default:
3711     case IIK_Inherit:
3712       return false;
3713     }
3714 
3715     llvm_unreachable("Invalid ImplicitInitializerKind!");
3716   }
3717 
addFieldInitializer__anonf74ac3470411::BaseAndFieldInfo3718   bool addFieldInitializer(CXXCtorInitializer *Init) {
3719     AllToInit.push_back(Init);
3720 
3721     // Check whether this initializer makes the field "used".
3722     if (Init->getInit()->HasSideEffects(S.Context))
3723       S.UnusedPrivateFields.remove(Init->getAnyMember());
3724 
3725     return false;
3726   }
3727 
isInactiveUnionMember__anonf74ac3470411::BaseAndFieldInfo3728   bool isInactiveUnionMember(FieldDecl *Field) {
3729     RecordDecl *Record = Field->getParent();
3730     if (!Record->isUnion())
3731       return false;
3732 
3733     if (FieldDecl *Active =
3734             ActiveUnionMember.lookup(Record->getCanonicalDecl()))
3735       return Active != Field->getCanonicalDecl();
3736 
3737     // In an implicit copy or move constructor, ignore any in-class initializer.
3738     if (isImplicitCopyOrMove())
3739       return true;
3740 
3741     // If there's no explicit initialization, the field is active only if it
3742     // has an in-class initializer...
3743     if (Field->hasInClassInitializer())
3744       return false;
3745     // ... or it's an anonymous struct or union whose class has an in-class
3746     // initializer.
3747     if (!Field->isAnonymousStructOrUnion())
3748       return true;
3749     CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
3750     return !FieldRD->hasInClassInitializer();
3751   }
3752 
3753   /// \brief Determine whether the given field is, or is within, a union member
3754   /// that is inactive (because there was an initializer given for a different
3755   /// member of the union, or because the union was not initialized at all).
isWithinInactiveUnionMember__anonf74ac3470411::BaseAndFieldInfo3756   bool isWithinInactiveUnionMember(FieldDecl *Field,
3757                                    IndirectFieldDecl *Indirect) {
3758     if (!Indirect)
3759       return isInactiveUnionMember(Field);
3760 
3761     for (auto *C : Indirect->chain()) {
3762       FieldDecl *Field = dyn_cast<FieldDecl>(C);
3763       if (Field && isInactiveUnionMember(Field))
3764         return true;
3765     }
3766     return false;
3767   }
3768 };
3769 }
3770 
3771 /// \brief Determine whether the given type is an incomplete or zero-lenfgth
3772 /// array type.
isIncompleteOrZeroLengthArrayType(ASTContext & Context,QualType T)3773 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3774   if (T->isIncompleteArrayType())
3775     return true;
3776 
3777   while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3778     if (!ArrayT->getSize())
3779       return true;
3780 
3781     T = ArrayT->getElementType();
3782   }
3783 
3784   return false;
3785 }
3786 
CollectFieldInitializer(Sema & SemaRef,BaseAndFieldInfo & Info,FieldDecl * Field,IndirectFieldDecl * Indirect=nullptr)3787 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3788                                     FieldDecl *Field,
3789                                     IndirectFieldDecl *Indirect = nullptr) {
3790   if (Field->isInvalidDecl())
3791     return false;
3792 
3793   // Overwhelmingly common case: we have a direct initializer for this field.
3794   if (CXXCtorInitializer *Init =
3795           Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
3796     return Info.addFieldInitializer(Init);
3797 
3798   // C++11 [class.base.init]p8:
3799   //   if the entity is a non-static data member that has a
3800   //   brace-or-equal-initializer and either
3801   //   -- the constructor's class is a union and no other variant member of that
3802   //      union is designated by a mem-initializer-id or
3803   //   -- the constructor's class is not a union, and, if the entity is a member
3804   //      of an anonymous union, no other member of that union is designated by
3805   //      a mem-initializer-id,
3806   //   the entity is initialized as specified in [dcl.init].
3807   //
3808   // We also apply the same rules to handle anonymous structs within anonymous
3809   // unions.
3810   if (Info.isWithinInactiveUnionMember(Field, Indirect))
3811     return false;
3812 
3813   if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3814     ExprResult DIE =
3815         SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
3816     if (DIE.isInvalid())
3817       return true;
3818     CXXCtorInitializer *Init;
3819     if (Indirect)
3820       Init = new (SemaRef.Context)
3821           CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
3822                              SourceLocation(), DIE.get(), SourceLocation());
3823     else
3824       Init = new (SemaRef.Context)
3825           CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
3826                              SourceLocation(), DIE.get(), SourceLocation());
3827     return Info.addFieldInitializer(Init);
3828   }
3829 
3830   // Don't initialize incomplete or zero-length arrays.
3831   if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3832     return false;
3833 
3834   // Don't try to build an implicit initializer if there were semantic
3835   // errors in any of the initializers (and therefore we might be
3836   // missing some that the user actually wrote).
3837   if (Info.AnyErrorsInInits)
3838     return false;
3839 
3840   CXXCtorInitializer *Init = nullptr;
3841   if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3842                                      Indirect, Init))
3843     return true;
3844 
3845   if (!Init)
3846     return false;
3847 
3848   return Info.addFieldInitializer(Init);
3849 }
3850 
3851 bool
SetDelegatingInitializer(CXXConstructorDecl * Constructor,CXXCtorInitializer * Initializer)3852 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3853                                CXXCtorInitializer *Initializer) {
3854   assert(Initializer->isDelegatingInitializer());
3855   Constructor->setNumCtorInitializers(1);
3856   CXXCtorInitializer **initializer =
3857     new (Context) CXXCtorInitializer*[1];
3858   memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3859   Constructor->setCtorInitializers(initializer);
3860 
3861   if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3862     MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3863     DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3864   }
3865 
3866   DelegatingCtorDecls.push_back(Constructor);
3867 
3868   DiagnoseUninitializedFields(*this, Constructor);
3869 
3870   return false;
3871 }
3872 
SetCtorInitializers(CXXConstructorDecl * Constructor,bool AnyErrors,ArrayRef<CXXCtorInitializer * > Initializers)3873 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3874                                ArrayRef<CXXCtorInitializer *> Initializers) {
3875   if (Constructor->isDependentContext()) {
3876     // Just store the initializers as written, they will be checked during
3877     // instantiation.
3878     if (!Initializers.empty()) {
3879       Constructor->setNumCtorInitializers(Initializers.size());
3880       CXXCtorInitializer **baseOrMemberInitializers =
3881         new (Context) CXXCtorInitializer*[Initializers.size()];
3882       memcpy(baseOrMemberInitializers, Initializers.data(),
3883              Initializers.size() * sizeof(CXXCtorInitializer*));
3884       Constructor->setCtorInitializers(baseOrMemberInitializers);
3885     }
3886 
3887     // Let template instantiation know whether we had errors.
3888     if (AnyErrors)
3889       Constructor->setInvalidDecl();
3890 
3891     return false;
3892   }
3893 
3894   BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3895 
3896   // We need to build the initializer AST according to order of construction
3897   // and not what user specified in the Initializers list.
3898   CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3899   if (!ClassDecl)
3900     return true;
3901 
3902   bool HadError = false;
3903 
3904   for (unsigned i = 0; i < Initializers.size(); i++) {
3905     CXXCtorInitializer *Member = Initializers[i];
3906 
3907     if (Member->isBaseInitializer())
3908       Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3909     else {
3910       Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
3911 
3912       if (IndirectFieldDecl *F = Member->getIndirectMember()) {
3913         for (auto *C : F->chain()) {
3914           FieldDecl *FD = dyn_cast<FieldDecl>(C);
3915           if (FD && FD->getParent()->isUnion())
3916             Info.ActiveUnionMember.insert(std::make_pair(
3917                 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
3918         }
3919       } else if (FieldDecl *FD = Member->getMember()) {
3920         if (FD->getParent()->isUnion())
3921           Info.ActiveUnionMember.insert(std::make_pair(
3922               FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
3923       }
3924     }
3925   }
3926 
3927   // Keep track of the direct virtual bases.
3928   llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3929   for (auto &I : ClassDecl->bases()) {
3930     if (I.isVirtual())
3931       DirectVBases.insert(&I);
3932   }
3933 
3934   // Push virtual bases before others.
3935   for (auto &VBase : ClassDecl->vbases()) {
3936     if (CXXCtorInitializer *Value
3937         = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
3938       // [class.base.init]p7, per DR257:
3939       //   A mem-initializer where the mem-initializer-id names a virtual base
3940       //   class is ignored during execution of a constructor of any class that
3941       //   is not the most derived class.
3942       if (ClassDecl->isAbstract()) {
3943         // FIXME: Provide a fixit to remove the base specifier. This requires
3944         // tracking the location of the associated comma for a base specifier.
3945         Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
3946           << VBase.getType() << ClassDecl;
3947         DiagnoseAbstractType(ClassDecl);
3948       }
3949 
3950       Info.AllToInit.push_back(Value);
3951     } else if (!AnyErrors && !ClassDecl->isAbstract()) {
3952       // [class.base.init]p8, per DR257:
3953       //   If a given [...] base class is not named by a mem-initializer-id
3954       //   [...] and the entity is not a virtual base class of an abstract
3955       //   class, then [...] the entity is default-initialized.
3956       bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
3957       CXXCtorInitializer *CXXBaseInit;
3958       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3959                                        &VBase, IsInheritedVirtualBase,
3960                                        CXXBaseInit)) {
3961         HadError = true;
3962         continue;
3963       }
3964 
3965       Info.AllToInit.push_back(CXXBaseInit);
3966     }
3967   }
3968 
3969   // Non-virtual bases.
3970   for (auto &Base : ClassDecl->bases()) {
3971     // Virtuals are in the virtual base list and already constructed.
3972     if (Base.isVirtual())
3973       continue;
3974 
3975     if (CXXCtorInitializer *Value
3976           = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
3977       Info.AllToInit.push_back(Value);
3978     } else if (!AnyErrors) {
3979       CXXCtorInitializer *CXXBaseInit;
3980       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3981                                        &Base, /*IsInheritedVirtualBase=*/false,
3982                                        CXXBaseInit)) {
3983         HadError = true;
3984         continue;
3985       }
3986 
3987       Info.AllToInit.push_back(CXXBaseInit);
3988     }
3989   }
3990 
3991   // Fields.
3992   for (auto *Mem : ClassDecl->decls()) {
3993     if (auto *F = dyn_cast<FieldDecl>(Mem)) {
3994       // C++ [class.bit]p2:
3995       //   A declaration for a bit-field that omits the identifier declares an
3996       //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3997       //   initialized.
3998       if (F->isUnnamedBitfield())
3999         continue;
4000 
4001       // If we're not generating the implicit copy/move constructor, then we'll
4002       // handle anonymous struct/union fields based on their individual
4003       // indirect fields.
4004       if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
4005         continue;
4006 
4007       if (CollectFieldInitializer(*this, Info, F))
4008         HadError = true;
4009       continue;
4010     }
4011 
4012     // Beyond this point, we only consider default initialization.
4013     if (Info.isImplicitCopyOrMove())
4014       continue;
4015 
4016     if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
4017       if (F->getType()->isIncompleteArrayType()) {
4018         assert(ClassDecl->hasFlexibleArrayMember() &&
4019                "Incomplete array type is not valid");
4020         continue;
4021       }
4022 
4023       // Initialize each field of an anonymous struct individually.
4024       if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
4025         HadError = true;
4026 
4027       continue;
4028     }
4029   }
4030 
4031   unsigned NumInitializers = Info.AllToInit.size();
4032   if (NumInitializers > 0) {
4033     Constructor->setNumCtorInitializers(NumInitializers);
4034     CXXCtorInitializer **baseOrMemberInitializers =
4035       new (Context) CXXCtorInitializer*[NumInitializers];
4036     memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
4037            NumInitializers * sizeof(CXXCtorInitializer*));
4038     Constructor->setCtorInitializers(baseOrMemberInitializers);
4039 
4040     // Constructors implicitly reference the base and member
4041     // destructors.
4042     MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
4043                                            Constructor->getParent());
4044   }
4045 
4046   return HadError;
4047 }
4048 
PopulateKeysForFields(FieldDecl * Field,SmallVectorImpl<const void * > & IdealInits)4049 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
4050   if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
4051     const RecordDecl *RD = RT->getDecl();
4052     if (RD->isAnonymousStructOrUnion()) {
4053       for (auto *Field : RD->fields())
4054         PopulateKeysForFields(Field, IdealInits);
4055       return;
4056     }
4057   }
4058   IdealInits.push_back(Field->getCanonicalDecl());
4059 }
4060 
GetKeyForBase(ASTContext & Context,QualType BaseType)4061 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
4062   return Context.getCanonicalType(BaseType).getTypePtr();
4063 }
4064 
GetKeyForMember(ASTContext & Context,CXXCtorInitializer * Member)4065 static const void *GetKeyForMember(ASTContext &Context,
4066                                    CXXCtorInitializer *Member) {
4067   if (!Member->isAnyMemberInitializer())
4068     return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
4069 
4070   return Member->getAnyMember()->getCanonicalDecl();
4071 }
4072 
DiagnoseBaseOrMemInitializerOrder(Sema & SemaRef,const CXXConstructorDecl * Constructor,ArrayRef<CXXCtorInitializer * > Inits)4073 static void DiagnoseBaseOrMemInitializerOrder(
4074     Sema &SemaRef, const CXXConstructorDecl *Constructor,
4075     ArrayRef<CXXCtorInitializer *> Inits) {
4076   if (Constructor->getDeclContext()->isDependentContext())
4077     return;
4078 
4079   // Don't check initializers order unless the warning is enabled at the
4080   // location of at least one initializer.
4081   bool ShouldCheckOrder = false;
4082   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4083     CXXCtorInitializer *Init = Inits[InitIndex];
4084     if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
4085                                  Init->getSourceLocation())) {
4086       ShouldCheckOrder = true;
4087       break;
4088     }
4089   }
4090   if (!ShouldCheckOrder)
4091     return;
4092 
4093   // Build the list of bases and members in the order that they'll
4094   // actually be initialized.  The explicit initializers should be in
4095   // this same order but may be missing things.
4096   SmallVector<const void*, 32> IdealInitKeys;
4097 
4098   const CXXRecordDecl *ClassDecl = Constructor->getParent();
4099 
4100   // 1. Virtual bases.
4101   for (const auto &VBase : ClassDecl->vbases())
4102     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
4103 
4104   // 2. Non-virtual bases.
4105   for (const auto &Base : ClassDecl->bases()) {
4106     if (Base.isVirtual())
4107       continue;
4108     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
4109   }
4110 
4111   // 3. Direct fields.
4112   for (auto *Field : ClassDecl->fields()) {
4113     if (Field->isUnnamedBitfield())
4114       continue;
4115 
4116     PopulateKeysForFields(Field, IdealInitKeys);
4117   }
4118 
4119   unsigned NumIdealInits = IdealInitKeys.size();
4120   unsigned IdealIndex = 0;
4121 
4122   CXXCtorInitializer *PrevInit = nullptr;
4123   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4124     CXXCtorInitializer *Init = Inits[InitIndex];
4125     const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
4126 
4127     // Scan forward to try to find this initializer in the idealized
4128     // initializers list.
4129     for (; IdealIndex != NumIdealInits; ++IdealIndex)
4130       if (InitKey == IdealInitKeys[IdealIndex])
4131         break;
4132 
4133     // If we didn't find this initializer, it must be because we
4134     // scanned past it on a previous iteration.  That can only
4135     // happen if we're out of order;  emit a warning.
4136     if (IdealIndex == NumIdealInits && PrevInit) {
4137       Sema::SemaDiagnosticBuilder D =
4138         SemaRef.Diag(PrevInit->getSourceLocation(),
4139                      diag::warn_initializer_out_of_order);
4140 
4141       if (PrevInit->isAnyMemberInitializer())
4142         D << 0 << PrevInit->getAnyMember()->getDeclName();
4143       else
4144         D << 1 << PrevInit->getTypeSourceInfo()->getType();
4145 
4146       if (Init->isAnyMemberInitializer())
4147         D << 0 << Init->getAnyMember()->getDeclName();
4148       else
4149         D << 1 << Init->getTypeSourceInfo()->getType();
4150 
4151       // Move back to the initializer's location in the ideal list.
4152       for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
4153         if (InitKey == IdealInitKeys[IdealIndex])
4154           break;
4155 
4156       assert(IdealIndex < NumIdealInits &&
4157              "initializer not found in initializer list");
4158     }
4159 
4160     PrevInit = Init;
4161   }
4162 }
4163 
4164 namespace {
CheckRedundantInit(Sema & S,CXXCtorInitializer * Init,CXXCtorInitializer * & PrevInit)4165 bool CheckRedundantInit(Sema &S,
4166                         CXXCtorInitializer *Init,
4167                         CXXCtorInitializer *&PrevInit) {
4168   if (!PrevInit) {
4169     PrevInit = Init;
4170     return false;
4171   }
4172 
4173   if (FieldDecl *Field = Init->getAnyMember())
4174     S.Diag(Init->getSourceLocation(),
4175            diag::err_multiple_mem_initialization)
4176       << Field->getDeclName()
4177       << Init->getSourceRange();
4178   else {
4179     const Type *BaseClass = Init->getBaseClass();
4180     assert(BaseClass && "neither field nor base");
4181     S.Diag(Init->getSourceLocation(),
4182            diag::err_multiple_base_initialization)
4183       << QualType(BaseClass, 0)
4184       << Init->getSourceRange();
4185   }
4186   S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
4187     << 0 << PrevInit->getSourceRange();
4188 
4189   return true;
4190 }
4191 
4192 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
4193 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
4194 
CheckRedundantUnionInit(Sema & S,CXXCtorInitializer * Init,RedundantUnionMap & Unions)4195 bool CheckRedundantUnionInit(Sema &S,
4196                              CXXCtorInitializer *Init,
4197                              RedundantUnionMap &Unions) {
4198   FieldDecl *Field = Init->getAnyMember();
4199   RecordDecl *Parent = Field->getParent();
4200   NamedDecl *Child = Field;
4201 
4202   while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
4203     if (Parent->isUnion()) {
4204       UnionEntry &En = Unions[Parent];
4205       if (En.first && En.first != Child) {
4206         S.Diag(Init->getSourceLocation(),
4207                diag::err_multiple_mem_union_initialization)
4208           << Field->getDeclName()
4209           << Init->getSourceRange();
4210         S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
4211           << 0 << En.second->getSourceRange();
4212         return true;
4213       }
4214       if (!En.first) {
4215         En.first = Child;
4216         En.second = Init;
4217       }
4218       if (!Parent->isAnonymousStructOrUnion())
4219         return false;
4220     }
4221 
4222     Child = Parent;
4223     Parent = cast<RecordDecl>(Parent->getDeclContext());
4224   }
4225 
4226   return false;
4227 }
4228 }
4229 
4230 /// ActOnMemInitializers - Handle the member initializers for a constructor.
ActOnMemInitializers(Decl * ConstructorDecl,SourceLocation ColonLoc,ArrayRef<CXXCtorInitializer * > MemInits,bool AnyErrors)4231 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
4232                                 SourceLocation ColonLoc,
4233                                 ArrayRef<CXXCtorInitializer*> MemInits,
4234                                 bool AnyErrors) {
4235   if (!ConstructorDecl)
4236     return;
4237 
4238   AdjustDeclIfTemplate(ConstructorDecl);
4239 
4240   CXXConstructorDecl *Constructor
4241     = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
4242 
4243   if (!Constructor) {
4244     Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
4245     return;
4246   }
4247 
4248   // Mapping for the duplicate initializers check.
4249   // For member initializers, this is keyed with a FieldDecl*.
4250   // For base initializers, this is keyed with a Type*.
4251   llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
4252 
4253   // Mapping for the inconsistent anonymous-union initializers check.
4254   RedundantUnionMap MemberUnions;
4255 
4256   bool HadError = false;
4257   for (unsigned i = 0; i < MemInits.size(); i++) {
4258     CXXCtorInitializer *Init = MemInits[i];
4259 
4260     // Set the source order index.
4261     Init->setSourceOrder(i);
4262 
4263     if (Init->isAnyMemberInitializer()) {
4264       const void *Key = GetKeyForMember(Context, Init);
4265       if (CheckRedundantInit(*this, Init, Members[Key]) ||
4266           CheckRedundantUnionInit(*this, Init, MemberUnions))
4267         HadError = true;
4268     } else if (Init->isBaseInitializer()) {
4269       const void *Key = GetKeyForMember(Context, Init);
4270       if (CheckRedundantInit(*this, Init, Members[Key]))
4271         HadError = true;
4272     } else {
4273       assert(Init->isDelegatingInitializer());
4274       // This must be the only initializer
4275       if (MemInits.size() != 1) {
4276         Diag(Init->getSourceLocation(),
4277              diag::err_delegating_initializer_alone)
4278           << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
4279         // We will treat this as being the only initializer.
4280       }
4281       SetDelegatingInitializer(Constructor, MemInits[i]);
4282       // Return immediately as the initializer is set.
4283       return;
4284     }
4285   }
4286 
4287   if (HadError)
4288     return;
4289 
4290   DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
4291 
4292   SetCtorInitializers(Constructor, AnyErrors, MemInits);
4293 
4294   DiagnoseUninitializedFields(*this, Constructor);
4295 }
4296 
4297 void
MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,CXXRecordDecl * ClassDecl)4298 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
4299                                              CXXRecordDecl *ClassDecl) {
4300   // Ignore dependent contexts. Also ignore unions, since their members never
4301   // have destructors implicitly called.
4302   if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
4303     return;
4304 
4305   // FIXME: all the access-control diagnostics are positioned on the
4306   // field/base declaration.  That's probably good; that said, the
4307   // user might reasonably want to know why the destructor is being
4308   // emitted, and we currently don't say.
4309 
4310   // Non-static data members.
4311   for (auto *Field : ClassDecl->fields()) {
4312     if (Field->isInvalidDecl())
4313       continue;
4314 
4315     // Don't destroy incomplete or zero-length arrays.
4316     if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
4317       continue;
4318 
4319     QualType FieldType = Context.getBaseElementType(Field->getType());
4320 
4321     const RecordType* RT = FieldType->getAs<RecordType>();
4322     if (!RT)
4323       continue;
4324 
4325     CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4326     if (FieldClassDecl->isInvalidDecl())
4327       continue;
4328     if (FieldClassDecl->hasIrrelevantDestructor())
4329       continue;
4330     // The destructor for an implicit anonymous union member is never invoked.
4331     if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
4332       continue;
4333 
4334     CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
4335     assert(Dtor && "No dtor found for FieldClassDecl!");
4336     CheckDestructorAccess(Field->getLocation(), Dtor,
4337                           PDiag(diag::err_access_dtor_field)
4338                             << Field->getDeclName()
4339                             << FieldType);
4340 
4341     MarkFunctionReferenced(Location, Dtor);
4342     DiagnoseUseOfDecl(Dtor, Location);
4343   }
4344 
4345   llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
4346 
4347   // Bases.
4348   for (const auto &Base : ClassDecl->bases()) {
4349     // Bases are always records in a well-formed non-dependent class.
4350     const RecordType *RT = Base.getType()->getAs<RecordType>();
4351 
4352     // Remember direct virtual bases.
4353     if (Base.isVirtual())
4354       DirectVirtualBases.insert(RT);
4355 
4356     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4357     // If our base class is invalid, we probably can't get its dtor anyway.
4358     if (BaseClassDecl->isInvalidDecl())
4359       continue;
4360     if (BaseClassDecl->hasIrrelevantDestructor())
4361       continue;
4362 
4363     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
4364     assert(Dtor && "No dtor found for BaseClassDecl!");
4365 
4366     // FIXME: caret should be on the start of the class name
4367     CheckDestructorAccess(Base.getLocStart(), Dtor,
4368                           PDiag(diag::err_access_dtor_base)
4369                             << Base.getType()
4370                             << Base.getSourceRange(),
4371                           Context.getTypeDeclType(ClassDecl));
4372 
4373     MarkFunctionReferenced(Location, Dtor);
4374     DiagnoseUseOfDecl(Dtor, Location);
4375   }
4376 
4377   // Virtual bases.
4378   for (const auto &VBase : ClassDecl->vbases()) {
4379     // Bases are always records in a well-formed non-dependent class.
4380     const RecordType *RT = VBase.getType()->castAs<RecordType>();
4381 
4382     // Ignore direct virtual bases.
4383     if (DirectVirtualBases.count(RT))
4384       continue;
4385 
4386     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4387     // If our base class is invalid, we probably can't get its dtor anyway.
4388     if (BaseClassDecl->isInvalidDecl())
4389       continue;
4390     if (BaseClassDecl->hasIrrelevantDestructor())
4391       continue;
4392 
4393     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
4394     assert(Dtor && "No dtor found for BaseClassDecl!");
4395     if (CheckDestructorAccess(
4396             ClassDecl->getLocation(), Dtor,
4397             PDiag(diag::err_access_dtor_vbase)
4398                 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
4399             Context.getTypeDeclType(ClassDecl)) ==
4400         AR_accessible) {
4401       CheckDerivedToBaseConversion(
4402           Context.getTypeDeclType(ClassDecl), VBase.getType(),
4403           diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
4404           SourceRange(), DeclarationName(), nullptr);
4405     }
4406 
4407     MarkFunctionReferenced(Location, Dtor);
4408     DiagnoseUseOfDecl(Dtor, Location);
4409   }
4410 }
4411 
ActOnDefaultCtorInitializers(Decl * CDtorDecl)4412 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
4413   if (!CDtorDecl)
4414     return;
4415 
4416   if (CXXConstructorDecl *Constructor
4417       = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
4418     SetCtorInitializers(Constructor, /*AnyErrors=*/false);
4419     DiagnoseUninitializedFields(*this, Constructor);
4420   }
4421 }
4422 
isAbstractType(SourceLocation Loc,QualType T)4423 bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
4424   if (!getLangOpts().CPlusPlus)
4425     return false;
4426 
4427   const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
4428   if (!RD)
4429     return false;
4430 
4431   // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
4432   // class template specialization here, but doing so breaks a lot of code.
4433 
4434   // We can't answer whether something is abstract until it has a
4435   // definition. If it's currently being defined, we'll walk back
4436   // over all the declarations when we have a full definition.
4437   const CXXRecordDecl *Def = RD->getDefinition();
4438   if (!Def || Def->isBeingDefined())
4439     return false;
4440 
4441   return RD->isAbstract();
4442 }
4443 
RequireNonAbstractType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)4444 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4445                                   TypeDiagnoser &Diagnoser) {
4446   if (!isAbstractType(Loc, T))
4447     return false;
4448 
4449   T = Context.getBaseElementType(T);
4450   Diagnoser.diagnose(*this, Loc, T);
4451   DiagnoseAbstractType(T->getAsCXXRecordDecl());
4452   return true;
4453 }
4454 
DiagnoseAbstractType(const CXXRecordDecl * RD)4455 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
4456   // Check if we've already emitted the list of pure virtual functions
4457   // for this class.
4458   if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
4459     return;
4460 
4461   // If the diagnostic is suppressed, don't emit the notes. We're only
4462   // going to emit them once, so try to attach them to a diagnostic we're
4463   // actually going to show.
4464   if (Diags.isLastDiagnosticIgnored())
4465     return;
4466 
4467   CXXFinalOverriderMap FinalOverriders;
4468   RD->getFinalOverriders(FinalOverriders);
4469 
4470   // Keep a set of seen pure methods so we won't diagnose the same method
4471   // more than once.
4472   llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
4473 
4474   for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
4475                                    MEnd = FinalOverriders.end();
4476        M != MEnd;
4477        ++M) {
4478     for (OverridingMethods::iterator SO = M->second.begin(),
4479                                   SOEnd = M->second.end();
4480          SO != SOEnd; ++SO) {
4481       // C++ [class.abstract]p4:
4482       //   A class is abstract if it contains or inherits at least one
4483       //   pure virtual function for which the final overrider is pure
4484       //   virtual.
4485 
4486       //
4487       if (SO->second.size() != 1)
4488         continue;
4489 
4490       if (!SO->second.front().Method->isPure())
4491         continue;
4492 
4493       if (!SeenPureMethods.insert(SO->second.front().Method).second)
4494         continue;
4495 
4496       Diag(SO->second.front().Method->getLocation(),
4497            diag::note_pure_virtual_function)
4498         << SO->second.front().Method->getDeclName() << RD->getDeclName();
4499     }
4500   }
4501 
4502   if (!PureVirtualClassDiagSet)
4503     PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
4504   PureVirtualClassDiagSet->insert(RD);
4505 }
4506 
4507 namespace {
4508 struct AbstractUsageInfo {
4509   Sema &S;
4510   CXXRecordDecl *Record;
4511   CanQualType AbstractType;
4512   bool Invalid;
4513 
AbstractUsageInfo__anonf74ac3470611::AbstractUsageInfo4514   AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
4515     : S(S), Record(Record),
4516       AbstractType(S.Context.getCanonicalType(
4517                    S.Context.getTypeDeclType(Record))),
4518       Invalid(false) {}
4519 
DiagnoseAbstractType__anonf74ac3470611::AbstractUsageInfo4520   void DiagnoseAbstractType() {
4521     if (Invalid) return;
4522     S.DiagnoseAbstractType(Record);
4523     Invalid = true;
4524   }
4525 
4526   void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
4527 };
4528 
4529 struct CheckAbstractUsage {
4530   AbstractUsageInfo &Info;
4531   const NamedDecl *Ctx;
4532 
CheckAbstractUsage__anonf74ac3470611::CheckAbstractUsage4533   CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
4534     : Info(Info), Ctx(Ctx) {}
4535 
Visit__anonf74ac3470611::CheckAbstractUsage4536   void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4537     switch (TL.getTypeLocClass()) {
4538 #define ABSTRACT_TYPELOC(CLASS, PARENT)
4539 #define TYPELOC(CLASS, PARENT) \
4540     case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
4541 #include "clang/AST/TypeLocNodes.def"
4542     }
4543   }
4544 
Check__anonf74ac3470611::CheckAbstractUsage4545   void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4546     Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
4547     for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
4548       if (!TL.getParam(I))
4549         continue;
4550 
4551       TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
4552       if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
4553     }
4554   }
4555 
Check__anonf74ac3470611::CheckAbstractUsage4556   void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4557     Visit(TL.getElementLoc(), Sema::AbstractArrayType);
4558   }
4559 
Check__anonf74ac3470611::CheckAbstractUsage4560   void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4561     // Visit the type parameters from a permissive context.
4562     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4563       TemplateArgumentLoc TAL = TL.getArgLoc(I);
4564       if (TAL.getArgument().getKind() == TemplateArgument::Type)
4565         if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4566           Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4567       // TODO: other template argument types?
4568     }
4569   }
4570 
4571   // Visit pointee types from a permissive context.
4572 #define CheckPolymorphic(Type) \
4573   void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4574     Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4575   }
4576   CheckPolymorphic(PointerTypeLoc)
CheckPolymorphic__anonf74ac3470611::CheckAbstractUsage4577   CheckPolymorphic(ReferenceTypeLoc)
4578   CheckPolymorphic(MemberPointerTypeLoc)
4579   CheckPolymorphic(BlockPointerTypeLoc)
4580   CheckPolymorphic(AtomicTypeLoc)
4581 
4582   /// Handle all the types we haven't given a more specific
4583   /// implementation for above.
4584   void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4585     // Every other kind of type that we haven't called out already
4586     // that has an inner type is either (1) sugar or (2) contains that
4587     // inner type in some way as a subobject.
4588     if (TypeLoc Next = TL.getNextTypeLoc())
4589       return Visit(Next, Sel);
4590 
4591     // If there's no inner type and we're in a permissive context,
4592     // don't diagnose.
4593     if (Sel == Sema::AbstractNone) return;
4594 
4595     // Check whether the type matches the abstract type.
4596     QualType T = TL.getType();
4597     if (T->isArrayType()) {
4598       Sel = Sema::AbstractArrayType;
4599       T = Info.S.Context.getBaseElementType(T);
4600     }
4601     CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4602     if (CT != Info.AbstractType) return;
4603 
4604     // It matched; do some magic.
4605     if (Sel == Sema::AbstractArrayType) {
4606       Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4607         << T << TL.getSourceRange();
4608     } else {
4609       Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4610         << Sel << T << TL.getSourceRange();
4611     }
4612     Info.DiagnoseAbstractType();
4613   }
4614 };
4615 
CheckType(const NamedDecl * D,TypeLoc TL,Sema::AbstractDiagSelID Sel)4616 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4617                                   Sema::AbstractDiagSelID Sel) {
4618   CheckAbstractUsage(*this, D).Visit(TL, Sel);
4619 }
4620 
4621 }
4622 
4623 /// Check for invalid uses of an abstract type in a method declaration.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXMethodDecl * MD)4624 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4625                                     CXXMethodDecl *MD) {
4626   // No need to do the check on definitions, which require that
4627   // the return/param types be complete.
4628   if (MD->doesThisDeclarationHaveABody())
4629     return;
4630 
4631   // For safety's sake, just ignore it if we don't have type source
4632   // information.  This should never happen for non-implicit methods,
4633   // but...
4634   if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4635     Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4636 }
4637 
4638 /// Check for invalid uses of an abstract type within a class definition.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXRecordDecl * RD)4639 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4640                                     CXXRecordDecl *RD) {
4641   for (auto *D : RD->decls()) {
4642     if (D->isImplicit()) continue;
4643 
4644     // Methods and method templates.
4645     if (isa<CXXMethodDecl>(D)) {
4646       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4647     } else if (isa<FunctionTemplateDecl>(D)) {
4648       FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4649       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4650 
4651     // Fields and static variables.
4652     } else if (isa<FieldDecl>(D)) {
4653       FieldDecl *FD = cast<FieldDecl>(D);
4654       if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4655         Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4656     } else if (isa<VarDecl>(D)) {
4657       VarDecl *VD = cast<VarDecl>(D);
4658       if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4659         Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4660 
4661     // Nested classes and class templates.
4662     } else if (isa<CXXRecordDecl>(D)) {
4663       CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4664     } else if (isa<ClassTemplateDecl>(D)) {
4665       CheckAbstractClassUsage(Info,
4666                              cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4667     }
4668   }
4669 }
4670 
ReferenceDllExportedMethods(Sema & S,CXXRecordDecl * Class)4671 static void ReferenceDllExportedMethods(Sema &S, CXXRecordDecl *Class) {
4672   Attr *ClassAttr = getDLLAttr(Class);
4673   if (!ClassAttr)
4674     return;
4675 
4676   assert(ClassAttr->getKind() == attr::DLLExport);
4677 
4678   TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
4679 
4680   if (TSK == TSK_ExplicitInstantiationDeclaration)
4681     // Don't go any further if this is just an explicit instantiation
4682     // declaration.
4683     return;
4684 
4685   for (Decl *Member : Class->decls()) {
4686     auto *MD = dyn_cast<CXXMethodDecl>(Member);
4687     if (!MD)
4688       continue;
4689 
4690     if (Member->getAttr<DLLExportAttr>()) {
4691       if (MD->isUserProvided()) {
4692         // Instantiate non-default class member functions ...
4693 
4694         // .. except for certain kinds of template specializations.
4695         if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
4696           continue;
4697 
4698         S.MarkFunctionReferenced(Class->getLocation(), MD);
4699 
4700         // The function will be passed to the consumer when its definition is
4701         // encountered.
4702       } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
4703                  MD->isCopyAssignmentOperator() ||
4704                  MD->isMoveAssignmentOperator()) {
4705         // Synthesize and instantiate non-trivial implicit methods, explicitly
4706         // defaulted methods, and the copy and move assignment operators. The
4707         // latter are exported even if they are trivial, because the address of
4708         // an operator can be taken and should compare equal accross libraries.
4709         DiagnosticErrorTrap Trap(S.Diags);
4710         S.MarkFunctionReferenced(Class->getLocation(), MD);
4711         if (Trap.hasErrorOccurred()) {
4712           S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
4713               << Class->getName() << !S.getLangOpts().CPlusPlus11;
4714           break;
4715         }
4716 
4717         // There is no later point when we will see the definition of this
4718         // function, so pass it to the consumer now.
4719         S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
4720       }
4721     }
4722   }
4723 }
4724 
4725 /// \brief Check class-level dllimport/dllexport attribute.
checkClassLevelDLLAttribute(CXXRecordDecl * Class)4726 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
4727   Attr *ClassAttr = getDLLAttr(Class);
4728 
4729   // MSVC inherits DLL attributes to partial class template specializations.
4730   if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
4731     if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
4732       if (Attr *TemplateAttr =
4733               getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
4734         auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
4735         A->setInherited(true);
4736         ClassAttr = A;
4737       }
4738     }
4739   }
4740 
4741   if (!ClassAttr)
4742     return;
4743 
4744   if (!Class->isExternallyVisible()) {
4745     Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
4746         << Class << ClassAttr;
4747     return;
4748   }
4749 
4750   if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
4751       !ClassAttr->isInherited()) {
4752     // Diagnose dll attributes on members of class with dll attribute.
4753     for (Decl *Member : Class->decls()) {
4754       if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
4755         continue;
4756       InheritableAttr *MemberAttr = getDLLAttr(Member);
4757       if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
4758         continue;
4759 
4760       Diag(MemberAttr->getLocation(),
4761              diag::err_attribute_dll_member_of_dll_class)
4762           << MemberAttr << ClassAttr;
4763       Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
4764       Member->setInvalidDecl();
4765     }
4766   }
4767 
4768   if (Class->getDescribedClassTemplate())
4769     // Don't inherit dll attribute until the template is instantiated.
4770     return;
4771 
4772   // The class is either imported or exported.
4773   const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
4774   const bool ClassImported = !ClassExported;
4775 
4776   TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
4777 
4778   // Ignore explicit dllexport on explicit class template instantiation declarations.
4779   if (ClassExported && !ClassAttr->isInherited() &&
4780       TSK == TSK_ExplicitInstantiationDeclaration) {
4781     Class->dropAttr<DLLExportAttr>();
4782     return;
4783   }
4784 
4785   // Force declaration of implicit members so they can inherit the attribute.
4786   ForceDeclarationOfImplicitMembers(Class);
4787 
4788   // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
4789   // seem to be true in practice?
4790 
4791   for (Decl *Member : Class->decls()) {
4792     VarDecl *VD = dyn_cast<VarDecl>(Member);
4793     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
4794 
4795     // Only methods and static fields inherit the attributes.
4796     if (!VD && !MD)
4797       continue;
4798 
4799     if (MD) {
4800       // Don't process deleted methods.
4801       if (MD->isDeleted())
4802         continue;
4803 
4804       if (MD->isInlined()) {
4805         // MinGW does not import or export inline methods.
4806         if (!Context.getTargetInfo().getCXXABI().isMicrosoft())
4807           continue;
4808 
4809         // MSVC versions before 2015 don't export the move assignment operators,
4810         // so don't attempt to import them if we have a definition.
4811         if (ClassImported && MD->isMoveAssignmentOperator() &&
4812             !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
4813           continue;
4814       }
4815     }
4816 
4817     if (!cast<NamedDecl>(Member)->isExternallyVisible())
4818       continue;
4819 
4820     if (!getDLLAttr(Member)) {
4821       auto *NewAttr =
4822           cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
4823       NewAttr->setInherited(true);
4824       Member->addAttr(NewAttr);
4825     }
4826   }
4827 
4828   if (ClassExported)
4829     DelayedDllExportClasses.push_back(Class);
4830 }
4831 
4832 /// \brief Perform propagation of DLL attributes from a derived class to a
4833 /// templated base class for MS compatibility.
propagateDLLAttrToBaseClassTemplate(CXXRecordDecl * Class,Attr * ClassAttr,ClassTemplateSpecializationDecl * BaseTemplateSpec,SourceLocation BaseLoc)4834 void Sema::propagateDLLAttrToBaseClassTemplate(
4835     CXXRecordDecl *Class, Attr *ClassAttr,
4836     ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
4837   if (getDLLAttr(
4838           BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
4839     // If the base class template has a DLL attribute, don't try to change it.
4840     return;
4841   }
4842 
4843   auto TSK = BaseTemplateSpec->getSpecializationKind();
4844   if (!getDLLAttr(BaseTemplateSpec) &&
4845       (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
4846        TSK == TSK_ImplicitInstantiation)) {
4847     // The template hasn't been instantiated yet (or it has, but only as an
4848     // explicit instantiation declaration or implicit instantiation, which means
4849     // we haven't codegenned any members yet), so propagate the attribute.
4850     auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
4851     NewAttr->setInherited(true);
4852     BaseTemplateSpec->addAttr(NewAttr);
4853 
4854     // If the template is already instantiated, checkDLLAttributeRedeclaration()
4855     // needs to be run again to work see the new attribute. Otherwise this will
4856     // get run whenever the template is instantiated.
4857     if (TSK != TSK_Undeclared)
4858       checkClassLevelDLLAttribute(BaseTemplateSpec);
4859 
4860     return;
4861   }
4862 
4863   if (getDLLAttr(BaseTemplateSpec)) {
4864     // The template has already been specialized or instantiated with an
4865     // attribute, explicitly or through propagation. We should not try to change
4866     // it.
4867     return;
4868   }
4869 
4870   // The template was previously instantiated or explicitly specialized without
4871   // a dll attribute, It's too late for us to add an attribute, so warn that
4872   // this is unsupported.
4873   Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
4874       << BaseTemplateSpec->isExplicitSpecialization();
4875   Diag(ClassAttr->getLocation(), diag::note_attribute);
4876   if (BaseTemplateSpec->isExplicitSpecialization()) {
4877     Diag(BaseTemplateSpec->getLocation(),
4878            diag::note_template_class_explicit_specialization_was_here)
4879         << BaseTemplateSpec;
4880   } else {
4881     Diag(BaseTemplateSpec->getPointOfInstantiation(),
4882            diag::note_template_class_instantiation_was_here)
4883         << BaseTemplateSpec;
4884   }
4885 }
4886 
4887 /// \brief Perform semantic checks on a class definition that has been
4888 /// completing, introducing implicitly-declared members, checking for
4889 /// abstract types, etc.
CheckCompletedCXXClass(CXXRecordDecl * Record)4890 void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4891   if (!Record)
4892     return;
4893 
4894   if (Record->isAbstract() && !Record->isInvalidDecl()) {
4895     AbstractUsageInfo Info(*this, Record);
4896     CheckAbstractClassUsage(Info, Record);
4897   }
4898 
4899   // If this is not an aggregate type and has no user-declared constructor,
4900   // complain about any non-static data members of reference or const scalar
4901   // type, since they will never get initializers.
4902   if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4903       !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4904       !Record->isLambda()) {
4905     bool Complained = false;
4906     for (const auto *F : Record->fields()) {
4907       if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4908         continue;
4909 
4910       if (F->getType()->isReferenceType() ||
4911           (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4912         if (!Complained) {
4913           Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4914             << Record->getTagKind() << Record;
4915           Complained = true;
4916         }
4917 
4918         Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4919           << F->getType()->isReferenceType()
4920           << F->getDeclName();
4921       }
4922     }
4923   }
4924 
4925   if (Record->getIdentifier()) {
4926     // C++ [class.mem]p13:
4927     //   If T is the name of a class, then each of the following shall have a
4928     //   name different from T:
4929     //     - every member of every anonymous union that is a member of class T.
4930     //
4931     // C++ [class.mem]p14:
4932     //   In addition, if class T has a user-declared constructor (12.1), every
4933     //   non-static data member of class T shall have a name different from T.
4934     DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4935     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4936          ++I) {
4937       NamedDecl *D = *I;
4938       if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4939           isa<IndirectFieldDecl>(D)) {
4940         Diag(D->getLocation(), diag::err_member_name_of_class)
4941           << D->getDeclName();
4942         break;
4943       }
4944     }
4945   }
4946 
4947   // Warn if the class has virtual methods but non-virtual public destructor.
4948   if (Record->isPolymorphic() && !Record->isDependentType()) {
4949     CXXDestructorDecl *dtor = Record->getDestructor();
4950     if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
4951         !Record->hasAttr<FinalAttr>())
4952       Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4953            diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4954   }
4955 
4956   if (Record->isAbstract()) {
4957     if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
4958       Diag(Record->getLocation(), diag::warn_abstract_final_class)
4959         << FA->isSpelledAsSealed();
4960       DiagnoseAbstractType(Record);
4961     }
4962   }
4963 
4964   bool HasMethodWithOverrideControl = false,
4965        HasOverridingMethodWithoutOverrideControl = false;
4966   if (!Record->isDependentType()) {
4967     for (auto *M : Record->methods()) {
4968       // See if a method overloads virtual methods in a base
4969       // class without overriding any.
4970       if (!M->isStatic())
4971         DiagnoseHiddenVirtualMethods(M);
4972       if (M->hasAttr<OverrideAttr>())
4973         HasMethodWithOverrideControl = true;
4974       else if (M->size_overridden_methods() > 0)
4975         HasOverridingMethodWithoutOverrideControl = true;
4976       // Check whether the explicitly-defaulted special members are valid.
4977       if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4978         CheckExplicitlyDefaultedSpecialMember(M);
4979 
4980       // For an explicitly defaulted or deleted special member, we defer
4981       // determining triviality until the class is complete. That time is now!
4982       if (!M->isImplicit() && !M->isUserProvided()) {
4983         CXXSpecialMember CSM = getSpecialMember(M);
4984         if (CSM != CXXInvalid) {
4985           M->setTrivial(SpecialMemberIsTrivial(M, CSM));
4986 
4987           // Inform the class that we've finished declaring this member.
4988           Record->finishedDefaultedOrDeletedMember(M);
4989         }
4990       }
4991     }
4992   }
4993 
4994   if (HasMethodWithOverrideControl &&
4995       HasOverridingMethodWithoutOverrideControl) {
4996     // At least one method has the 'override' control declared.
4997     // Diagnose all other overridden methods which do not have 'override' specified on them.
4998     for (auto *M : Record->methods())
4999       DiagnoseAbsenceOfOverrideControl(M);
5000   }
5001 
5002   // ms_struct is a request to use the same ABI rules as MSVC.  Check
5003   // whether this class uses any C++ features that are implemented
5004   // completely differently in MSVC, and if so, emit a diagnostic.
5005   // That diagnostic defaults to an error, but we allow projects to
5006   // map it down to a warning (or ignore it).  It's a fairly common
5007   // practice among users of the ms_struct pragma to mass-annotate
5008   // headers, sweeping up a bunch of types that the project doesn't
5009   // really rely on MSVC-compatible layout for.  We must therefore
5010   // support "ms_struct except for C++ stuff" as a secondary ABI.
5011   if (Record->isMsStruct(Context) &&
5012       (Record->isPolymorphic() || Record->getNumBases())) {
5013     Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
5014   }
5015 
5016   // Declare inheriting constructors. We do this eagerly here because:
5017   // - The standard requires an eager diagnostic for conflicting inheriting
5018   //   constructors from different classes.
5019   // - The lazy declaration of the other implicit constructors is so as to not
5020   //   waste space and performance on classes that are not meant to be
5021   //   instantiated (e.g. meta-functions). This doesn't apply to classes that
5022   //   have inheriting constructors.
5023   DeclareInheritingConstructors(Record);
5024 
5025   checkClassLevelDLLAttribute(Record);
5026 }
5027 
5028 /// Look up the special member function that would be called by a special
5029 /// member function for a subobject of class type.
5030 ///
5031 /// \param Class The class type of the subobject.
5032 /// \param CSM The kind of special member function.
5033 /// \param FieldQuals If the subobject is a field, its cv-qualifiers.
5034 /// \param ConstRHS True if this is a copy operation with a const object
5035 ///        on its RHS, that is, if the argument to the outer special member
5036 ///        function is 'const' and this is not a field marked 'mutable'.
lookupCallFromSpecialMember(Sema & S,CXXRecordDecl * Class,Sema::CXXSpecialMember CSM,unsigned FieldQuals,bool ConstRHS)5037 static Sema::SpecialMemberOverloadResult *lookupCallFromSpecialMember(
5038     Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
5039     unsigned FieldQuals, bool ConstRHS) {
5040   unsigned LHSQuals = 0;
5041   if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
5042     LHSQuals = FieldQuals;
5043 
5044   unsigned RHSQuals = FieldQuals;
5045   if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
5046     RHSQuals = 0;
5047   else if (ConstRHS)
5048     RHSQuals |= Qualifiers::Const;
5049 
5050   return S.LookupSpecialMember(Class, CSM,
5051                                RHSQuals & Qualifiers::Const,
5052                                RHSQuals & Qualifiers::Volatile,
5053                                false,
5054                                LHSQuals & Qualifiers::Const,
5055                                LHSQuals & Qualifiers::Volatile);
5056 }
5057 
5058 /// Is the special member function which would be selected to perform the
5059 /// specified operation on the specified class type a constexpr constructor?
specialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,unsigned Quals,bool ConstRHS)5060 static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
5061                                      Sema::CXXSpecialMember CSM,
5062                                      unsigned Quals, bool ConstRHS) {
5063   Sema::SpecialMemberOverloadResult *SMOR =
5064       lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
5065   if (!SMOR || !SMOR->getMethod())
5066     // A constructor we wouldn't select can't be "involved in initializing"
5067     // anything.
5068     return true;
5069   return SMOR->getMethod()->isConstexpr();
5070 }
5071 
5072 /// Determine whether the specified special member function would be constexpr
5073 /// if it were implicitly defined.
defaultedSpecialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,bool ConstArg)5074 static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
5075                                               Sema::CXXSpecialMember CSM,
5076                                               bool ConstArg) {
5077   if (!S.getLangOpts().CPlusPlus11)
5078     return false;
5079 
5080   // C++11 [dcl.constexpr]p4:
5081   // In the definition of a constexpr constructor [...]
5082   bool Ctor = true;
5083   switch (CSM) {
5084   case Sema::CXXDefaultConstructor:
5085     // Since default constructor lookup is essentially trivial (and cannot
5086     // involve, for instance, template instantiation), we compute whether a
5087     // defaulted default constructor is constexpr directly within CXXRecordDecl.
5088     //
5089     // This is important for performance; we need to know whether the default
5090     // constructor is constexpr to determine whether the type is a literal type.
5091     return ClassDecl->defaultedDefaultConstructorIsConstexpr();
5092 
5093   case Sema::CXXCopyConstructor:
5094   case Sema::CXXMoveConstructor:
5095     // For copy or move constructors, we need to perform overload resolution.
5096     break;
5097 
5098   case Sema::CXXCopyAssignment:
5099   case Sema::CXXMoveAssignment:
5100     if (!S.getLangOpts().CPlusPlus14)
5101       return false;
5102     // In C++1y, we need to perform overload resolution.
5103     Ctor = false;
5104     break;
5105 
5106   case Sema::CXXDestructor:
5107   case Sema::CXXInvalid:
5108     return false;
5109   }
5110 
5111   //   -- if the class is a non-empty union, or for each non-empty anonymous
5112   //      union member of a non-union class, exactly one non-static data member
5113   //      shall be initialized; [DR1359]
5114   //
5115   // If we squint, this is guaranteed, since exactly one non-static data member
5116   // will be initialized (if the constructor isn't deleted), we just don't know
5117   // which one.
5118   if (Ctor && ClassDecl->isUnion())
5119     return true;
5120 
5121   //   -- the class shall not have any virtual base classes;
5122   if (Ctor && ClassDecl->getNumVBases())
5123     return false;
5124 
5125   // C++1y [class.copy]p26:
5126   //   -- [the class] is a literal type, and
5127   if (!Ctor && !ClassDecl->isLiteral())
5128     return false;
5129 
5130   //   -- every constructor involved in initializing [...] base class
5131   //      sub-objects shall be a constexpr constructor;
5132   //   -- the assignment operator selected to copy/move each direct base
5133   //      class is a constexpr function, and
5134   for (const auto &B : ClassDecl->bases()) {
5135     const RecordType *BaseType = B.getType()->getAs<RecordType>();
5136     if (!BaseType) continue;
5137 
5138     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5139     if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg))
5140       return false;
5141   }
5142 
5143   //   -- every constructor involved in initializing non-static data members
5144   //      [...] shall be a constexpr constructor;
5145   //   -- every non-static data member and base class sub-object shall be
5146   //      initialized
5147   //   -- for each non-static data member of X that is of class type (or array
5148   //      thereof), the assignment operator selected to copy/move that member is
5149   //      a constexpr function
5150   for (const auto *F : ClassDecl->fields()) {
5151     if (F->isInvalidDecl())
5152       continue;
5153     QualType BaseType = S.Context.getBaseElementType(F->getType());
5154     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
5155       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5156       if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
5157                                     BaseType.getCVRQualifiers(),
5158                                     ConstArg && !F->isMutable()))
5159         return false;
5160     }
5161   }
5162 
5163   // All OK, it's constexpr!
5164   return true;
5165 }
5166 
5167 static Sema::ImplicitExceptionSpecification
computeImplicitExceptionSpec(Sema & S,SourceLocation Loc,CXXMethodDecl * MD)5168 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
5169   switch (S.getSpecialMember(MD)) {
5170   case Sema::CXXDefaultConstructor:
5171     return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
5172   case Sema::CXXCopyConstructor:
5173     return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
5174   case Sema::CXXCopyAssignment:
5175     return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
5176   case Sema::CXXMoveConstructor:
5177     return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
5178   case Sema::CXXMoveAssignment:
5179     return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
5180   case Sema::CXXDestructor:
5181     return S.ComputeDefaultedDtorExceptionSpec(MD);
5182   case Sema::CXXInvalid:
5183     break;
5184   }
5185   assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
5186          "only special members have implicit exception specs");
5187   return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
5188 }
5189 
getImplicitMethodEPI(Sema & S,CXXMethodDecl * MD)5190 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
5191                                                             CXXMethodDecl *MD) {
5192   FunctionProtoType::ExtProtoInfo EPI;
5193 
5194   // Build an exception specification pointing back at this member.
5195   EPI.ExceptionSpec.Type = EST_Unevaluated;
5196   EPI.ExceptionSpec.SourceDecl = MD;
5197 
5198   // Set the calling convention to the default for C++ instance methods.
5199   EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
5200       S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
5201                                             /*IsCXXMethod=*/true));
5202   return EPI;
5203 }
5204 
EvaluateImplicitExceptionSpec(SourceLocation Loc,CXXMethodDecl * MD)5205 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
5206   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
5207   if (FPT->getExceptionSpecType() != EST_Unevaluated)
5208     return;
5209 
5210   // Evaluate the exception specification.
5211   auto ESI = computeImplicitExceptionSpec(*this, Loc, MD).getExceptionSpec();
5212 
5213   // Update the type of the special member to use it.
5214   UpdateExceptionSpec(MD, ESI);
5215 
5216   // A user-provided destructor can be defined outside the class. When that
5217   // happens, be sure to update the exception specification on both
5218   // declarations.
5219   const FunctionProtoType *CanonicalFPT =
5220     MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
5221   if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
5222     UpdateExceptionSpec(MD->getCanonicalDecl(), ESI);
5223 }
5224 
CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl * MD)5225 void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
5226   CXXRecordDecl *RD = MD->getParent();
5227   CXXSpecialMember CSM = getSpecialMember(MD);
5228 
5229   assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
5230          "not an explicitly-defaulted special member");
5231 
5232   // Whether this was the first-declared instance of the constructor.
5233   // This affects whether we implicitly add an exception spec and constexpr.
5234   bool First = MD == MD->getCanonicalDecl();
5235 
5236   bool HadError = false;
5237 
5238   // C++11 [dcl.fct.def.default]p1:
5239   //   A function that is explicitly defaulted shall
5240   //     -- be a special member function (checked elsewhere),
5241   //     -- have the same type (except for ref-qualifiers, and except that a
5242   //        copy operation can take a non-const reference) as an implicit
5243   //        declaration, and
5244   //     -- not have default arguments.
5245   unsigned ExpectedParams = 1;
5246   if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
5247     ExpectedParams = 0;
5248   if (MD->getNumParams() != ExpectedParams) {
5249     // This also checks for default arguments: a copy or move constructor with a
5250     // default argument is classified as a default constructor, and assignment
5251     // operations and destructors can't have default arguments.
5252     Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
5253       << CSM << MD->getSourceRange();
5254     HadError = true;
5255   } else if (MD->isVariadic()) {
5256     Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
5257       << CSM << MD->getSourceRange();
5258     HadError = true;
5259   }
5260 
5261   const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
5262 
5263   bool CanHaveConstParam = false;
5264   if (CSM == CXXCopyConstructor)
5265     CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
5266   else if (CSM == CXXCopyAssignment)
5267     CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
5268 
5269   QualType ReturnType = Context.VoidTy;
5270   if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
5271     // Check for return type matching.
5272     ReturnType = Type->getReturnType();
5273     QualType ExpectedReturnType =
5274         Context.getLValueReferenceType(Context.getTypeDeclType(RD));
5275     if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
5276       Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
5277         << (CSM == CXXMoveAssignment) << ExpectedReturnType;
5278       HadError = true;
5279     }
5280 
5281     // A defaulted special member cannot have cv-qualifiers.
5282     if (Type->getTypeQuals()) {
5283       Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
5284         << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
5285       HadError = true;
5286     }
5287   }
5288 
5289   // Check for parameter type matching.
5290   QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
5291   bool HasConstParam = false;
5292   if (ExpectedParams && ArgType->isReferenceType()) {
5293     // Argument must be reference to possibly-const T.
5294     QualType ReferentType = ArgType->getPointeeType();
5295     HasConstParam = ReferentType.isConstQualified();
5296 
5297     if (ReferentType.isVolatileQualified()) {
5298       Diag(MD->getLocation(),
5299            diag::err_defaulted_special_member_volatile_param) << CSM;
5300       HadError = true;
5301     }
5302 
5303     if (HasConstParam && !CanHaveConstParam) {
5304       if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
5305         Diag(MD->getLocation(),
5306              diag::err_defaulted_special_member_copy_const_param)
5307           << (CSM == CXXCopyAssignment);
5308         // FIXME: Explain why this special member can't be const.
5309       } else {
5310         Diag(MD->getLocation(),
5311              diag::err_defaulted_special_member_move_const_param)
5312           << (CSM == CXXMoveAssignment);
5313       }
5314       HadError = true;
5315     }
5316   } else if (ExpectedParams) {
5317     // A copy assignment operator can take its argument by value, but a
5318     // defaulted one cannot.
5319     assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
5320     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
5321     HadError = true;
5322   }
5323 
5324   // C++11 [dcl.fct.def.default]p2:
5325   //   An explicitly-defaulted function may be declared constexpr only if it
5326   //   would have been implicitly declared as constexpr,
5327   // Do not apply this rule to members of class templates, since core issue 1358
5328   // makes such functions always instantiate to constexpr functions. For
5329   // functions which cannot be constexpr (for non-constructors in C++11 and for
5330   // destructors in C++1y), this is checked elsewhere.
5331   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
5332                                                      HasConstParam);
5333   if ((getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
5334                                  : isa<CXXConstructorDecl>(MD)) &&
5335       MD->isConstexpr() && !Constexpr &&
5336       MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
5337     Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
5338     // FIXME: Explain why the special member can't be constexpr.
5339     HadError = true;
5340   }
5341 
5342   //   and may have an explicit exception-specification only if it is compatible
5343   //   with the exception-specification on the implicit declaration.
5344   if (Type->hasExceptionSpec()) {
5345     // Delay the check if this is the first declaration of the special member,
5346     // since we may not have parsed some necessary in-class initializers yet.
5347     if (First) {
5348       // If the exception specification needs to be instantiated, do so now,
5349       // before we clobber it with an EST_Unevaluated specification below.
5350       if (Type->getExceptionSpecType() == EST_Uninstantiated) {
5351         InstantiateExceptionSpec(MD->getLocStart(), MD);
5352         Type = MD->getType()->getAs<FunctionProtoType>();
5353       }
5354       DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
5355     } else
5356       CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
5357   }
5358 
5359   //   If a function is explicitly defaulted on its first declaration,
5360   if (First) {
5361     //  -- it is implicitly considered to be constexpr if the implicit
5362     //     definition would be,
5363     MD->setConstexpr(Constexpr);
5364 
5365     //  -- it is implicitly considered to have the same exception-specification
5366     //     as if it had been implicitly declared,
5367     FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
5368     EPI.ExceptionSpec.Type = EST_Unevaluated;
5369     EPI.ExceptionSpec.SourceDecl = MD;
5370     MD->setType(Context.getFunctionType(ReturnType,
5371                                         llvm::makeArrayRef(&ArgType,
5372                                                            ExpectedParams),
5373                                         EPI));
5374   }
5375 
5376   if (ShouldDeleteSpecialMember(MD, CSM)) {
5377     if (First) {
5378       SetDeclDeleted(MD, MD->getLocation());
5379     } else {
5380       // C++11 [dcl.fct.def.default]p4:
5381       //   [For a] user-provided explicitly-defaulted function [...] if such a
5382       //   function is implicitly defined as deleted, the program is ill-formed.
5383       Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
5384       ShouldDeleteSpecialMember(MD, CSM, /*Diagnose*/true);
5385       HadError = true;
5386     }
5387   }
5388 
5389   if (HadError)
5390     MD->setInvalidDecl();
5391 }
5392 
5393 /// Check whether the exception specification provided for an
5394 /// explicitly-defaulted special member matches the exception specification
5395 /// that would have been generated for an implicit special member, per
5396 /// C++11 [dcl.fct.def.default]p2.
CheckExplicitlyDefaultedMemberExceptionSpec(CXXMethodDecl * MD,const FunctionProtoType * SpecifiedType)5397 void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
5398     CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
5399   // If the exception specification was explicitly specified but hadn't been
5400   // parsed when the method was defaulted, grab it now.
5401   if (SpecifiedType->getExceptionSpecType() == EST_Unparsed)
5402     SpecifiedType =
5403         MD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
5404 
5405   // Compute the implicit exception specification.
5406   CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
5407                                                        /*IsCXXMethod=*/true);
5408   FunctionProtoType::ExtProtoInfo EPI(CC);
5409   EPI.ExceptionSpec = computeImplicitExceptionSpec(*this, MD->getLocation(), MD)
5410                           .getExceptionSpec();
5411   const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
5412     Context.getFunctionType(Context.VoidTy, None, EPI));
5413 
5414   // Ensure that it matches.
5415   CheckEquivalentExceptionSpec(
5416     PDiag(diag::err_incorrect_defaulted_exception_spec)
5417       << getSpecialMember(MD), PDiag(),
5418     ImplicitType, SourceLocation(),
5419     SpecifiedType, MD->getLocation());
5420 }
5421 
CheckDelayedMemberExceptionSpecs()5422 void Sema::CheckDelayedMemberExceptionSpecs() {
5423   decltype(DelayedExceptionSpecChecks) Checks;
5424   decltype(DelayedDefaultedMemberExceptionSpecs) Specs;
5425 
5426   std::swap(Checks, DelayedExceptionSpecChecks);
5427   std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
5428 
5429   // Perform any deferred checking of exception specifications for virtual
5430   // destructors.
5431   for (auto &Check : Checks)
5432     CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
5433 
5434   // Check that any explicitly-defaulted methods have exception specifications
5435   // compatible with their implicit exception specifications.
5436   for (auto &Spec : Specs)
5437     CheckExplicitlyDefaultedMemberExceptionSpec(Spec.first, Spec.second);
5438 }
5439 
5440 namespace {
5441 struct SpecialMemberDeletionInfo {
5442   Sema &S;
5443   CXXMethodDecl *MD;
5444   Sema::CXXSpecialMember CSM;
5445   bool Diagnose;
5446 
5447   // Properties of the special member, computed for convenience.
5448   bool IsConstructor, IsAssignment, IsMove, ConstArg;
5449   SourceLocation Loc;
5450 
5451   bool AllFieldsAreConst;
5452 
SpecialMemberDeletionInfo__anonf74ac3470711::SpecialMemberDeletionInfo5453   SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
5454                             Sema::CXXSpecialMember CSM, bool Diagnose)
5455     : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
5456       IsConstructor(false), IsAssignment(false), IsMove(false),
5457       ConstArg(false), Loc(MD->getLocation()),
5458       AllFieldsAreConst(true) {
5459     switch (CSM) {
5460       case Sema::CXXDefaultConstructor:
5461       case Sema::CXXCopyConstructor:
5462         IsConstructor = true;
5463         break;
5464       case Sema::CXXMoveConstructor:
5465         IsConstructor = true;
5466         IsMove = true;
5467         break;
5468       case Sema::CXXCopyAssignment:
5469         IsAssignment = true;
5470         break;
5471       case Sema::CXXMoveAssignment:
5472         IsAssignment = true;
5473         IsMove = true;
5474         break;
5475       case Sema::CXXDestructor:
5476         break;
5477       case Sema::CXXInvalid:
5478         llvm_unreachable("invalid special member kind");
5479     }
5480 
5481     if (MD->getNumParams()) {
5482       if (const ReferenceType *RT =
5483               MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
5484         ConstArg = RT->getPointeeType().isConstQualified();
5485     }
5486   }
5487 
inUnion__anonf74ac3470711::SpecialMemberDeletionInfo5488   bool inUnion() const { return MD->getParent()->isUnion(); }
5489 
5490   /// Look up the corresponding special member in the given class.
lookupIn__anonf74ac3470711::SpecialMemberDeletionInfo5491   Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
5492                                               unsigned Quals, bool IsMutable) {
5493     return lookupCallFromSpecialMember(S, Class, CSM, Quals,
5494                                        ConstArg && !IsMutable);
5495   }
5496 
5497   typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
5498 
5499   bool shouldDeleteForBase(CXXBaseSpecifier *Base);
5500   bool shouldDeleteForField(FieldDecl *FD);
5501   bool shouldDeleteForAllConstMembers();
5502 
5503   bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
5504                                      unsigned Quals);
5505   bool shouldDeleteForSubobjectCall(Subobject Subobj,
5506                                     Sema::SpecialMemberOverloadResult *SMOR,
5507                                     bool IsDtorCallInCtor);
5508 
5509   bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
5510 };
5511 }
5512 
5513 /// Is the given special member inaccessible when used on the given
5514 /// sub-object.
isAccessible(Subobject Subobj,CXXMethodDecl * target)5515 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
5516                                              CXXMethodDecl *target) {
5517   /// If we're operating on a base class, the object type is the
5518   /// type of this special member.
5519   QualType objectTy;
5520   AccessSpecifier access = target->getAccess();
5521   if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
5522     objectTy = S.Context.getTypeDeclType(MD->getParent());
5523     access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
5524 
5525   // If we're operating on a field, the object type is the type of the field.
5526   } else {
5527     objectTy = S.Context.getTypeDeclType(target->getParent());
5528   }
5529 
5530   return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
5531 }
5532 
5533 /// Check whether we should delete a special member due to the implicit
5534 /// definition containing a call to a special member of a subobject.
shouldDeleteForSubobjectCall(Subobject Subobj,Sema::SpecialMemberOverloadResult * SMOR,bool IsDtorCallInCtor)5535 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
5536     Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
5537     bool IsDtorCallInCtor) {
5538   CXXMethodDecl *Decl = SMOR->getMethod();
5539   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5540 
5541   int DiagKind = -1;
5542 
5543   if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
5544     DiagKind = !Decl ? 0 : 1;
5545   else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5546     DiagKind = 2;
5547   else if (!isAccessible(Subobj, Decl))
5548     DiagKind = 3;
5549   else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
5550            !Decl->isTrivial()) {
5551     // A member of a union must have a trivial corresponding special member.
5552     // As a weird special case, a destructor call from a union's constructor
5553     // must be accessible and non-deleted, but need not be trivial. Such a
5554     // destructor is never actually called, but is semantically checked as
5555     // if it were.
5556     DiagKind = 4;
5557   }
5558 
5559   if (DiagKind == -1)
5560     return false;
5561 
5562   if (Diagnose) {
5563     if (Field) {
5564       S.Diag(Field->getLocation(),
5565              diag::note_deleted_special_member_class_subobject)
5566         << CSM << MD->getParent() << /*IsField*/true
5567         << Field << DiagKind << IsDtorCallInCtor;
5568     } else {
5569       CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
5570       S.Diag(Base->getLocStart(),
5571              diag::note_deleted_special_member_class_subobject)
5572         << CSM << MD->getParent() << /*IsField*/false
5573         << Base->getType() << DiagKind << IsDtorCallInCtor;
5574     }
5575 
5576     if (DiagKind == 1)
5577       S.NoteDeletedFunction(Decl);
5578     // FIXME: Explain inaccessibility if DiagKind == 3.
5579   }
5580 
5581   return true;
5582 }
5583 
5584 /// Check whether we should delete a special member function due to having a
5585 /// direct or virtual base class or non-static data member of class type M.
shouldDeleteForClassSubobject(CXXRecordDecl * Class,Subobject Subobj,unsigned Quals)5586 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
5587     CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
5588   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5589   bool IsMutable = Field && Field->isMutable();
5590 
5591   // C++11 [class.ctor]p5:
5592   // -- any direct or virtual base class, or non-static data member with no
5593   //    brace-or-equal-initializer, has class type M (or array thereof) and
5594   //    either M has no default constructor or overload resolution as applied
5595   //    to M's default constructor results in an ambiguity or in a function
5596   //    that is deleted or inaccessible
5597   // C++11 [class.copy]p11, C++11 [class.copy]p23:
5598   // -- a direct or virtual base class B that cannot be copied/moved because
5599   //    overload resolution, as applied to B's corresponding special member,
5600   //    results in an ambiguity or a function that is deleted or inaccessible
5601   //    from the defaulted special member
5602   // C++11 [class.dtor]p5:
5603   // -- any direct or virtual base class [...] has a type with a destructor
5604   //    that is deleted or inaccessible
5605   if (!(CSM == Sema::CXXDefaultConstructor &&
5606         Field && Field->hasInClassInitializer()) &&
5607       shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
5608                                    false))
5609     return true;
5610 
5611   // C++11 [class.ctor]p5, C++11 [class.copy]p11:
5612   // -- any direct or virtual base class or non-static data member has a
5613   //    type with a destructor that is deleted or inaccessible
5614   if (IsConstructor) {
5615     Sema::SpecialMemberOverloadResult *SMOR =
5616         S.LookupSpecialMember(Class, Sema::CXXDestructor,
5617                               false, false, false, false, false);
5618     if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
5619       return true;
5620   }
5621 
5622   return false;
5623 }
5624 
5625 /// Check whether we should delete a special member function due to the class
5626 /// having a particular direct or virtual base class.
shouldDeleteForBase(CXXBaseSpecifier * Base)5627 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
5628   CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
5629   return shouldDeleteForClassSubobject(BaseClass, Base, 0);
5630 }
5631 
5632 /// Check whether we should delete a special member function due to the class
5633 /// having a particular non-static data member.
shouldDeleteForField(FieldDecl * FD)5634 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
5635   QualType FieldType = S.Context.getBaseElementType(FD->getType());
5636   CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
5637 
5638   if (CSM == Sema::CXXDefaultConstructor) {
5639     // For a default constructor, all references must be initialized in-class
5640     // and, if a union, it must have a non-const member.
5641     if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
5642       if (Diagnose)
5643         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5644           << MD->getParent() << FD << FieldType << /*Reference*/0;
5645       return true;
5646     }
5647     // C++11 [class.ctor]p5: any non-variant non-static data member of
5648     // const-qualified type (or array thereof) with no
5649     // brace-or-equal-initializer does not have a user-provided default
5650     // constructor.
5651     if (!inUnion() && FieldType.isConstQualified() &&
5652         !FD->hasInClassInitializer() &&
5653         (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
5654       if (Diagnose)
5655         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5656           << MD->getParent() << FD << FD->getType() << /*Const*/1;
5657       return true;
5658     }
5659 
5660     if (inUnion() && !FieldType.isConstQualified())
5661       AllFieldsAreConst = false;
5662   } else if (CSM == Sema::CXXCopyConstructor) {
5663     // For a copy constructor, data members must not be of rvalue reference
5664     // type.
5665     if (FieldType->isRValueReferenceType()) {
5666       if (Diagnose)
5667         S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
5668           << MD->getParent() << FD << FieldType;
5669       return true;
5670     }
5671   } else if (IsAssignment) {
5672     // For an assignment operator, data members must not be of reference type.
5673     if (FieldType->isReferenceType()) {
5674       if (Diagnose)
5675         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5676           << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
5677       return true;
5678     }
5679     if (!FieldRecord && FieldType.isConstQualified()) {
5680       // C++11 [class.copy]p23:
5681       // -- a non-static data member of const non-class type (or array thereof)
5682       if (Diagnose)
5683         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5684           << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
5685       return true;
5686     }
5687   }
5688 
5689   if (FieldRecord) {
5690     // Some additional restrictions exist on the variant members.
5691     if (!inUnion() && FieldRecord->isUnion() &&
5692         FieldRecord->isAnonymousStructOrUnion()) {
5693       bool AllVariantFieldsAreConst = true;
5694 
5695       // FIXME: Handle anonymous unions declared within anonymous unions.
5696       for (auto *UI : FieldRecord->fields()) {
5697         QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
5698 
5699         if (!UnionFieldType.isConstQualified())
5700           AllVariantFieldsAreConst = false;
5701 
5702         CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
5703         if (UnionFieldRecord &&
5704             shouldDeleteForClassSubobject(UnionFieldRecord, UI,
5705                                           UnionFieldType.getCVRQualifiers()))
5706           return true;
5707       }
5708 
5709       // At least one member in each anonymous union must be non-const
5710       if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
5711           !FieldRecord->field_empty()) {
5712         if (Diagnose)
5713           S.Diag(FieldRecord->getLocation(),
5714                  diag::note_deleted_default_ctor_all_const)
5715             << MD->getParent() << /*anonymous union*/1;
5716         return true;
5717       }
5718 
5719       // Don't check the implicit member of the anonymous union type.
5720       // This is technically non-conformant, but sanity demands it.
5721       return false;
5722     }
5723 
5724     if (shouldDeleteForClassSubobject(FieldRecord, FD,
5725                                       FieldType.getCVRQualifiers()))
5726       return true;
5727   }
5728 
5729   return false;
5730 }
5731 
5732 /// C++11 [class.ctor] p5:
5733 ///   A defaulted default constructor for a class X is defined as deleted if
5734 /// X is a union and all of its variant members are of const-qualified type.
shouldDeleteForAllConstMembers()5735 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
5736   // This is a silly definition, because it gives an empty union a deleted
5737   // default constructor. Don't do that.
5738   if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
5739       !MD->getParent()->field_empty()) {
5740     if (Diagnose)
5741       S.Diag(MD->getParent()->getLocation(),
5742              diag::note_deleted_default_ctor_all_const)
5743         << MD->getParent() << /*not anonymous union*/0;
5744     return true;
5745   }
5746   return false;
5747 }
5748 
5749 /// Determine whether a defaulted special member function should be defined as
5750 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
5751 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
ShouldDeleteSpecialMember(CXXMethodDecl * MD,CXXSpecialMember CSM,bool Diagnose)5752 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5753                                      bool Diagnose) {
5754   if (MD->isInvalidDecl())
5755     return false;
5756   CXXRecordDecl *RD = MD->getParent();
5757   assert(!RD->isDependentType() && "do deletion after instantiation");
5758   if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
5759     return false;
5760 
5761   // C++11 [expr.lambda.prim]p19:
5762   //   The closure type associated with a lambda-expression has a
5763   //   deleted (8.4.3) default constructor and a deleted copy
5764   //   assignment operator.
5765   if (RD->isLambda() &&
5766       (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
5767     if (Diagnose)
5768       Diag(RD->getLocation(), diag::note_lambda_decl);
5769     return true;
5770   }
5771 
5772   // For an anonymous struct or union, the copy and assignment special members
5773   // will never be used, so skip the check. For an anonymous union declared at
5774   // namespace scope, the constructor and destructor are used.
5775   if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
5776       RD->isAnonymousStructOrUnion())
5777     return false;
5778 
5779   // C++11 [class.copy]p7, p18:
5780   //   If the class definition declares a move constructor or move assignment
5781   //   operator, an implicitly declared copy constructor or copy assignment
5782   //   operator is defined as deleted.
5783   if (MD->isImplicit() &&
5784       (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
5785     CXXMethodDecl *UserDeclaredMove = nullptr;
5786 
5787     // In Microsoft mode, a user-declared move only causes the deletion of the
5788     // corresponding copy operation, not both copy operations.
5789     if (RD->hasUserDeclaredMoveConstructor() &&
5790         (!getLangOpts().MSVCCompat || CSM == CXXCopyConstructor)) {
5791       if (!Diagnose) return true;
5792 
5793       // Find any user-declared move constructor.
5794       for (auto *I : RD->ctors()) {
5795         if (I->isMoveConstructor()) {
5796           UserDeclaredMove = I;
5797           break;
5798         }
5799       }
5800       assert(UserDeclaredMove);
5801     } else if (RD->hasUserDeclaredMoveAssignment() &&
5802                (!getLangOpts().MSVCCompat || CSM == CXXCopyAssignment)) {
5803       if (!Diagnose) return true;
5804 
5805       // Find any user-declared move assignment operator.
5806       for (auto *I : RD->methods()) {
5807         if (I->isMoveAssignmentOperator()) {
5808           UserDeclaredMove = I;
5809           break;
5810         }
5811       }
5812       assert(UserDeclaredMove);
5813     }
5814 
5815     if (UserDeclaredMove) {
5816       Diag(UserDeclaredMove->getLocation(),
5817            diag::note_deleted_copy_user_declared_move)
5818         << (CSM == CXXCopyAssignment) << RD
5819         << UserDeclaredMove->isMoveAssignmentOperator();
5820       return true;
5821     }
5822   }
5823 
5824   // Do access control from the special member function
5825   ContextRAII MethodContext(*this, MD);
5826 
5827   // C++11 [class.dtor]p5:
5828   // -- for a virtual destructor, lookup of the non-array deallocation function
5829   //    results in an ambiguity or in a function that is deleted or inaccessible
5830   if (CSM == CXXDestructor && MD->isVirtual()) {
5831     FunctionDecl *OperatorDelete = nullptr;
5832     DeclarationName Name =
5833       Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5834     if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5835                                  OperatorDelete, false)) {
5836       if (Diagnose)
5837         Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5838       return true;
5839     }
5840   }
5841 
5842   SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5843 
5844   for (auto &BI : RD->bases())
5845     if (!BI.isVirtual() &&
5846         SMI.shouldDeleteForBase(&BI))
5847       return true;
5848 
5849   // Per DR1611, do not consider virtual bases of constructors of abstract
5850   // classes, since we are not going to construct them.
5851   if (!RD->isAbstract() || !SMI.IsConstructor) {
5852     for (auto &BI : RD->vbases())
5853       if (SMI.shouldDeleteForBase(&BI))
5854         return true;
5855   }
5856 
5857   for (auto *FI : RD->fields())
5858     if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5859         SMI.shouldDeleteForField(FI))
5860       return true;
5861 
5862   if (SMI.shouldDeleteForAllConstMembers())
5863     return true;
5864 
5865   if (getLangOpts().CUDA) {
5866     // We should delete the special member in CUDA mode if target inference
5867     // failed.
5868     return inferCUDATargetForImplicitSpecialMember(RD, CSM, MD, SMI.ConstArg,
5869                                                    Diagnose);
5870   }
5871 
5872   return false;
5873 }
5874 
5875 /// Perform lookup for a special member of the specified kind, and determine
5876 /// whether it is trivial. If the triviality can be determined without the
5877 /// lookup, skip it. This is intended for use when determining whether a
5878 /// special member of a containing object is trivial, and thus does not ever
5879 /// perform overload resolution for default constructors.
5880 ///
5881 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5882 /// member that was most likely to be intended to be trivial, if any.
findTrivialSpecialMember(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,unsigned Quals,bool ConstRHS,CXXMethodDecl ** Selected)5883 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5884                                      Sema::CXXSpecialMember CSM, unsigned Quals,
5885                                      bool ConstRHS, CXXMethodDecl **Selected) {
5886   if (Selected)
5887     *Selected = nullptr;
5888 
5889   switch (CSM) {
5890   case Sema::CXXInvalid:
5891     llvm_unreachable("not a special member");
5892 
5893   case Sema::CXXDefaultConstructor:
5894     // C++11 [class.ctor]p5:
5895     //   A default constructor is trivial if:
5896     //    - all the [direct subobjects] have trivial default constructors
5897     //
5898     // Note, no overload resolution is performed in this case.
5899     if (RD->hasTrivialDefaultConstructor())
5900       return true;
5901 
5902     if (Selected) {
5903       // If there's a default constructor which could have been trivial, dig it
5904       // out. Otherwise, if there's any user-provided default constructor, point
5905       // to that as an example of why there's not a trivial one.
5906       CXXConstructorDecl *DefCtor = nullptr;
5907       if (RD->needsImplicitDefaultConstructor())
5908         S.DeclareImplicitDefaultConstructor(RD);
5909       for (auto *CI : RD->ctors()) {
5910         if (!CI->isDefaultConstructor())
5911           continue;
5912         DefCtor = CI;
5913         if (!DefCtor->isUserProvided())
5914           break;
5915       }
5916 
5917       *Selected = DefCtor;
5918     }
5919 
5920     return false;
5921 
5922   case Sema::CXXDestructor:
5923     // C++11 [class.dtor]p5:
5924     //   A destructor is trivial if:
5925     //    - all the direct [subobjects] have trivial destructors
5926     if (RD->hasTrivialDestructor())
5927       return true;
5928 
5929     if (Selected) {
5930       if (RD->needsImplicitDestructor())
5931         S.DeclareImplicitDestructor(RD);
5932       *Selected = RD->getDestructor();
5933     }
5934 
5935     return false;
5936 
5937   case Sema::CXXCopyConstructor:
5938     // C++11 [class.copy]p12:
5939     //   A copy constructor is trivial if:
5940     //    - the constructor selected to copy each direct [subobject] is trivial
5941     if (RD->hasTrivialCopyConstructor()) {
5942       if (Quals == Qualifiers::Const)
5943         // We must either select the trivial copy constructor or reach an
5944         // ambiguity; no need to actually perform overload resolution.
5945         return true;
5946     } else if (!Selected) {
5947       return false;
5948     }
5949     // In C++98, we are not supposed to perform overload resolution here, but we
5950     // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5951     // cases like B as having a non-trivial copy constructor:
5952     //   struct A { template<typename T> A(T&); };
5953     //   struct B { mutable A a; };
5954     goto NeedOverloadResolution;
5955 
5956   case Sema::CXXCopyAssignment:
5957     // C++11 [class.copy]p25:
5958     //   A copy assignment operator is trivial if:
5959     //    - the assignment operator selected to copy each direct [subobject] is
5960     //      trivial
5961     if (RD->hasTrivialCopyAssignment()) {
5962       if (Quals == Qualifiers::Const)
5963         return true;
5964     } else if (!Selected) {
5965       return false;
5966     }
5967     // In C++98, we are not supposed to perform overload resolution here, but we
5968     // treat that as a language defect.
5969     goto NeedOverloadResolution;
5970 
5971   case Sema::CXXMoveConstructor:
5972   case Sema::CXXMoveAssignment:
5973   NeedOverloadResolution:
5974     Sema::SpecialMemberOverloadResult *SMOR =
5975         lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
5976 
5977     // The standard doesn't describe how to behave if the lookup is ambiguous.
5978     // We treat it as not making the member non-trivial, just like the standard
5979     // mandates for the default constructor. This should rarely matter, because
5980     // the member will also be deleted.
5981     if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5982       return true;
5983 
5984     if (!SMOR->getMethod()) {
5985       assert(SMOR->getKind() ==
5986              Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5987       return false;
5988     }
5989 
5990     // We deliberately don't check if we found a deleted special member. We're
5991     // not supposed to!
5992     if (Selected)
5993       *Selected = SMOR->getMethod();
5994     return SMOR->getMethod()->isTrivial();
5995   }
5996 
5997   llvm_unreachable("unknown special method kind");
5998 }
5999 
findUserDeclaredCtor(CXXRecordDecl * RD)6000 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
6001   for (auto *CI : RD->ctors())
6002     if (!CI->isImplicit())
6003       return CI;
6004 
6005   // Look for constructor templates.
6006   typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
6007   for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
6008     if (CXXConstructorDecl *CD =
6009           dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
6010       return CD;
6011   }
6012 
6013   return nullptr;
6014 }
6015 
6016 /// The kind of subobject we are checking for triviality. The values of this
6017 /// enumeration are used in diagnostics.
6018 enum TrivialSubobjectKind {
6019   /// The subobject is a base class.
6020   TSK_BaseClass,
6021   /// The subobject is a non-static data member.
6022   TSK_Field,
6023   /// The object is actually the complete object.
6024   TSK_CompleteObject
6025 };
6026 
6027 /// Check whether the special member selected for a given type would be trivial.
checkTrivialSubobjectCall(Sema & S,SourceLocation SubobjLoc,QualType SubType,bool ConstRHS,Sema::CXXSpecialMember CSM,TrivialSubobjectKind Kind,bool Diagnose)6028 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
6029                                       QualType SubType, bool ConstRHS,
6030                                       Sema::CXXSpecialMember CSM,
6031                                       TrivialSubobjectKind Kind,
6032                                       bool Diagnose) {
6033   CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
6034   if (!SubRD)
6035     return true;
6036 
6037   CXXMethodDecl *Selected;
6038   if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
6039                                ConstRHS, Diagnose ? &Selected : nullptr))
6040     return true;
6041 
6042   if (Diagnose) {
6043     if (ConstRHS)
6044       SubType.addConst();
6045 
6046     if (!Selected && CSM == Sema::CXXDefaultConstructor) {
6047       S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
6048         << Kind << SubType.getUnqualifiedType();
6049       if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
6050         S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
6051     } else if (!Selected)
6052       S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
6053         << Kind << SubType.getUnqualifiedType() << CSM << SubType;
6054     else if (Selected->isUserProvided()) {
6055       if (Kind == TSK_CompleteObject)
6056         S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
6057           << Kind << SubType.getUnqualifiedType() << CSM;
6058       else {
6059         S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
6060           << Kind << SubType.getUnqualifiedType() << CSM;
6061         S.Diag(Selected->getLocation(), diag::note_declared_at);
6062       }
6063     } else {
6064       if (Kind != TSK_CompleteObject)
6065         S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
6066           << Kind << SubType.getUnqualifiedType() << CSM;
6067 
6068       // Explain why the defaulted or deleted special member isn't trivial.
6069       S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
6070     }
6071   }
6072 
6073   return false;
6074 }
6075 
6076 /// Check whether the members of a class type allow a special member to be
6077 /// trivial.
checkTrivialClassMembers(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,bool ConstArg,bool Diagnose)6078 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
6079                                      Sema::CXXSpecialMember CSM,
6080                                      bool ConstArg, bool Diagnose) {
6081   for (const auto *FI : RD->fields()) {
6082     if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
6083       continue;
6084 
6085     QualType FieldType = S.Context.getBaseElementType(FI->getType());
6086 
6087     // Pretend anonymous struct or union members are members of this class.
6088     if (FI->isAnonymousStructOrUnion()) {
6089       if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
6090                                     CSM, ConstArg, Diagnose))
6091         return false;
6092       continue;
6093     }
6094 
6095     // C++11 [class.ctor]p5:
6096     //   A default constructor is trivial if [...]
6097     //    -- no non-static data member of its class has a
6098     //       brace-or-equal-initializer
6099     if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
6100       if (Diagnose)
6101         S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
6102       return false;
6103     }
6104 
6105     // Objective C ARC 4.3.5:
6106     //   [...] nontrivally ownership-qualified types are [...] not trivially
6107     //   default constructible, copy constructible, move constructible, copy
6108     //   assignable, move assignable, or destructible [...]
6109     if (S.getLangOpts().ObjCAutoRefCount &&
6110         FieldType.hasNonTrivialObjCLifetime()) {
6111       if (Diagnose)
6112         S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
6113           << RD << FieldType.getObjCLifetime();
6114       return false;
6115     }
6116 
6117     bool ConstRHS = ConstArg && !FI->isMutable();
6118     if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
6119                                    CSM, TSK_Field, Diagnose))
6120       return false;
6121   }
6122 
6123   return true;
6124 }
6125 
6126 /// Diagnose why the specified class does not have a trivial special member of
6127 /// the given kind.
DiagnoseNontrivial(const CXXRecordDecl * RD,CXXSpecialMember CSM)6128 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
6129   QualType Ty = Context.getRecordType(RD);
6130 
6131   bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
6132   checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
6133                             TSK_CompleteObject, /*Diagnose*/true);
6134 }
6135 
6136 /// Determine whether a defaulted or deleted special member function is trivial,
6137 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
6138 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
SpecialMemberIsTrivial(CXXMethodDecl * MD,CXXSpecialMember CSM,bool Diagnose)6139 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
6140                                   bool Diagnose) {
6141   assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
6142 
6143   CXXRecordDecl *RD = MD->getParent();
6144 
6145   bool ConstArg = false;
6146 
6147   // C++11 [class.copy]p12, p25: [DR1593]
6148   //   A [special member] is trivial if [...] its parameter-type-list is
6149   //   equivalent to the parameter-type-list of an implicit declaration [...]
6150   switch (CSM) {
6151   case CXXDefaultConstructor:
6152   case CXXDestructor:
6153     // Trivial default constructors and destructors cannot have parameters.
6154     break;
6155 
6156   case CXXCopyConstructor:
6157   case CXXCopyAssignment: {
6158     // Trivial copy operations always have const, non-volatile parameter types.
6159     ConstArg = true;
6160     const ParmVarDecl *Param0 = MD->getParamDecl(0);
6161     const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
6162     if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
6163       if (Diagnose)
6164         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
6165           << Param0->getSourceRange() << Param0->getType()
6166           << Context.getLValueReferenceType(
6167                Context.getRecordType(RD).withConst());
6168       return false;
6169     }
6170     break;
6171   }
6172 
6173   case CXXMoveConstructor:
6174   case CXXMoveAssignment: {
6175     // Trivial move operations always have non-cv-qualified parameters.
6176     const ParmVarDecl *Param0 = MD->getParamDecl(0);
6177     const RValueReferenceType *RT =
6178       Param0->getType()->getAs<RValueReferenceType>();
6179     if (!RT || RT->getPointeeType().getCVRQualifiers()) {
6180       if (Diagnose)
6181         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
6182           << Param0->getSourceRange() << Param0->getType()
6183           << Context.getRValueReferenceType(Context.getRecordType(RD));
6184       return false;
6185     }
6186     break;
6187   }
6188 
6189   case CXXInvalid:
6190     llvm_unreachable("not a special member");
6191   }
6192 
6193   if (MD->getMinRequiredArguments() < MD->getNumParams()) {
6194     if (Diagnose)
6195       Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
6196            diag::note_nontrivial_default_arg)
6197         << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
6198     return false;
6199   }
6200   if (MD->isVariadic()) {
6201     if (Diagnose)
6202       Diag(MD->getLocation(), diag::note_nontrivial_variadic);
6203     return false;
6204   }
6205 
6206   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
6207   //   A copy/move [constructor or assignment operator] is trivial if
6208   //    -- the [member] selected to copy/move each direct base class subobject
6209   //       is trivial
6210   //
6211   // C++11 [class.copy]p12, C++11 [class.copy]p25:
6212   //   A [default constructor or destructor] is trivial if
6213   //    -- all the direct base classes have trivial [default constructors or
6214   //       destructors]
6215   for (const auto &BI : RD->bases())
6216     if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(),
6217                                    ConstArg, CSM, TSK_BaseClass, Diagnose))
6218       return false;
6219 
6220   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
6221   //   A copy/move [constructor or assignment operator] for a class X is
6222   //   trivial if
6223   //    -- for each non-static data member of X that is of class type (or array
6224   //       thereof), the constructor selected to copy/move that member is
6225   //       trivial
6226   //
6227   // C++11 [class.copy]p12, C++11 [class.copy]p25:
6228   //   A [default constructor or destructor] is trivial if
6229   //    -- for all of the non-static data members of its class that are of class
6230   //       type (or array thereof), each such class has a trivial [default
6231   //       constructor or destructor]
6232   if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
6233     return false;
6234 
6235   // C++11 [class.dtor]p5:
6236   //   A destructor is trivial if [...]
6237   //    -- the destructor is not virtual
6238   if (CSM == CXXDestructor && MD->isVirtual()) {
6239     if (Diagnose)
6240       Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
6241     return false;
6242   }
6243 
6244   // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
6245   //   A [special member] for class X is trivial if [...]
6246   //    -- class X has no virtual functions and no virtual base classes
6247   if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
6248     if (!Diagnose)
6249       return false;
6250 
6251     if (RD->getNumVBases()) {
6252       // Check for virtual bases. We already know that the corresponding
6253       // member in all bases is trivial, so vbases must all be direct.
6254       CXXBaseSpecifier &BS = *RD->vbases_begin();
6255       assert(BS.isVirtual());
6256       Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
6257       return false;
6258     }
6259 
6260     // Must have a virtual method.
6261     for (const auto *MI : RD->methods()) {
6262       if (MI->isVirtual()) {
6263         SourceLocation MLoc = MI->getLocStart();
6264         Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
6265         return false;
6266       }
6267     }
6268 
6269     llvm_unreachable("dynamic class with no vbases and no virtual functions");
6270   }
6271 
6272   // Looks like it's trivial!
6273   return true;
6274 }
6275 
6276 namespace {
6277 struct FindHiddenVirtualMethod {
6278   Sema *S;
6279   CXXMethodDecl *Method;
6280   llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
6281   SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
6282 
6283 private:
6284   /// Check whether any most overriden method from MD in Methods
CheckMostOverridenMethods__anonf74ac3470811::FindHiddenVirtualMethod6285   static bool CheckMostOverridenMethods(
6286       const CXXMethodDecl *MD,
6287       const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
6288     if (MD->size_overridden_methods() == 0)
6289       return Methods.count(MD->getCanonicalDecl());
6290     for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6291                                         E = MD->end_overridden_methods();
6292          I != E; ++I)
6293       if (CheckMostOverridenMethods(*I, Methods))
6294         return true;
6295     return false;
6296   }
6297 
6298 public:
6299   /// Member lookup function that determines whether a given C++
6300   /// method overloads virtual methods in a base class without overriding any,
6301   /// to be used with CXXRecordDecl::lookupInBases().
operator ()__anonf74ac3470811::FindHiddenVirtualMethod6302   bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
6303     RecordDecl *BaseRecord =
6304         Specifier->getType()->getAs<RecordType>()->getDecl();
6305 
6306     DeclarationName Name = Method->getDeclName();
6307     assert(Name.getNameKind() == DeclarationName::Identifier);
6308 
6309     bool foundSameNameMethod = false;
6310     SmallVector<CXXMethodDecl *, 8> overloadedMethods;
6311     for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
6312          Path.Decls = Path.Decls.slice(1)) {
6313       NamedDecl *D = Path.Decls.front();
6314       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
6315         MD = MD->getCanonicalDecl();
6316         foundSameNameMethod = true;
6317         // Interested only in hidden virtual methods.
6318         if (!MD->isVirtual())
6319           continue;
6320         // If the method we are checking overrides a method from its base
6321         // don't warn about the other overloaded methods. Clang deviates from
6322         // GCC by only diagnosing overloads of inherited virtual functions that
6323         // do not override any other virtual functions in the base. GCC's
6324         // -Woverloaded-virtual diagnoses any derived function hiding a virtual
6325         // function from a base class. These cases may be better served by a
6326         // warning (not specific to virtual functions) on call sites when the
6327         // call would select a different function from the base class, were it
6328         // visible.
6329         // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
6330         if (!S->IsOverload(Method, MD, false))
6331           return true;
6332         // Collect the overload only if its hidden.
6333         if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
6334           overloadedMethods.push_back(MD);
6335       }
6336     }
6337 
6338     if (foundSameNameMethod)
6339       OverloadedMethods.append(overloadedMethods.begin(),
6340                                overloadedMethods.end());
6341     return foundSameNameMethod;
6342   }
6343 };
6344 } // end anonymous namespace
6345 
6346 /// \brief Add the most overriden methods from MD to Methods
AddMostOverridenMethods(const CXXMethodDecl * MD,llvm::SmallPtrSetImpl<const CXXMethodDecl * > & Methods)6347 static void AddMostOverridenMethods(const CXXMethodDecl *MD,
6348                         llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
6349   if (MD->size_overridden_methods() == 0)
6350     Methods.insert(MD->getCanonicalDecl());
6351   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6352                                       E = MD->end_overridden_methods();
6353        I != E; ++I)
6354     AddMostOverridenMethods(*I, Methods);
6355 }
6356 
6357 /// \brief Check if a method overloads virtual methods in a base class without
6358 /// overriding any.
FindHiddenVirtualMethods(CXXMethodDecl * MD,SmallVectorImpl<CXXMethodDecl * > & OverloadedMethods)6359 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
6360                           SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
6361   if (!MD->getDeclName().isIdentifier())
6362     return;
6363 
6364   CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
6365                      /*bool RecordPaths=*/false,
6366                      /*bool DetectVirtual=*/false);
6367   FindHiddenVirtualMethod FHVM;
6368   FHVM.Method = MD;
6369   FHVM.S = this;
6370 
6371   // Keep the base methods that were overriden or introduced in the subclass
6372   // by 'using' in a set. A base method not in this set is hidden.
6373   CXXRecordDecl *DC = MD->getParent();
6374   DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
6375   for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
6376     NamedDecl *ND = *I;
6377     if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
6378       ND = shad->getTargetDecl();
6379     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
6380       AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
6381   }
6382 
6383   if (DC->lookupInBases(FHVM, Paths))
6384     OverloadedMethods = FHVM.OverloadedMethods;
6385 }
6386 
NoteHiddenVirtualMethods(CXXMethodDecl * MD,SmallVectorImpl<CXXMethodDecl * > & OverloadedMethods)6387 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
6388                           SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
6389   for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
6390     CXXMethodDecl *overloadedMD = OverloadedMethods[i];
6391     PartialDiagnostic PD = PDiag(
6392          diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
6393     HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
6394     Diag(overloadedMD->getLocation(), PD);
6395   }
6396 }
6397 
6398 /// \brief Diagnose methods which overload virtual methods in a base class
6399 /// without overriding any.
DiagnoseHiddenVirtualMethods(CXXMethodDecl * MD)6400 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
6401   if (MD->isInvalidDecl())
6402     return;
6403 
6404   if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
6405     return;
6406 
6407   SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
6408   FindHiddenVirtualMethods(MD, OverloadedMethods);
6409   if (!OverloadedMethods.empty()) {
6410     Diag(MD->getLocation(), diag::warn_overloaded_virtual)
6411       << MD << (OverloadedMethods.size() > 1);
6412 
6413     NoteHiddenVirtualMethods(MD, OverloadedMethods);
6414   }
6415 }
6416 
ActOnFinishCXXMemberSpecification(Scope * S,SourceLocation RLoc,Decl * TagDecl,SourceLocation LBrac,SourceLocation RBrac,AttributeList * AttrList)6417 void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
6418                                              Decl *TagDecl,
6419                                              SourceLocation LBrac,
6420                                              SourceLocation RBrac,
6421                                              AttributeList *AttrList) {
6422   if (!TagDecl)
6423     return;
6424 
6425   AdjustDeclIfTemplate(TagDecl);
6426 
6427   for (const AttributeList* l = AttrList; l; l = l->getNext()) {
6428     if (l->getKind() != AttributeList::AT_Visibility)
6429       continue;
6430     l->setInvalid();
6431     Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
6432       l->getName();
6433   }
6434 
6435   ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
6436               // strict aliasing violation!
6437               reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
6438               FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
6439 
6440   CheckCompletedCXXClass(
6441                         dyn_cast_or_null<CXXRecordDecl>(TagDecl));
6442 }
6443 
6444 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
6445 /// special functions, such as the default constructor, copy
6446 /// constructor, or destructor, to the given C++ class (C++
6447 /// [special]p1).  This routine can only be executed just before the
6448 /// definition of the class is complete.
AddImplicitlyDeclaredMembersToClass(CXXRecordDecl * ClassDecl)6449 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
6450   if (!ClassDecl->hasUserDeclaredConstructor())
6451     ++ASTContext::NumImplicitDefaultConstructors;
6452 
6453   if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
6454     ++ASTContext::NumImplicitCopyConstructors;
6455 
6456     // If the properties or semantics of the copy constructor couldn't be
6457     // determined while the class was being declared, force a declaration
6458     // of it now.
6459     if (ClassDecl->needsOverloadResolutionForCopyConstructor())
6460       DeclareImplicitCopyConstructor(ClassDecl);
6461   }
6462 
6463   if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
6464     ++ASTContext::NumImplicitMoveConstructors;
6465 
6466     if (ClassDecl->needsOverloadResolutionForMoveConstructor())
6467       DeclareImplicitMoveConstructor(ClassDecl);
6468   }
6469 
6470   if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
6471     ++ASTContext::NumImplicitCopyAssignmentOperators;
6472 
6473     // If we have a dynamic class, then the copy assignment operator may be
6474     // virtual, so we have to declare it immediately. This ensures that, e.g.,
6475     // it shows up in the right place in the vtable and that we diagnose
6476     // problems with the implicit exception specification.
6477     if (ClassDecl->isDynamicClass() ||
6478         ClassDecl->needsOverloadResolutionForCopyAssignment())
6479       DeclareImplicitCopyAssignment(ClassDecl);
6480   }
6481 
6482   if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
6483     ++ASTContext::NumImplicitMoveAssignmentOperators;
6484 
6485     // Likewise for the move assignment operator.
6486     if (ClassDecl->isDynamicClass() ||
6487         ClassDecl->needsOverloadResolutionForMoveAssignment())
6488       DeclareImplicitMoveAssignment(ClassDecl);
6489   }
6490 
6491   if (!ClassDecl->hasUserDeclaredDestructor()) {
6492     ++ASTContext::NumImplicitDestructors;
6493 
6494     // If we have a dynamic class, then the destructor may be virtual, so we
6495     // have to declare the destructor immediately. This ensures that, e.g., it
6496     // shows up in the right place in the vtable and that we diagnose problems
6497     // with the implicit exception specification.
6498     if (ClassDecl->isDynamicClass() ||
6499         ClassDecl->needsOverloadResolutionForDestructor())
6500       DeclareImplicitDestructor(ClassDecl);
6501   }
6502 }
6503 
ActOnReenterTemplateScope(Scope * S,Decl * D)6504 unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
6505   if (!D)
6506     return 0;
6507 
6508   // The order of template parameters is not important here. All names
6509   // get added to the same scope.
6510   SmallVector<TemplateParameterList *, 4> ParameterLists;
6511 
6512   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
6513     D = TD->getTemplatedDecl();
6514 
6515   if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
6516     ParameterLists.push_back(PSD->getTemplateParameters());
6517 
6518   if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
6519     for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
6520       ParameterLists.push_back(DD->getTemplateParameterList(i));
6521 
6522     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6523       if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
6524         ParameterLists.push_back(FTD->getTemplateParameters());
6525     }
6526   }
6527 
6528   if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
6529     for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
6530       ParameterLists.push_back(TD->getTemplateParameterList(i));
6531 
6532     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
6533       if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
6534         ParameterLists.push_back(CTD->getTemplateParameters());
6535     }
6536   }
6537 
6538   unsigned Count = 0;
6539   for (TemplateParameterList *Params : ParameterLists) {
6540     if (Params->size() > 0)
6541       // Ignore explicit specializations; they don't contribute to the template
6542       // depth.
6543       ++Count;
6544     for (NamedDecl *Param : *Params) {
6545       if (Param->getDeclName()) {
6546         S->AddDecl(Param);
6547         IdResolver.AddDecl(Param);
6548       }
6549     }
6550   }
6551 
6552   return Count;
6553 }
6554 
ActOnStartDelayedMemberDeclarations(Scope * S,Decl * RecordD)6555 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
6556   if (!RecordD) return;
6557   AdjustDeclIfTemplate(RecordD);
6558   CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
6559   PushDeclContext(S, Record);
6560 }
6561 
ActOnFinishDelayedMemberDeclarations(Scope * S,Decl * RecordD)6562 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
6563   if (!RecordD) return;
6564   PopDeclContext();
6565 }
6566 
6567 /// This is used to implement the constant expression evaluation part of the
6568 /// attribute enable_if extension. There is nothing in standard C++ which would
6569 /// require reentering parameters.
ActOnReenterCXXMethodParameter(Scope * S,ParmVarDecl * Param)6570 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
6571   if (!Param)
6572     return;
6573 
6574   S->AddDecl(Param);
6575   if (Param->getDeclName())
6576     IdResolver.AddDecl(Param);
6577 }
6578 
6579 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
6580 /// parsing a top-level (non-nested) C++ class, and we are now
6581 /// parsing those parts of the given Method declaration that could
6582 /// not be parsed earlier (C++ [class.mem]p2), such as default
6583 /// arguments. This action should enter the scope of the given
6584 /// Method declaration as if we had just parsed the qualified method
6585 /// name. However, it should not bring the parameters into scope;
6586 /// that will be performed by ActOnDelayedCXXMethodParameter.
ActOnStartDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)6587 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6588 }
6589 
6590 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
6591 /// C++ method declaration. We're (re-)introducing the given
6592 /// function parameter into scope for use in parsing later parts of
6593 /// the method declaration. For example, we could see an
6594 /// ActOnParamDefaultArgument event for this parameter.
ActOnDelayedCXXMethodParameter(Scope * S,Decl * ParamD)6595 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
6596   if (!ParamD)
6597     return;
6598 
6599   ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
6600 
6601   // If this parameter has an unparsed default argument, clear it out
6602   // to make way for the parsed default argument.
6603   if (Param->hasUnparsedDefaultArg())
6604     Param->setDefaultArg(nullptr);
6605 
6606   S->AddDecl(Param);
6607   if (Param->getDeclName())
6608     IdResolver.AddDecl(Param);
6609 }
6610 
6611 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
6612 /// processing the delayed method declaration for Method. The method
6613 /// declaration is now considered finished. There may be a separate
6614 /// ActOnStartOfFunctionDef action later (not necessarily
6615 /// immediately!) for this method, if it was also defined inside the
6616 /// class body.
ActOnFinishDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)6617 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6618   if (!MethodD)
6619     return;
6620 
6621   AdjustDeclIfTemplate(MethodD);
6622 
6623   FunctionDecl *Method = cast<FunctionDecl>(MethodD);
6624 
6625   // Now that we have our default arguments, check the constructor
6626   // again. It could produce additional diagnostics or affect whether
6627   // the class has implicitly-declared destructors, among other
6628   // things.
6629   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
6630     CheckConstructor(Constructor);
6631 
6632   // Check the default arguments, which we may have added.
6633   if (!Method->isInvalidDecl())
6634     CheckCXXDefaultArguments(Method);
6635 }
6636 
6637 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
6638 /// the well-formedness of the constructor declarator @p D with type @p
6639 /// R. If there are any errors in the declarator, this routine will
6640 /// emit diagnostics and set the invalid bit to true.  In any case, the type
6641 /// will be updated to reflect a well-formed type for the constructor and
6642 /// returned.
CheckConstructorDeclarator(Declarator & D,QualType R,StorageClass & SC)6643 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
6644                                           StorageClass &SC) {
6645   bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6646 
6647   // C++ [class.ctor]p3:
6648   //   A constructor shall not be virtual (10.3) or static (9.4). A
6649   //   constructor can be invoked for a const, volatile or const
6650   //   volatile object. A constructor shall not be declared const,
6651   //   volatile, or const volatile (9.3.2).
6652   if (isVirtual) {
6653     if (!D.isInvalidType())
6654       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6655         << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
6656         << SourceRange(D.getIdentifierLoc());
6657     D.setInvalidType();
6658   }
6659   if (SC == SC_Static) {
6660     if (!D.isInvalidType())
6661       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6662         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6663         << SourceRange(D.getIdentifierLoc());
6664     D.setInvalidType();
6665     SC = SC_None;
6666   }
6667 
6668   if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
6669     diagnoseIgnoredQualifiers(
6670         diag::err_constructor_return_type, TypeQuals, SourceLocation(),
6671         D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
6672         D.getDeclSpec().getRestrictSpecLoc(),
6673         D.getDeclSpec().getAtomicSpecLoc());
6674     D.setInvalidType();
6675   }
6676 
6677   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6678   if (FTI.TypeQuals != 0) {
6679     if (FTI.TypeQuals & Qualifiers::Const)
6680       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6681         << "const" << SourceRange(D.getIdentifierLoc());
6682     if (FTI.TypeQuals & Qualifiers::Volatile)
6683       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6684         << "volatile" << SourceRange(D.getIdentifierLoc());
6685     if (FTI.TypeQuals & Qualifiers::Restrict)
6686       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6687         << "restrict" << SourceRange(D.getIdentifierLoc());
6688     D.setInvalidType();
6689   }
6690 
6691   // C++0x [class.ctor]p4:
6692   //   A constructor shall not be declared with a ref-qualifier.
6693   if (FTI.hasRefQualifier()) {
6694     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
6695       << FTI.RefQualifierIsLValueRef
6696       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6697     D.setInvalidType();
6698   }
6699 
6700   // Rebuild the function type "R" without any type qualifiers (in
6701   // case any of the errors above fired) and with "void" as the
6702   // return type, since constructors don't have return types.
6703   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6704   if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
6705     return R;
6706 
6707   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6708   EPI.TypeQuals = 0;
6709   EPI.RefQualifier = RQ_None;
6710 
6711   return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
6712 }
6713 
6714 /// CheckConstructor - Checks a fully-formed constructor for
6715 /// well-formedness, issuing any diagnostics required. Returns true if
6716 /// the constructor declarator is invalid.
CheckConstructor(CXXConstructorDecl * Constructor)6717 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
6718   CXXRecordDecl *ClassDecl
6719     = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
6720   if (!ClassDecl)
6721     return Constructor->setInvalidDecl();
6722 
6723   // C++ [class.copy]p3:
6724   //   A declaration of a constructor for a class X is ill-formed if
6725   //   its first parameter is of type (optionally cv-qualified) X and
6726   //   either there are no other parameters or else all other
6727   //   parameters have default arguments.
6728   if (!Constructor->isInvalidDecl() &&
6729       ((Constructor->getNumParams() == 1) ||
6730        (Constructor->getNumParams() > 1 &&
6731         Constructor->getParamDecl(1)->hasDefaultArg())) &&
6732       Constructor->getTemplateSpecializationKind()
6733                                               != TSK_ImplicitInstantiation) {
6734     QualType ParamType = Constructor->getParamDecl(0)->getType();
6735     QualType ClassTy = Context.getTagDeclType(ClassDecl);
6736     if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
6737       SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
6738       const char *ConstRef
6739         = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
6740                                                         : " const &";
6741       Diag(ParamLoc, diag::err_constructor_byvalue_arg)
6742         << FixItHint::CreateInsertion(ParamLoc, ConstRef);
6743 
6744       // FIXME: Rather that making the constructor invalid, we should endeavor
6745       // to fix the type.
6746       Constructor->setInvalidDecl();
6747     }
6748   }
6749 }
6750 
6751 /// CheckDestructor - Checks a fully-formed destructor definition for
6752 /// well-formedness, issuing any diagnostics required.  Returns true
6753 /// on error.
CheckDestructor(CXXDestructorDecl * Destructor)6754 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
6755   CXXRecordDecl *RD = Destructor->getParent();
6756 
6757   if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
6758     SourceLocation Loc;
6759 
6760     if (!Destructor->isImplicit())
6761       Loc = Destructor->getLocation();
6762     else
6763       Loc = RD->getLocation();
6764 
6765     // If we have a virtual destructor, look up the deallocation function
6766     FunctionDecl *OperatorDelete = nullptr;
6767     DeclarationName Name =
6768     Context.DeclarationNames.getCXXOperatorName(OO_Delete);
6769     if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
6770       return true;
6771     // If there's no class-specific operator delete, look up the global
6772     // non-array delete.
6773     if (!OperatorDelete)
6774       OperatorDelete = FindUsualDeallocationFunction(Loc, true, Name);
6775 
6776     MarkFunctionReferenced(Loc, OperatorDelete);
6777 
6778     Destructor->setOperatorDelete(OperatorDelete);
6779   }
6780 
6781   return false;
6782 }
6783 
6784 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
6785 /// the well-formednes of the destructor declarator @p D with type @p
6786 /// R. If there are any errors in the declarator, this routine will
6787 /// emit diagnostics and set the declarator to invalid.  Even if this happens,
6788 /// will be updated to reflect a well-formed type for the destructor and
6789 /// returned.
CheckDestructorDeclarator(Declarator & D,QualType R,StorageClass & SC)6790 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
6791                                          StorageClass& SC) {
6792   // C++ [class.dtor]p1:
6793   //   [...] A typedef-name that names a class is a class-name
6794   //   (7.1.3); however, a typedef-name that names a class shall not
6795   //   be used as the identifier in the declarator for a destructor
6796   //   declaration.
6797   QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
6798   if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
6799     Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6800       << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
6801   else if (const TemplateSpecializationType *TST =
6802              DeclaratorType->getAs<TemplateSpecializationType>())
6803     if (TST->isTypeAlias())
6804       Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6805         << DeclaratorType << 1;
6806 
6807   // C++ [class.dtor]p2:
6808   //   A destructor is used to destroy objects of its class type. A
6809   //   destructor takes no parameters, and no return type can be
6810   //   specified for it (not even void). The address of a destructor
6811   //   shall not be taken. A destructor shall not be static. A
6812   //   destructor can be invoked for a const, volatile or const
6813   //   volatile object. A destructor shall not be declared const,
6814   //   volatile or const volatile (9.3.2).
6815   if (SC == SC_Static) {
6816     if (!D.isInvalidType())
6817       Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
6818         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6819         << SourceRange(D.getIdentifierLoc())
6820         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6821 
6822     SC = SC_None;
6823   }
6824   if (!D.isInvalidType()) {
6825     // Destructors don't have return types, but the parser will
6826     // happily parse something like:
6827     //
6828     //   class X {
6829     //     float ~X();
6830     //   };
6831     //
6832     // The return type will be eliminated later.
6833     if (D.getDeclSpec().hasTypeSpecifier())
6834       Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
6835         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6836         << SourceRange(D.getIdentifierLoc());
6837     else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
6838       diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
6839                                 SourceLocation(),
6840                                 D.getDeclSpec().getConstSpecLoc(),
6841                                 D.getDeclSpec().getVolatileSpecLoc(),
6842                                 D.getDeclSpec().getRestrictSpecLoc(),
6843                                 D.getDeclSpec().getAtomicSpecLoc());
6844       D.setInvalidType();
6845     }
6846   }
6847 
6848   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6849   if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
6850     if (FTI.TypeQuals & Qualifiers::Const)
6851       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6852         << "const" << SourceRange(D.getIdentifierLoc());
6853     if (FTI.TypeQuals & Qualifiers::Volatile)
6854       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6855         << "volatile" << SourceRange(D.getIdentifierLoc());
6856     if (FTI.TypeQuals & Qualifiers::Restrict)
6857       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6858         << "restrict" << SourceRange(D.getIdentifierLoc());
6859     D.setInvalidType();
6860   }
6861 
6862   // C++0x [class.dtor]p2:
6863   //   A destructor shall not be declared with a ref-qualifier.
6864   if (FTI.hasRefQualifier()) {
6865     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6866       << FTI.RefQualifierIsLValueRef
6867       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6868     D.setInvalidType();
6869   }
6870 
6871   // Make sure we don't have any parameters.
6872   if (FTIHasNonVoidParameters(FTI)) {
6873     Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6874 
6875     // Delete the parameters.
6876     FTI.freeParams();
6877     D.setInvalidType();
6878   }
6879 
6880   // Make sure the destructor isn't variadic.
6881   if (FTI.isVariadic) {
6882     Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6883     D.setInvalidType();
6884   }
6885 
6886   // Rebuild the function type "R" without any type qualifiers or
6887   // parameters (in case any of the errors above fired) and with
6888   // "void" as the return type, since destructors don't have return
6889   // types.
6890   if (!D.isInvalidType())
6891     return R;
6892 
6893   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6894   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6895   EPI.Variadic = false;
6896   EPI.TypeQuals = 0;
6897   EPI.RefQualifier = RQ_None;
6898   return Context.getFunctionType(Context.VoidTy, None, EPI);
6899 }
6900 
extendLeft(SourceRange & R,SourceRange Before)6901 static void extendLeft(SourceRange &R, SourceRange Before) {
6902   if (Before.isInvalid())
6903     return;
6904   R.setBegin(Before.getBegin());
6905   if (R.getEnd().isInvalid())
6906     R.setEnd(Before.getEnd());
6907 }
6908 
extendRight(SourceRange & R,SourceRange After)6909 static void extendRight(SourceRange &R, SourceRange After) {
6910   if (After.isInvalid())
6911     return;
6912   if (R.getBegin().isInvalid())
6913     R.setBegin(After.getBegin());
6914   R.setEnd(After.getEnd());
6915 }
6916 
6917 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6918 /// well-formednes of the conversion function declarator @p D with
6919 /// type @p R. If there are any errors in the declarator, this routine
6920 /// will emit diagnostics and return true. Otherwise, it will return
6921 /// false. Either way, the type @p R will be updated to reflect a
6922 /// well-formed type for the conversion operator.
CheckConversionDeclarator(Declarator & D,QualType & R,StorageClass & SC)6923 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6924                                      StorageClass& SC) {
6925   // C++ [class.conv.fct]p1:
6926   //   Neither parameter types nor return type can be specified. The
6927   //   type of a conversion function (8.3.5) is "function taking no
6928   //   parameter returning conversion-type-id."
6929   if (SC == SC_Static) {
6930     if (!D.isInvalidType())
6931       Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6932         << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6933         << D.getName().getSourceRange();
6934     D.setInvalidType();
6935     SC = SC_None;
6936   }
6937 
6938   TypeSourceInfo *ConvTSI = nullptr;
6939   QualType ConvType =
6940       GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
6941 
6942   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6943     // Conversion functions don't have return types, but the parser will
6944     // happily parse something like:
6945     //
6946     //   class X {
6947     //     float operator bool();
6948     //   };
6949     //
6950     // The return type will be changed later anyway.
6951     Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6952       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6953       << SourceRange(D.getIdentifierLoc());
6954     D.setInvalidType();
6955   }
6956 
6957   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6958 
6959   // Make sure we don't have any parameters.
6960   if (Proto->getNumParams() > 0) {
6961     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6962 
6963     // Delete the parameters.
6964     D.getFunctionTypeInfo().freeParams();
6965     D.setInvalidType();
6966   } else if (Proto->isVariadic()) {
6967     Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6968     D.setInvalidType();
6969   }
6970 
6971   // Diagnose "&operator bool()" and other such nonsense.  This
6972   // is actually a gcc extension which we don't support.
6973   if (Proto->getReturnType() != ConvType) {
6974     bool NeedsTypedef = false;
6975     SourceRange Before, After;
6976 
6977     // Walk the chunks and extract information on them for our diagnostic.
6978     bool PastFunctionChunk = false;
6979     for (auto &Chunk : D.type_objects()) {
6980       switch (Chunk.Kind) {
6981       case DeclaratorChunk::Function:
6982         if (!PastFunctionChunk) {
6983           if (Chunk.Fun.HasTrailingReturnType) {
6984             TypeSourceInfo *TRT = nullptr;
6985             GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
6986             if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
6987           }
6988           PastFunctionChunk = true;
6989           break;
6990         }
6991         // Fall through.
6992       case DeclaratorChunk::Array:
6993         NeedsTypedef = true;
6994         extendRight(After, Chunk.getSourceRange());
6995         break;
6996 
6997       case DeclaratorChunk::Pointer:
6998       case DeclaratorChunk::BlockPointer:
6999       case DeclaratorChunk::Reference:
7000       case DeclaratorChunk::MemberPointer:
7001         extendLeft(Before, Chunk.getSourceRange());
7002         break;
7003 
7004       case DeclaratorChunk::Paren:
7005         extendLeft(Before, Chunk.Loc);
7006         extendRight(After, Chunk.EndLoc);
7007         break;
7008       }
7009     }
7010 
7011     SourceLocation Loc = Before.isValid() ? Before.getBegin() :
7012                          After.isValid()  ? After.getBegin() :
7013                                             D.getIdentifierLoc();
7014     auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
7015     DB << Before << After;
7016 
7017     if (!NeedsTypedef) {
7018       DB << /*don't need a typedef*/0;
7019 
7020       // If we can provide a correct fix-it hint, do so.
7021       if (After.isInvalid() && ConvTSI) {
7022         SourceLocation InsertLoc =
7023             getLocForEndOfToken(ConvTSI->getTypeLoc().getLocEnd());
7024         DB << FixItHint::CreateInsertion(InsertLoc, " ")
7025            << FixItHint::CreateInsertionFromRange(
7026                   InsertLoc, CharSourceRange::getTokenRange(Before))
7027            << FixItHint::CreateRemoval(Before);
7028       }
7029     } else if (!Proto->getReturnType()->isDependentType()) {
7030       DB << /*typedef*/1 << Proto->getReturnType();
7031     } else if (getLangOpts().CPlusPlus11) {
7032       DB << /*alias template*/2 << Proto->getReturnType();
7033     } else {
7034       DB << /*might not be fixable*/3;
7035     }
7036 
7037     // Recover by incorporating the other type chunks into the result type.
7038     // Note, this does *not* change the name of the function. This is compatible
7039     // with the GCC extension:
7040     //   struct S { &operator int(); } s;
7041     //   int &r = s.operator int(); // ok in GCC
7042     //   S::operator int&() {} // error in GCC, function name is 'operator int'.
7043     ConvType = Proto->getReturnType();
7044   }
7045 
7046   // C++ [class.conv.fct]p4:
7047   //   The conversion-type-id shall not represent a function type nor
7048   //   an array type.
7049   if (ConvType->isArrayType()) {
7050     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
7051     ConvType = Context.getPointerType(ConvType);
7052     D.setInvalidType();
7053   } else if (ConvType->isFunctionType()) {
7054     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
7055     ConvType = Context.getPointerType(ConvType);
7056     D.setInvalidType();
7057   }
7058 
7059   // Rebuild the function type "R" without any parameters (in case any
7060   // of the errors above fired) and with the conversion type as the
7061   // return type.
7062   if (D.isInvalidType())
7063     R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
7064 
7065   // C++0x explicit conversion operators.
7066   if (D.getDeclSpec().isExplicitSpecified())
7067     Diag(D.getDeclSpec().getExplicitSpecLoc(),
7068          getLangOpts().CPlusPlus11 ?
7069            diag::warn_cxx98_compat_explicit_conversion_functions :
7070            diag::ext_explicit_conversion_functions)
7071       << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
7072 }
7073 
7074 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
7075 /// the declaration of the given C++ conversion function. This routine
7076 /// is responsible for recording the conversion function in the C++
7077 /// class, if possible.
ActOnConversionDeclarator(CXXConversionDecl * Conversion)7078 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
7079   assert(Conversion && "Expected to receive a conversion function declaration");
7080 
7081   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
7082 
7083   // Make sure we aren't redeclaring the conversion function.
7084   QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
7085 
7086   // C++ [class.conv.fct]p1:
7087   //   [...] A conversion function is never used to convert a
7088   //   (possibly cv-qualified) object to the (possibly cv-qualified)
7089   //   same object type (or a reference to it), to a (possibly
7090   //   cv-qualified) base class of that type (or a reference to it),
7091   //   or to (possibly cv-qualified) void.
7092   // FIXME: Suppress this warning if the conversion function ends up being a
7093   // virtual function that overrides a virtual function in a base class.
7094   QualType ClassType
7095     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7096   if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
7097     ConvType = ConvTypeRef->getPointeeType();
7098   if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
7099       Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
7100     /* Suppress diagnostics for instantiations. */;
7101   else if (ConvType->isRecordType()) {
7102     ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
7103     if (ConvType == ClassType)
7104       Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
7105         << ClassType;
7106     else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType))
7107       Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
7108         <<  ClassType << ConvType;
7109   } else if (ConvType->isVoidType()) {
7110     Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
7111       << ClassType << ConvType;
7112   }
7113 
7114   if (FunctionTemplateDecl *ConversionTemplate
7115                                 = Conversion->getDescribedFunctionTemplate())
7116     return ConversionTemplate;
7117 
7118   return Conversion;
7119 }
7120 
7121 //===----------------------------------------------------------------------===//
7122 // Namespace Handling
7123 //===----------------------------------------------------------------------===//
7124 
7125 /// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
7126 /// reopened.
DiagnoseNamespaceInlineMismatch(Sema & S,SourceLocation KeywordLoc,SourceLocation Loc,IdentifierInfo * II,bool * IsInline,NamespaceDecl * PrevNS)7127 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
7128                                             SourceLocation Loc,
7129                                             IdentifierInfo *II, bool *IsInline,
7130                                             NamespaceDecl *PrevNS) {
7131   assert(*IsInline != PrevNS->isInline());
7132 
7133   // HACK: Work around a bug in libstdc++4.6's <atomic>, where
7134   // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
7135   // inline namespaces, with the intention of bringing names into namespace std.
7136   //
7137   // We support this just well enough to get that case working; this is not
7138   // sufficient to support reopening namespaces as inline in general.
7139   if (*IsInline && II && II->getName().startswith("__atomic") &&
7140       S.getSourceManager().isInSystemHeader(Loc)) {
7141     // Mark all prior declarations of the namespace as inline.
7142     for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
7143          NS = NS->getPreviousDecl())
7144       NS->setInline(*IsInline);
7145     // Patch up the lookup table for the containing namespace. This isn't really
7146     // correct, but it's good enough for this particular case.
7147     for (auto *I : PrevNS->decls())
7148       if (auto *ND = dyn_cast<NamedDecl>(I))
7149         PrevNS->getParent()->makeDeclVisibleInContext(ND);
7150     return;
7151   }
7152 
7153   if (PrevNS->isInline())
7154     // The user probably just forgot the 'inline', so suggest that it
7155     // be added back.
7156     S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
7157       << FixItHint::CreateInsertion(KeywordLoc, "inline ");
7158   else
7159     S.Diag(Loc, diag::err_inline_namespace_mismatch) << *IsInline;
7160 
7161   S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
7162   *IsInline = PrevNS->isInline();
7163 }
7164 
7165 /// ActOnStartNamespaceDef - This is called at the start of a namespace
7166 /// definition.
ActOnStartNamespaceDef(Scope * NamespcScope,SourceLocation InlineLoc,SourceLocation NamespaceLoc,SourceLocation IdentLoc,IdentifierInfo * II,SourceLocation LBrace,AttributeList * AttrList,UsingDirectiveDecl * & UD)7167 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
7168                                    SourceLocation InlineLoc,
7169                                    SourceLocation NamespaceLoc,
7170                                    SourceLocation IdentLoc,
7171                                    IdentifierInfo *II,
7172                                    SourceLocation LBrace,
7173                                    AttributeList *AttrList,
7174                                    UsingDirectiveDecl *&UD) {
7175   SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
7176   // For anonymous namespace, take the location of the left brace.
7177   SourceLocation Loc = II ? IdentLoc : LBrace;
7178   bool IsInline = InlineLoc.isValid();
7179   bool IsInvalid = false;
7180   bool IsStd = false;
7181   bool AddToKnown = false;
7182   Scope *DeclRegionScope = NamespcScope->getParent();
7183 
7184   NamespaceDecl *PrevNS = nullptr;
7185   if (II) {
7186     // C++ [namespace.def]p2:
7187     //   The identifier in an original-namespace-definition shall not
7188     //   have been previously defined in the declarative region in
7189     //   which the original-namespace-definition appears. The
7190     //   identifier in an original-namespace-definition is the name of
7191     //   the namespace. Subsequently in that declarative region, it is
7192     //   treated as an original-namespace-name.
7193     //
7194     // Since namespace names are unique in their scope, and we don't
7195     // look through using directives, just look for any ordinary names
7196     // as if by qualified name lookup.
7197     LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, ForRedeclaration);
7198     LookupQualifiedName(R, CurContext->getRedeclContext());
7199     NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
7200     PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
7201 
7202     if (PrevNS) {
7203       // This is an extended namespace definition.
7204       if (IsInline != PrevNS->isInline())
7205         DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
7206                                         &IsInline, PrevNS);
7207     } else if (PrevDecl) {
7208       // This is an invalid name redefinition.
7209       Diag(Loc, diag::err_redefinition_different_kind)
7210         << II;
7211       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7212       IsInvalid = true;
7213       // Continue on to push Namespc as current DeclContext and return it.
7214     } else if (II->isStr("std") &&
7215                CurContext->getRedeclContext()->isTranslationUnit()) {
7216       // This is the first "real" definition of the namespace "std", so update
7217       // our cache of the "std" namespace to point at this definition.
7218       PrevNS = getStdNamespace();
7219       IsStd = true;
7220       AddToKnown = !IsInline;
7221     } else {
7222       // We've seen this namespace for the first time.
7223       AddToKnown = !IsInline;
7224     }
7225   } else {
7226     // Anonymous namespaces.
7227 
7228     // Determine whether the parent already has an anonymous namespace.
7229     DeclContext *Parent = CurContext->getRedeclContext();
7230     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
7231       PrevNS = TU->getAnonymousNamespace();
7232     } else {
7233       NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
7234       PrevNS = ND->getAnonymousNamespace();
7235     }
7236 
7237     if (PrevNS && IsInline != PrevNS->isInline())
7238       DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
7239                                       &IsInline, PrevNS);
7240   }
7241 
7242   NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
7243                                                  StartLoc, Loc, II, PrevNS);
7244   if (IsInvalid)
7245     Namespc->setInvalidDecl();
7246 
7247   ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
7248 
7249   // FIXME: Should we be merging attributes?
7250   if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
7251     PushNamespaceVisibilityAttr(Attr, Loc);
7252 
7253   if (IsStd)
7254     StdNamespace = Namespc;
7255   if (AddToKnown)
7256     KnownNamespaces[Namespc] = false;
7257 
7258   if (II) {
7259     PushOnScopeChains(Namespc, DeclRegionScope);
7260   } else {
7261     // Link the anonymous namespace into its parent.
7262     DeclContext *Parent = CurContext->getRedeclContext();
7263     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
7264       TU->setAnonymousNamespace(Namespc);
7265     } else {
7266       cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
7267     }
7268 
7269     CurContext->addDecl(Namespc);
7270 
7271     // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
7272     //   behaves as if it were replaced by
7273     //     namespace unique { /* empty body */ }
7274     //     using namespace unique;
7275     //     namespace unique { namespace-body }
7276     //   where all occurrences of 'unique' in a translation unit are
7277     //   replaced by the same identifier and this identifier differs
7278     //   from all other identifiers in the entire program.
7279 
7280     // We just create the namespace with an empty name and then add an
7281     // implicit using declaration, just like the standard suggests.
7282     //
7283     // CodeGen enforces the "universally unique" aspect by giving all
7284     // declarations semantically contained within an anonymous
7285     // namespace internal linkage.
7286 
7287     if (!PrevNS) {
7288       UD = UsingDirectiveDecl::Create(Context, Parent,
7289                                       /* 'using' */ LBrace,
7290                                       /* 'namespace' */ SourceLocation(),
7291                                       /* qualifier */ NestedNameSpecifierLoc(),
7292                                       /* identifier */ SourceLocation(),
7293                                       Namespc,
7294                                       /* Ancestor */ Parent);
7295       UD->setImplicit();
7296       Parent->addDecl(UD);
7297     }
7298   }
7299 
7300   ActOnDocumentableDecl(Namespc);
7301 
7302   // Although we could have an invalid decl (i.e. the namespace name is a
7303   // redefinition), push it as current DeclContext and try to continue parsing.
7304   // FIXME: We should be able to push Namespc here, so that the each DeclContext
7305   // for the namespace has the declarations that showed up in that particular
7306   // namespace definition.
7307   PushDeclContext(NamespcScope, Namespc);
7308   return Namespc;
7309 }
7310 
7311 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
7312 /// is a namespace alias, returns the namespace it points to.
getNamespaceDecl(NamedDecl * D)7313 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
7314   if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
7315     return AD->getNamespace();
7316   return dyn_cast_or_null<NamespaceDecl>(D);
7317 }
7318 
7319 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
7320 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
ActOnFinishNamespaceDef(Decl * Dcl,SourceLocation RBrace)7321 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
7322   NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
7323   assert(Namespc && "Invalid parameter, expected NamespaceDecl");
7324   Namespc->setRBraceLoc(RBrace);
7325   PopDeclContext();
7326   if (Namespc->hasAttr<VisibilityAttr>())
7327     PopPragmaVisibility(true, RBrace);
7328 }
7329 
getStdBadAlloc() const7330 CXXRecordDecl *Sema::getStdBadAlloc() const {
7331   return cast_or_null<CXXRecordDecl>(
7332                                   StdBadAlloc.get(Context.getExternalSource()));
7333 }
7334 
getStdNamespace() const7335 NamespaceDecl *Sema::getStdNamespace() const {
7336   return cast_or_null<NamespaceDecl>(
7337                                  StdNamespace.get(Context.getExternalSource()));
7338 }
7339 
7340 /// \brief Retrieve the special "std" namespace, which may require us to
7341 /// implicitly define the namespace.
getOrCreateStdNamespace()7342 NamespaceDecl *Sema::getOrCreateStdNamespace() {
7343   if (!StdNamespace) {
7344     // The "std" namespace has not yet been defined, so build one implicitly.
7345     StdNamespace = NamespaceDecl::Create(Context,
7346                                          Context.getTranslationUnitDecl(),
7347                                          /*Inline=*/false,
7348                                          SourceLocation(), SourceLocation(),
7349                                          &PP.getIdentifierTable().get("std"),
7350                                          /*PrevDecl=*/nullptr);
7351     getStdNamespace()->setImplicit(true);
7352   }
7353 
7354   return getStdNamespace();
7355 }
7356 
isStdInitializerList(QualType Ty,QualType * Element)7357 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
7358   assert(getLangOpts().CPlusPlus &&
7359          "Looking for std::initializer_list outside of C++.");
7360 
7361   // We're looking for implicit instantiations of
7362   // template <typename E> class std::initializer_list.
7363 
7364   if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
7365     return false;
7366 
7367   ClassTemplateDecl *Template = nullptr;
7368   const TemplateArgument *Arguments = nullptr;
7369 
7370   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7371 
7372     ClassTemplateSpecializationDecl *Specialization =
7373         dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
7374     if (!Specialization)
7375       return false;
7376 
7377     Template = Specialization->getSpecializedTemplate();
7378     Arguments = Specialization->getTemplateArgs().data();
7379   } else if (const TemplateSpecializationType *TST =
7380                  Ty->getAs<TemplateSpecializationType>()) {
7381     Template = dyn_cast_or_null<ClassTemplateDecl>(
7382         TST->getTemplateName().getAsTemplateDecl());
7383     Arguments = TST->getArgs();
7384   }
7385   if (!Template)
7386     return false;
7387 
7388   if (!StdInitializerList) {
7389     // Haven't recognized std::initializer_list yet, maybe this is it.
7390     CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
7391     if (TemplateClass->getIdentifier() !=
7392             &PP.getIdentifierTable().get("initializer_list") ||
7393         !getStdNamespace()->InEnclosingNamespaceSetOf(
7394             TemplateClass->getDeclContext()))
7395       return false;
7396     // This is a template called std::initializer_list, but is it the right
7397     // template?
7398     TemplateParameterList *Params = Template->getTemplateParameters();
7399     if (Params->getMinRequiredArguments() != 1)
7400       return false;
7401     if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
7402       return false;
7403 
7404     // It's the right template.
7405     StdInitializerList = Template;
7406   }
7407 
7408   if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
7409     return false;
7410 
7411   // This is an instance of std::initializer_list. Find the argument type.
7412   if (Element)
7413     *Element = Arguments[0].getAsType();
7414   return true;
7415 }
7416 
LookupStdInitializerList(Sema & S,SourceLocation Loc)7417 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
7418   NamespaceDecl *Std = S.getStdNamespace();
7419   if (!Std) {
7420     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
7421     return nullptr;
7422   }
7423 
7424   LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
7425                       Loc, Sema::LookupOrdinaryName);
7426   if (!S.LookupQualifiedName(Result, Std)) {
7427     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
7428     return nullptr;
7429   }
7430   ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
7431   if (!Template) {
7432     Result.suppressDiagnostics();
7433     // We found something weird. Complain about the first thing we found.
7434     NamedDecl *Found = *Result.begin();
7435     S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
7436     return nullptr;
7437   }
7438 
7439   // We found some template called std::initializer_list. Now verify that it's
7440   // correct.
7441   TemplateParameterList *Params = Template->getTemplateParameters();
7442   if (Params->getMinRequiredArguments() != 1 ||
7443       !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
7444     S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
7445     return nullptr;
7446   }
7447 
7448   return Template;
7449 }
7450 
BuildStdInitializerList(QualType Element,SourceLocation Loc)7451 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
7452   if (!StdInitializerList) {
7453     StdInitializerList = LookupStdInitializerList(*this, Loc);
7454     if (!StdInitializerList)
7455       return QualType();
7456   }
7457 
7458   TemplateArgumentListInfo Args(Loc, Loc);
7459   Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
7460                                        Context.getTrivialTypeSourceInfo(Element,
7461                                                                         Loc)));
7462   return Context.getCanonicalType(
7463       CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
7464 }
7465 
isInitListConstructor(const CXXConstructorDecl * Ctor)7466 bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
7467   // C++ [dcl.init.list]p2:
7468   //   A constructor is an initializer-list constructor if its first parameter
7469   //   is of type std::initializer_list<E> or reference to possibly cv-qualified
7470   //   std::initializer_list<E> for some type E, and either there are no other
7471   //   parameters or else all other parameters have default arguments.
7472   if (Ctor->getNumParams() < 1 ||
7473       (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
7474     return false;
7475 
7476   QualType ArgType = Ctor->getParamDecl(0)->getType();
7477   if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
7478     ArgType = RT->getPointeeType().getUnqualifiedType();
7479 
7480   return isStdInitializerList(ArgType, nullptr);
7481 }
7482 
7483 /// \brief Determine whether a using statement is in a context where it will be
7484 /// apply in all contexts.
IsUsingDirectiveInToplevelContext(DeclContext * CurContext)7485 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
7486   switch (CurContext->getDeclKind()) {
7487     case Decl::TranslationUnit:
7488       return true;
7489     case Decl::LinkageSpec:
7490       return IsUsingDirectiveInToplevelContext(CurContext->getParent());
7491     default:
7492       return false;
7493   }
7494 }
7495 
7496 namespace {
7497 
7498 // Callback to only accept typo corrections that are namespaces.
7499 class NamespaceValidatorCCC : public CorrectionCandidateCallback {
7500 public:
ValidateCandidate(const TypoCorrection & candidate)7501   bool ValidateCandidate(const TypoCorrection &candidate) override {
7502     if (NamedDecl *ND = candidate.getCorrectionDecl())
7503       return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
7504     return false;
7505   }
7506 };
7507 
7508 }
7509 
TryNamespaceTypoCorrection(Sema & S,LookupResult & R,Scope * Sc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)7510 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
7511                                        CXXScopeSpec &SS,
7512                                        SourceLocation IdentLoc,
7513                                        IdentifierInfo *Ident) {
7514   R.clear();
7515   if (TypoCorrection Corrected =
7516           S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS,
7517                         llvm::make_unique<NamespaceValidatorCCC>(),
7518                         Sema::CTK_ErrorRecovery)) {
7519     if (DeclContext *DC = S.computeDeclContext(SS, false)) {
7520       std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
7521       bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
7522                               Ident->getName().equals(CorrectedStr);
7523       S.diagnoseTypo(Corrected,
7524                      S.PDiag(diag::err_using_directive_member_suggest)
7525                        << Ident << DC << DroppedSpecifier << SS.getRange(),
7526                      S.PDiag(diag::note_namespace_defined_here));
7527     } else {
7528       S.diagnoseTypo(Corrected,
7529                      S.PDiag(diag::err_using_directive_suggest) << Ident,
7530                      S.PDiag(diag::note_namespace_defined_here));
7531     }
7532     R.addDecl(Corrected.getCorrectionDecl());
7533     return true;
7534   }
7535   return false;
7536 }
7537 
ActOnUsingDirective(Scope * S,SourceLocation UsingLoc,SourceLocation NamespcLoc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * NamespcName,AttributeList * AttrList)7538 Decl *Sema::ActOnUsingDirective(Scope *S,
7539                                           SourceLocation UsingLoc,
7540                                           SourceLocation NamespcLoc,
7541                                           CXXScopeSpec &SS,
7542                                           SourceLocation IdentLoc,
7543                                           IdentifierInfo *NamespcName,
7544                                           AttributeList *AttrList) {
7545   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7546   assert(NamespcName && "Invalid NamespcName.");
7547   assert(IdentLoc.isValid() && "Invalid NamespceName location.");
7548 
7549   // This can only happen along a recovery path.
7550   while (S->isTemplateParamScope())
7551     S = S->getParent();
7552   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
7553 
7554   UsingDirectiveDecl *UDir = nullptr;
7555   NestedNameSpecifier *Qualifier = nullptr;
7556   if (SS.isSet())
7557     Qualifier = SS.getScopeRep();
7558 
7559   // Lookup namespace name.
7560   LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
7561   LookupParsedName(R, S, &SS);
7562   if (R.isAmbiguous())
7563     return nullptr;
7564 
7565   if (R.empty()) {
7566     R.clear();
7567     // Allow "using namespace std;" or "using namespace ::std;" even if
7568     // "std" hasn't been defined yet, for GCC compatibility.
7569     if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
7570         NamespcName->isStr("std")) {
7571       Diag(IdentLoc, diag::ext_using_undefined_std);
7572       R.addDecl(getOrCreateStdNamespace());
7573       R.resolveKind();
7574     }
7575     // Otherwise, attempt typo correction.
7576     else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
7577   }
7578 
7579   if (!R.empty()) {
7580     NamedDecl *Named = R.getFoundDecl();
7581     assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
7582         && "expected namespace decl");
7583 
7584     // The use of a nested name specifier may trigger deprecation warnings.
7585     DiagnoseUseOfDecl(Named, IdentLoc);
7586 
7587     // C++ [namespace.udir]p1:
7588     //   A using-directive specifies that the names in the nominated
7589     //   namespace can be used in the scope in which the
7590     //   using-directive appears after the using-directive. During
7591     //   unqualified name lookup (3.4.1), the names appear as if they
7592     //   were declared in the nearest enclosing namespace which
7593     //   contains both the using-directive and the nominated
7594     //   namespace. [Note: in this context, "contains" means "contains
7595     //   directly or indirectly". ]
7596 
7597     // Find enclosing context containing both using-directive and
7598     // nominated namespace.
7599     NamespaceDecl *NS = getNamespaceDecl(Named);
7600     DeclContext *CommonAncestor = cast<DeclContext>(NS);
7601     while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
7602       CommonAncestor = CommonAncestor->getParent();
7603 
7604     UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
7605                                       SS.getWithLocInContext(Context),
7606                                       IdentLoc, Named, CommonAncestor);
7607 
7608     if (IsUsingDirectiveInToplevelContext(CurContext) &&
7609         !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
7610       Diag(IdentLoc, diag::warn_using_directive_in_header);
7611     }
7612 
7613     PushUsingDirective(S, UDir);
7614   } else {
7615     Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7616   }
7617 
7618   if (UDir)
7619     ProcessDeclAttributeList(S, UDir, AttrList);
7620 
7621   return UDir;
7622 }
7623 
PushUsingDirective(Scope * S,UsingDirectiveDecl * UDir)7624 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
7625   // If the scope has an associated entity and the using directive is at
7626   // namespace or translation unit scope, add the UsingDirectiveDecl into
7627   // its lookup structure so qualified name lookup can find it.
7628   DeclContext *Ctx = S->getEntity();
7629   if (Ctx && !Ctx->isFunctionOrMethod())
7630     Ctx->addDecl(UDir);
7631   else
7632     // Otherwise, it is at block scope. The using-directives will affect lookup
7633     // only to the end of the scope.
7634     S->PushUsingDirective(UDir);
7635 }
7636 
7637 
ActOnUsingDeclaration(Scope * S,AccessSpecifier AS,bool HasUsingKeyword,SourceLocation UsingLoc,CXXScopeSpec & SS,UnqualifiedId & Name,AttributeList * AttrList,bool HasTypenameKeyword,SourceLocation TypenameLoc)7638 Decl *Sema::ActOnUsingDeclaration(Scope *S,
7639                                   AccessSpecifier AS,
7640                                   bool HasUsingKeyword,
7641                                   SourceLocation UsingLoc,
7642                                   CXXScopeSpec &SS,
7643                                   UnqualifiedId &Name,
7644                                   AttributeList *AttrList,
7645                                   bool HasTypenameKeyword,
7646                                   SourceLocation TypenameLoc) {
7647   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
7648 
7649   switch (Name.getKind()) {
7650   case UnqualifiedId::IK_ImplicitSelfParam:
7651   case UnqualifiedId::IK_Identifier:
7652   case UnqualifiedId::IK_OperatorFunctionId:
7653   case UnqualifiedId::IK_LiteralOperatorId:
7654   case UnqualifiedId::IK_ConversionFunctionId:
7655     break;
7656 
7657   case UnqualifiedId::IK_ConstructorName:
7658   case UnqualifiedId::IK_ConstructorTemplateId:
7659     // C++11 inheriting constructors.
7660     Diag(Name.getLocStart(),
7661          getLangOpts().CPlusPlus11 ?
7662            diag::warn_cxx98_compat_using_decl_constructor :
7663            diag::err_using_decl_constructor)
7664       << SS.getRange();
7665 
7666     if (getLangOpts().CPlusPlus11) break;
7667 
7668     return nullptr;
7669 
7670   case UnqualifiedId::IK_DestructorName:
7671     Diag(Name.getLocStart(), diag::err_using_decl_destructor)
7672       << SS.getRange();
7673     return nullptr;
7674 
7675   case UnqualifiedId::IK_TemplateId:
7676     Diag(Name.getLocStart(), diag::err_using_decl_template_id)
7677       << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
7678     return nullptr;
7679   }
7680 
7681   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
7682   DeclarationName TargetName = TargetNameInfo.getName();
7683   if (!TargetName)
7684     return nullptr;
7685 
7686   // Warn about access declarations.
7687   if (!HasUsingKeyword) {
7688     Diag(Name.getLocStart(),
7689          getLangOpts().CPlusPlus11 ? diag::err_access_decl
7690                                    : diag::warn_access_decl_deprecated)
7691       << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
7692   }
7693 
7694   if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
7695       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
7696     return nullptr;
7697 
7698   NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
7699                                         TargetNameInfo, AttrList,
7700                                         /* IsInstantiation */ false,
7701                                         HasTypenameKeyword, TypenameLoc);
7702   if (UD)
7703     PushOnScopeChains(UD, S, /*AddToContext*/ false);
7704 
7705   return UD;
7706 }
7707 
7708 /// \brief Determine whether a using declaration considers the given
7709 /// declarations as "equivalent", e.g., if they are redeclarations of
7710 /// the same entity or are both typedefs of the same type.
7711 static bool
IsEquivalentForUsingDecl(ASTContext & Context,NamedDecl * D1,NamedDecl * D2)7712 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
7713   if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
7714     return true;
7715 
7716   if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
7717     if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
7718       return Context.hasSameType(TD1->getUnderlyingType(),
7719                                  TD2->getUnderlyingType());
7720 
7721   return false;
7722 }
7723 
7724 
7725 /// Determines whether to create a using shadow decl for a particular
7726 /// decl, given the set of decls existing prior to this using lookup.
CheckUsingShadowDecl(UsingDecl * Using,NamedDecl * Orig,const LookupResult & Previous,UsingShadowDecl * & PrevShadow)7727 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
7728                                 const LookupResult &Previous,
7729                                 UsingShadowDecl *&PrevShadow) {
7730   // Diagnose finding a decl which is not from a base class of the
7731   // current class.  We do this now because there are cases where this
7732   // function will silently decide not to build a shadow decl, which
7733   // will pre-empt further diagnostics.
7734   //
7735   // We don't need to do this in C++0x because we do the check once on
7736   // the qualifier.
7737   //
7738   // FIXME: diagnose the following if we care enough:
7739   //   struct A { int foo; };
7740   //   struct B : A { using A::foo; };
7741   //   template <class T> struct C : A {};
7742   //   template <class T> struct D : C<T> { using B::foo; } // <---
7743   // This is invalid (during instantiation) in C++03 because B::foo
7744   // resolves to the using decl in B, which is not a base class of D<T>.
7745   // We can't diagnose it immediately because C<T> is an unknown
7746   // specialization.  The UsingShadowDecl in D<T> then points directly
7747   // to A::foo, which will look well-formed when we instantiate.
7748   // The right solution is to not collapse the shadow-decl chain.
7749   if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
7750     DeclContext *OrigDC = Orig->getDeclContext();
7751 
7752     // Handle enums and anonymous structs.
7753     if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
7754     CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
7755     while (OrigRec->isAnonymousStructOrUnion())
7756       OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
7757 
7758     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
7759       if (OrigDC == CurContext) {
7760         Diag(Using->getLocation(),
7761              diag::err_using_decl_nested_name_specifier_is_current_class)
7762           << Using->getQualifierLoc().getSourceRange();
7763         Diag(Orig->getLocation(), diag::note_using_decl_target);
7764         return true;
7765       }
7766 
7767       Diag(Using->getQualifierLoc().getBeginLoc(),
7768            diag::err_using_decl_nested_name_specifier_is_not_base_class)
7769         << Using->getQualifier()
7770         << cast<CXXRecordDecl>(CurContext)
7771         << Using->getQualifierLoc().getSourceRange();
7772       Diag(Orig->getLocation(), diag::note_using_decl_target);
7773       return true;
7774     }
7775   }
7776 
7777   if (Previous.empty()) return false;
7778 
7779   NamedDecl *Target = Orig;
7780   if (isa<UsingShadowDecl>(Target))
7781     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7782 
7783   // If the target happens to be one of the previous declarations, we
7784   // don't have a conflict.
7785   //
7786   // FIXME: but we might be increasing its access, in which case we
7787   // should redeclare it.
7788   NamedDecl *NonTag = nullptr, *Tag = nullptr;
7789   bool FoundEquivalentDecl = false;
7790   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7791          I != E; ++I) {
7792     NamedDecl *D = (*I)->getUnderlyingDecl();
7793     if (IsEquivalentForUsingDecl(Context, D, Target)) {
7794       if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
7795         PrevShadow = Shadow;
7796       FoundEquivalentDecl = true;
7797     }
7798 
7799     if (isVisible(D))
7800       (isa<TagDecl>(D) ? Tag : NonTag) = D;
7801   }
7802 
7803   if (FoundEquivalentDecl)
7804     return false;
7805 
7806   if (FunctionDecl *FD = Target->getAsFunction()) {
7807     NamedDecl *OldDecl = nullptr;
7808     switch (CheckOverload(nullptr, FD, Previous, OldDecl,
7809                           /*IsForUsingDecl*/ true)) {
7810     case Ovl_Overload:
7811       return false;
7812 
7813     case Ovl_NonFunction:
7814       Diag(Using->getLocation(), diag::err_using_decl_conflict);
7815       break;
7816 
7817     // We found a decl with the exact signature.
7818     case Ovl_Match:
7819       // If we're in a record, we want to hide the target, so we
7820       // return true (without a diagnostic) to tell the caller not to
7821       // build a shadow decl.
7822       if (CurContext->isRecord())
7823         return true;
7824 
7825       // If we're not in a record, this is an error.
7826       Diag(Using->getLocation(), diag::err_using_decl_conflict);
7827       break;
7828     }
7829 
7830     Diag(Target->getLocation(), diag::note_using_decl_target);
7831     Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
7832     return true;
7833   }
7834 
7835   // Target is not a function.
7836 
7837   if (isa<TagDecl>(Target)) {
7838     // No conflict between a tag and a non-tag.
7839     if (!Tag) return false;
7840 
7841     Diag(Using->getLocation(), diag::err_using_decl_conflict);
7842     Diag(Target->getLocation(), diag::note_using_decl_target);
7843     Diag(Tag->getLocation(), diag::note_using_decl_conflict);
7844     return true;
7845   }
7846 
7847   // No conflict between a tag and a non-tag.
7848   if (!NonTag) return false;
7849 
7850   Diag(Using->getLocation(), diag::err_using_decl_conflict);
7851   Diag(Target->getLocation(), diag::note_using_decl_target);
7852   Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
7853   return true;
7854 }
7855 
7856 /// Builds a shadow declaration corresponding to a 'using' declaration.
BuildUsingShadowDecl(Scope * S,UsingDecl * UD,NamedDecl * Orig,UsingShadowDecl * PrevDecl)7857 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
7858                                             UsingDecl *UD,
7859                                             NamedDecl *Orig,
7860                                             UsingShadowDecl *PrevDecl) {
7861 
7862   // If we resolved to another shadow declaration, just coalesce them.
7863   NamedDecl *Target = Orig;
7864   if (isa<UsingShadowDecl>(Target)) {
7865     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7866     assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
7867   }
7868 
7869   UsingShadowDecl *Shadow
7870     = UsingShadowDecl::Create(Context, CurContext,
7871                               UD->getLocation(), UD, Target);
7872   UD->addShadowDecl(Shadow);
7873 
7874   Shadow->setAccess(UD->getAccess());
7875   if (Orig->isInvalidDecl() || UD->isInvalidDecl())
7876     Shadow->setInvalidDecl();
7877 
7878   Shadow->setPreviousDecl(PrevDecl);
7879 
7880   if (S)
7881     PushOnScopeChains(Shadow, S);
7882   else
7883     CurContext->addDecl(Shadow);
7884 
7885 
7886   return Shadow;
7887 }
7888 
7889 /// Hides a using shadow declaration.  This is required by the current
7890 /// using-decl implementation when a resolvable using declaration in a
7891 /// class is followed by a declaration which would hide or override
7892 /// one or more of the using decl's targets; for example:
7893 ///
7894 ///   struct Base { void foo(int); };
7895 ///   struct Derived : Base {
7896 ///     using Base::foo;
7897 ///     void foo(int);
7898 ///   };
7899 ///
7900 /// The governing language is C++03 [namespace.udecl]p12:
7901 ///
7902 ///   When a using-declaration brings names from a base class into a
7903 ///   derived class scope, member functions in the derived class
7904 ///   override and/or hide member functions with the same name and
7905 ///   parameter types in a base class (rather than conflicting).
7906 ///
7907 /// There are two ways to implement this:
7908 ///   (1) optimistically create shadow decls when they're not hidden
7909 ///       by existing declarations, or
7910 ///   (2) don't create any shadow decls (or at least don't make them
7911 ///       visible) until we've fully parsed/instantiated the class.
7912 /// The problem with (1) is that we might have to retroactively remove
7913 /// a shadow decl, which requires several O(n) operations because the
7914 /// decl structures are (very reasonably) not designed for removal.
7915 /// (2) avoids this but is very fiddly and phase-dependent.
HideUsingShadowDecl(Scope * S,UsingShadowDecl * Shadow)7916 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
7917   if (Shadow->getDeclName().getNameKind() ==
7918         DeclarationName::CXXConversionFunctionName)
7919     cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
7920 
7921   // Remove it from the DeclContext...
7922   Shadow->getDeclContext()->removeDecl(Shadow);
7923 
7924   // ...and the scope, if applicable...
7925   if (S) {
7926     S->RemoveDecl(Shadow);
7927     IdResolver.RemoveDecl(Shadow);
7928   }
7929 
7930   // ...and the using decl.
7931   Shadow->getUsingDecl()->removeShadowDecl(Shadow);
7932 
7933   // TODO: complain somehow if Shadow was used.  It shouldn't
7934   // be possible for this to happen, because...?
7935 }
7936 
7937 /// Find the base specifier for a base class with the given type.
findDirectBaseWithType(CXXRecordDecl * Derived,QualType DesiredBase,bool & AnyDependentBases)7938 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
7939                                                 QualType DesiredBase,
7940                                                 bool &AnyDependentBases) {
7941   // Check whether the named type is a direct base class.
7942   CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified();
7943   for (auto &Base : Derived->bases()) {
7944     CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
7945     if (CanonicalDesiredBase == BaseType)
7946       return &Base;
7947     if (BaseType->isDependentType())
7948       AnyDependentBases = true;
7949   }
7950   return nullptr;
7951 }
7952 
7953 namespace {
7954 class UsingValidatorCCC : public CorrectionCandidateCallback {
7955 public:
UsingValidatorCCC(bool HasTypenameKeyword,bool IsInstantiation,NestedNameSpecifier * NNS,CXXRecordDecl * RequireMemberOf)7956   UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
7957                     NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
7958       : HasTypenameKeyword(HasTypenameKeyword),
7959         IsInstantiation(IsInstantiation), OldNNS(NNS),
7960         RequireMemberOf(RequireMemberOf) {}
7961 
ValidateCandidate(const TypoCorrection & Candidate)7962   bool ValidateCandidate(const TypoCorrection &Candidate) override {
7963     NamedDecl *ND = Candidate.getCorrectionDecl();
7964 
7965     // Keywords are not valid here.
7966     if (!ND || isa<NamespaceDecl>(ND))
7967       return false;
7968 
7969     // Completely unqualified names are invalid for a 'using' declaration.
7970     if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
7971       return false;
7972 
7973     if (RequireMemberOf) {
7974       auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
7975       if (FoundRecord && FoundRecord->isInjectedClassName()) {
7976         // No-one ever wants a using-declaration to name an injected-class-name
7977         // of a base class, unless they're declaring an inheriting constructor.
7978         ASTContext &Ctx = ND->getASTContext();
7979         if (!Ctx.getLangOpts().CPlusPlus11)
7980           return false;
7981         QualType FoundType = Ctx.getRecordType(FoundRecord);
7982 
7983         // Check that the injected-class-name is named as a member of its own
7984         // type; we don't want to suggest 'using Derived::Base;', since that
7985         // means something else.
7986         NestedNameSpecifier *Specifier =
7987             Candidate.WillReplaceSpecifier()
7988                 ? Candidate.getCorrectionSpecifier()
7989                 : OldNNS;
7990         if (!Specifier->getAsType() ||
7991             !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
7992           return false;
7993 
7994         // Check that this inheriting constructor declaration actually names a
7995         // direct base class of the current class.
7996         bool AnyDependentBases = false;
7997         if (!findDirectBaseWithType(RequireMemberOf,
7998                                     Ctx.getRecordType(FoundRecord),
7999                                     AnyDependentBases) &&
8000             !AnyDependentBases)
8001           return false;
8002       } else {
8003         auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
8004         if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
8005           return false;
8006 
8007         // FIXME: Check that the base class member is accessible?
8008       }
8009     } else {
8010       auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
8011       if (FoundRecord && FoundRecord->isInjectedClassName())
8012         return false;
8013     }
8014 
8015     if (isa<TypeDecl>(ND))
8016       return HasTypenameKeyword || !IsInstantiation;
8017 
8018     return !HasTypenameKeyword;
8019   }
8020 
8021 private:
8022   bool HasTypenameKeyword;
8023   bool IsInstantiation;
8024   NestedNameSpecifier *OldNNS;
8025   CXXRecordDecl *RequireMemberOf;
8026 };
8027 } // end anonymous namespace
8028 
8029 /// Builds a using declaration.
8030 ///
8031 /// \param IsInstantiation - Whether this call arises from an
8032 ///   instantiation of an unresolved using declaration.  We treat
8033 ///   the lookup differently for these declarations.
BuildUsingDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,CXXScopeSpec & SS,DeclarationNameInfo NameInfo,AttributeList * AttrList,bool IsInstantiation,bool HasTypenameKeyword,SourceLocation TypenameLoc)8034 NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
8035                                        SourceLocation UsingLoc,
8036                                        CXXScopeSpec &SS,
8037                                        DeclarationNameInfo NameInfo,
8038                                        AttributeList *AttrList,
8039                                        bool IsInstantiation,
8040                                        bool HasTypenameKeyword,
8041                                        SourceLocation TypenameLoc) {
8042   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
8043   SourceLocation IdentLoc = NameInfo.getLoc();
8044   assert(IdentLoc.isValid() && "Invalid TargetName location.");
8045 
8046   // FIXME: We ignore attributes for now.
8047 
8048   if (SS.isEmpty()) {
8049     Diag(IdentLoc, diag::err_using_requires_qualname);
8050     return nullptr;
8051   }
8052 
8053   // Do the redeclaration lookup in the current scope.
8054   LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
8055                         ForRedeclaration);
8056   Previous.setHideTags(false);
8057   if (S) {
8058     LookupName(Previous, S);
8059 
8060     // It is really dumb that we have to do this.
8061     LookupResult::Filter F = Previous.makeFilter();
8062     while (F.hasNext()) {
8063       NamedDecl *D = F.next();
8064       if (!isDeclInScope(D, CurContext, S))
8065         F.erase();
8066       // If we found a local extern declaration that's not ordinarily visible,
8067       // and this declaration is being added to a non-block scope, ignore it.
8068       // We're only checking for scope conflicts here, not also for violations
8069       // of the linkage rules.
8070       else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
8071                !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
8072         F.erase();
8073     }
8074     F.done();
8075   } else {
8076     assert(IsInstantiation && "no scope in non-instantiation");
8077     assert(CurContext->isRecord() && "scope not record in instantiation");
8078     LookupQualifiedName(Previous, CurContext);
8079   }
8080 
8081   // Check for invalid redeclarations.
8082   if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
8083                                   SS, IdentLoc, Previous))
8084     return nullptr;
8085 
8086   // Check for bad qualifiers.
8087   if (CheckUsingDeclQualifier(UsingLoc, SS, NameInfo, IdentLoc))
8088     return nullptr;
8089 
8090   DeclContext *LookupContext = computeDeclContext(SS);
8091   NamedDecl *D;
8092   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8093   if (!LookupContext) {
8094     if (HasTypenameKeyword) {
8095       // FIXME: not all declaration name kinds are legal here
8096       D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
8097                                               UsingLoc, TypenameLoc,
8098                                               QualifierLoc,
8099                                               IdentLoc, NameInfo.getName());
8100     } else {
8101       D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
8102                                            QualifierLoc, NameInfo);
8103     }
8104     D->setAccess(AS);
8105     CurContext->addDecl(D);
8106     return D;
8107   }
8108 
8109   auto Build = [&](bool Invalid) {
8110     UsingDecl *UD =
8111         UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, NameInfo,
8112                           HasTypenameKeyword);
8113     UD->setAccess(AS);
8114     CurContext->addDecl(UD);
8115     UD->setInvalidDecl(Invalid);
8116     return UD;
8117   };
8118   auto BuildInvalid = [&]{ return Build(true); };
8119   auto BuildValid = [&]{ return Build(false); };
8120 
8121   if (RequireCompleteDeclContext(SS, LookupContext))
8122     return BuildInvalid();
8123 
8124   // Look up the target name.
8125   LookupResult R(*this, NameInfo, LookupOrdinaryName);
8126 
8127   // Unlike most lookups, we don't always want to hide tag
8128   // declarations: tag names are visible through the using declaration
8129   // even if hidden by ordinary names, *except* in a dependent context
8130   // where it's important for the sanity of two-phase lookup.
8131   if (!IsInstantiation)
8132     R.setHideTags(false);
8133 
8134   // For the purposes of this lookup, we have a base object type
8135   // equal to that of the current context.
8136   if (CurContext->isRecord()) {
8137     R.setBaseObjectType(
8138                    Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
8139   }
8140 
8141   LookupQualifiedName(R, LookupContext);
8142 
8143   // Try to correct typos if possible. If constructor name lookup finds no
8144   // results, that means the named class has no explicit constructors, and we
8145   // suppressed declaring implicit ones (probably because it's dependent or
8146   // invalid).
8147   if (R.empty() &&
8148       NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
8149     if (TypoCorrection Corrected = CorrectTypo(
8150             R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
8151             llvm::make_unique<UsingValidatorCCC>(
8152                 HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
8153                 dyn_cast<CXXRecordDecl>(CurContext)),
8154             CTK_ErrorRecovery)) {
8155       // We reject any correction for which ND would be NULL.
8156       NamedDecl *ND = Corrected.getCorrectionDecl();
8157 
8158       // We reject candidates where DroppedSpecifier == true, hence the
8159       // literal '0' below.
8160       diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
8161                                 << NameInfo.getName() << LookupContext << 0
8162                                 << SS.getRange());
8163 
8164       // If we corrected to an inheriting constructor, handle it as one.
8165       auto *RD = dyn_cast<CXXRecordDecl>(ND);
8166       if (RD && RD->isInjectedClassName()) {
8167         // Fix up the information we'll use to build the using declaration.
8168         if (Corrected.WillReplaceSpecifier()) {
8169           NestedNameSpecifierLocBuilder Builder;
8170           Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
8171                               QualifierLoc.getSourceRange());
8172           QualifierLoc = Builder.getWithLocInContext(Context);
8173         }
8174 
8175         NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
8176             Context.getCanonicalType(Context.getRecordType(RD))));
8177         NameInfo.setNamedTypeInfo(nullptr);
8178         for (auto *Ctor : LookupConstructors(RD))
8179           R.addDecl(Ctor);
8180       } else {
8181         // FIXME: Pick up all the declarations if we found an overloaded function.
8182         R.addDecl(ND);
8183       }
8184     } else {
8185       Diag(IdentLoc, diag::err_no_member)
8186         << NameInfo.getName() << LookupContext << SS.getRange();
8187       return BuildInvalid();
8188     }
8189   }
8190 
8191   if (R.isAmbiguous())
8192     return BuildInvalid();
8193 
8194   if (HasTypenameKeyword) {
8195     // If we asked for a typename and got a non-type decl, error out.
8196     if (!R.getAsSingle<TypeDecl>()) {
8197       Diag(IdentLoc, diag::err_using_typename_non_type);
8198       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
8199         Diag((*I)->getUnderlyingDecl()->getLocation(),
8200              diag::note_using_decl_target);
8201       return BuildInvalid();
8202     }
8203   } else {
8204     // If we asked for a non-typename and we got a type, error out,
8205     // but only if this is an instantiation of an unresolved using
8206     // decl.  Otherwise just silently find the type name.
8207     if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
8208       Diag(IdentLoc, diag::err_using_dependent_value_is_type);
8209       Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
8210       return BuildInvalid();
8211     }
8212   }
8213 
8214   // C++0x N2914 [namespace.udecl]p6:
8215   // A using-declaration shall not name a namespace.
8216   if (R.getAsSingle<NamespaceDecl>()) {
8217     Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
8218       << SS.getRange();
8219     return BuildInvalid();
8220   }
8221 
8222   UsingDecl *UD = BuildValid();
8223 
8224   // The normal rules do not apply to inheriting constructor declarations.
8225   if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
8226     // Suppress access diagnostics; the access check is instead performed at the
8227     // point of use for an inheriting constructor.
8228     R.suppressDiagnostics();
8229     CheckInheritingConstructorUsingDecl(UD);
8230     return UD;
8231   }
8232 
8233   // Otherwise, look up the target name.
8234 
8235   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8236     UsingShadowDecl *PrevDecl = nullptr;
8237     if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
8238       BuildUsingShadowDecl(S, UD, *I, PrevDecl);
8239   }
8240 
8241   return UD;
8242 }
8243 
8244 /// Additional checks for a using declaration referring to a constructor name.
CheckInheritingConstructorUsingDecl(UsingDecl * UD)8245 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
8246   assert(!UD->hasTypename() && "expecting a constructor name");
8247 
8248   const Type *SourceType = UD->getQualifier()->getAsType();
8249   assert(SourceType &&
8250          "Using decl naming constructor doesn't have type in scope spec.");
8251   CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
8252 
8253   // Check whether the named type is a direct base class.
8254   bool AnyDependentBases = false;
8255   auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
8256                                       AnyDependentBases);
8257   if (!Base && !AnyDependentBases) {
8258     Diag(UD->getUsingLoc(),
8259          diag::err_using_decl_constructor_not_in_direct_base)
8260       << UD->getNameInfo().getSourceRange()
8261       << QualType(SourceType, 0) << TargetClass;
8262     UD->setInvalidDecl();
8263     return true;
8264   }
8265 
8266   if (Base)
8267     Base->setInheritConstructors();
8268 
8269   return false;
8270 }
8271 
8272 /// Checks that the given using declaration is not an invalid
8273 /// redeclaration.  Note that this is checking only for the using decl
8274 /// itself, not for any ill-formedness among the UsingShadowDecls.
CheckUsingDeclRedeclaration(SourceLocation UsingLoc,bool HasTypenameKeyword,const CXXScopeSpec & SS,SourceLocation NameLoc,const LookupResult & Prev)8275 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
8276                                        bool HasTypenameKeyword,
8277                                        const CXXScopeSpec &SS,
8278                                        SourceLocation NameLoc,
8279                                        const LookupResult &Prev) {
8280   // C++03 [namespace.udecl]p8:
8281   // C++0x [namespace.udecl]p10:
8282   //   A using-declaration is a declaration and can therefore be used
8283   //   repeatedly where (and only where) multiple declarations are
8284   //   allowed.
8285   //
8286   // That's in non-member contexts.
8287   if (!CurContext->getRedeclContext()->isRecord())
8288     return false;
8289 
8290   NestedNameSpecifier *Qual = SS.getScopeRep();
8291 
8292   for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
8293     NamedDecl *D = *I;
8294 
8295     bool DTypename;
8296     NestedNameSpecifier *DQual;
8297     if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
8298       DTypename = UD->hasTypename();
8299       DQual = UD->getQualifier();
8300     } else if (UnresolvedUsingValueDecl *UD
8301                  = dyn_cast<UnresolvedUsingValueDecl>(D)) {
8302       DTypename = false;
8303       DQual = UD->getQualifier();
8304     } else if (UnresolvedUsingTypenameDecl *UD
8305                  = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
8306       DTypename = true;
8307       DQual = UD->getQualifier();
8308     } else continue;
8309 
8310     // using decls differ if one says 'typename' and the other doesn't.
8311     // FIXME: non-dependent using decls?
8312     if (HasTypenameKeyword != DTypename) continue;
8313 
8314     // using decls differ if they name different scopes (but note that
8315     // template instantiation can cause this check to trigger when it
8316     // didn't before instantiation).
8317     if (Context.getCanonicalNestedNameSpecifier(Qual) !=
8318         Context.getCanonicalNestedNameSpecifier(DQual))
8319       continue;
8320 
8321     Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
8322     Diag(D->getLocation(), diag::note_using_decl) << 1;
8323     return true;
8324   }
8325 
8326   return false;
8327 }
8328 
8329 
8330 /// Checks that the given nested-name qualifier used in a using decl
8331 /// in the current context is appropriately related to the current
8332 /// scope.  If an error is found, diagnoses it and returns true.
CheckUsingDeclQualifier(SourceLocation UsingLoc,const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,SourceLocation NameLoc)8333 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
8334                                    const CXXScopeSpec &SS,
8335                                    const DeclarationNameInfo &NameInfo,
8336                                    SourceLocation NameLoc) {
8337   DeclContext *NamedContext = computeDeclContext(SS);
8338 
8339   if (!CurContext->isRecord()) {
8340     // C++03 [namespace.udecl]p3:
8341     // C++0x [namespace.udecl]p8:
8342     //   A using-declaration for a class member shall be a member-declaration.
8343 
8344     // If we weren't able to compute a valid scope, it must be a
8345     // dependent class scope.
8346     if (!NamedContext || NamedContext->isRecord()) {
8347       auto *RD = dyn_cast_or_null<CXXRecordDecl>(NamedContext);
8348       if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
8349         RD = nullptr;
8350 
8351       Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
8352         << SS.getRange();
8353 
8354       // If we have a complete, non-dependent source type, try to suggest a
8355       // way to get the same effect.
8356       if (!RD)
8357         return true;
8358 
8359       // Find what this using-declaration was referring to.
8360       LookupResult R(*this, NameInfo, LookupOrdinaryName);
8361       R.setHideTags(false);
8362       R.suppressDiagnostics();
8363       LookupQualifiedName(R, RD);
8364 
8365       if (R.getAsSingle<TypeDecl>()) {
8366         if (getLangOpts().CPlusPlus11) {
8367           // Convert 'using X::Y;' to 'using Y = X::Y;'.
8368           Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
8369             << 0 // alias declaration
8370             << FixItHint::CreateInsertion(SS.getBeginLoc(),
8371                                           NameInfo.getName().getAsString() +
8372                                               " = ");
8373         } else {
8374           // Convert 'using X::Y;' to 'typedef X::Y Y;'.
8375           SourceLocation InsertLoc =
8376               getLocForEndOfToken(NameInfo.getLocEnd());
8377           Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
8378             << 1 // typedef declaration
8379             << FixItHint::CreateReplacement(UsingLoc, "typedef")
8380             << FixItHint::CreateInsertion(
8381                    InsertLoc, " " + NameInfo.getName().getAsString());
8382         }
8383       } else if (R.getAsSingle<VarDecl>()) {
8384         // Don't provide a fixit outside C++11 mode; we don't want to suggest
8385         // repeating the type of the static data member here.
8386         FixItHint FixIt;
8387         if (getLangOpts().CPlusPlus11) {
8388           // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
8389           FixIt = FixItHint::CreateReplacement(
8390               UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
8391         }
8392 
8393         Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
8394           << 2 // reference declaration
8395           << FixIt;
8396       }
8397       return true;
8398     }
8399 
8400     // Otherwise, everything is known to be fine.
8401     return false;
8402   }
8403 
8404   // The current scope is a record.
8405 
8406   // If the named context is dependent, we can't decide much.
8407   if (!NamedContext) {
8408     // FIXME: in C++0x, we can diagnose if we can prove that the
8409     // nested-name-specifier does not refer to a base class, which is
8410     // still possible in some cases.
8411 
8412     // Otherwise we have to conservatively report that things might be
8413     // okay.
8414     return false;
8415   }
8416 
8417   if (!NamedContext->isRecord()) {
8418     // Ideally this would point at the last name in the specifier,
8419     // but we don't have that level of source info.
8420     Diag(SS.getRange().getBegin(),
8421          diag::err_using_decl_nested_name_specifier_is_not_class)
8422       << SS.getScopeRep() << SS.getRange();
8423     return true;
8424   }
8425 
8426   if (!NamedContext->isDependentContext() &&
8427       RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
8428     return true;
8429 
8430   if (getLangOpts().CPlusPlus11) {
8431     // C++0x [namespace.udecl]p3:
8432     //   In a using-declaration used as a member-declaration, the
8433     //   nested-name-specifier shall name a base class of the class
8434     //   being defined.
8435 
8436     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
8437                                  cast<CXXRecordDecl>(NamedContext))) {
8438       if (CurContext == NamedContext) {
8439         Diag(NameLoc,
8440              diag::err_using_decl_nested_name_specifier_is_current_class)
8441           << SS.getRange();
8442         return true;
8443       }
8444 
8445       Diag(SS.getRange().getBegin(),
8446            diag::err_using_decl_nested_name_specifier_is_not_base_class)
8447         << SS.getScopeRep()
8448         << cast<CXXRecordDecl>(CurContext)
8449         << SS.getRange();
8450       return true;
8451     }
8452 
8453     return false;
8454   }
8455 
8456   // C++03 [namespace.udecl]p4:
8457   //   A using-declaration used as a member-declaration shall refer
8458   //   to a member of a base class of the class being defined [etc.].
8459 
8460   // Salient point: SS doesn't have to name a base class as long as
8461   // lookup only finds members from base classes.  Therefore we can
8462   // diagnose here only if we can prove that that can't happen,
8463   // i.e. if the class hierarchies provably don't intersect.
8464 
8465   // TODO: it would be nice if "definitely valid" results were cached
8466   // in the UsingDecl and UsingShadowDecl so that these checks didn't
8467   // need to be repeated.
8468 
8469   llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases;
8470   auto Collect = [&Bases](const CXXRecordDecl *Base) {
8471     Bases.insert(Base);
8472     return true;
8473   };
8474 
8475   // Collect all bases. Return false if we find a dependent base.
8476   if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect))
8477     return false;
8478 
8479   // Returns true if the base is dependent or is one of the accumulated base
8480   // classes.
8481   auto IsNotBase = [&Bases](const CXXRecordDecl *Base) {
8482     return !Bases.count(Base);
8483   };
8484 
8485   // Return false if the class has a dependent base or if it or one
8486   // of its bases is present in the base set of the current context.
8487   if (Bases.count(cast<CXXRecordDecl>(NamedContext)) ||
8488       !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase))
8489     return false;
8490 
8491   Diag(SS.getRange().getBegin(),
8492        diag::err_using_decl_nested_name_specifier_is_not_base_class)
8493     << SS.getScopeRep()
8494     << cast<CXXRecordDecl>(CurContext)
8495     << SS.getRange();
8496 
8497   return true;
8498 }
8499 
ActOnAliasDeclaration(Scope * S,AccessSpecifier AS,MultiTemplateParamsArg TemplateParamLists,SourceLocation UsingLoc,UnqualifiedId & Name,AttributeList * AttrList,TypeResult Type,Decl * DeclFromDeclSpec)8500 Decl *Sema::ActOnAliasDeclaration(Scope *S,
8501                                   AccessSpecifier AS,
8502                                   MultiTemplateParamsArg TemplateParamLists,
8503                                   SourceLocation UsingLoc,
8504                                   UnqualifiedId &Name,
8505                                   AttributeList *AttrList,
8506                                   TypeResult Type,
8507                                   Decl *DeclFromDeclSpec) {
8508   // Skip up to the relevant declaration scope.
8509   while (S->isTemplateParamScope())
8510     S = S->getParent();
8511   assert((S->getFlags() & Scope::DeclScope) &&
8512          "got alias-declaration outside of declaration scope");
8513 
8514   if (Type.isInvalid())
8515     return nullptr;
8516 
8517   bool Invalid = false;
8518   DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
8519   TypeSourceInfo *TInfo = nullptr;
8520   GetTypeFromParser(Type.get(), &TInfo);
8521 
8522   if (DiagnoseClassNameShadow(CurContext, NameInfo))
8523     return nullptr;
8524 
8525   if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
8526                                       UPPC_DeclarationType)) {
8527     Invalid = true;
8528     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8529                                              TInfo->getTypeLoc().getBeginLoc());
8530   }
8531 
8532   LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
8533   LookupName(Previous, S);
8534 
8535   // Warn about shadowing the name of a template parameter.
8536   if (Previous.isSingleResult() &&
8537       Previous.getFoundDecl()->isTemplateParameter()) {
8538     DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
8539     Previous.clear();
8540   }
8541 
8542   assert(Name.Kind == UnqualifiedId::IK_Identifier &&
8543          "name in alias declaration must be an identifier");
8544   TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
8545                                                Name.StartLocation,
8546                                                Name.Identifier, TInfo);
8547 
8548   NewTD->setAccess(AS);
8549 
8550   if (Invalid)
8551     NewTD->setInvalidDecl();
8552 
8553   ProcessDeclAttributeList(S, NewTD, AttrList);
8554 
8555   CheckTypedefForVariablyModifiedType(S, NewTD);
8556   Invalid |= NewTD->isInvalidDecl();
8557 
8558   bool Redeclaration = false;
8559 
8560   NamedDecl *NewND;
8561   if (TemplateParamLists.size()) {
8562     TypeAliasTemplateDecl *OldDecl = nullptr;
8563     TemplateParameterList *OldTemplateParams = nullptr;
8564 
8565     if (TemplateParamLists.size() != 1) {
8566       Diag(UsingLoc, diag::err_alias_template_extra_headers)
8567         << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
8568          TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
8569     }
8570     TemplateParameterList *TemplateParams = TemplateParamLists[0];
8571 
8572     // Only consider previous declarations in the same scope.
8573     FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
8574                          /*ExplicitInstantiationOrSpecialization*/false);
8575     if (!Previous.empty()) {
8576       Redeclaration = true;
8577 
8578       OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
8579       if (!OldDecl && !Invalid) {
8580         Diag(UsingLoc, diag::err_redefinition_different_kind)
8581           << Name.Identifier;
8582 
8583         NamedDecl *OldD = Previous.getRepresentativeDecl();
8584         if (OldD->getLocation().isValid())
8585           Diag(OldD->getLocation(), diag::note_previous_definition);
8586 
8587         Invalid = true;
8588       }
8589 
8590       if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
8591         if (TemplateParameterListsAreEqual(TemplateParams,
8592                                            OldDecl->getTemplateParameters(),
8593                                            /*Complain=*/true,
8594                                            TPL_TemplateMatch))
8595           OldTemplateParams = OldDecl->getTemplateParameters();
8596         else
8597           Invalid = true;
8598 
8599         TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
8600         if (!Invalid &&
8601             !Context.hasSameType(OldTD->getUnderlyingType(),
8602                                  NewTD->getUnderlyingType())) {
8603           // FIXME: The C++0x standard does not clearly say this is ill-formed,
8604           // but we can't reasonably accept it.
8605           Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
8606             << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
8607           if (OldTD->getLocation().isValid())
8608             Diag(OldTD->getLocation(), diag::note_previous_definition);
8609           Invalid = true;
8610         }
8611       }
8612     }
8613 
8614     // Merge any previous default template arguments into our parameters,
8615     // and check the parameter list.
8616     if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
8617                                    TPC_TypeAliasTemplate))
8618       return nullptr;
8619 
8620     TypeAliasTemplateDecl *NewDecl =
8621       TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
8622                                     Name.Identifier, TemplateParams,
8623                                     NewTD);
8624     NewTD->setDescribedAliasTemplate(NewDecl);
8625 
8626     NewDecl->setAccess(AS);
8627 
8628     if (Invalid)
8629       NewDecl->setInvalidDecl();
8630     else if (OldDecl)
8631       NewDecl->setPreviousDecl(OldDecl);
8632 
8633     NewND = NewDecl;
8634   } else {
8635     if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
8636       setTagNameForLinkagePurposes(TD, NewTD);
8637       handleTagNumbering(TD, S);
8638     }
8639     ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
8640     NewND = NewTD;
8641   }
8642 
8643   if (!Redeclaration)
8644     PushOnScopeChains(NewND, S);
8645 
8646   ActOnDocumentableDecl(NewND);
8647   return NewND;
8648 }
8649 
ActOnNamespaceAliasDef(Scope * S,SourceLocation NamespaceLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)8650 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
8651                                    SourceLocation AliasLoc,
8652                                    IdentifierInfo *Alias, CXXScopeSpec &SS,
8653                                    SourceLocation IdentLoc,
8654                                    IdentifierInfo *Ident) {
8655 
8656   // Lookup the namespace name.
8657   LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
8658   LookupParsedName(R, S, &SS);
8659 
8660   if (R.isAmbiguous())
8661     return nullptr;
8662 
8663   if (R.empty()) {
8664     if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
8665       Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
8666       return nullptr;
8667     }
8668   }
8669   assert(!R.isAmbiguous() && !R.empty());
8670   NamedDecl *ND = R.getFoundDecl();
8671 
8672   // Check if we have a previous declaration with the same name.
8673   LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName,
8674                      ForRedeclaration);
8675   LookupName(PrevR, S);
8676 
8677   // Check we're not shadowing a template parameter.
8678   if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) {
8679     DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl());
8680     PrevR.clear();
8681   }
8682 
8683   // Filter out any other lookup result from an enclosing scope.
8684   FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false,
8685                        /*AllowInlineNamespace*/false);
8686 
8687   // Find the previous declaration and check that we can redeclare it.
8688   NamespaceAliasDecl *Prev = nullptr;
8689   if (NamedDecl *PrevDecl = PrevR.getAsSingle<NamedDecl>()) {
8690     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
8691       // We already have an alias with the same name that points to the same
8692       // namespace; check that it matches.
8693       if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
8694         Prev = AD;
8695       } else if (isVisible(PrevDecl)) {
8696         Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
8697           << Alias;
8698         Diag(PrevDecl->getLocation(), diag::note_previous_namespace_alias)
8699           << AD->getNamespace();
8700         return nullptr;
8701       }
8702     } else if (isVisible(PrevDecl)) {
8703       unsigned DiagID = isa<NamespaceDecl>(PrevDecl)
8704                             ? diag::err_redefinition
8705                             : diag::err_redefinition_different_kind;
8706       Diag(AliasLoc, DiagID) << Alias;
8707       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8708       return nullptr;
8709     }
8710   }
8711 
8712   // The use of a nested name specifier may trigger deprecation warnings.
8713   DiagnoseUseOfDecl(ND, IdentLoc);
8714 
8715   NamespaceAliasDecl *AliasDecl =
8716     NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
8717                                Alias, SS.getWithLocInContext(Context),
8718                                IdentLoc, ND);
8719   if (Prev)
8720     AliasDecl->setPreviousDecl(Prev);
8721 
8722   PushOnScopeChains(AliasDecl, S);
8723   return AliasDecl;
8724 }
8725 
8726 Sema::ImplicitExceptionSpecification
ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,CXXMethodDecl * MD)8727 Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
8728                                                CXXMethodDecl *MD) {
8729   CXXRecordDecl *ClassDecl = MD->getParent();
8730 
8731   // C++ [except.spec]p14:
8732   //   An implicitly declared special member function (Clause 12) shall have an
8733   //   exception-specification. [...]
8734   ImplicitExceptionSpecification ExceptSpec(*this);
8735   if (ClassDecl->isInvalidDecl())
8736     return ExceptSpec;
8737 
8738   // Direct base-class constructors.
8739   for (const auto &B : ClassDecl->bases()) {
8740     if (B.isVirtual()) // Handled below.
8741       continue;
8742 
8743     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8744       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8745       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8746       // If this is a deleted function, add it anyway. This might be conformant
8747       // with the standard. This might not. I'm not sure. It might not matter.
8748       if (Constructor)
8749         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8750     }
8751   }
8752 
8753   // Virtual base-class constructors.
8754   for (const auto &B : ClassDecl->vbases()) {
8755     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8756       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8757       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8758       // If this is a deleted function, add it anyway. This might be conformant
8759       // with the standard. This might not. I'm not sure. It might not matter.
8760       if (Constructor)
8761         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8762     }
8763   }
8764 
8765   // Field constructors.
8766   for (const auto *F : ClassDecl->fields()) {
8767     if (F->hasInClassInitializer()) {
8768       if (Expr *E = F->getInClassInitializer())
8769         ExceptSpec.CalledExpr(E);
8770     } else if (const RecordType *RecordTy
8771               = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8772       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8773       CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8774       // If this is a deleted function, add it anyway. This might be conformant
8775       // with the standard. This might not. I'm not sure. It might not matter.
8776       // In particular, the problem is that this function never gets called. It
8777       // might just be ill-formed because this function attempts to refer to
8778       // a deleted function here.
8779       if (Constructor)
8780         ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8781     }
8782   }
8783 
8784   return ExceptSpec;
8785 }
8786 
8787 Sema::ImplicitExceptionSpecification
ComputeInheritingCtorExceptionSpec(CXXConstructorDecl * CD)8788 Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
8789   CXXRecordDecl *ClassDecl = CD->getParent();
8790 
8791   // C++ [except.spec]p14:
8792   //   An inheriting constructor [...] shall have an exception-specification. [...]
8793   ImplicitExceptionSpecification ExceptSpec(*this);
8794   if (ClassDecl->isInvalidDecl())
8795     return ExceptSpec;
8796 
8797   // Inherited constructor.
8798   const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
8799   const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
8800   // FIXME: Copying or moving the parameters could add extra exceptions to the
8801   // set, as could the default arguments for the inherited constructor. This
8802   // will be addressed when we implement the resolution of core issue 1351.
8803   ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
8804 
8805   // Direct base-class constructors.
8806   for (const auto &B : ClassDecl->bases()) {
8807     if (B.isVirtual()) // Handled below.
8808       continue;
8809 
8810     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8811       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8812       if (BaseClassDecl == InheritedDecl)
8813         continue;
8814       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8815       if (Constructor)
8816         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8817     }
8818   }
8819 
8820   // Virtual base-class constructors.
8821   for (const auto &B : ClassDecl->vbases()) {
8822     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8823       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8824       if (BaseClassDecl == InheritedDecl)
8825         continue;
8826       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8827       if (Constructor)
8828         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8829     }
8830   }
8831 
8832   // Field constructors.
8833   for (const auto *F : ClassDecl->fields()) {
8834     if (F->hasInClassInitializer()) {
8835       if (Expr *E = F->getInClassInitializer())
8836         ExceptSpec.CalledExpr(E);
8837     } else if (const RecordType *RecordTy
8838               = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8839       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8840       CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8841       if (Constructor)
8842         ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8843     }
8844   }
8845 
8846   return ExceptSpec;
8847 }
8848 
8849 namespace {
8850 /// RAII object to register a special member as being currently declared.
8851 struct DeclaringSpecialMember {
8852   Sema &S;
8853   Sema::SpecialMemberDecl D;
8854   bool WasAlreadyBeingDeclared;
8855 
DeclaringSpecialMember__anonf74ac3471011::DeclaringSpecialMember8856   DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
8857     : S(S), D(RD, CSM) {
8858     WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
8859     if (WasAlreadyBeingDeclared)
8860       // This almost never happens, but if it does, ensure that our cache
8861       // doesn't contain a stale result.
8862       S.SpecialMemberCache.clear();
8863 
8864     // FIXME: Register a note to be produced if we encounter an error while
8865     // declaring the special member.
8866   }
~DeclaringSpecialMember__anonf74ac3471011::DeclaringSpecialMember8867   ~DeclaringSpecialMember() {
8868     if (!WasAlreadyBeingDeclared)
8869       S.SpecialMembersBeingDeclared.erase(D);
8870   }
8871 
8872   /// \brief Are we already trying to declare this special member?
isAlreadyBeingDeclared__anonf74ac3471011::DeclaringSpecialMember8873   bool isAlreadyBeingDeclared() const {
8874     return WasAlreadyBeingDeclared;
8875   }
8876 };
8877 }
8878 
DeclareImplicitDefaultConstructor(CXXRecordDecl * ClassDecl)8879 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
8880                                                      CXXRecordDecl *ClassDecl) {
8881   // C++ [class.ctor]p5:
8882   //   A default constructor for a class X is a constructor of class X
8883   //   that can be called without an argument. If there is no
8884   //   user-declared constructor for class X, a default constructor is
8885   //   implicitly declared. An implicitly-declared default constructor
8886   //   is an inline public member of its class.
8887   assert(ClassDecl->needsImplicitDefaultConstructor() &&
8888          "Should not build implicit default constructor!");
8889 
8890   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
8891   if (DSM.isAlreadyBeingDeclared())
8892     return nullptr;
8893 
8894   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8895                                                      CXXDefaultConstructor,
8896                                                      false);
8897 
8898   // Create the actual constructor declaration.
8899   CanQualType ClassType
8900     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8901   SourceLocation ClassLoc = ClassDecl->getLocation();
8902   DeclarationName Name
8903     = Context.DeclarationNames.getCXXConstructorName(ClassType);
8904   DeclarationNameInfo NameInfo(Name, ClassLoc);
8905   CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
8906       Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(),
8907       /*TInfo=*/nullptr, /*isExplicit=*/false, /*isInline=*/true,
8908       /*isImplicitlyDeclared=*/true, Constexpr);
8909   DefaultCon->setAccess(AS_public);
8910   DefaultCon->setDefaulted();
8911 
8912   if (getLangOpts().CUDA) {
8913     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
8914                                             DefaultCon,
8915                                             /* ConstRHS */ false,
8916                                             /* Diagnose */ false);
8917   }
8918 
8919   // Build an exception specification pointing back at this constructor.
8920   FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, DefaultCon);
8921   DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8922 
8923   // We don't need to use SpecialMemberIsTrivial here; triviality for default
8924   // constructors is easy to compute.
8925   DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
8926 
8927   if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
8928     SetDeclDeleted(DefaultCon, ClassLoc);
8929 
8930   // Note that we have declared this constructor.
8931   ++ASTContext::NumImplicitDefaultConstructorsDeclared;
8932 
8933   if (Scope *S = getScopeForContext(ClassDecl))
8934     PushOnScopeChains(DefaultCon, S, false);
8935   ClassDecl->addDecl(DefaultCon);
8936 
8937   return DefaultCon;
8938 }
8939 
DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)8940 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
8941                                             CXXConstructorDecl *Constructor) {
8942   assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
8943           !Constructor->doesThisDeclarationHaveABody() &&
8944           !Constructor->isDeleted()) &&
8945     "DefineImplicitDefaultConstructor - call it for implicit default ctor");
8946 
8947   CXXRecordDecl *ClassDecl = Constructor->getParent();
8948   assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
8949 
8950   SynthesizedFunctionScope Scope(*this, Constructor);
8951   DiagnosticErrorTrap Trap(Diags);
8952   if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8953       Trap.hasErrorOccurred()) {
8954     Diag(CurrentLocation, diag::note_member_synthesized_at)
8955       << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
8956     Constructor->setInvalidDecl();
8957     return;
8958   }
8959 
8960   // The exception specification is needed because we are defining the
8961   // function.
8962   ResolveExceptionSpec(CurrentLocation,
8963                        Constructor->getType()->castAs<FunctionProtoType>());
8964 
8965   SourceLocation Loc = Constructor->getLocEnd().isValid()
8966                            ? Constructor->getLocEnd()
8967                            : Constructor->getLocation();
8968   Constructor->setBody(new (Context) CompoundStmt(Loc));
8969 
8970   Constructor->markUsed(Context);
8971   MarkVTableUsed(CurrentLocation, ClassDecl);
8972 
8973   if (ASTMutationListener *L = getASTMutationListener()) {
8974     L->CompletedImplicitDefinition(Constructor);
8975   }
8976 
8977   DiagnoseUninitializedFields(*this, Constructor);
8978 }
8979 
ActOnFinishDelayedMemberInitializers(Decl * D)8980 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
8981   // Perform any delayed checks on exception specifications.
8982   CheckDelayedMemberExceptionSpecs();
8983 }
8984 
8985 namespace {
8986 /// Information on inheriting constructors to declare.
8987 class InheritingConstructorInfo {
8988 public:
InheritingConstructorInfo(Sema & SemaRef,CXXRecordDecl * Derived)8989   InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
8990       : SemaRef(SemaRef), Derived(Derived) {
8991     // Mark the constructors that we already have in the derived class.
8992     //
8993     // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
8994     //   unless there is a user-declared constructor with the same signature in
8995     //   the class where the using-declaration appears.
8996     visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
8997   }
8998 
inheritAll(CXXRecordDecl * RD)8999   void inheritAll(CXXRecordDecl *RD) {
9000     visitAll(RD, &InheritingConstructorInfo::inherit);
9001   }
9002 
9003 private:
9004   /// Information about an inheriting constructor.
9005   struct InheritingConstructor {
InheritingConstructor__anonf74ac3471111::InheritingConstructorInfo::InheritingConstructor9006     InheritingConstructor()
9007       : DeclaredInDerived(false), BaseCtor(nullptr), DerivedCtor(nullptr) {}
9008 
9009     /// If \c true, a constructor with this signature is already declared
9010     /// in the derived class.
9011     bool DeclaredInDerived;
9012 
9013     /// The constructor which is inherited.
9014     const CXXConstructorDecl *BaseCtor;
9015 
9016     /// The derived constructor we declared.
9017     CXXConstructorDecl *DerivedCtor;
9018   };
9019 
9020   /// Inheriting constructors with a given canonical type. There can be at
9021   /// most one such non-template constructor, and any number of templated
9022   /// constructors.
9023   struct InheritingConstructorsForType {
9024     InheritingConstructor NonTemplate;
9025     SmallVector<std::pair<TemplateParameterList *, InheritingConstructor>, 4>
9026         Templates;
9027 
getEntry__anonf74ac3471111::InheritingConstructorInfo::InheritingConstructorsForType9028     InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
9029       if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
9030         TemplateParameterList *ParamList = FTD->getTemplateParameters();
9031         for (unsigned I = 0, N = Templates.size(); I != N; ++I)
9032           if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
9033                                                false, S.TPL_TemplateMatch))
9034             return Templates[I].second;
9035         Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
9036         return Templates.back().second;
9037       }
9038 
9039       return NonTemplate;
9040     }
9041   };
9042 
9043   /// Get or create the inheriting constructor record for a constructor.
getEntry(const CXXConstructorDecl * Ctor,QualType CtorType)9044   InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
9045                                   QualType CtorType) {
9046     return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
9047         .getEntry(SemaRef, Ctor);
9048   }
9049 
9050   typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
9051 
9052   /// Process all constructors for a class.
visitAll(const CXXRecordDecl * RD,VisitFn Callback)9053   void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
9054     for (const auto *Ctor : RD->ctors())
9055       (this->*Callback)(Ctor);
9056     for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9057              I(RD->decls_begin()), E(RD->decls_end());
9058          I != E; ++I) {
9059       const FunctionDecl *FD = (*I)->getTemplatedDecl();
9060       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
9061         (this->*Callback)(CD);
9062     }
9063   }
9064 
9065   /// Note that a constructor (or constructor template) was declared in Derived.
noteDeclaredInDerived(const CXXConstructorDecl * Ctor)9066   void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
9067     getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
9068   }
9069 
9070   /// Inherit a single constructor.
inherit(const CXXConstructorDecl * Ctor)9071   void inherit(const CXXConstructorDecl *Ctor) {
9072     const FunctionProtoType *CtorType =
9073         Ctor->getType()->castAs<FunctionProtoType>();
9074     ArrayRef<QualType> ArgTypes = CtorType->getParamTypes();
9075     FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
9076 
9077     SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
9078 
9079     // Core issue (no number yet): the ellipsis is always discarded.
9080     if (EPI.Variadic) {
9081       SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
9082       SemaRef.Diag(Ctor->getLocation(),
9083                    diag::note_using_decl_constructor_ellipsis);
9084       EPI.Variadic = false;
9085     }
9086 
9087     // Declare a constructor for each number of parameters.
9088     //
9089     // C++11 [class.inhctor]p1:
9090     //   The candidate set of inherited constructors from the class X named in
9091     //   the using-declaration consists of [... modulo defects ...] for each
9092     //   constructor or constructor template of X, the set of constructors or
9093     //   constructor templates that results from omitting any ellipsis parameter
9094     //   specification and successively omitting parameters with a default
9095     //   argument from the end of the parameter-type-list
9096     unsigned MinParams = minParamsToInherit(Ctor);
9097     unsigned Params = Ctor->getNumParams();
9098     if (Params >= MinParams) {
9099       do
9100         declareCtor(UsingLoc, Ctor,
9101                     SemaRef.Context.getFunctionType(
9102                         Ctor->getReturnType(), ArgTypes.slice(0, Params), EPI));
9103       while (Params > MinParams &&
9104              Ctor->getParamDecl(--Params)->hasDefaultArg());
9105     }
9106   }
9107 
9108   /// Find the using-declaration which specified that we should inherit the
9109   /// constructors of \p Base.
getUsingLoc(const CXXRecordDecl * Base)9110   SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
9111     // No fancy lookup required; just look for the base constructor name
9112     // directly within the derived class.
9113     ASTContext &Context = SemaRef.Context;
9114     DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
9115         Context.getCanonicalType(Context.getRecordType(Base)));
9116     DeclContext::lookup_result Decls = Derived->lookup(Name);
9117     return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
9118   }
9119 
minParamsToInherit(const CXXConstructorDecl * Ctor)9120   unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
9121     // C++11 [class.inhctor]p3:
9122     //   [F]or each constructor template in the candidate set of inherited
9123     //   constructors, a constructor template is implicitly declared
9124     if (Ctor->getDescribedFunctionTemplate())
9125       return 0;
9126 
9127     //   For each non-template constructor in the candidate set of inherited
9128     //   constructors other than a constructor having no parameters or a
9129     //   copy/move constructor having a single parameter, a constructor is
9130     //   implicitly declared [...]
9131     if (Ctor->getNumParams() == 0)
9132       return 1;
9133     if (Ctor->isCopyOrMoveConstructor())
9134       return 2;
9135 
9136     // Per discussion on core reflector, never inherit a constructor which
9137     // would become a default, copy, or move constructor of Derived either.
9138     const ParmVarDecl *PD = Ctor->getParamDecl(0);
9139     const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
9140     return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
9141   }
9142 
9143   /// Declare a single inheriting constructor, inheriting the specified
9144   /// constructor, with the given type.
declareCtor(SourceLocation UsingLoc,const CXXConstructorDecl * BaseCtor,QualType DerivedType)9145   void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
9146                    QualType DerivedType) {
9147     InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
9148 
9149     // C++11 [class.inhctor]p3:
9150     //   ... a constructor is implicitly declared with the same constructor
9151     //   characteristics unless there is a user-declared constructor with
9152     //   the same signature in the class where the using-declaration appears
9153     if (Entry.DeclaredInDerived)
9154       return;
9155 
9156     // C++11 [class.inhctor]p7:
9157     //   If two using-declarations declare inheriting constructors with the
9158     //   same signature, the program is ill-formed
9159     if (Entry.DerivedCtor) {
9160       if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
9161         // Only diagnose this once per constructor.
9162         if (Entry.DerivedCtor->isInvalidDecl())
9163           return;
9164         Entry.DerivedCtor->setInvalidDecl();
9165 
9166         SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
9167         SemaRef.Diag(BaseCtor->getLocation(),
9168                      diag::note_using_decl_constructor_conflict_current_ctor);
9169         SemaRef.Diag(Entry.BaseCtor->getLocation(),
9170                      diag::note_using_decl_constructor_conflict_previous_ctor);
9171         SemaRef.Diag(Entry.DerivedCtor->getLocation(),
9172                      diag::note_using_decl_constructor_conflict_previous_using);
9173       } else {
9174         // Core issue (no number): if the same inheriting constructor is
9175         // produced by multiple base class constructors from the same base
9176         // class, the inheriting constructor is defined as deleted.
9177         SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
9178       }
9179 
9180       return;
9181     }
9182 
9183     ASTContext &Context = SemaRef.Context;
9184     DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
9185         Context.getCanonicalType(Context.getRecordType(Derived)));
9186     DeclarationNameInfo NameInfo(Name, UsingLoc);
9187 
9188     TemplateParameterList *TemplateParams = nullptr;
9189     if (const FunctionTemplateDecl *FTD =
9190             BaseCtor->getDescribedFunctionTemplate()) {
9191       TemplateParams = FTD->getTemplateParameters();
9192       // We're reusing template parameters from a different DeclContext. This
9193       // is questionable at best, but works out because the template depth in
9194       // both places is guaranteed to be 0.
9195       // FIXME: Rebuild the template parameters in the new context, and
9196       // transform the function type to refer to them.
9197     }
9198 
9199     // Build type source info pointing at the using-declaration. This is
9200     // required by template instantiation.
9201     TypeSourceInfo *TInfo =
9202         Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
9203     FunctionProtoTypeLoc ProtoLoc =
9204         TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
9205 
9206     CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
9207         Context, Derived, UsingLoc, NameInfo, DerivedType,
9208         TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
9209         /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
9210 
9211     // Build an unevaluated exception specification for this constructor.
9212     const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
9213     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9214     EPI.ExceptionSpec.Type = EST_Unevaluated;
9215     EPI.ExceptionSpec.SourceDecl = DerivedCtor;
9216     DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
9217                                                  FPT->getParamTypes(), EPI));
9218 
9219     // Build the parameter declarations.
9220     SmallVector<ParmVarDecl *, 16> ParamDecls;
9221     for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
9222       TypeSourceInfo *TInfo =
9223           Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
9224       ParmVarDecl *PD = ParmVarDecl::Create(
9225           Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
9226           FPT->getParamType(I), TInfo, SC_None, /*DefaultArg=*/nullptr);
9227       PD->setScopeInfo(0, I);
9228       PD->setImplicit();
9229       ParamDecls.push_back(PD);
9230       ProtoLoc.setParam(I, PD);
9231     }
9232 
9233     // Set up the new constructor.
9234     DerivedCtor->setAccess(BaseCtor->getAccess());
9235     DerivedCtor->setParams(ParamDecls);
9236     DerivedCtor->setInheritedConstructor(BaseCtor);
9237     if (BaseCtor->isDeleted())
9238       SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
9239 
9240     // If this is a constructor template, build the template declaration.
9241     if (TemplateParams) {
9242       FunctionTemplateDecl *DerivedTemplate =
9243           FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
9244                                        TemplateParams, DerivedCtor);
9245       DerivedTemplate->setAccess(BaseCtor->getAccess());
9246       DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
9247       Derived->addDecl(DerivedTemplate);
9248     } else {
9249       Derived->addDecl(DerivedCtor);
9250     }
9251 
9252     Entry.BaseCtor = BaseCtor;
9253     Entry.DerivedCtor = DerivedCtor;
9254   }
9255 
9256   Sema &SemaRef;
9257   CXXRecordDecl *Derived;
9258   typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
9259   MapType Map;
9260 };
9261 }
9262 
DeclareInheritingConstructors(CXXRecordDecl * ClassDecl)9263 void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
9264   // Defer declaring the inheriting constructors until the class is
9265   // instantiated.
9266   if (ClassDecl->isDependentContext())
9267     return;
9268 
9269   // Find base classes from which we might inherit constructors.
9270   SmallVector<CXXRecordDecl*, 4> InheritedBases;
9271   for (const auto &BaseIt : ClassDecl->bases())
9272     if (BaseIt.getInheritConstructors())
9273       InheritedBases.push_back(BaseIt.getType()->getAsCXXRecordDecl());
9274 
9275   // Go no further if we're not inheriting any constructors.
9276   if (InheritedBases.empty())
9277     return;
9278 
9279   // Declare the inherited constructors.
9280   InheritingConstructorInfo ICI(*this, ClassDecl);
9281   for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
9282     ICI.inheritAll(InheritedBases[I]);
9283 }
9284 
DefineInheritingConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)9285 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
9286                                        CXXConstructorDecl *Constructor) {
9287   CXXRecordDecl *ClassDecl = Constructor->getParent();
9288   assert(Constructor->getInheritedConstructor() &&
9289          !Constructor->doesThisDeclarationHaveABody() &&
9290          !Constructor->isDeleted());
9291 
9292   SynthesizedFunctionScope Scope(*this, Constructor);
9293   DiagnosticErrorTrap Trap(Diags);
9294   if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
9295       Trap.hasErrorOccurred()) {
9296     Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
9297       << Context.getTagDeclType(ClassDecl);
9298     Constructor->setInvalidDecl();
9299     return;
9300   }
9301 
9302   SourceLocation Loc = Constructor->getLocation();
9303   Constructor->setBody(new (Context) CompoundStmt(Loc));
9304 
9305   Constructor->markUsed(Context);
9306   MarkVTableUsed(CurrentLocation, ClassDecl);
9307 
9308   if (ASTMutationListener *L = getASTMutationListener()) {
9309     L->CompletedImplicitDefinition(Constructor);
9310   }
9311 }
9312 
9313 
9314 Sema::ImplicitExceptionSpecification
ComputeDefaultedDtorExceptionSpec(CXXMethodDecl * MD)9315 Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
9316   CXXRecordDecl *ClassDecl = MD->getParent();
9317 
9318   // C++ [except.spec]p14:
9319   //   An implicitly declared special member function (Clause 12) shall have
9320   //   an exception-specification.
9321   ImplicitExceptionSpecification ExceptSpec(*this);
9322   if (ClassDecl->isInvalidDecl())
9323     return ExceptSpec;
9324 
9325   // Direct base-class destructors.
9326   for (const auto &B : ClassDecl->bases()) {
9327     if (B.isVirtual()) // Handled below.
9328       continue;
9329 
9330     if (const RecordType *BaseType = B.getType()->getAs<RecordType>())
9331       ExceptSpec.CalledDecl(B.getLocStart(),
9332                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
9333   }
9334 
9335   // Virtual base-class destructors.
9336   for (const auto &B : ClassDecl->vbases()) {
9337     if (const RecordType *BaseType = B.getType()->getAs<RecordType>())
9338       ExceptSpec.CalledDecl(B.getLocStart(),
9339                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
9340   }
9341 
9342   // Field destructors.
9343   for (const auto *F : ClassDecl->fields()) {
9344     if (const RecordType *RecordTy
9345         = Context.getBaseElementType(F->getType())->getAs<RecordType>())
9346       ExceptSpec.CalledDecl(F->getLocation(),
9347                   LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
9348   }
9349 
9350   return ExceptSpec;
9351 }
9352 
DeclareImplicitDestructor(CXXRecordDecl * ClassDecl)9353 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
9354   // C++ [class.dtor]p2:
9355   //   If a class has no user-declared destructor, a destructor is
9356   //   declared implicitly. An implicitly-declared destructor is an
9357   //   inline public member of its class.
9358   assert(ClassDecl->needsImplicitDestructor());
9359 
9360   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
9361   if (DSM.isAlreadyBeingDeclared())
9362     return nullptr;
9363 
9364   // Create the actual destructor declaration.
9365   CanQualType ClassType
9366     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
9367   SourceLocation ClassLoc = ClassDecl->getLocation();
9368   DeclarationName Name
9369     = Context.DeclarationNames.getCXXDestructorName(ClassType);
9370   DeclarationNameInfo NameInfo(Name, ClassLoc);
9371   CXXDestructorDecl *Destructor
9372       = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
9373                                   QualType(), nullptr, /*isInline=*/true,
9374                                   /*isImplicitlyDeclared=*/true);
9375   Destructor->setAccess(AS_public);
9376   Destructor->setDefaulted();
9377 
9378   if (getLangOpts().CUDA) {
9379     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
9380                                             Destructor,
9381                                             /* ConstRHS */ false,
9382                                             /* Diagnose */ false);
9383   }
9384 
9385   // Build an exception specification pointing back at this destructor.
9386   FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, Destructor);
9387   Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
9388 
9389   AddOverriddenMethods(ClassDecl, Destructor);
9390 
9391   // We don't need to use SpecialMemberIsTrivial here; triviality for
9392   // destructors is easy to compute.
9393   Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
9394 
9395   if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
9396     SetDeclDeleted(Destructor, ClassLoc);
9397 
9398   // Note that we have declared this destructor.
9399   ++ASTContext::NumImplicitDestructorsDeclared;
9400 
9401   // Introduce this destructor into its scope.
9402   if (Scope *S = getScopeForContext(ClassDecl))
9403     PushOnScopeChains(Destructor, S, false);
9404   ClassDecl->addDecl(Destructor);
9405 
9406   return Destructor;
9407 }
9408 
DefineImplicitDestructor(SourceLocation CurrentLocation,CXXDestructorDecl * Destructor)9409 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
9410                                     CXXDestructorDecl *Destructor) {
9411   assert((Destructor->isDefaulted() &&
9412           !Destructor->doesThisDeclarationHaveABody() &&
9413           !Destructor->isDeleted()) &&
9414          "DefineImplicitDestructor - call it for implicit default dtor");
9415   CXXRecordDecl *ClassDecl = Destructor->getParent();
9416   assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
9417 
9418   if (Destructor->isInvalidDecl())
9419     return;
9420 
9421   SynthesizedFunctionScope Scope(*this, Destructor);
9422 
9423   DiagnosticErrorTrap Trap(Diags);
9424   MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
9425                                          Destructor->getParent());
9426 
9427   if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
9428     Diag(CurrentLocation, diag::note_member_synthesized_at)
9429       << CXXDestructor << Context.getTagDeclType(ClassDecl);
9430 
9431     Destructor->setInvalidDecl();
9432     return;
9433   }
9434 
9435   // The exception specification is needed because we are defining the
9436   // function.
9437   ResolveExceptionSpec(CurrentLocation,
9438                        Destructor->getType()->castAs<FunctionProtoType>());
9439 
9440   SourceLocation Loc = Destructor->getLocEnd().isValid()
9441                            ? Destructor->getLocEnd()
9442                            : Destructor->getLocation();
9443   Destructor->setBody(new (Context) CompoundStmt(Loc));
9444   Destructor->markUsed(Context);
9445   MarkVTableUsed(CurrentLocation, ClassDecl);
9446 
9447   if (ASTMutationListener *L = getASTMutationListener()) {
9448     L->CompletedImplicitDefinition(Destructor);
9449   }
9450 }
9451 
9452 /// \brief Perform any semantic analysis which needs to be delayed until all
9453 /// pending class member declarations have been parsed.
ActOnFinishCXXMemberDecls()9454 void Sema::ActOnFinishCXXMemberDecls() {
9455   // If the context is an invalid C++ class, just suppress these checks.
9456   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
9457     if (Record->isInvalidDecl()) {
9458       DelayedDefaultedMemberExceptionSpecs.clear();
9459       DelayedExceptionSpecChecks.clear();
9460       return;
9461     }
9462   }
9463 }
9464 
getDefaultArgExprsForConstructors(Sema & S,CXXRecordDecl * Class)9465 static void getDefaultArgExprsForConstructors(Sema &S, CXXRecordDecl *Class) {
9466   // Don't do anything for template patterns.
9467   if (Class->getDescribedClassTemplate())
9468     return;
9469 
9470   for (Decl *Member : Class->decls()) {
9471     auto *CD = dyn_cast<CXXConstructorDecl>(Member);
9472     if (!CD) {
9473       // Recurse on nested classes.
9474       if (auto *NestedRD = dyn_cast<CXXRecordDecl>(Member))
9475         getDefaultArgExprsForConstructors(S, NestedRD);
9476       continue;
9477     } else if (!CD->isDefaultConstructor() || !CD->hasAttr<DLLExportAttr>()) {
9478       continue;
9479     }
9480 
9481     for (unsigned I = 0, E = CD->getNumParams(); I != E; ++I) {
9482       // Skip any default arguments that we've already instantiated.
9483       if (S.Context.getDefaultArgExprForConstructor(CD, I))
9484         continue;
9485 
9486       Expr *DefaultArg = S.BuildCXXDefaultArgExpr(Class->getLocation(), CD,
9487                                                   CD->getParamDecl(I)).get();
9488       S.DiscardCleanupsInEvaluationContext();
9489       S.Context.addDefaultArgExprForConstructor(CD, I, DefaultArg);
9490     }
9491   }
9492 }
9493 
ActOnFinishCXXNonNestedClass(Decl * D)9494 void Sema::ActOnFinishCXXNonNestedClass(Decl *D) {
9495   auto *RD = dyn_cast<CXXRecordDecl>(D);
9496 
9497   // Default constructors that are annotated with __declspec(dllexport) which
9498   // have default arguments or don't use the standard calling convention are
9499   // wrapped with a thunk called the default constructor closure.
9500   if (RD && Context.getTargetInfo().getCXXABI().isMicrosoft())
9501     getDefaultArgExprsForConstructors(*this, RD);
9502 
9503   if (!DelayedDllExportClasses.empty()) {
9504     // Calling ReferenceDllExportedMethods might cause the current function to
9505     // be called again, so use a local copy of DelayedDllExportClasses.
9506     SmallVector<CXXRecordDecl *, 4> WorkList;
9507     std::swap(DelayedDllExportClasses, WorkList);
9508     for (CXXRecordDecl *Class : WorkList)
9509       ReferenceDllExportedMethods(*this, Class);
9510   }
9511 }
9512 
AdjustDestructorExceptionSpec(CXXRecordDecl * ClassDecl,CXXDestructorDecl * Destructor)9513 void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
9514                                          CXXDestructorDecl *Destructor) {
9515   assert(getLangOpts().CPlusPlus11 &&
9516          "adjusting dtor exception specs was introduced in c++11");
9517 
9518   // C++11 [class.dtor]p3:
9519   //   A declaration of a destructor that does not have an exception-
9520   //   specification is implicitly considered to have the same exception-
9521   //   specification as an implicit declaration.
9522   const FunctionProtoType *DtorType = Destructor->getType()->
9523                                         getAs<FunctionProtoType>();
9524   if (DtorType->hasExceptionSpec())
9525     return;
9526 
9527   // Replace the destructor's type, building off the existing one. Fortunately,
9528   // the only thing of interest in the destructor type is its extended info.
9529   // The return and arguments are fixed.
9530   FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
9531   EPI.ExceptionSpec.Type = EST_Unevaluated;
9532   EPI.ExceptionSpec.SourceDecl = Destructor;
9533   Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
9534 
9535   // FIXME: If the destructor has a body that could throw, and the newly created
9536   // spec doesn't allow exceptions, we should emit a warning, because this
9537   // change in behavior can break conforming C++03 programs at runtime.
9538   // However, we don't have a body or an exception specification yet, so it
9539   // needs to be done somewhere else.
9540 }
9541 
9542 namespace {
9543 /// \brief An abstract base class for all helper classes used in building the
9544 //  copy/move operators. These classes serve as factory functions and help us
9545 //  avoid using the same Expr* in the AST twice.
9546 class ExprBuilder {
9547   ExprBuilder(const ExprBuilder&) = delete;
9548   ExprBuilder &operator=(const ExprBuilder&) = delete;
9549 
9550 protected:
assertNotNull(Expr * E)9551   static Expr *assertNotNull(Expr *E) {
9552     assert(E && "Expression construction must not fail.");
9553     return E;
9554   }
9555 
9556 public:
ExprBuilder()9557   ExprBuilder() {}
~ExprBuilder()9558   virtual ~ExprBuilder() {}
9559 
9560   virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
9561 };
9562 
9563 class RefBuilder: public ExprBuilder {
9564   VarDecl *Var;
9565   QualType VarType;
9566 
9567 public:
build(Sema & S,SourceLocation Loc) const9568   Expr *build(Sema &S, SourceLocation Loc) const override {
9569     return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc).get());
9570   }
9571 
RefBuilder(VarDecl * Var,QualType VarType)9572   RefBuilder(VarDecl *Var, QualType VarType)
9573       : Var(Var), VarType(VarType) {}
9574 };
9575 
9576 class ThisBuilder: public ExprBuilder {
9577 public:
build(Sema & S,SourceLocation Loc) const9578   Expr *build(Sema &S, SourceLocation Loc) const override {
9579     return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
9580   }
9581 };
9582 
9583 class CastBuilder: public ExprBuilder {
9584   const ExprBuilder &Builder;
9585   QualType Type;
9586   ExprValueKind Kind;
9587   const CXXCastPath &Path;
9588 
9589 public:
build(Sema & S,SourceLocation Loc) const9590   Expr *build(Sema &S, SourceLocation Loc) const override {
9591     return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
9592                                              CK_UncheckedDerivedToBase, Kind,
9593                                              &Path).get());
9594   }
9595 
CastBuilder(const ExprBuilder & Builder,QualType Type,ExprValueKind Kind,const CXXCastPath & Path)9596   CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
9597               const CXXCastPath &Path)
9598       : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
9599 };
9600 
9601 class DerefBuilder: public ExprBuilder {
9602   const ExprBuilder &Builder;
9603 
9604 public:
build(Sema & S,SourceLocation Loc) const9605   Expr *build(Sema &S, SourceLocation Loc) const override {
9606     return assertNotNull(
9607         S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
9608   }
9609 
DerefBuilder(const ExprBuilder & Builder)9610   DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9611 };
9612 
9613 class MemberBuilder: public ExprBuilder {
9614   const ExprBuilder &Builder;
9615   QualType Type;
9616   CXXScopeSpec SS;
9617   bool IsArrow;
9618   LookupResult &MemberLookup;
9619 
9620 public:
build(Sema & S,SourceLocation Loc) const9621   Expr *build(Sema &S, SourceLocation Loc) const override {
9622     return assertNotNull(S.BuildMemberReferenceExpr(
9623         Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
9624         nullptr, MemberLookup, nullptr, nullptr).get());
9625   }
9626 
MemberBuilder(const ExprBuilder & Builder,QualType Type,bool IsArrow,LookupResult & MemberLookup)9627   MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
9628                 LookupResult &MemberLookup)
9629       : Builder(Builder), Type(Type), IsArrow(IsArrow),
9630         MemberLookup(MemberLookup) {}
9631 };
9632 
9633 class MoveCastBuilder: public ExprBuilder {
9634   const ExprBuilder &Builder;
9635 
9636 public:
build(Sema & S,SourceLocation Loc) const9637   Expr *build(Sema &S, SourceLocation Loc) const override {
9638     return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
9639   }
9640 
MoveCastBuilder(const ExprBuilder & Builder)9641   MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9642 };
9643 
9644 class LvalueConvBuilder: public ExprBuilder {
9645   const ExprBuilder &Builder;
9646 
9647 public:
build(Sema & S,SourceLocation Loc) const9648   Expr *build(Sema &S, SourceLocation Loc) const override {
9649     return assertNotNull(
9650         S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
9651   }
9652 
LvalueConvBuilder(const ExprBuilder & Builder)9653   LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9654 };
9655 
9656 class SubscriptBuilder: public ExprBuilder {
9657   const ExprBuilder &Base;
9658   const ExprBuilder &Index;
9659 
9660 public:
build(Sema & S,SourceLocation Loc) const9661   Expr *build(Sema &S, SourceLocation Loc) const override {
9662     return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
9663         Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
9664   }
9665 
SubscriptBuilder(const ExprBuilder & Base,const ExprBuilder & Index)9666   SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
9667       : Base(Base), Index(Index) {}
9668 };
9669 
9670 } // end anonymous namespace
9671 
9672 /// When generating a defaulted copy or move assignment operator, if a field
9673 /// should be copied with __builtin_memcpy rather than via explicit assignments,
9674 /// do so. This optimization only applies for arrays of scalars, and for arrays
9675 /// of class type where the selected copy/move-assignment operator is trivial.
9676 static StmtResult
buildMemcpyForAssignmentOp(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & ToB,const ExprBuilder & FromB)9677 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
9678                            const ExprBuilder &ToB, const ExprBuilder &FromB) {
9679   // Compute the size of the memory buffer to be copied.
9680   QualType SizeType = S.Context.getSizeType();
9681   llvm::APInt Size(S.Context.getTypeSize(SizeType),
9682                    S.Context.getTypeSizeInChars(T).getQuantity());
9683 
9684   // Take the address of the field references for "from" and "to". We
9685   // directly construct UnaryOperators here because semantic analysis
9686   // does not permit us to take the address of an xvalue.
9687   Expr *From = FromB.build(S, Loc);
9688   From = new (S.Context) UnaryOperator(From, UO_AddrOf,
9689                          S.Context.getPointerType(From->getType()),
9690                          VK_RValue, OK_Ordinary, Loc);
9691   Expr *To = ToB.build(S, Loc);
9692   To = new (S.Context) UnaryOperator(To, UO_AddrOf,
9693                        S.Context.getPointerType(To->getType()),
9694                        VK_RValue, OK_Ordinary, Loc);
9695 
9696   const Type *E = T->getBaseElementTypeUnsafe();
9697   bool NeedsCollectableMemCpy =
9698     E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
9699 
9700   // Create a reference to the __builtin_objc_memmove_collectable function
9701   StringRef MemCpyName = NeedsCollectableMemCpy ?
9702     "__builtin_objc_memmove_collectable" :
9703     "__builtin_memcpy";
9704   LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
9705                  Sema::LookupOrdinaryName);
9706   S.LookupName(R, S.TUScope, true);
9707 
9708   FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
9709   if (!MemCpy)
9710     // Something went horribly wrong earlier, and we will have complained
9711     // about it.
9712     return StmtError();
9713 
9714   ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
9715                                             VK_RValue, Loc, nullptr);
9716   assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
9717 
9718   Expr *CallArgs[] = {
9719     To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
9720   };
9721   ExprResult Call = S.ActOnCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
9722                                     Loc, CallArgs, Loc);
9723 
9724   assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
9725   return Call.getAs<Stmt>();
9726 }
9727 
9728 /// \brief Builds a statement that copies/moves the given entity from \p From to
9729 /// \c To.
9730 ///
9731 /// This routine is used to copy/move the members of a class with an
9732 /// implicitly-declared copy/move assignment operator. When the entities being
9733 /// copied are arrays, this routine builds for loops to copy them.
9734 ///
9735 /// \param S The Sema object used for type-checking.
9736 ///
9737 /// \param Loc The location where the implicit copy/move is being generated.
9738 ///
9739 /// \param T The type of the expressions being copied/moved. Both expressions
9740 /// must have this type.
9741 ///
9742 /// \param To The expression we are copying/moving to.
9743 ///
9744 /// \param From The expression we are copying/moving from.
9745 ///
9746 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
9747 /// Otherwise, it's a non-static member subobject.
9748 ///
9749 /// \param Copying Whether we're copying or moving.
9750 ///
9751 /// \param Depth Internal parameter recording the depth of the recursion.
9752 ///
9753 /// \returns A statement or a loop that copies the expressions, or StmtResult(0)
9754 /// if a memcpy should be used instead.
9755 static StmtResult
buildSingleCopyAssignRecursively(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & To,const ExprBuilder & From,bool CopyingBaseSubobject,bool Copying,unsigned Depth=0)9756 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
9757                                  const ExprBuilder &To, const ExprBuilder &From,
9758                                  bool CopyingBaseSubobject, bool Copying,
9759                                  unsigned Depth = 0) {
9760   // C++11 [class.copy]p28:
9761   //   Each subobject is assigned in the manner appropriate to its type:
9762   //
9763   //     - if the subobject is of class type, as if by a call to operator= with
9764   //       the subobject as the object expression and the corresponding
9765   //       subobject of x as a single function argument (as if by explicit
9766   //       qualification; that is, ignoring any possible virtual overriding
9767   //       functions in more derived classes);
9768   //
9769   // C++03 [class.copy]p13:
9770   //     - if the subobject is of class type, the copy assignment operator for
9771   //       the class is used (as if by explicit qualification; that is,
9772   //       ignoring any possible virtual overriding functions in more derived
9773   //       classes);
9774   if (const RecordType *RecordTy = T->getAs<RecordType>()) {
9775     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
9776 
9777     // Look for operator=.
9778     DeclarationName Name
9779       = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9780     LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
9781     S.LookupQualifiedName(OpLookup, ClassDecl, false);
9782 
9783     // Prior to C++11, filter out any result that isn't a copy/move-assignment
9784     // operator.
9785     if (!S.getLangOpts().CPlusPlus11) {
9786       LookupResult::Filter F = OpLookup.makeFilter();
9787       while (F.hasNext()) {
9788         NamedDecl *D = F.next();
9789         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
9790           if (Method->isCopyAssignmentOperator() ||
9791               (!Copying && Method->isMoveAssignmentOperator()))
9792             continue;
9793 
9794         F.erase();
9795       }
9796       F.done();
9797     }
9798 
9799     // Suppress the protected check (C++ [class.protected]) for each of the
9800     // assignment operators we found. This strange dance is required when
9801     // we're assigning via a base classes's copy-assignment operator. To
9802     // ensure that we're getting the right base class subobject (without
9803     // ambiguities), we need to cast "this" to that subobject type; to
9804     // ensure that we don't go through the virtual call mechanism, we need
9805     // to qualify the operator= name with the base class (see below). However,
9806     // this means that if the base class has a protected copy assignment
9807     // operator, the protected member access check will fail. So, we
9808     // rewrite "protected" access to "public" access in this case, since we
9809     // know by construction that we're calling from a derived class.
9810     if (CopyingBaseSubobject) {
9811       for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
9812            L != LEnd; ++L) {
9813         if (L.getAccess() == AS_protected)
9814           L.setAccess(AS_public);
9815       }
9816     }
9817 
9818     // Create the nested-name-specifier that will be used to qualify the
9819     // reference to operator=; this is required to suppress the virtual
9820     // call mechanism.
9821     CXXScopeSpec SS;
9822     const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
9823     SS.MakeTrivial(S.Context,
9824                    NestedNameSpecifier::Create(S.Context, nullptr, false,
9825                                                CanonicalT),
9826                    Loc);
9827 
9828     // Create the reference to operator=.
9829     ExprResult OpEqualRef
9830       = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*isArrow=*/false,
9831                                    SS, /*TemplateKWLoc=*/SourceLocation(),
9832                                    /*FirstQualifierInScope=*/nullptr,
9833                                    OpLookup,
9834                                    /*TemplateArgs=*/nullptr, /*S*/nullptr,
9835                                    /*SuppressQualifierCheck=*/true);
9836     if (OpEqualRef.isInvalid())
9837       return StmtError();
9838 
9839     // Build the call to the assignment operator.
9840 
9841     Expr *FromInst = From.build(S, Loc);
9842     ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
9843                                                   OpEqualRef.getAs<Expr>(),
9844                                                   Loc, FromInst, Loc);
9845     if (Call.isInvalid())
9846       return StmtError();
9847 
9848     // If we built a call to a trivial 'operator=' while copying an array,
9849     // bail out. We'll replace the whole shebang with a memcpy.
9850     CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
9851     if (CE && CE->getMethodDecl()->isTrivial() && Depth)
9852       return StmtResult((Stmt*)nullptr);
9853 
9854     // Convert to an expression-statement, and clean up any produced
9855     // temporaries.
9856     return S.ActOnExprStmt(Call);
9857   }
9858 
9859   //     - if the subobject is of scalar type, the built-in assignment
9860   //       operator is used.
9861   const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
9862   if (!ArrayTy) {
9863     ExprResult Assignment = S.CreateBuiltinBinOp(
9864         Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
9865     if (Assignment.isInvalid())
9866       return StmtError();
9867     return S.ActOnExprStmt(Assignment);
9868   }
9869 
9870   //     - if the subobject is an array, each element is assigned, in the
9871   //       manner appropriate to the element type;
9872 
9873   // Construct a loop over the array bounds, e.g.,
9874   //
9875   //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
9876   //
9877   // that will copy each of the array elements.
9878   QualType SizeType = S.Context.getSizeType();
9879 
9880   // Create the iteration variable.
9881   IdentifierInfo *IterationVarName = nullptr;
9882   {
9883     SmallString<8> Str;
9884     llvm::raw_svector_ostream OS(Str);
9885     OS << "__i" << Depth;
9886     IterationVarName = &S.Context.Idents.get(OS.str());
9887   }
9888   VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
9889                                           IterationVarName, SizeType,
9890                             S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
9891                                           SC_None);
9892 
9893   // Initialize the iteration variable to zero.
9894   llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
9895   IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
9896 
9897   // Creates a reference to the iteration variable.
9898   RefBuilder IterationVarRef(IterationVar, SizeType);
9899   LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
9900 
9901   // Create the DeclStmt that holds the iteration variable.
9902   Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
9903 
9904   // Subscript the "from" and "to" expressions with the iteration variable.
9905   SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
9906   MoveCastBuilder FromIndexMove(FromIndexCopy);
9907   const ExprBuilder *FromIndex;
9908   if (Copying)
9909     FromIndex = &FromIndexCopy;
9910   else
9911     FromIndex = &FromIndexMove;
9912 
9913   SubscriptBuilder ToIndex(To, IterationVarRefRVal);
9914 
9915   // Build the copy/move for an individual element of the array.
9916   StmtResult Copy =
9917     buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
9918                                      ToIndex, *FromIndex, CopyingBaseSubobject,
9919                                      Copying, Depth + 1);
9920   // Bail out if copying fails or if we determined that we should use memcpy.
9921   if (Copy.isInvalid() || !Copy.get())
9922     return Copy;
9923 
9924   // Create the comparison against the array bound.
9925   llvm::APInt Upper
9926     = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
9927   Expr *Comparison
9928     = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
9929                      IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
9930                                      BO_NE, S.Context.BoolTy,
9931                                      VK_RValue, OK_Ordinary, Loc, false);
9932 
9933   // Create the pre-increment of the iteration variable.
9934   Expr *Increment
9935     = new (S.Context) UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc,
9936                                     SizeType, VK_LValue, OK_Ordinary, Loc);
9937 
9938   // Construct the loop that copies all elements of this array.
9939   return S.ActOnForStmt(Loc, Loc, InitStmt,
9940                         S.MakeFullExpr(Comparison),
9941                         nullptr, S.MakeFullDiscardedValueExpr(Increment),
9942                         Loc, Copy.get());
9943 }
9944 
9945 static StmtResult
buildSingleCopyAssign(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & To,const ExprBuilder & From,bool CopyingBaseSubobject,bool Copying)9946 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
9947                       const ExprBuilder &To, const ExprBuilder &From,
9948                       bool CopyingBaseSubobject, bool Copying) {
9949   // Maybe we should use a memcpy?
9950   if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
9951       T.isTriviallyCopyableType(S.Context))
9952     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9953 
9954   StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
9955                                                      CopyingBaseSubobject,
9956                                                      Copying, 0));
9957 
9958   // If we ended up picking a trivial assignment operator for an array of a
9959   // non-trivially-copyable class type, just emit a memcpy.
9960   if (!Result.isInvalid() && !Result.get())
9961     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9962 
9963   return Result;
9964 }
9965 
9966 Sema::ImplicitExceptionSpecification
ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl * MD)9967 Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
9968   CXXRecordDecl *ClassDecl = MD->getParent();
9969 
9970   ImplicitExceptionSpecification ExceptSpec(*this);
9971   if (ClassDecl->isInvalidDecl())
9972     return ExceptSpec;
9973 
9974   const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9975   assert(T->getNumParams() == 1 && "not a copy assignment op");
9976   unsigned ArgQuals =
9977       T->getParamType(0).getNonReferenceType().getCVRQualifiers();
9978 
9979   // C++ [except.spec]p14:
9980   //   An implicitly declared special member function (Clause 12) shall have an
9981   //   exception-specification. [...]
9982 
9983   // It is unspecified whether or not an implicit copy assignment operator
9984   // attempts to deduplicate calls to assignment operators of virtual bases are
9985   // made. As such, this exception specification is effectively unspecified.
9986   // Based on a similar decision made for constness in C++0x, we're erring on
9987   // the side of assuming such calls to be made regardless of whether they
9988   // actually happen.
9989   for (const auto &Base : ClassDecl->bases()) {
9990     if (Base.isVirtual())
9991       continue;
9992 
9993     CXXRecordDecl *BaseClassDecl
9994       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
9995     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9996                                                             ArgQuals, false, 0))
9997       ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign);
9998   }
9999 
10000   for (const auto &Base : ClassDecl->vbases()) {
10001     CXXRecordDecl *BaseClassDecl
10002       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10003     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
10004                                                             ArgQuals, false, 0))
10005       ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign);
10006   }
10007 
10008   for (const auto *Field : ClassDecl->fields()) {
10009     QualType FieldType = Context.getBaseElementType(Field->getType());
10010     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
10011       if (CXXMethodDecl *CopyAssign =
10012           LookupCopyingAssignment(FieldClassDecl,
10013                                   ArgQuals | FieldType.getCVRQualifiers(),
10014                                   false, 0))
10015         ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
10016     }
10017   }
10018 
10019   return ExceptSpec;
10020 }
10021 
DeclareImplicitCopyAssignment(CXXRecordDecl * ClassDecl)10022 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
10023   // Note: The following rules are largely analoguous to the copy
10024   // constructor rules. Note that virtual bases are not taken into account
10025   // for determining the argument type of the operator. Note also that
10026   // operators taking an object instead of a reference are allowed.
10027   assert(ClassDecl->needsImplicitCopyAssignment());
10028 
10029   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
10030   if (DSM.isAlreadyBeingDeclared())
10031     return nullptr;
10032 
10033   QualType ArgType = Context.getTypeDeclType(ClassDecl);
10034   QualType RetType = Context.getLValueReferenceType(ArgType);
10035   bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
10036   if (Const)
10037     ArgType = ArgType.withConst();
10038   ArgType = Context.getLValueReferenceType(ArgType);
10039 
10040   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10041                                                      CXXCopyAssignment,
10042                                                      Const);
10043 
10044   //   An implicitly-declared copy assignment operator is an inline public
10045   //   member of its class.
10046   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
10047   SourceLocation ClassLoc = ClassDecl->getLocation();
10048   DeclarationNameInfo NameInfo(Name, ClassLoc);
10049   CXXMethodDecl *CopyAssignment =
10050       CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
10051                             /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
10052                             /*isInline=*/true, Constexpr, SourceLocation());
10053   CopyAssignment->setAccess(AS_public);
10054   CopyAssignment->setDefaulted();
10055   CopyAssignment->setImplicit();
10056 
10057   if (getLangOpts().CUDA) {
10058     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
10059                                             CopyAssignment,
10060                                             /* ConstRHS */ Const,
10061                                             /* Diagnose */ false);
10062   }
10063 
10064   // Build an exception specification pointing back at this member.
10065   FunctionProtoType::ExtProtoInfo EPI =
10066       getImplicitMethodEPI(*this, CopyAssignment);
10067   CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
10068 
10069   // Add the parameter to the operator.
10070   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
10071                                                ClassLoc, ClassLoc,
10072                                                /*Id=*/nullptr, ArgType,
10073                                                /*TInfo=*/nullptr, SC_None,
10074                                                nullptr);
10075   CopyAssignment->setParams(FromParam);
10076 
10077   AddOverriddenMethods(ClassDecl, CopyAssignment);
10078 
10079   CopyAssignment->setTrivial(
10080     ClassDecl->needsOverloadResolutionForCopyAssignment()
10081       ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
10082       : ClassDecl->hasTrivialCopyAssignment());
10083 
10084   if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
10085     SetDeclDeleted(CopyAssignment, ClassLoc);
10086 
10087   // Note that we have added this copy-assignment operator.
10088   ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
10089 
10090   if (Scope *S = getScopeForContext(ClassDecl))
10091     PushOnScopeChains(CopyAssignment, S, false);
10092   ClassDecl->addDecl(CopyAssignment);
10093 
10094   return CopyAssignment;
10095 }
10096 
10097 /// Diagnose an implicit copy operation for a class which is odr-used, but
10098 /// which is deprecated because the class has a user-declared copy constructor,
10099 /// copy assignment operator, or destructor.
diagnoseDeprecatedCopyOperation(Sema & S,CXXMethodDecl * CopyOp,SourceLocation UseLoc)10100 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
10101                                             SourceLocation UseLoc) {
10102   assert(CopyOp->isImplicit());
10103 
10104   CXXRecordDecl *RD = CopyOp->getParent();
10105   CXXMethodDecl *UserDeclaredOperation = nullptr;
10106 
10107   // In Microsoft mode, assignment operations don't affect constructors and
10108   // vice versa.
10109   if (RD->hasUserDeclaredDestructor()) {
10110     UserDeclaredOperation = RD->getDestructor();
10111   } else if (!isa<CXXConstructorDecl>(CopyOp) &&
10112              RD->hasUserDeclaredCopyConstructor() &&
10113              !S.getLangOpts().MSVCCompat) {
10114     // Find any user-declared copy constructor.
10115     for (auto *I : RD->ctors()) {
10116       if (I->isCopyConstructor()) {
10117         UserDeclaredOperation = I;
10118         break;
10119       }
10120     }
10121     assert(UserDeclaredOperation);
10122   } else if (isa<CXXConstructorDecl>(CopyOp) &&
10123              RD->hasUserDeclaredCopyAssignment() &&
10124              !S.getLangOpts().MSVCCompat) {
10125     // Find any user-declared move assignment operator.
10126     for (auto *I : RD->methods()) {
10127       if (I->isCopyAssignmentOperator()) {
10128         UserDeclaredOperation = I;
10129         break;
10130       }
10131     }
10132     assert(UserDeclaredOperation);
10133   }
10134 
10135   if (UserDeclaredOperation) {
10136     S.Diag(UserDeclaredOperation->getLocation(),
10137          diag::warn_deprecated_copy_operation)
10138       << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
10139       << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
10140     S.Diag(UseLoc, diag::note_member_synthesized_at)
10141       << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
10142                                           : Sema::CXXCopyAssignment)
10143       << RD;
10144   }
10145 }
10146 
DefineImplicitCopyAssignment(SourceLocation CurrentLocation,CXXMethodDecl * CopyAssignOperator)10147 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
10148                                         CXXMethodDecl *CopyAssignOperator) {
10149   assert((CopyAssignOperator->isDefaulted() &&
10150           CopyAssignOperator->isOverloadedOperator() &&
10151           CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
10152           !CopyAssignOperator->doesThisDeclarationHaveABody() &&
10153           !CopyAssignOperator->isDeleted()) &&
10154          "DefineImplicitCopyAssignment called for wrong function");
10155 
10156   CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
10157 
10158   if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
10159     CopyAssignOperator->setInvalidDecl();
10160     return;
10161   }
10162 
10163   // C++11 [class.copy]p18:
10164   //   The [definition of an implicitly declared copy assignment operator] is
10165   //   deprecated if the class has a user-declared copy constructor or a
10166   //   user-declared destructor.
10167   if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
10168     diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
10169 
10170   CopyAssignOperator->markUsed(Context);
10171 
10172   SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
10173   DiagnosticErrorTrap Trap(Diags);
10174 
10175   // C++0x [class.copy]p30:
10176   //   The implicitly-defined or explicitly-defaulted copy assignment operator
10177   //   for a non-union class X performs memberwise copy assignment of its
10178   //   subobjects. The direct base classes of X are assigned first, in the
10179   //   order of their declaration in the base-specifier-list, and then the
10180   //   immediate non-static data members of X are assigned, in the order in
10181   //   which they were declared in the class definition.
10182 
10183   // The statements that form the synthesized function body.
10184   SmallVector<Stmt*, 8> Statements;
10185 
10186   // The parameter for the "other" object, which we are copying from.
10187   ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
10188   Qualifiers OtherQuals = Other->getType().getQualifiers();
10189   QualType OtherRefType = Other->getType();
10190   if (const LValueReferenceType *OtherRef
10191                                 = OtherRefType->getAs<LValueReferenceType>()) {
10192     OtherRefType = OtherRef->getPointeeType();
10193     OtherQuals = OtherRefType.getQualifiers();
10194   }
10195 
10196   // Our location for everything implicitly-generated.
10197   SourceLocation Loc = CopyAssignOperator->getLocEnd().isValid()
10198                            ? CopyAssignOperator->getLocEnd()
10199                            : CopyAssignOperator->getLocation();
10200 
10201   // Builds a DeclRefExpr for the "other" object.
10202   RefBuilder OtherRef(Other, OtherRefType);
10203 
10204   // Builds the "this" pointer.
10205   ThisBuilder This;
10206 
10207   // Assign base classes.
10208   bool Invalid = false;
10209   for (auto &Base : ClassDecl->bases()) {
10210     // Form the assignment:
10211     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
10212     QualType BaseType = Base.getType().getUnqualifiedType();
10213     if (!BaseType->isRecordType()) {
10214       Invalid = true;
10215       continue;
10216     }
10217 
10218     CXXCastPath BasePath;
10219     BasePath.push_back(&Base);
10220 
10221     // Construct the "from" expression, which is an implicit cast to the
10222     // appropriately-qualified base type.
10223     CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
10224                      VK_LValue, BasePath);
10225 
10226     // Dereference "this".
10227     DerefBuilder DerefThis(This);
10228     CastBuilder To(DerefThis,
10229                    Context.getCVRQualifiedType(
10230                        BaseType, CopyAssignOperator->getTypeQualifiers()),
10231                    VK_LValue, BasePath);
10232 
10233     // Build the copy.
10234     StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
10235                                             To, From,
10236                                             /*CopyingBaseSubobject=*/true,
10237                                             /*Copying=*/true);
10238     if (Copy.isInvalid()) {
10239       Diag(CurrentLocation, diag::note_member_synthesized_at)
10240         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10241       CopyAssignOperator->setInvalidDecl();
10242       return;
10243     }
10244 
10245     // Success! Record the copy.
10246     Statements.push_back(Copy.getAs<Expr>());
10247   }
10248 
10249   // Assign non-static members.
10250   for (auto *Field : ClassDecl->fields()) {
10251     // FIXME: We should form some kind of AST representation for the implied
10252     // memcpy in a union copy operation.
10253     if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
10254       continue;
10255 
10256     if (Field->isInvalidDecl()) {
10257       Invalid = true;
10258       continue;
10259     }
10260 
10261     // Check for members of reference type; we can't copy those.
10262     if (Field->getType()->isReferenceType()) {
10263       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10264         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
10265       Diag(Field->getLocation(), diag::note_declared_at);
10266       Diag(CurrentLocation, diag::note_member_synthesized_at)
10267         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10268       Invalid = true;
10269       continue;
10270     }
10271 
10272     // Check for members of const-qualified, non-class type.
10273     QualType BaseType = Context.getBaseElementType(Field->getType());
10274     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
10275       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10276         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
10277       Diag(Field->getLocation(), diag::note_declared_at);
10278       Diag(CurrentLocation, diag::note_member_synthesized_at)
10279         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10280       Invalid = true;
10281       continue;
10282     }
10283 
10284     // Suppress assigning zero-width bitfields.
10285     if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
10286       continue;
10287 
10288     QualType FieldType = Field->getType().getNonReferenceType();
10289     if (FieldType->isIncompleteArrayType()) {
10290       assert(ClassDecl->hasFlexibleArrayMember() &&
10291              "Incomplete array type is not valid");
10292       continue;
10293     }
10294 
10295     // Build references to the field in the object we're copying from and to.
10296     CXXScopeSpec SS; // Intentionally empty
10297     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
10298                               LookupMemberName);
10299     MemberLookup.addDecl(Field);
10300     MemberLookup.resolveKind();
10301 
10302     MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
10303 
10304     MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
10305 
10306     // Build the copy of this field.
10307     StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
10308                                             To, From,
10309                                             /*CopyingBaseSubobject=*/false,
10310                                             /*Copying=*/true);
10311     if (Copy.isInvalid()) {
10312       Diag(CurrentLocation, diag::note_member_synthesized_at)
10313         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10314       CopyAssignOperator->setInvalidDecl();
10315       return;
10316     }
10317 
10318     // Success! Record the copy.
10319     Statements.push_back(Copy.getAs<Stmt>());
10320   }
10321 
10322   if (!Invalid) {
10323     // Add a "return *this;"
10324     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
10325 
10326     StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
10327     if (Return.isInvalid())
10328       Invalid = true;
10329     else {
10330       Statements.push_back(Return.getAs<Stmt>());
10331 
10332       if (Trap.hasErrorOccurred()) {
10333         Diag(CurrentLocation, diag::note_member_synthesized_at)
10334           << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10335         Invalid = true;
10336       }
10337     }
10338   }
10339 
10340   // The exception specification is needed because we are defining the
10341   // function.
10342   ResolveExceptionSpec(CurrentLocation,
10343                        CopyAssignOperator->getType()->castAs<FunctionProtoType>());
10344 
10345   if (Invalid) {
10346     CopyAssignOperator->setInvalidDecl();
10347     return;
10348   }
10349 
10350   StmtResult Body;
10351   {
10352     CompoundScopeRAII CompoundScope(*this);
10353     Body = ActOnCompoundStmt(Loc, Loc, Statements,
10354                              /*isStmtExpr=*/false);
10355     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
10356   }
10357   CopyAssignOperator->setBody(Body.getAs<Stmt>());
10358 
10359   if (ASTMutationListener *L = getASTMutationListener()) {
10360     L->CompletedImplicitDefinition(CopyAssignOperator);
10361   }
10362 }
10363 
10364 Sema::ImplicitExceptionSpecification
ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl * MD)10365 Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
10366   CXXRecordDecl *ClassDecl = MD->getParent();
10367 
10368   ImplicitExceptionSpecification ExceptSpec(*this);
10369   if (ClassDecl->isInvalidDecl())
10370     return ExceptSpec;
10371 
10372   // C++0x [except.spec]p14:
10373   //   An implicitly declared special member function (Clause 12) shall have an
10374   //   exception-specification. [...]
10375 
10376   // It is unspecified whether or not an implicit move assignment operator
10377   // attempts to deduplicate calls to assignment operators of virtual bases are
10378   // made. As such, this exception specification is effectively unspecified.
10379   // Based on a similar decision made for constness in C++0x, we're erring on
10380   // the side of assuming such calls to be made regardless of whether they
10381   // actually happen.
10382   // Note that a move constructor is not implicitly declared when there are
10383   // virtual bases, but it can still be user-declared and explicitly defaulted.
10384   for (const auto &Base : ClassDecl->bases()) {
10385     if (Base.isVirtual())
10386       continue;
10387 
10388     CXXRecordDecl *BaseClassDecl
10389       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10390     if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
10391                                                            0, false, 0))
10392       ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign);
10393   }
10394 
10395   for (const auto &Base : ClassDecl->vbases()) {
10396     CXXRecordDecl *BaseClassDecl
10397       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10398     if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
10399                                                            0, false, 0))
10400       ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign);
10401   }
10402 
10403   for (const auto *Field : ClassDecl->fields()) {
10404     QualType FieldType = Context.getBaseElementType(Field->getType());
10405     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
10406       if (CXXMethodDecl *MoveAssign =
10407               LookupMovingAssignment(FieldClassDecl,
10408                                      FieldType.getCVRQualifiers(),
10409                                      false, 0))
10410         ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
10411     }
10412   }
10413 
10414   return ExceptSpec;
10415 }
10416 
DeclareImplicitMoveAssignment(CXXRecordDecl * ClassDecl)10417 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
10418   assert(ClassDecl->needsImplicitMoveAssignment());
10419 
10420   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
10421   if (DSM.isAlreadyBeingDeclared())
10422     return nullptr;
10423 
10424   // Note: The following rules are largely analoguous to the move
10425   // constructor rules.
10426 
10427   QualType ArgType = Context.getTypeDeclType(ClassDecl);
10428   QualType RetType = Context.getLValueReferenceType(ArgType);
10429   ArgType = Context.getRValueReferenceType(ArgType);
10430 
10431   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10432                                                      CXXMoveAssignment,
10433                                                      false);
10434 
10435   //   An implicitly-declared move assignment operator is an inline public
10436   //   member of its class.
10437   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
10438   SourceLocation ClassLoc = ClassDecl->getLocation();
10439   DeclarationNameInfo NameInfo(Name, ClassLoc);
10440   CXXMethodDecl *MoveAssignment =
10441       CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
10442                             /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
10443                             /*isInline=*/true, Constexpr, SourceLocation());
10444   MoveAssignment->setAccess(AS_public);
10445   MoveAssignment->setDefaulted();
10446   MoveAssignment->setImplicit();
10447 
10448   if (getLangOpts().CUDA) {
10449     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
10450                                             MoveAssignment,
10451                                             /* ConstRHS */ false,
10452                                             /* Diagnose */ false);
10453   }
10454 
10455   // Build an exception specification pointing back at this member.
10456   FunctionProtoType::ExtProtoInfo EPI =
10457       getImplicitMethodEPI(*this, MoveAssignment);
10458   MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
10459 
10460   // Add the parameter to the operator.
10461   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
10462                                                ClassLoc, ClassLoc,
10463                                                /*Id=*/nullptr, ArgType,
10464                                                /*TInfo=*/nullptr, SC_None,
10465                                                nullptr);
10466   MoveAssignment->setParams(FromParam);
10467 
10468   AddOverriddenMethods(ClassDecl, MoveAssignment);
10469 
10470   MoveAssignment->setTrivial(
10471     ClassDecl->needsOverloadResolutionForMoveAssignment()
10472       ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
10473       : ClassDecl->hasTrivialMoveAssignment());
10474 
10475   if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
10476     ClassDecl->setImplicitMoveAssignmentIsDeleted();
10477     SetDeclDeleted(MoveAssignment, ClassLoc);
10478   }
10479 
10480   // Note that we have added this copy-assignment operator.
10481   ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
10482 
10483   if (Scope *S = getScopeForContext(ClassDecl))
10484     PushOnScopeChains(MoveAssignment, S, false);
10485   ClassDecl->addDecl(MoveAssignment);
10486 
10487   return MoveAssignment;
10488 }
10489 
10490 /// Check if we're implicitly defining a move assignment operator for a class
10491 /// with virtual bases. Such a move assignment might move-assign the virtual
10492 /// base multiple times.
checkMoveAssignmentForRepeatedMove(Sema & S,CXXRecordDecl * Class,SourceLocation CurrentLocation)10493 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
10494                                                SourceLocation CurrentLocation) {
10495   assert(!Class->isDependentContext() && "should not define dependent move");
10496 
10497   // Only a virtual base could get implicitly move-assigned multiple times.
10498   // Only a non-trivial move assignment can observe this. We only want to
10499   // diagnose if we implicitly define an assignment operator that assigns
10500   // two base classes, both of which move-assign the same virtual base.
10501   if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
10502       Class->getNumBases() < 2)
10503     return;
10504 
10505   llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
10506   typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
10507   VBaseMap VBases;
10508 
10509   for (auto &BI : Class->bases()) {
10510     Worklist.push_back(&BI);
10511     while (!Worklist.empty()) {
10512       CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
10513       CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
10514 
10515       // If the base has no non-trivial move assignment operators,
10516       // we don't care about moves from it.
10517       if (!Base->hasNonTrivialMoveAssignment())
10518         continue;
10519 
10520       // If there's nothing virtual here, skip it.
10521       if (!BaseSpec->isVirtual() && !Base->getNumVBases())
10522         continue;
10523 
10524       // If we're not actually going to call a move assignment for this base,
10525       // or the selected move assignment is trivial, skip it.
10526       Sema::SpecialMemberOverloadResult *SMOR =
10527         S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
10528                               /*ConstArg*/false, /*VolatileArg*/false,
10529                               /*RValueThis*/true, /*ConstThis*/false,
10530                               /*VolatileThis*/false);
10531       if (!SMOR->getMethod() || SMOR->getMethod()->isTrivial() ||
10532           !SMOR->getMethod()->isMoveAssignmentOperator())
10533         continue;
10534 
10535       if (BaseSpec->isVirtual()) {
10536         // We're going to move-assign this virtual base, and its move
10537         // assignment operator is not trivial. If this can happen for
10538         // multiple distinct direct bases of Class, diagnose it. (If it
10539         // only happens in one base, we'll diagnose it when synthesizing
10540         // that base class's move assignment operator.)
10541         CXXBaseSpecifier *&Existing =
10542             VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
10543                 .first->second;
10544         if (Existing && Existing != &BI) {
10545           S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
10546             << Class << Base;
10547           S.Diag(Existing->getLocStart(), diag::note_vbase_moved_here)
10548             << (Base->getCanonicalDecl() ==
10549                 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
10550             << Base << Existing->getType() << Existing->getSourceRange();
10551           S.Diag(BI.getLocStart(), diag::note_vbase_moved_here)
10552             << (Base->getCanonicalDecl() ==
10553                 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
10554             << Base << BI.getType() << BaseSpec->getSourceRange();
10555 
10556           // Only diagnose each vbase once.
10557           Existing = nullptr;
10558         }
10559       } else {
10560         // Only walk over bases that have defaulted move assignment operators.
10561         // We assume that any user-provided move assignment operator handles
10562         // the multiple-moves-of-vbase case itself somehow.
10563         if (!SMOR->getMethod()->isDefaulted())
10564           continue;
10565 
10566         // We're going to move the base classes of Base. Add them to the list.
10567         for (auto &BI : Base->bases())
10568           Worklist.push_back(&BI);
10569       }
10570     }
10571   }
10572 }
10573 
DefineImplicitMoveAssignment(SourceLocation CurrentLocation,CXXMethodDecl * MoveAssignOperator)10574 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
10575                                         CXXMethodDecl *MoveAssignOperator) {
10576   assert((MoveAssignOperator->isDefaulted() &&
10577           MoveAssignOperator->isOverloadedOperator() &&
10578           MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
10579           !MoveAssignOperator->doesThisDeclarationHaveABody() &&
10580           !MoveAssignOperator->isDeleted()) &&
10581          "DefineImplicitMoveAssignment called for wrong function");
10582 
10583   CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
10584 
10585   if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
10586     MoveAssignOperator->setInvalidDecl();
10587     return;
10588   }
10589 
10590   MoveAssignOperator->markUsed(Context);
10591 
10592   SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
10593   DiagnosticErrorTrap Trap(Diags);
10594 
10595   // C++0x [class.copy]p28:
10596   //   The implicitly-defined or move assignment operator for a non-union class
10597   //   X performs memberwise move assignment of its subobjects. The direct base
10598   //   classes of X are assigned first, in the order of their declaration in the
10599   //   base-specifier-list, and then the immediate non-static data members of X
10600   //   are assigned, in the order in which they were declared in the class
10601   //   definition.
10602 
10603   // Issue a warning if our implicit move assignment operator will move
10604   // from a virtual base more than once.
10605   checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
10606 
10607   // The statements that form the synthesized function body.
10608   SmallVector<Stmt*, 8> Statements;
10609 
10610   // The parameter for the "other" object, which we are move from.
10611   ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
10612   QualType OtherRefType = Other->getType()->
10613       getAs<RValueReferenceType>()->getPointeeType();
10614   assert(!OtherRefType.getQualifiers() &&
10615          "Bad argument type of defaulted move assignment");
10616 
10617   // Our location for everything implicitly-generated.
10618   SourceLocation Loc = MoveAssignOperator->getLocEnd().isValid()
10619                            ? MoveAssignOperator->getLocEnd()
10620                            : MoveAssignOperator->getLocation();
10621 
10622   // Builds a reference to the "other" object.
10623   RefBuilder OtherRef(Other, OtherRefType);
10624   // Cast to rvalue.
10625   MoveCastBuilder MoveOther(OtherRef);
10626 
10627   // Builds the "this" pointer.
10628   ThisBuilder This;
10629 
10630   // Assign base classes.
10631   bool Invalid = false;
10632   for (auto &Base : ClassDecl->bases()) {
10633     // C++11 [class.copy]p28:
10634     //   It is unspecified whether subobjects representing virtual base classes
10635     //   are assigned more than once by the implicitly-defined copy assignment
10636     //   operator.
10637     // FIXME: Do not assign to a vbase that will be assigned by some other base
10638     // class. For a move-assignment, this can result in the vbase being moved
10639     // multiple times.
10640 
10641     // Form the assignment:
10642     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
10643     QualType BaseType = Base.getType().getUnqualifiedType();
10644     if (!BaseType->isRecordType()) {
10645       Invalid = true;
10646       continue;
10647     }
10648 
10649     CXXCastPath BasePath;
10650     BasePath.push_back(&Base);
10651 
10652     // Construct the "from" expression, which is an implicit cast to the
10653     // appropriately-qualified base type.
10654     CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
10655 
10656     // Dereference "this".
10657     DerefBuilder DerefThis(This);
10658 
10659     // Implicitly cast "this" to the appropriately-qualified base type.
10660     CastBuilder To(DerefThis,
10661                    Context.getCVRQualifiedType(
10662                        BaseType, MoveAssignOperator->getTypeQualifiers()),
10663                    VK_LValue, BasePath);
10664 
10665     // Build the move.
10666     StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
10667                                             To, From,
10668                                             /*CopyingBaseSubobject=*/true,
10669                                             /*Copying=*/false);
10670     if (Move.isInvalid()) {
10671       Diag(CurrentLocation, diag::note_member_synthesized_at)
10672         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10673       MoveAssignOperator->setInvalidDecl();
10674       return;
10675     }
10676 
10677     // Success! Record the move.
10678     Statements.push_back(Move.getAs<Expr>());
10679   }
10680 
10681   // Assign non-static members.
10682   for (auto *Field : ClassDecl->fields()) {
10683     // FIXME: We should form some kind of AST representation for the implied
10684     // memcpy in a union copy operation.
10685     if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
10686       continue;
10687 
10688     if (Field->isInvalidDecl()) {
10689       Invalid = true;
10690       continue;
10691     }
10692 
10693     // Check for members of reference type; we can't move those.
10694     if (Field->getType()->isReferenceType()) {
10695       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10696         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
10697       Diag(Field->getLocation(), diag::note_declared_at);
10698       Diag(CurrentLocation, diag::note_member_synthesized_at)
10699         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10700       Invalid = true;
10701       continue;
10702     }
10703 
10704     // Check for members of const-qualified, non-class type.
10705     QualType BaseType = Context.getBaseElementType(Field->getType());
10706     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
10707       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10708         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
10709       Diag(Field->getLocation(), diag::note_declared_at);
10710       Diag(CurrentLocation, diag::note_member_synthesized_at)
10711         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10712       Invalid = true;
10713       continue;
10714     }
10715 
10716     // Suppress assigning zero-width bitfields.
10717     if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
10718       continue;
10719 
10720     QualType FieldType = Field->getType().getNonReferenceType();
10721     if (FieldType->isIncompleteArrayType()) {
10722       assert(ClassDecl->hasFlexibleArrayMember() &&
10723              "Incomplete array type is not valid");
10724       continue;
10725     }
10726 
10727     // Build references to the field in the object we're copying from and to.
10728     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
10729                               LookupMemberName);
10730     MemberLookup.addDecl(Field);
10731     MemberLookup.resolveKind();
10732     MemberBuilder From(MoveOther, OtherRefType,
10733                        /*IsArrow=*/false, MemberLookup);
10734     MemberBuilder To(This, getCurrentThisType(),
10735                      /*IsArrow=*/true, MemberLookup);
10736 
10737     assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
10738         "Member reference with rvalue base must be rvalue except for reference "
10739         "members, which aren't allowed for move assignment.");
10740 
10741     // Build the move of this field.
10742     StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
10743                                             To, From,
10744                                             /*CopyingBaseSubobject=*/false,
10745                                             /*Copying=*/false);
10746     if (Move.isInvalid()) {
10747       Diag(CurrentLocation, diag::note_member_synthesized_at)
10748         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10749       MoveAssignOperator->setInvalidDecl();
10750       return;
10751     }
10752 
10753     // Success! Record the copy.
10754     Statements.push_back(Move.getAs<Stmt>());
10755   }
10756 
10757   if (!Invalid) {
10758     // Add a "return *this;"
10759     ExprResult ThisObj =
10760         CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
10761 
10762     StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
10763     if (Return.isInvalid())
10764       Invalid = true;
10765     else {
10766       Statements.push_back(Return.getAs<Stmt>());
10767 
10768       if (Trap.hasErrorOccurred()) {
10769         Diag(CurrentLocation, diag::note_member_synthesized_at)
10770           << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10771         Invalid = true;
10772       }
10773     }
10774   }
10775 
10776   // The exception specification is needed because we are defining the
10777   // function.
10778   ResolveExceptionSpec(CurrentLocation,
10779                        MoveAssignOperator->getType()->castAs<FunctionProtoType>());
10780 
10781   if (Invalid) {
10782     MoveAssignOperator->setInvalidDecl();
10783     return;
10784   }
10785 
10786   StmtResult Body;
10787   {
10788     CompoundScopeRAII CompoundScope(*this);
10789     Body = ActOnCompoundStmt(Loc, Loc, Statements,
10790                              /*isStmtExpr=*/false);
10791     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
10792   }
10793   MoveAssignOperator->setBody(Body.getAs<Stmt>());
10794 
10795   if (ASTMutationListener *L = getASTMutationListener()) {
10796     L->CompletedImplicitDefinition(MoveAssignOperator);
10797   }
10798 }
10799 
10800 Sema::ImplicitExceptionSpecification
ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl * MD)10801 Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
10802   CXXRecordDecl *ClassDecl = MD->getParent();
10803 
10804   ImplicitExceptionSpecification ExceptSpec(*this);
10805   if (ClassDecl->isInvalidDecl())
10806     return ExceptSpec;
10807 
10808   const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
10809   assert(T->getNumParams() >= 1 && "not a copy ctor");
10810   unsigned Quals = T->getParamType(0).getNonReferenceType().getCVRQualifiers();
10811 
10812   // C++ [except.spec]p14:
10813   //   An implicitly declared special member function (Clause 12) shall have an
10814   //   exception-specification. [...]
10815   for (const auto &Base : ClassDecl->bases()) {
10816     // Virtual bases are handled below.
10817     if (Base.isVirtual())
10818       continue;
10819 
10820     CXXRecordDecl *BaseClassDecl
10821       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10822     if (CXXConstructorDecl *CopyConstructor =
10823           LookupCopyingConstructor(BaseClassDecl, Quals))
10824       ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor);
10825   }
10826   for (const auto &Base : ClassDecl->vbases()) {
10827     CXXRecordDecl *BaseClassDecl
10828       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10829     if (CXXConstructorDecl *CopyConstructor =
10830           LookupCopyingConstructor(BaseClassDecl, Quals))
10831       ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor);
10832   }
10833   for (const auto *Field : ClassDecl->fields()) {
10834     QualType FieldType = Context.getBaseElementType(Field->getType());
10835     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
10836       if (CXXConstructorDecl *CopyConstructor =
10837               LookupCopyingConstructor(FieldClassDecl,
10838                                        Quals | FieldType.getCVRQualifiers()))
10839       ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
10840     }
10841   }
10842 
10843   return ExceptSpec;
10844 }
10845 
DeclareImplicitCopyConstructor(CXXRecordDecl * ClassDecl)10846 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
10847                                                     CXXRecordDecl *ClassDecl) {
10848   // C++ [class.copy]p4:
10849   //   If the class definition does not explicitly declare a copy
10850   //   constructor, one is declared implicitly.
10851   assert(ClassDecl->needsImplicitCopyConstructor());
10852 
10853   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
10854   if (DSM.isAlreadyBeingDeclared())
10855     return nullptr;
10856 
10857   QualType ClassType = Context.getTypeDeclType(ClassDecl);
10858   QualType ArgType = ClassType;
10859   bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
10860   if (Const)
10861     ArgType = ArgType.withConst();
10862   ArgType = Context.getLValueReferenceType(ArgType);
10863 
10864   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10865                                                      CXXCopyConstructor,
10866                                                      Const);
10867 
10868   DeclarationName Name
10869     = Context.DeclarationNames.getCXXConstructorName(
10870                                            Context.getCanonicalType(ClassType));
10871   SourceLocation ClassLoc = ClassDecl->getLocation();
10872   DeclarationNameInfo NameInfo(Name, ClassLoc);
10873 
10874   //   An implicitly-declared copy constructor is an inline public
10875   //   member of its class.
10876   CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
10877       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
10878       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
10879       Constexpr);
10880   CopyConstructor->setAccess(AS_public);
10881   CopyConstructor->setDefaulted();
10882 
10883   if (getLangOpts().CUDA) {
10884     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
10885                                             CopyConstructor,
10886                                             /* ConstRHS */ Const,
10887                                             /* Diagnose */ false);
10888   }
10889 
10890   // Build an exception specification pointing back at this member.
10891   FunctionProtoType::ExtProtoInfo EPI =
10892       getImplicitMethodEPI(*this, CopyConstructor);
10893   CopyConstructor->setType(
10894       Context.getFunctionType(Context.VoidTy, ArgType, EPI));
10895 
10896   // Add the parameter to the constructor.
10897   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
10898                                                ClassLoc, ClassLoc,
10899                                                /*IdentifierInfo=*/nullptr,
10900                                                ArgType, /*TInfo=*/nullptr,
10901                                                SC_None, nullptr);
10902   CopyConstructor->setParams(FromParam);
10903 
10904   CopyConstructor->setTrivial(
10905     ClassDecl->needsOverloadResolutionForCopyConstructor()
10906       ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
10907       : ClassDecl->hasTrivialCopyConstructor());
10908 
10909   if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
10910     SetDeclDeleted(CopyConstructor, ClassLoc);
10911 
10912   // Note that we have declared this constructor.
10913   ++ASTContext::NumImplicitCopyConstructorsDeclared;
10914 
10915   if (Scope *S = getScopeForContext(ClassDecl))
10916     PushOnScopeChains(CopyConstructor, S, false);
10917   ClassDecl->addDecl(CopyConstructor);
10918 
10919   return CopyConstructor;
10920 }
10921 
DefineImplicitCopyConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * CopyConstructor)10922 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
10923                                    CXXConstructorDecl *CopyConstructor) {
10924   assert((CopyConstructor->isDefaulted() &&
10925           CopyConstructor->isCopyConstructor() &&
10926           !CopyConstructor->doesThisDeclarationHaveABody() &&
10927           !CopyConstructor->isDeleted()) &&
10928          "DefineImplicitCopyConstructor - call it for implicit copy ctor");
10929 
10930   CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
10931   assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
10932 
10933   // C++11 [class.copy]p7:
10934   //   The [definition of an implicitly declared copy constructor] is
10935   //   deprecated if the class has a user-declared copy assignment operator
10936   //   or a user-declared destructor.
10937   if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
10938     diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
10939 
10940   SynthesizedFunctionScope Scope(*this, CopyConstructor);
10941   DiagnosticErrorTrap Trap(Diags);
10942 
10943   if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
10944       Trap.hasErrorOccurred()) {
10945     Diag(CurrentLocation, diag::note_member_synthesized_at)
10946       << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
10947     CopyConstructor->setInvalidDecl();
10948   }  else {
10949     SourceLocation Loc = CopyConstructor->getLocEnd().isValid()
10950                              ? CopyConstructor->getLocEnd()
10951                              : CopyConstructor->getLocation();
10952     Sema::CompoundScopeRAII CompoundScope(*this);
10953     CopyConstructor->setBody(
10954         ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
10955   }
10956 
10957   // The exception specification is needed because we are defining the
10958   // function.
10959   ResolveExceptionSpec(CurrentLocation,
10960                        CopyConstructor->getType()->castAs<FunctionProtoType>());
10961 
10962   CopyConstructor->markUsed(Context);
10963   MarkVTableUsed(CurrentLocation, ClassDecl);
10964 
10965   if (ASTMutationListener *L = getASTMutationListener()) {
10966     L->CompletedImplicitDefinition(CopyConstructor);
10967   }
10968 }
10969 
10970 Sema::ImplicitExceptionSpecification
ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl * MD)10971 Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
10972   CXXRecordDecl *ClassDecl = MD->getParent();
10973 
10974   // C++ [except.spec]p14:
10975   //   An implicitly declared special member function (Clause 12) shall have an
10976   //   exception-specification. [...]
10977   ImplicitExceptionSpecification ExceptSpec(*this);
10978   if (ClassDecl->isInvalidDecl())
10979     return ExceptSpec;
10980 
10981   // Direct base-class constructors.
10982   for (const auto &B : ClassDecl->bases()) {
10983     if (B.isVirtual()) // Handled below.
10984       continue;
10985 
10986     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
10987       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10988       CXXConstructorDecl *Constructor =
10989           LookupMovingConstructor(BaseClassDecl, 0);
10990       // If this is a deleted function, add it anyway. This might be conformant
10991       // with the standard. This might not. I'm not sure. It might not matter.
10992       if (Constructor)
10993         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
10994     }
10995   }
10996 
10997   // Virtual base-class constructors.
10998   for (const auto &B : ClassDecl->vbases()) {
10999     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
11000       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
11001       CXXConstructorDecl *Constructor =
11002           LookupMovingConstructor(BaseClassDecl, 0);
11003       // If this is a deleted function, add it anyway. This might be conformant
11004       // with the standard. This might not. I'm not sure. It might not matter.
11005       if (Constructor)
11006         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
11007     }
11008   }
11009 
11010   // Field constructors.
11011   for (const auto *F : ClassDecl->fields()) {
11012     QualType FieldType = Context.getBaseElementType(F->getType());
11013     if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
11014       CXXConstructorDecl *Constructor =
11015           LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
11016       // If this is a deleted function, add it anyway. This might be conformant
11017       // with the standard. This might not. I'm not sure. It might not matter.
11018       // In particular, the problem is that this function never gets called. It
11019       // might just be ill-formed because this function attempts to refer to
11020       // a deleted function here.
11021       if (Constructor)
11022         ExceptSpec.CalledDecl(F->getLocation(), Constructor);
11023     }
11024   }
11025 
11026   return ExceptSpec;
11027 }
11028 
DeclareImplicitMoveConstructor(CXXRecordDecl * ClassDecl)11029 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
11030                                                     CXXRecordDecl *ClassDecl) {
11031   assert(ClassDecl->needsImplicitMoveConstructor());
11032 
11033   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
11034   if (DSM.isAlreadyBeingDeclared())
11035     return nullptr;
11036 
11037   QualType ClassType = Context.getTypeDeclType(ClassDecl);
11038   QualType ArgType = Context.getRValueReferenceType(ClassType);
11039 
11040   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
11041                                                      CXXMoveConstructor,
11042                                                      false);
11043 
11044   DeclarationName Name
11045     = Context.DeclarationNames.getCXXConstructorName(
11046                                            Context.getCanonicalType(ClassType));
11047   SourceLocation ClassLoc = ClassDecl->getLocation();
11048   DeclarationNameInfo NameInfo(Name, ClassLoc);
11049 
11050   // C++11 [class.copy]p11:
11051   //   An implicitly-declared copy/move constructor is an inline public
11052   //   member of its class.
11053   CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
11054       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
11055       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
11056       Constexpr);
11057   MoveConstructor->setAccess(AS_public);
11058   MoveConstructor->setDefaulted();
11059 
11060   if (getLangOpts().CUDA) {
11061     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
11062                                             MoveConstructor,
11063                                             /* ConstRHS */ false,
11064                                             /* Diagnose */ false);
11065   }
11066 
11067   // Build an exception specification pointing back at this member.
11068   FunctionProtoType::ExtProtoInfo EPI =
11069       getImplicitMethodEPI(*this, MoveConstructor);
11070   MoveConstructor->setType(
11071       Context.getFunctionType(Context.VoidTy, ArgType, EPI));
11072 
11073   // Add the parameter to the constructor.
11074   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
11075                                                ClassLoc, ClassLoc,
11076                                                /*IdentifierInfo=*/nullptr,
11077                                                ArgType, /*TInfo=*/nullptr,
11078                                                SC_None, nullptr);
11079   MoveConstructor->setParams(FromParam);
11080 
11081   MoveConstructor->setTrivial(
11082     ClassDecl->needsOverloadResolutionForMoveConstructor()
11083       ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
11084       : ClassDecl->hasTrivialMoveConstructor());
11085 
11086   if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
11087     ClassDecl->setImplicitMoveConstructorIsDeleted();
11088     SetDeclDeleted(MoveConstructor, ClassLoc);
11089   }
11090 
11091   // Note that we have declared this constructor.
11092   ++ASTContext::NumImplicitMoveConstructorsDeclared;
11093 
11094   if (Scope *S = getScopeForContext(ClassDecl))
11095     PushOnScopeChains(MoveConstructor, S, false);
11096   ClassDecl->addDecl(MoveConstructor);
11097 
11098   return MoveConstructor;
11099 }
11100 
DefineImplicitMoveConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * MoveConstructor)11101 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
11102                                    CXXConstructorDecl *MoveConstructor) {
11103   assert((MoveConstructor->isDefaulted() &&
11104           MoveConstructor->isMoveConstructor() &&
11105           !MoveConstructor->doesThisDeclarationHaveABody() &&
11106           !MoveConstructor->isDeleted()) &&
11107          "DefineImplicitMoveConstructor - call it for implicit move ctor");
11108 
11109   CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
11110   assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
11111 
11112   SynthesizedFunctionScope Scope(*this, MoveConstructor);
11113   DiagnosticErrorTrap Trap(Diags);
11114 
11115   if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
11116       Trap.hasErrorOccurred()) {
11117     Diag(CurrentLocation, diag::note_member_synthesized_at)
11118       << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
11119     MoveConstructor->setInvalidDecl();
11120   }  else {
11121     SourceLocation Loc = MoveConstructor->getLocEnd().isValid()
11122                              ? MoveConstructor->getLocEnd()
11123                              : MoveConstructor->getLocation();
11124     Sema::CompoundScopeRAII CompoundScope(*this);
11125     MoveConstructor->setBody(ActOnCompoundStmt(
11126         Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
11127   }
11128 
11129   // The exception specification is needed because we are defining the
11130   // function.
11131   ResolveExceptionSpec(CurrentLocation,
11132                        MoveConstructor->getType()->castAs<FunctionProtoType>());
11133 
11134   MoveConstructor->markUsed(Context);
11135   MarkVTableUsed(CurrentLocation, ClassDecl);
11136 
11137   if (ASTMutationListener *L = getASTMutationListener()) {
11138     L->CompletedImplicitDefinition(MoveConstructor);
11139   }
11140 }
11141 
isImplicitlyDeleted(FunctionDecl * FD)11142 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
11143   return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
11144 }
11145 
DefineImplicitLambdaToFunctionPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)11146 void Sema::DefineImplicitLambdaToFunctionPointerConversion(
11147                             SourceLocation CurrentLocation,
11148                             CXXConversionDecl *Conv) {
11149   CXXRecordDecl *Lambda = Conv->getParent();
11150   CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
11151   // If we are defining a specialization of a conversion to function-ptr
11152   // cache the deduced template arguments for this specialization
11153   // so that we can use them to retrieve the corresponding call-operator
11154   // and static-invoker.
11155   const TemplateArgumentList *DeducedTemplateArgs = nullptr;
11156 
11157   // Retrieve the corresponding call-operator specialization.
11158   if (Lambda->isGenericLambda()) {
11159     assert(Conv->isFunctionTemplateSpecialization());
11160     FunctionTemplateDecl *CallOpTemplate =
11161         CallOp->getDescribedFunctionTemplate();
11162     DeducedTemplateArgs = Conv->getTemplateSpecializationArgs();
11163     void *InsertPos = nullptr;
11164     FunctionDecl *CallOpSpec = CallOpTemplate->findSpecialization(
11165                                                 DeducedTemplateArgs->asArray(),
11166                                                 InsertPos);
11167     assert(CallOpSpec &&
11168           "Conversion operator must have a corresponding call operator");
11169     CallOp = cast<CXXMethodDecl>(CallOpSpec);
11170   }
11171   // Mark the call operator referenced (and add to pending instantiations
11172   // if necessary).
11173   // For both the conversion and static-invoker template specializations
11174   // we construct their body's in this function, so no need to add them
11175   // to the PendingInstantiations.
11176   MarkFunctionReferenced(CurrentLocation, CallOp);
11177 
11178   SynthesizedFunctionScope Scope(*this, Conv);
11179   DiagnosticErrorTrap Trap(Diags);
11180 
11181   // Retrieve the static invoker...
11182   CXXMethodDecl *Invoker = Lambda->getLambdaStaticInvoker();
11183   // ... and get the corresponding specialization for a generic lambda.
11184   if (Lambda->isGenericLambda()) {
11185     assert(DeducedTemplateArgs &&
11186       "Must have deduced template arguments from Conversion Operator");
11187     FunctionTemplateDecl *InvokeTemplate =
11188                           Invoker->getDescribedFunctionTemplate();
11189     void *InsertPos = nullptr;
11190     FunctionDecl *InvokeSpec = InvokeTemplate->findSpecialization(
11191                                                 DeducedTemplateArgs->asArray(),
11192                                                 InsertPos);
11193     assert(InvokeSpec &&
11194       "Must have a corresponding static invoker specialization");
11195     Invoker = cast<CXXMethodDecl>(InvokeSpec);
11196   }
11197   // Construct the body of the conversion function { return __invoke; }.
11198   Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
11199                                         VK_LValue, Conv->getLocation()).get();
11200    assert(FunctionRef && "Can't refer to __invoke function?");
11201    Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
11202    Conv->setBody(new (Context) CompoundStmt(Context, Return,
11203                                             Conv->getLocation(),
11204                                             Conv->getLocation()));
11205 
11206   Conv->markUsed(Context);
11207   Conv->setReferenced();
11208 
11209   // Fill in the __invoke function with a dummy implementation. IR generation
11210   // will fill in the actual details.
11211   Invoker->markUsed(Context);
11212   Invoker->setReferenced();
11213   Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
11214 
11215   if (ASTMutationListener *L = getASTMutationListener()) {
11216     L->CompletedImplicitDefinition(Conv);
11217     L->CompletedImplicitDefinition(Invoker);
11218    }
11219 }
11220 
11221 
11222 
DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)11223 void Sema::DefineImplicitLambdaToBlockPointerConversion(
11224        SourceLocation CurrentLocation,
11225        CXXConversionDecl *Conv)
11226 {
11227   assert(!Conv->getParent()->isGenericLambda());
11228 
11229   Conv->markUsed(Context);
11230 
11231   SynthesizedFunctionScope Scope(*this, Conv);
11232   DiagnosticErrorTrap Trap(Diags);
11233 
11234   // Copy-initialize the lambda object as needed to capture it.
11235   Expr *This = ActOnCXXThis(CurrentLocation).get();
11236   Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
11237 
11238   ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
11239                                                         Conv->getLocation(),
11240                                                         Conv, DerefThis);
11241 
11242   // If we're not under ARC, make sure we still get the _Block_copy/autorelease
11243   // behavior.  Note that only the general conversion function does this
11244   // (since it's unusable otherwise); in the case where we inline the
11245   // block literal, it has block literal lifetime semantics.
11246   if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
11247     BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
11248                                           CK_CopyAndAutoreleaseBlockObject,
11249                                           BuildBlock.get(), nullptr, VK_RValue);
11250 
11251   if (BuildBlock.isInvalid()) {
11252     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
11253     Conv->setInvalidDecl();
11254     return;
11255   }
11256 
11257   // Create the return statement that returns the block from the conversion
11258   // function.
11259   StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
11260   if (Return.isInvalid()) {
11261     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
11262     Conv->setInvalidDecl();
11263     return;
11264   }
11265 
11266   // Set the body of the conversion function.
11267   Stmt *ReturnS = Return.get();
11268   Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
11269                                            Conv->getLocation(),
11270                                            Conv->getLocation()));
11271 
11272   // We're done; notify the mutation listener, if any.
11273   if (ASTMutationListener *L = getASTMutationListener()) {
11274     L->CompletedImplicitDefinition(Conv);
11275   }
11276 }
11277 
11278 /// \brief Determine whether the given list arguments contains exactly one
11279 /// "real" (non-default) argument.
hasOneRealArgument(MultiExprArg Args)11280 static bool hasOneRealArgument(MultiExprArg Args) {
11281   switch (Args.size()) {
11282   case 0:
11283     return false;
11284 
11285   default:
11286     if (!Args[1]->isDefaultArgument())
11287       return false;
11288 
11289     // fall through
11290   case 1:
11291     return !Args[0]->isDefaultArgument();
11292   }
11293 
11294   return false;
11295 }
11296 
11297 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)11298 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
11299                             CXXConstructorDecl *Constructor,
11300                             MultiExprArg ExprArgs,
11301                             bool HadMultipleCandidates,
11302                             bool IsListInitialization,
11303                             bool IsStdInitListInitialization,
11304                             bool RequiresZeroInit,
11305                             unsigned ConstructKind,
11306                             SourceRange ParenRange) {
11307   bool Elidable = false;
11308 
11309   // C++0x [class.copy]p34:
11310   //   When certain criteria are met, an implementation is allowed to
11311   //   omit the copy/move construction of a class object, even if the
11312   //   copy/move constructor and/or destructor for the object have
11313   //   side effects. [...]
11314   //     - when a temporary class object that has not been bound to a
11315   //       reference (12.2) would be copied/moved to a class object
11316   //       with the same cv-unqualified type, the copy/move operation
11317   //       can be omitted by constructing the temporary object
11318   //       directly into the target of the omitted copy/move
11319   if (ConstructKind == CXXConstructExpr::CK_Complete &&
11320       Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
11321     Expr *SubExpr = ExprArgs[0];
11322     Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
11323   }
11324 
11325   return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
11326                                Elidable, ExprArgs, HadMultipleCandidates,
11327                                IsListInitialization,
11328                                IsStdInitListInitialization, RequiresZeroInit,
11329                                ConstructKind, ParenRange);
11330 }
11331 
11332 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
11333 /// including handling of its default argument expressions.
11334 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,bool Elidable,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)11335 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
11336                             CXXConstructorDecl *Constructor, bool Elidable,
11337                             MultiExprArg ExprArgs,
11338                             bool HadMultipleCandidates,
11339                             bool IsListInitialization,
11340                             bool IsStdInitListInitialization,
11341                             bool RequiresZeroInit,
11342                             unsigned ConstructKind,
11343                             SourceRange ParenRange) {
11344   MarkFunctionReferenced(ConstructLoc, Constructor);
11345   return CXXConstructExpr::Create(
11346       Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs,
11347       HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
11348       RequiresZeroInit,
11349       static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
11350       ParenRange);
11351 }
11352 
BuildCXXDefaultInitExpr(SourceLocation Loc,FieldDecl * Field)11353 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
11354   assert(Field->hasInClassInitializer());
11355 
11356   // If we already have the in-class initializer nothing needs to be done.
11357   if (Field->getInClassInitializer())
11358     return CXXDefaultInitExpr::Create(Context, Loc, Field);
11359 
11360   // Maybe we haven't instantiated the in-class initializer. Go check the
11361   // pattern FieldDecl to see if it has one.
11362   CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
11363 
11364   if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
11365     CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
11366     DeclContext::lookup_result Lookup =
11367         ClassPattern->lookup(Field->getDeclName());
11368     assert(Lookup.size() == 1);
11369     FieldDecl *Pattern = cast<FieldDecl>(Lookup[0]);
11370     if (InstantiateInClassInitializer(Loc, Field, Pattern,
11371                                       getTemplateInstantiationArgs(Field)))
11372       return ExprError();
11373     return CXXDefaultInitExpr::Create(Context, Loc, Field);
11374   }
11375 
11376   // DR1351:
11377   //   If the brace-or-equal-initializer of a non-static data member
11378   //   invokes a defaulted default constructor of its class or of an
11379   //   enclosing class in a potentially evaluated subexpression, the
11380   //   program is ill-formed.
11381   //
11382   // This resolution is unworkable: the exception specification of the
11383   // default constructor can be needed in an unevaluated context, in
11384   // particular, in the operand of a noexcept-expression, and we can be
11385   // unable to compute an exception specification for an enclosed class.
11386   //
11387   // Any attempt to resolve the exception specification of a defaulted default
11388   // constructor before the initializer is lexically complete will ultimately
11389   // come here at which point we can diagnose it.
11390   RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
11391   if (OutermostClass == ParentRD) {
11392     Diag(Field->getLocEnd(), diag::err_in_class_initializer_not_yet_parsed)
11393         << ParentRD << Field;
11394   } else {
11395     Diag(Field->getLocEnd(),
11396          diag::err_in_class_initializer_not_yet_parsed_outer_class)
11397         << ParentRD << OutermostClass << Field;
11398   }
11399 
11400   return ExprError();
11401 }
11402 
FinalizeVarWithDestructor(VarDecl * VD,const RecordType * Record)11403 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
11404   if (VD->isInvalidDecl()) return;
11405 
11406   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
11407   if (ClassDecl->isInvalidDecl()) return;
11408   if (ClassDecl->hasIrrelevantDestructor()) return;
11409   if (ClassDecl->isDependentContext()) return;
11410 
11411   CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
11412   MarkFunctionReferenced(VD->getLocation(), Destructor);
11413   CheckDestructorAccess(VD->getLocation(), Destructor,
11414                         PDiag(diag::err_access_dtor_var)
11415                         << VD->getDeclName()
11416                         << VD->getType());
11417   DiagnoseUseOfDecl(Destructor, VD->getLocation());
11418 
11419   if (Destructor->isTrivial()) return;
11420   if (!VD->hasGlobalStorage()) return;
11421 
11422   // Emit warning for non-trivial dtor in global scope (a real global,
11423   // class-static, function-static).
11424   Diag(VD->getLocation(), diag::warn_exit_time_destructor);
11425 
11426   // TODO: this should be re-enabled for static locals by !CXAAtExit
11427   if (!VD->isStaticLocal())
11428     Diag(VD->getLocation(), diag::warn_global_destructor);
11429 }
11430 
11431 /// \brief Given a constructor and the set of arguments provided for the
11432 /// constructor, convert the arguments and add any required default arguments
11433 /// to form a proper call to this constructor.
11434 ///
11435 /// \returns true if an error occurred, false otherwise.
11436 bool
CompleteConstructorCall(CXXConstructorDecl * Constructor,MultiExprArg ArgsPtr,SourceLocation Loc,SmallVectorImpl<Expr * > & ConvertedArgs,bool AllowExplicit,bool IsListInitialization)11437 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
11438                               MultiExprArg ArgsPtr,
11439                               SourceLocation Loc,
11440                               SmallVectorImpl<Expr*> &ConvertedArgs,
11441                               bool AllowExplicit,
11442                               bool IsListInitialization) {
11443   // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
11444   unsigned NumArgs = ArgsPtr.size();
11445   Expr **Args = ArgsPtr.data();
11446 
11447   const FunctionProtoType *Proto
11448     = Constructor->getType()->getAs<FunctionProtoType>();
11449   assert(Proto && "Constructor without a prototype?");
11450   unsigned NumParams = Proto->getNumParams();
11451 
11452   // If too few arguments are available, we'll fill in the rest with defaults.
11453   if (NumArgs < NumParams)
11454     ConvertedArgs.reserve(NumParams);
11455   else
11456     ConvertedArgs.reserve(NumArgs);
11457 
11458   VariadicCallType CallType =
11459     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
11460   SmallVector<Expr *, 8> AllArgs;
11461   bool Invalid = GatherArgumentsForCall(Loc, Constructor,
11462                                         Proto, 0,
11463                                         llvm::makeArrayRef(Args, NumArgs),
11464                                         AllArgs,
11465                                         CallType, AllowExplicit,
11466                                         IsListInitialization);
11467   ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
11468 
11469   DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
11470 
11471   CheckConstructorCall(Constructor,
11472                        llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
11473                        Proto, Loc);
11474 
11475   return Invalid;
11476 }
11477 
11478 static inline bool
CheckOperatorNewDeleteDeclarationScope(Sema & SemaRef,const FunctionDecl * FnDecl)11479 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
11480                                        const FunctionDecl *FnDecl) {
11481   const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
11482   if (isa<NamespaceDecl>(DC)) {
11483     return SemaRef.Diag(FnDecl->getLocation(),
11484                         diag::err_operator_new_delete_declared_in_namespace)
11485       << FnDecl->getDeclName();
11486   }
11487 
11488   if (isa<TranslationUnitDecl>(DC) &&
11489       FnDecl->getStorageClass() == SC_Static) {
11490     return SemaRef.Diag(FnDecl->getLocation(),
11491                         diag::err_operator_new_delete_declared_static)
11492       << FnDecl->getDeclName();
11493   }
11494 
11495   return false;
11496 }
11497 
11498 static inline bool
CheckOperatorNewDeleteTypes(Sema & SemaRef,const FunctionDecl * FnDecl,CanQualType ExpectedResultType,CanQualType ExpectedFirstParamType,unsigned DependentParamTypeDiag,unsigned InvalidParamTypeDiag)11499 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
11500                             CanQualType ExpectedResultType,
11501                             CanQualType ExpectedFirstParamType,
11502                             unsigned DependentParamTypeDiag,
11503                             unsigned InvalidParamTypeDiag) {
11504   QualType ResultType =
11505       FnDecl->getType()->getAs<FunctionType>()->getReturnType();
11506 
11507   // Check that the result type is not dependent.
11508   if (ResultType->isDependentType())
11509     return SemaRef.Diag(FnDecl->getLocation(),
11510                         diag::err_operator_new_delete_dependent_result_type)
11511     << FnDecl->getDeclName() << ExpectedResultType;
11512 
11513   // Check that the result type is what we expect.
11514   if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
11515     return SemaRef.Diag(FnDecl->getLocation(),
11516                         diag::err_operator_new_delete_invalid_result_type)
11517     << FnDecl->getDeclName() << ExpectedResultType;
11518 
11519   // A function template must have at least 2 parameters.
11520   if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
11521     return SemaRef.Diag(FnDecl->getLocation(),
11522                       diag::err_operator_new_delete_template_too_few_parameters)
11523         << FnDecl->getDeclName();
11524 
11525   // The function decl must have at least 1 parameter.
11526   if (FnDecl->getNumParams() == 0)
11527     return SemaRef.Diag(FnDecl->getLocation(),
11528                         diag::err_operator_new_delete_too_few_parameters)
11529       << FnDecl->getDeclName();
11530 
11531   // Check the first parameter type is not dependent.
11532   QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
11533   if (FirstParamType->isDependentType())
11534     return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
11535       << FnDecl->getDeclName() << ExpectedFirstParamType;
11536 
11537   // Check that the first parameter type is what we expect.
11538   if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
11539       ExpectedFirstParamType)
11540     return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
11541     << FnDecl->getDeclName() << ExpectedFirstParamType;
11542 
11543   return false;
11544 }
11545 
11546 static bool
CheckOperatorNewDeclaration(Sema & SemaRef,const FunctionDecl * FnDecl)11547 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
11548   // C++ [basic.stc.dynamic.allocation]p1:
11549   //   A program is ill-formed if an allocation function is declared in a
11550   //   namespace scope other than global scope or declared static in global
11551   //   scope.
11552   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
11553     return true;
11554 
11555   CanQualType SizeTy =
11556     SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
11557 
11558   // C++ [basic.stc.dynamic.allocation]p1:
11559   //  The return type shall be void*. The first parameter shall have type
11560   //  std::size_t.
11561   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
11562                                   SizeTy,
11563                                   diag::err_operator_new_dependent_param_type,
11564                                   diag::err_operator_new_param_type))
11565     return true;
11566 
11567   // C++ [basic.stc.dynamic.allocation]p1:
11568   //  The first parameter shall not have an associated default argument.
11569   if (FnDecl->getParamDecl(0)->hasDefaultArg())
11570     return SemaRef.Diag(FnDecl->getLocation(),
11571                         diag::err_operator_new_default_arg)
11572       << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
11573 
11574   return false;
11575 }
11576 
11577 static bool
CheckOperatorDeleteDeclaration(Sema & SemaRef,FunctionDecl * FnDecl)11578 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
11579   // C++ [basic.stc.dynamic.deallocation]p1:
11580   //   A program is ill-formed if deallocation functions are declared in a
11581   //   namespace scope other than global scope or declared static in global
11582   //   scope.
11583   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
11584     return true;
11585 
11586   // C++ [basic.stc.dynamic.deallocation]p2:
11587   //   Each deallocation function shall return void and its first parameter
11588   //   shall be void*.
11589   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
11590                                   SemaRef.Context.VoidPtrTy,
11591                                  diag::err_operator_delete_dependent_param_type,
11592                                  diag::err_operator_delete_param_type))
11593     return true;
11594 
11595   return false;
11596 }
11597 
11598 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
11599 /// of this overloaded operator is well-formed. If so, returns false;
11600 /// otherwise, emits appropriate diagnostics and returns true.
CheckOverloadedOperatorDeclaration(FunctionDecl * FnDecl)11601 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
11602   assert(FnDecl && FnDecl->isOverloadedOperator() &&
11603          "Expected an overloaded operator declaration");
11604 
11605   OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
11606 
11607   // C++ [over.oper]p5:
11608   //   The allocation and deallocation functions, operator new,
11609   //   operator new[], operator delete and operator delete[], are
11610   //   described completely in 3.7.3. The attributes and restrictions
11611   //   found in the rest of this subclause do not apply to them unless
11612   //   explicitly stated in 3.7.3.
11613   if (Op == OO_Delete || Op == OO_Array_Delete)
11614     return CheckOperatorDeleteDeclaration(*this, FnDecl);
11615 
11616   if (Op == OO_New || Op == OO_Array_New)
11617     return CheckOperatorNewDeclaration(*this, FnDecl);
11618 
11619   // C++ [over.oper]p6:
11620   //   An operator function shall either be a non-static member
11621   //   function or be a non-member function and have at least one
11622   //   parameter whose type is a class, a reference to a class, an
11623   //   enumeration, or a reference to an enumeration.
11624   if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
11625     if (MethodDecl->isStatic())
11626       return Diag(FnDecl->getLocation(),
11627                   diag::err_operator_overload_static) << FnDecl->getDeclName();
11628   } else {
11629     bool ClassOrEnumParam = false;
11630     for (auto Param : FnDecl->params()) {
11631       QualType ParamType = Param->getType().getNonReferenceType();
11632       if (ParamType->isDependentType() || ParamType->isRecordType() ||
11633           ParamType->isEnumeralType()) {
11634         ClassOrEnumParam = true;
11635         break;
11636       }
11637     }
11638 
11639     if (!ClassOrEnumParam)
11640       return Diag(FnDecl->getLocation(),
11641                   diag::err_operator_overload_needs_class_or_enum)
11642         << FnDecl->getDeclName();
11643   }
11644 
11645   // C++ [over.oper]p8:
11646   //   An operator function cannot have default arguments (8.3.6),
11647   //   except where explicitly stated below.
11648   //
11649   // Only the function-call operator allows default arguments
11650   // (C++ [over.call]p1).
11651   if (Op != OO_Call) {
11652     for (auto Param : FnDecl->params()) {
11653       if (Param->hasDefaultArg())
11654         return Diag(Param->getLocation(),
11655                     diag::err_operator_overload_default_arg)
11656           << FnDecl->getDeclName() << Param->getDefaultArgRange();
11657     }
11658   }
11659 
11660   static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
11661     { false, false, false }
11662 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
11663     , { Unary, Binary, MemberOnly }
11664 #include "clang/Basic/OperatorKinds.def"
11665   };
11666 
11667   bool CanBeUnaryOperator = OperatorUses[Op][0];
11668   bool CanBeBinaryOperator = OperatorUses[Op][1];
11669   bool MustBeMemberOperator = OperatorUses[Op][2];
11670 
11671   // C++ [over.oper]p8:
11672   //   [...] Operator functions cannot have more or fewer parameters
11673   //   than the number required for the corresponding operator, as
11674   //   described in the rest of this subclause.
11675   unsigned NumParams = FnDecl->getNumParams()
11676                      + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
11677   if (Op != OO_Call &&
11678       ((NumParams == 1 && !CanBeUnaryOperator) ||
11679        (NumParams == 2 && !CanBeBinaryOperator) ||
11680        (NumParams < 1) || (NumParams > 2))) {
11681     // We have the wrong number of parameters.
11682     unsigned ErrorKind;
11683     if (CanBeUnaryOperator && CanBeBinaryOperator) {
11684       ErrorKind = 2;  // 2 -> unary or binary.
11685     } else if (CanBeUnaryOperator) {
11686       ErrorKind = 0;  // 0 -> unary
11687     } else {
11688       assert(CanBeBinaryOperator &&
11689              "All non-call overloaded operators are unary or binary!");
11690       ErrorKind = 1;  // 1 -> binary
11691     }
11692 
11693     return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
11694       << FnDecl->getDeclName() << NumParams << ErrorKind;
11695   }
11696 
11697   // Overloaded operators other than operator() cannot be variadic.
11698   if (Op != OO_Call &&
11699       FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
11700     return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
11701       << FnDecl->getDeclName();
11702   }
11703 
11704   // Some operators must be non-static member functions.
11705   if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
11706     return Diag(FnDecl->getLocation(),
11707                 diag::err_operator_overload_must_be_member)
11708       << FnDecl->getDeclName();
11709   }
11710 
11711   // C++ [over.inc]p1:
11712   //   The user-defined function called operator++ implements the
11713   //   prefix and postfix ++ operator. If this function is a member
11714   //   function with no parameters, or a non-member function with one
11715   //   parameter of class or enumeration type, it defines the prefix
11716   //   increment operator ++ for objects of that type. If the function
11717   //   is a member function with one parameter (which shall be of type
11718   //   int) or a non-member function with two parameters (the second
11719   //   of which shall be of type int), it defines the postfix
11720   //   increment operator ++ for objects of that type.
11721   if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
11722     ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
11723     QualType ParamType = LastParam->getType();
11724 
11725     if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
11726         !ParamType->isDependentType())
11727       return Diag(LastParam->getLocation(),
11728                   diag::err_operator_overload_post_incdec_must_be_int)
11729         << LastParam->getType() << (Op == OO_MinusMinus);
11730   }
11731 
11732   return false;
11733 }
11734 
11735 /// CheckLiteralOperatorDeclaration - Check whether the declaration
11736 /// of this literal operator function is well-formed. If so, returns
11737 /// false; otherwise, emits appropriate diagnostics and returns true.
CheckLiteralOperatorDeclaration(FunctionDecl * FnDecl)11738 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
11739   if (isa<CXXMethodDecl>(FnDecl)) {
11740     Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
11741       << FnDecl->getDeclName();
11742     return true;
11743   }
11744 
11745   if (FnDecl->isExternC()) {
11746     Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
11747     return true;
11748   }
11749 
11750   bool Valid = false;
11751 
11752   // This might be the definition of a literal operator template.
11753   FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
11754   // This might be a specialization of a literal operator template.
11755   if (!TpDecl)
11756     TpDecl = FnDecl->getPrimaryTemplate();
11757 
11758   // template <char...> type operator "" name() and
11759   // template <class T, T...> type operator "" name() are the only valid
11760   // template signatures, and the only valid signatures with no parameters.
11761   if (TpDecl) {
11762     if (FnDecl->param_size() == 0) {
11763       // Must have one or two template parameters
11764       TemplateParameterList *Params = TpDecl->getTemplateParameters();
11765       if (Params->size() == 1) {
11766         NonTypeTemplateParmDecl *PmDecl =
11767           dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
11768 
11769         // The template parameter must be a char parameter pack.
11770         if (PmDecl && PmDecl->isTemplateParameterPack() &&
11771             Context.hasSameType(PmDecl->getType(), Context.CharTy))
11772           Valid = true;
11773       } else if (Params->size() == 2) {
11774         TemplateTypeParmDecl *PmType =
11775           dyn_cast<TemplateTypeParmDecl>(Params->getParam(0));
11776         NonTypeTemplateParmDecl *PmArgs =
11777           dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
11778 
11779         // The second template parameter must be a parameter pack with the
11780         // first template parameter as its type.
11781         if (PmType && PmArgs &&
11782             !PmType->isTemplateParameterPack() &&
11783             PmArgs->isTemplateParameterPack()) {
11784           const TemplateTypeParmType *TArgs =
11785             PmArgs->getType()->getAs<TemplateTypeParmType>();
11786           if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
11787               TArgs->getIndex() == PmType->getIndex()) {
11788             Valid = true;
11789             if (ActiveTemplateInstantiations.empty())
11790               Diag(FnDecl->getLocation(),
11791                    diag::ext_string_literal_operator_template);
11792           }
11793         }
11794       }
11795     }
11796   } else if (FnDecl->param_size()) {
11797     // Check the first parameter
11798     FunctionDecl::param_iterator Param = FnDecl->param_begin();
11799 
11800     QualType T = (*Param)->getType().getUnqualifiedType();
11801 
11802     // unsigned long long int, long double, and any character type are allowed
11803     // as the only parameters.
11804     if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
11805         Context.hasSameType(T, Context.LongDoubleTy) ||
11806         Context.hasSameType(T, Context.CharTy) ||
11807         Context.hasSameType(T, Context.WideCharTy) ||
11808         Context.hasSameType(T, Context.Char16Ty) ||
11809         Context.hasSameType(T, Context.Char32Ty)) {
11810       if (++Param == FnDecl->param_end())
11811         Valid = true;
11812       goto FinishedParams;
11813     }
11814 
11815     // Otherwise it must be a pointer to const; let's strip those qualifiers.
11816     const PointerType *PT = T->getAs<PointerType>();
11817     if (!PT)
11818       goto FinishedParams;
11819     T = PT->getPointeeType();
11820     if (!T.isConstQualified() || T.isVolatileQualified())
11821       goto FinishedParams;
11822     T = T.getUnqualifiedType();
11823 
11824     // Move on to the second parameter;
11825     ++Param;
11826 
11827     // If there is no second parameter, the first must be a const char *
11828     if (Param == FnDecl->param_end()) {
11829       if (Context.hasSameType(T, Context.CharTy))
11830         Valid = true;
11831       goto FinishedParams;
11832     }
11833 
11834     // const char *, const wchar_t*, const char16_t*, and const char32_t*
11835     // are allowed as the first parameter to a two-parameter function
11836     if (!(Context.hasSameType(T, Context.CharTy) ||
11837           Context.hasSameType(T, Context.WideCharTy) ||
11838           Context.hasSameType(T, Context.Char16Ty) ||
11839           Context.hasSameType(T, Context.Char32Ty)))
11840       goto FinishedParams;
11841 
11842     // The second and final parameter must be an std::size_t
11843     T = (*Param)->getType().getUnqualifiedType();
11844     if (Context.hasSameType(T, Context.getSizeType()) &&
11845         ++Param == FnDecl->param_end())
11846       Valid = true;
11847   }
11848 
11849   // FIXME: This diagnostic is absolutely terrible.
11850 FinishedParams:
11851   if (!Valid) {
11852     Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
11853       << FnDecl->getDeclName();
11854     return true;
11855   }
11856 
11857   // A parameter-declaration-clause containing a default argument is not
11858   // equivalent to any of the permitted forms.
11859   for (auto Param : FnDecl->params()) {
11860     if (Param->hasDefaultArg()) {
11861       Diag(Param->getDefaultArgRange().getBegin(),
11862            diag::err_literal_operator_default_argument)
11863         << Param->getDefaultArgRange();
11864       break;
11865     }
11866   }
11867 
11868   StringRef LiteralName
11869     = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
11870   if (LiteralName[0] != '_') {
11871     // C++11 [usrlit.suffix]p1:
11872     //   Literal suffix identifiers that do not start with an underscore
11873     //   are reserved for future standardization.
11874     Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
11875       << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
11876   }
11877 
11878   return false;
11879 }
11880 
11881 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
11882 /// linkage specification, including the language and (if present)
11883 /// the '{'. ExternLoc is the location of the 'extern', Lang is the
11884 /// language string literal. LBraceLoc, if valid, provides the location of
11885 /// the '{' brace. Otherwise, this linkage specification does not
11886 /// have any braces.
ActOnStartLinkageSpecification(Scope * S,SourceLocation ExternLoc,Expr * LangStr,SourceLocation LBraceLoc)11887 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
11888                                            Expr *LangStr,
11889                                            SourceLocation LBraceLoc) {
11890   StringLiteral *Lit = cast<StringLiteral>(LangStr);
11891   if (!Lit->isAscii()) {
11892     Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
11893       << LangStr->getSourceRange();
11894     return nullptr;
11895   }
11896 
11897   StringRef Lang = Lit->getString();
11898   LinkageSpecDecl::LanguageIDs Language;
11899   if (Lang == "C")
11900     Language = LinkageSpecDecl::lang_c;
11901   else if (Lang == "C++")
11902     Language = LinkageSpecDecl::lang_cxx;
11903   else {
11904     Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
11905       << LangStr->getSourceRange();
11906     return nullptr;
11907   }
11908 
11909   // FIXME: Add all the various semantics of linkage specifications
11910 
11911   LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
11912                                                LangStr->getExprLoc(), Language,
11913                                                LBraceLoc.isValid());
11914   CurContext->addDecl(D);
11915   PushDeclContext(S, D);
11916   return D;
11917 }
11918 
11919 /// ActOnFinishLinkageSpecification - Complete the definition of
11920 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
11921 /// valid, it's the position of the closing '}' brace in a linkage
11922 /// specification that uses braces.
ActOnFinishLinkageSpecification(Scope * S,Decl * LinkageSpec,SourceLocation RBraceLoc)11923 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
11924                                             Decl *LinkageSpec,
11925                                             SourceLocation RBraceLoc) {
11926   if (RBraceLoc.isValid()) {
11927     LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
11928     LSDecl->setRBraceLoc(RBraceLoc);
11929   }
11930   PopDeclContext();
11931   return LinkageSpec;
11932 }
11933 
ActOnEmptyDeclaration(Scope * S,AttributeList * AttrList,SourceLocation SemiLoc)11934 Decl *Sema::ActOnEmptyDeclaration(Scope *S,
11935                                   AttributeList *AttrList,
11936                                   SourceLocation SemiLoc) {
11937   Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
11938   // Attribute declarations appertain to empty declaration so we handle
11939   // them here.
11940   if (AttrList)
11941     ProcessDeclAttributeList(S, ED, AttrList);
11942 
11943   CurContext->addDecl(ED);
11944   return ED;
11945 }
11946 
11947 /// \brief Perform semantic analysis for the variable declaration that
11948 /// occurs within a C++ catch clause, returning the newly-created
11949 /// variable.
BuildExceptionDeclaration(Scope * S,TypeSourceInfo * TInfo,SourceLocation StartLoc,SourceLocation Loc,IdentifierInfo * Name)11950 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
11951                                          TypeSourceInfo *TInfo,
11952                                          SourceLocation StartLoc,
11953                                          SourceLocation Loc,
11954                                          IdentifierInfo *Name) {
11955   bool Invalid = false;
11956   QualType ExDeclType = TInfo->getType();
11957 
11958   // Arrays and functions decay.
11959   if (ExDeclType->isArrayType())
11960     ExDeclType = Context.getArrayDecayedType(ExDeclType);
11961   else if (ExDeclType->isFunctionType())
11962     ExDeclType = Context.getPointerType(ExDeclType);
11963 
11964   // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
11965   // The exception-declaration shall not denote a pointer or reference to an
11966   // incomplete type, other than [cv] void*.
11967   // N2844 forbids rvalue references.
11968   if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
11969     Diag(Loc, diag::err_catch_rvalue_ref);
11970     Invalid = true;
11971   }
11972 
11973   QualType BaseType = ExDeclType;
11974   int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
11975   unsigned DK = diag::err_catch_incomplete;
11976   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
11977     BaseType = Ptr->getPointeeType();
11978     Mode = 1;
11979     DK = diag::err_catch_incomplete_ptr;
11980   } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
11981     // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
11982     BaseType = Ref->getPointeeType();
11983     Mode = 2;
11984     DK = diag::err_catch_incomplete_ref;
11985   }
11986   if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
11987       !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
11988     Invalid = true;
11989 
11990   if (!Invalid && !ExDeclType->isDependentType() &&
11991       RequireNonAbstractType(Loc, ExDeclType,
11992                              diag::err_abstract_type_in_decl,
11993                              AbstractVariableType))
11994     Invalid = true;
11995 
11996   // Only the non-fragile NeXT runtime currently supports C++ catches
11997   // of ObjC types, and no runtime supports catching ObjC types by value.
11998   if (!Invalid && getLangOpts().ObjC1) {
11999     QualType T = ExDeclType;
12000     if (const ReferenceType *RT = T->getAs<ReferenceType>())
12001       T = RT->getPointeeType();
12002 
12003     if (T->isObjCObjectType()) {
12004       Diag(Loc, diag::err_objc_object_catch);
12005       Invalid = true;
12006     } else if (T->isObjCObjectPointerType()) {
12007       // FIXME: should this be a test for macosx-fragile specifically?
12008       if (getLangOpts().ObjCRuntime.isFragile())
12009         Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
12010     }
12011   }
12012 
12013   VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
12014                                     ExDeclType, TInfo, SC_None);
12015   ExDecl->setExceptionVariable(true);
12016 
12017   // In ARC, infer 'retaining' for variables of retainable type.
12018   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
12019     Invalid = true;
12020 
12021   if (!Invalid && !ExDeclType->isDependentType()) {
12022     if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
12023       // Insulate this from anything else we might currently be parsing.
12024       EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
12025 
12026       // C++ [except.handle]p16:
12027       //   The object declared in an exception-declaration or, if the
12028       //   exception-declaration does not specify a name, a temporary (12.2) is
12029       //   copy-initialized (8.5) from the exception object. [...]
12030       //   The object is destroyed when the handler exits, after the destruction
12031       //   of any automatic objects initialized within the handler.
12032       //
12033       // We just pretend to initialize the object with itself, then make sure
12034       // it can be destroyed later.
12035       QualType initType = Context.getExceptionObjectType(ExDeclType);
12036 
12037       InitializedEntity entity =
12038         InitializedEntity::InitializeVariable(ExDecl);
12039       InitializationKind initKind =
12040         InitializationKind::CreateCopy(Loc, SourceLocation());
12041 
12042       Expr *opaqueValue =
12043         new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
12044       InitializationSequence sequence(*this, entity, initKind, opaqueValue);
12045       ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
12046       if (result.isInvalid())
12047         Invalid = true;
12048       else {
12049         // If the constructor used was non-trivial, set this as the
12050         // "initializer".
12051         CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
12052         if (!construct->getConstructor()->isTrivial()) {
12053           Expr *init = MaybeCreateExprWithCleanups(construct);
12054           ExDecl->setInit(init);
12055         }
12056 
12057         // And make sure it's destructable.
12058         FinalizeVarWithDestructor(ExDecl, recordType);
12059       }
12060     }
12061   }
12062 
12063   if (Invalid)
12064     ExDecl->setInvalidDecl();
12065 
12066   return ExDecl;
12067 }
12068 
12069 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
12070 /// handler.
ActOnExceptionDeclarator(Scope * S,Declarator & D)12071 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
12072   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12073   bool Invalid = D.isInvalidType();
12074 
12075   // Check for unexpanded parameter packs.
12076   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12077                                       UPPC_ExceptionType)) {
12078     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
12079                                              D.getIdentifierLoc());
12080     Invalid = true;
12081   }
12082 
12083   IdentifierInfo *II = D.getIdentifier();
12084   if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
12085                                              LookupOrdinaryName,
12086                                              ForRedeclaration)) {
12087     // The scope should be freshly made just for us. There is just no way
12088     // it contains any previous declaration, except for function parameters in
12089     // a function-try-block's catch statement.
12090     assert(!S->isDeclScope(PrevDecl));
12091     if (isDeclInScope(PrevDecl, CurContext, S)) {
12092       Diag(D.getIdentifierLoc(), diag::err_redefinition)
12093         << D.getIdentifier();
12094       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12095       Invalid = true;
12096     } else if (PrevDecl->isTemplateParameter())
12097       // Maybe we will complain about the shadowed template parameter.
12098       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12099   }
12100 
12101   if (D.getCXXScopeSpec().isSet() && !Invalid) {
12102     Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
12103       << D.getCXXScopeSpec().getRange();
12104     Invalid = true;
12105   }
12106 
12107   VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
12108                                               D.getLocStart(),
12109                                               D.getIdentifierLoc(),
12110                                               D.getIdentifier());
12111   if (Invalid)
12112     ExDecl->setInvalidDecl();
12113 
12114   // Add the exception declaration into this scope.
12115   if (II)
12116     PushOnScopeChains(ExDecl, S);
12117   else
12118     CurContext->addDecl(ExDecl);
12119 
12120   ProcessDeclAttributes(S, ExDecl, D);
12121   return ExDecl;
12122 }
12123 
ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,Expr * AssertMessageExpr,SourceLocation RParenLoc)12124 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
12125                                          Expr *AssertExpr,
12126                                          Expr *AssertMessageExpr,
12127                                          SourceLocation RParenLoc) {
12128   StringLiteral *AssertMessage =
12129       AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
12130 
12131   if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
12132     return nullptr;
12133 
12134   return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
12135                                       AssertMessage, RParenLoc, false);
12136 }
12137 
BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * AssertMessage,SourceLocation RParenLoc,bool Failed)12138 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
12139                                          Expr *AssertExpr,
12140                                          StringLiteral *AssertMessage,
12141                                          SourceLocation RParenLoc,
12142                                          bool Failed) {
12143   assert(AssertExpr != nullptr && "Expected non-null condition");
12144   if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
12145       !Failed) {
12146     // In a static_assert-declaration, the constant-expression shall be a
12147     // constant expression that can be contextually converted to bool.
12148     ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
12149     if (Converted.isInvalid())
12150       Failed = true;
12151 
12152     llvm::APSInt Cond;
12153     if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
12154           diag::err_static_assert_expression_is_not_constant,
12155           /*AllowFold=*/false).isInvalid())
12156       Failed = true;
12157 
12158     if (!Failed && !Cond) {
12159       SmallString<256> MsgBuffer;
12160       llvm::raw_svector_ostream Msg(MsgBuffer);
12161       if (AssertMessage)
12162         AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
12163       Diag(StaticAssertLoc, diag::err_static_assert_failed)
12164         << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
12165       Failed = true;
12166     }
12167   }
12168 
12169   Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
12170                                         AssertExpr, AssertMessage, RParenLoc,
12171                                         Failed);
12172 
12173   CurContext->addDecl(Decl);
12174   return Decl;
12175 }
12176 
12177 /// \brief Perform semantic analysis of the given friend type declaration.
12178 ///
12179 /// \returns A friend declaration that.
CheckFriendTypeDecl(SourceLocation LocStart,SourceLocation FriendLoc,TypeSourceInfo * TSInfo)12180 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
12181                                       SourceLocation FriendLoc,
12182                                       TypeSourceInfo *TSInfo) {
12183   assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
12184 
12185   QualType T = TSInfo->getType();
12186   SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
12187 
12188   // C++03 [class.friend]p2:
12189   //   An elaborated-type-specifier shall be used in a friend declaration
12190   //   for a class.*
12191   //
12192   //   * The class-key of the elaborated-type-specifier is required.
12193   if (!ActiveTemplateInstantiations.empty()) {
12194     // Do not complain about the form of friend template types during
12195     // template instantiation; we will already have complained when the
12196     // template was declared.
12197   } else {
12198     if (!T->isElaboratedTypeSpecifier()) {
12199       // If we evaluated the type to a record type, suggest putting
12200       // a tag in front.
12201       if (const RecordType *RT = T->getAs<RecordType>()) {
12202         RecordDecl *RD = RT->getDecl();
12203 
12204         SmallString<16> InsertionText(" ");
12205         InsertionText += RD->getKindName();
12206 
12207         Diag(TypeRange.getBegin(),
12208              getLangOpts().CPlusPlus11 ?
12209                diag::warn_cxx98_compat_unelaborated_friend_type :
12210                diag::ext_unelaborated_friend_type)
12211           << (unsigned) RD->getTagKind()
12212           << T
12213           << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc),
12214                                         InsertionText);
12215       } else {
12216         Diag(FriendLoc,
12217              getLangOpts().CPlusPlus11 ?
12218                diag::warn_cxx98_compat_nonclass_type_friend :
12219                diag::ext_nonclass_type_friend)
12220           << T
12221           << TypeRange;
12222       }
12223     } else if (T->getAs<EnumType>()) {
12224       Diag(FriendLoc,
12225            getLangOpts().CPlusPlus11 ?
12226              diag::warn_cxx98_compat_enum_friend :
12227              diag::ext_enum_friend)
12228         << T
12229         << TypeRange;
12230     }
12231 
12232     // C++11 [class.friend]p3:
12233     //   A friend declaration that does not declare a function shall have one
12234     //   of the following forms:
12235     //     friend elaborated-type-specifier ;
12236     //     friend simple-type-specifier ;
12237     //     friend typename-specifier ;
12238     if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
12239       Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
12240   }
12241 
12242   //   If the type specifier in a friend declaration designates a (possibly
12243   //   cv-qualified) class type, that class is declared as a friend; otherwise,
12244   //   the friend declaration is ignored.
12245   return FriendDecl::Create(Context, CurContext,
12246                             TSInfo->getTypeLoc().getLocStart(), TSInfo,
12247                             FriendLoc);
12248 }
12249 
12250 /// Handle a friend tag declaration where the scope specifier was
12251 /// templated.
ActOnTemplatedFriendTag(Scope * S,SourceLocation FriendLoc,unsigned TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,MultiTemplateParamsArg TempParamLists)12252 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
12253                                     unsigned TagSpec, SourceLocation TagLoc,
12254                                     CXXScopeSpec &SS,
12255                                     IdentifierInfo *Name,
12256                                     SourceLocation NameLoc,
12257                                     AttributeList *Attr,
12258                                     MultiTemplateParamsArg TempParamLists) {
12259   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
12260 
12261   bool isExplicitSpecialization = false;
12262   bool Invalid = false;
12263 
12264   if (TemplateParameterList *TemplateParams =
12265           MatchTemplateParametersToScopeSpecifier(
12266               TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
12267               isExplicitSpecialization, Invalid)) {
12268     if (TemplateParams->size() > 0) {
12269       // This is a declaration of a class template.
12270       if (Invalid)
12271         return nullptr;
12272 
12273       return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
12274                                 NameLoc, Attr, TemplateParams, AS_public,
12275                                 /*ModulePrivateLoc=*/SourceLocation(),
12276                                 FriendLoc, TempParamLists.size() - 1,
12277                                 TempParamLists.data()).get();
12278     } else {
12279       // The "template<>" header is extraneous.
12280       Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
12281         << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
12282       isExplicitSpecialization = true;
12283     }
12284   }
12285 
12286   if (Invalid) return nullptr;
12287 
12288   bool isAllExplicitSpecializations = true;
12289   for (unsigned I = TempParamLists.size(); I-- > 0; ) {
12290     if (TempParamLists[I]->size()) {
12291       isAllExplicitSpecializations = false;
12292       break;
12293     }
12294   }
12295 
12296   // FIXME: don't ignore attributes.
12297 
12298   // If it's explicit specializations all the way down, just forget
12299   // about the template header and build an appropriate non-templated
12300   // friend.  TODO: for source fidelity, remember the headers.
12301   if (isAllExplicitSpecializations) {
12302     if (SS.isEmpty()) {
12303       bool Owned = false;
12304       bool IsDependent = false;
12305       return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
12306                       Attr, AS_public,
12307                       /*ModulePrivateLoc=*/SourceLocation(),
12308                       MultiTemplateParamsArg(), Owned, IsDependent,
12309                       /*ScopedEnumKWLoc=*/SourceLocation(),
12310                       /*ScopedEnumUsesClassTag=*/false,
12311                       /*UnderlyingType=*/TypeResult(),
12312                       /*IsTypeSpecifier=*/false);
12313     }
12314 
12315     NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
12316     ElaboratedTypeKeyword Keyword
12317       = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
12318     QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
12319                                    *Name, NameLoc);
12320     if (T.isNull())
12321       return nullptr;
12322 
12323     TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
12324     if (isa<DependentNameType>(T)) {
12325       DependentNameTypeLoc TL =
12326           TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
12327       TL.setElaboratedKeywordLoc(TagLoc);
12328       TL.setQualifierLoc(QualifierLoc);
12329       TL.setNameLoc(NameLoc);
12330     } else {
12331       ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
12332       TL.setElaboratedKeywordLoc(TagLoc);
12333       TL.setQualifierLoc(QualifierLoc);
12334       TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
12335     }
12336 
12337     FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
12338                                             TSI, FriendLoc, TempParamLists);
12339     Friend->setAccess(AS_public);
12340     CurContext->addDecl(Friend);
12341     return Friend;
12342   }
12343 
12344   assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
12345 
12346 
12347 
12348   // Handle the case of a templated-scope friend class.  e.g.
12349   //   template <class T> class A<T>::B;
12350   // FIXME: we don't support these right now.
12351   Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
12352     << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
12353   ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
12354   QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
12355   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
12356   DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
12357   TL.setElaboratedKeywordLoc(TagLoc);
12358   TL.setQualifierLoc(SS.getWithLocInContext(Context));
12359   TL.setNameLoc(NameLoc);
12360 
12361   FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
12362                                           TSI, FriendLoc, TempParamLists);
12363   Friend->setAccess(AS_public);
12364   Friend->setUnsupportedFriend(true);
12365   CurContext->addDecl(Friend);
12366   return Friend;
12367 }
12368 
12369 
12370 /// Handle a friend type declaration.  This works in tandem with
12371 /// ActOnTag.
12372 ///
12373 /// Notes on friend class templates:
12374 ///
12375 /// We generally treat friend class declarations as if they were
12376 /// declaring a class.  So, for example, the elaborated type specifier
12377 /// in a friend declaration is required to obey the restrictions of a
12378 /// class-head (i.e. no typedefs in the scope chain), template
12379 /// parameters are required to match up with simple template-ids, &c.
12380 /// However, unlike when declaring a template specialization, it's
12381 /// okay to refer to a template specialization without an empty
12382 /// template parameter declaration, e.g.
12383 ///   friend class A<T>::B<unsigned>;
12384 /// We permit this as a special case; if there are any template
12385 /// parameters present at all, require proper matching, i.e.
12386 ///   template <> template \<class T> friend class A<int>::B;
ActOnFriendTypeDecl(Scope * S,const DeclSpec & DS,MultiTemplateParamsArg TempParams)12387 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
12388                                 MultiTemplateParamsArg TempParams) {
12389   SourceLocation Loc = DS.getLocStart();
12390 
12391   assert(DS.isFriendSpecified());
12392   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
12393 
12394   // Try to convert the decl specifier to a type.  This works for
12395   // friend templates because ActOnTag never produces a ClassTemplateDecl
12396   // for a TUK_Friend.
12397   Declarator TheDeclarator(DS, Declarator::MemberContext);
12398   TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
12399   QualType T = TSI->getType();
12400   if (TheDeclarator.isInvalidType())
12401     return nullptr;
12402 
12403   if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
12404     return nullptr;
12405 
12406   // This is definitely an error in C++98.  It's probably meant to
12407   // be forbidden in C++0x, too, but the specification is just
12408   // poorly written.
12409   //
12410   // The problem is with declarations like the following:
12411   //   template <T> friend A<T>::foo;
12412   // where deciding whether a class C is a friend or not now hinges
12413   // on whether there exists an instantiation of A that causes
12414   // 'foo' to equal C.  There are restrictions on class-heads
12415   // (which we declare (by fiat) elaborated friend declarations to
12416   // be) that makes this tractable.
12417   //
12418   // FIXME: handle "template <> friend class A<T>;", which
12419   // is possibly well-formed?  Who even knows?
12420   if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
12421     Diag(Loc, diag::err_tagless_friend_type_template)
12422       << DS.getSourceRange();
12423     return nullptr;
12424   }
12425 
12426   // C++98 [class.friend]p1: A friend of a class is a function
12427   //   or class that is not a member of the class . . .
12428   // This is fixed in DR77, which just barely didn't make the C++03
12429   // deadline.  It's also a very silly restriction that seriously
12430   // affects inner classes and which nobody else seems to implement;
12431   // thus we never diagnose it, not even in -pedantic.
12432   //
12433   // But note that we could warn about it: it's always useless to
12434   // friend one of your own members (it's not, however, worthless to
12435   // friend a member of an arbitrary specialization of your template).
12436 
12437   Decl *D;
12438   if (unsigned NumTempParamLists = TempParams.size())
12439     D = FriendTemplateDecl::Create(Context, CurContext, Loc,
12440                                    NumTempParamLists,
12441                                    TempParams.data(),
12442                                    TSI,
12443                                    DS.getFriendSpecLoc());
12444   else
12445     D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
12446 
12447   if (!D)
12448     return nullptr;
12449 
12450   D->setAccess(AS_public);
12451   CurContext->addDecl(D);
12452 
12453   return D;
12454 }
12455 
ActOnFriendFunctionDecl(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParams)12456 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
12457                                         MultiTemplateParamsArg TemplateParams) {
12458   const DeclSpec &DS = D.getDeclSpec();
12459 
12460   assert(DS.isFriendSpecified());
12461   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
12462 
12463   SourceLocation Loc = D.getIdentifierLoc();
12464   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12465 
12466   // C++ [class.friend]p1
12467   //   A friend of a class is a function or class....
12468   // Note that this sees through typedefs, which is intended.
12469   // It *doesn't* see through dependent types, which is correct
12470   // according to [temp.arg.type]p3:
12471   //   If a declaration acquires a function type through a
12472   //   type dependent on a template-parameter and this causes
12473   //   a declaration that does not use the syntactic form of a
12474   //   function declarator to have a function type, the program
12475   //   is ill-formed.
12476   if (!TInfo->getType()->isFunctionType()) {
12477     Diag(Loc, diag::err_unexpected_friend);
12478 
12479     // It might be worthwhile to try to recover by creating an
12480     // appropriate declaration.
12481     return nullptr;
12482   }
12483 
12484   // C++ [namespace.memdef]p3
12485   //  - If a friend declaration in a non-local class first declares a
12486   //    class or function, the friend class or function is a member
12487   //    of the innermost enclosing namespace.
12488   //  - The name of the friend is not found by simple name lookup
12489   //    until a matching declaration is provided in that namespace
12490   //    scope (either before or after the class declaration granting
12491   //    friendship).
12492   //  - If a friend function is called, its name may be found by the
12493   //    name lookup that considers functions from namespaces and
12494   //    classes associated with the types of the function arguments.
12495   //  - When looking for a prior declaration of a class or a function
12496   //    declared as a friend, scopes outside the innermost enclosing
12497   //    namespace scope are not considered.
12498 
12499   CXXScopeSpec &SS = D.getCXXScopeSpec();
12500   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
12501   DeclarationName Name = NameInfo.getName();
12502   assert(Name);
12503 
12504   // Check for unexpanded parameter packs.
12505   if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
12506       DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
12507       DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
12508     return nullptr;
12509 
12510   // The context we found the declaration in, or in which we should
12511   // create the declaration.
12512   DeclContext *DC;
12513   Scope *DCScope = S;
12514   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
12515                         ForRedeclaration);
12516 
12517   // There are five cases here.
12518   //   - There's no scope specifier and we're in a local class. Only look
12519   //     for functions declared in the immediately-enclosing block scope.
12520   // We recover from invalid scope qualifiers as if they just weren't there.
12521   FunctionDecl *FunctionContainingLocalClass = nullptr;
12522   if ((SS.isInvalid() || !SS.isSet()) &&
12523       (FunctionContainingLocalClass =
12524            cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
12525     // C++11 [class.friend]p11:
12526     //   If a friend declaration appears in a local class and the name
12527     //   specified is an unqualified name, a prior declaration is
12528     //   looked up without considering scopes that are outside the
12529     //   innermost enclosing non-class scope. For a friend function
12530     //   declaration, if there is no prior declaration, the program is
12531     //   ill-formed.
12532 
12533     // Find the innermost enclosing non-class scope. This is the block
12534     // scope containing the local class definition (or for a nested class,
12535     // the outer local class).
12536     DCScope = S->getFnParent();
12537 
12538     // Look up the function name in the scope.
12539     Previous.clear(LookupLocalFriendName);
12540     LookupName(Previous, S, /*AllowBuiltinCreation*/false);
12541 
12542     if (!Previous.empty()) {
12543       // All possible previous declarations must have the same context:
12544       // either they were declared at block scope or they are members of
12545       // one of the enclosing local classes.
12546       DC = Previous.getRepresentativeDecl()->getDeclContext();
12547     } else {
12548       // This is ill-formed, but provide the context that we would have
12549       // declared the function in, if we were permitted to, for error recovery.
12550       DC = FunctionContainingLocalClass;
12551     }
12552     adjustContextForLocalExternDecl(DC);
12553 
12554     // C++ [class.friend]p6:
12555     //   A function can be defined in a friend declaration of a class if and
12556     //   only if the class is a non-local class (9.8), the function name is
12557     //   unqualified, and the function has namespace scope.
12558     if (D.isFunctionDefinition()) {
12559       Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
12560     }
12561 
12562   //   - There's no scope specifier, in which case we just go to the
12563   //     appropriate scope and look for a function or function template
12564   //     there as appropriate.
12565   } else if (SS.isInvalid() || !SS.isSet()) {
12566     // C++11 [namespace.memdef]p3:
12567     //   If the name in a friend declaration is neither qualified nor
12568     //   a template-id and the declaration is a function or an
12569     //   elaborated-type-specifier, the lookup to determine whether
12570     //   the entity has been previously declared shall not consider
12571     //   any scopes outside the innermost enclosing namespace.
12572     bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
12573 
12574     // Find the appropriate context according to the above.
12575     DC = CurContext;
12576 
12577     // Skip class contexts.  If someone can cite chapter and verse
12578     // for this behavior, that would be nice --- it's what GCC and
12579     // EDG do, and it seems like a reasonable intent, but the spec
12580     // really only says that checks for unqualified existing
12581     // declarations should stop at the nearest enclosing namespace,
12582     // not that they should only consider the nearest enclosing
12583     // namespace.
12584     while (DC->isRecord())
12585       DC = DC->getParent();
12586 
12587     DeclContext *LookupDC = DC;
12588     while (LookupDC->isTransparentContext())
12589       LookupDC = LookupDC->getParent();
12590 
12591     while (true) {
12592       LookupQualifiedName(Previous, LookupDC);
12593 
12594       if (!Previous.empty()) {
12595         DC = LookupDC;
12596         break;
12597       }
12598 
12599       if (isTemplateId) {
12600         if (isa<TranslationUnitDecl>(LookupDC)) break;
12601       } else {
12602         if (LookupDC->isFileContext()) break;
12603       }
12604       LookupDC = LookupDC->getParent();
12605     }
12606 
12607     DCScope = getScopeForDeclContext(S, DC);
12608 
12609   //   - There's a non-dependent scope specifier, in which case we
12610   //     compute it and do a previous lookup there for a function
12611   //     or function template.
12612   } else if (!SS.getScopeRep()->isDependent()) {
12613     DC = computeDeclContext(SS);
12614     if (!DC) return nullptr;
12615 
12616     if (RequireCompleteDeclContext(SS, DC)) return nullptr;
12617 
12618     LookupQualifiedName(Previous, DC);
12619 
12620     // Ignore things found implicitly in the wrong scope.
12621     // TODO: better diagnostics for this case.  Suggesting the right
12622     // qualified scope would be nice...
12623     LookupResult::Filter F = Previous.makeFilter();
12624     while (F.hasNext()) {
12625       NamedDecl *D = F.next();
12626       if (!DC->InEnclosingNamespaceSetOf(
12627               D->getDeclContext()->getRedeclContext()))
12628         F.erase();
12629     }
12630     F.done();
12631 
12632     if (Previous.empty()) {
12633       D.setInvalidType();
12634       Diag(Loc, diag::err_qualified_friend_not_found)
12635           << Name << TInfo->getType();
12636       return nullptr;
12637     }
12638 
12639     // C++ [class.friend]p1: A friend of a class is a function or
12640     //   class that is not a member of the class . . .
12641     if (DC->Equals(CurContext))
12642       Diag(DS.getFriendSpecLoc(),
12643            getLangOpts().CPlusPlus11 ?
12644              diag::warn_cxx98_compat_friend_is_member :
12645              diag::err_friend_is_member);
12646 
12647     if (D.isFunctionDefinition()) {
12648       // C++ [class.friend]p6:
12649       //   A function can be defined in a friend declaration of a class if and
12650       //   only if the class is a non-local class (9.8), the function name is
12651       //   unqualified, and the function has namespace scope.
12652       SemaDiagnosticBuilder DB
12653         = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
12654 
12655       DB << SS.getScopeRep();
12656       if (DC->isFileContext())
12657         DB << FixItHint::CreateRemoval(SS.getRange());
12658       SS.clear();
12659     }
12660 
12661   //   - There's a scope specifier that does not match any template
12662   //     parameter lists, in which case we use some arbitrary context,
12663   //     create a method or method template, and wait for instantiation.
12664   //   - There's a scope specifier that does match some template
12665   //     parameter lists, which we don't handle right now.
12666   } else {
12667     if (D.isFunctionDefinition()) {
12668       // C++ [class.friend]p6:
12669       //   A function can be defined in a friend declaration of a class if and
12670       //   only if the class is a non-local class (9.8), the function name is
12671       //   unqualified, and the function has namespace scope.
12672       Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
12673         << SS.getScopeRep();
12674     }
12675 
12676     DC = CurContext;
12677     assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
12678   }
12679 
12680   if (!DC->isRecord()) {
12681     int DiagArg = -1;
12682     switch (D.getName().getKind()) {
12683     case UnqualifiedId::IK_ConstructorTemplateId:
12684     case UnqualifiedId::IK_ConstructorName:
12685       DiagArg = 0;
12686       break;
12687     case UnqualifiedId::IK_DestructorName:
12688       DiagArg = 1;
12689       break;
12690     case UnqualifiedId::IK_ConversionFunctionId:
12691       DiagArg = 2;
12692       break;
12693     case UnqualifiedId::IK_Identifier:
12694     case UnqualifiedId::IK_ImplicitSelfParam:
12695     case UnqualifiedId::IK_LiteralOperatorId:
12696     case UnqualifiedId::IK_OperatorFunctionId:
12697     case UnqualifiedId::IK_TemplateId:
12698       break;
12699     }
12700     // This implies that it has to be an operator or function.
12701     if (DiagArg >= 0) {
12702       Diag(Loc, diag::err_introducing_special_friend) << DiagArg;
12703       return nullptr;
12704     }
12705   }
12706 
12707   // FIXME: This is an egregious hack to cope with cases where the scope stack
12708   // does not contain the declaration context, i.e., in an out-of-line
12709   // definition of a class.
12710   Scope FakeDCScope(S, Scope::DeclScope, Diags);
12711   if (!DCScope) {
12712     FakeDCScope.setEntity(DC);
12713     DCScope = &FakeDCScope;
12714   }
12715 
12716   bool AddToScope = true;
12717   NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
12718                                           TemplateParams, AddToScope);
12719   if (!ND) return nullptr;
12720 
12721   assert(ND->getLexicalDeclContext() == CurContext);
12722 
12723   // If we performed typo correction, we might have added a scope specifier
12724   // and changed the decl context.
12725   DC = ND->getDeclContext();
12726 
12727   // Add the function declaration to the appropriate lookup tables,
12728   // adjusting the redeclarations list as necessary.  We don't
12729   // want to do this yet if the friending class is dependent.
12730   //
12731   // Also update the scope-based lookup if the target context's
12732   // lookup context is in lexical scope.
12733   if (!CurContext->isDependentContext()) {
12734     DC = DC->getRedeclContext();
12735     DC->makeDeclVisibleInContext(ND);
12736     if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
12737       PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
12738   }
12739 
12740   FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
12741                                        D.getIdentifierLoc(), ND,
12742                                        DS.getFriendSpecLoc());
12743   FrD->setAccess(AS_public);
12744   CurContext->addDecl(FrD);
12745 
12746   if (ND->isInvalidDecl()) {
12747     FrD->setInvalidDecl();
12748   } else {
12749     if (DC->isRecord()) CheckFriendAccess(ND);
12750 
12751     FunctionDecl *FD;
12752     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
12753       FD = FTD->getTemplatedDecl();
12754     else
12755       FD = cast<FunctionDecl>(ND);
12756 
12757     // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
12758     // default argument expression, that declaration shall be a definition
12759     // and shall be the only declaration of the function or function
12760     // template in the translation unit.
12761     if (functionDeclHasDefaultArgument(FD)) {
12762       if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
12763         Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
12764         Diag(OldFD->getLocation(), diag::note_previous_declaration);
12765       } else if (!D.isFunctionDefinition())
12766         Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
12767     }
12768 
12769     // Mark templated-scope function declarations as unsupported.
12770     if (FD->getNumTemplateParameterLists() && SS.isValid()) {
12771       Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
12772         << SS.getScopeRep() << SS.getRange()
12773         << cast<CXXRecordDecl>(CurContext);
12774       FrD->setUnsupportedFriend(true);
12775     }
12776   }
12777 
12778   return ND;
12779 }
12780 
SetDeclDeleted(Decl * Dcl,SourceLocation DelLoc)12781 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
12782   AdjustDeclIfTemplate(Dcl);
12783 
12784   FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
12785   if (!Fn) {
12786     Diag(DelLoc, diag::err_deleted_non_function);
12787     return;
12788   }
12789 
12790   if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
12791     // Don't consider the implicit declaration we generate for explicit
12792     // specializations. FIXME: Do not generate these implicit declarations.
12793     if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
12794          Prev->getPreviousDecl()) &&
12795         !Prev->isDefined()) {
12796       Diag(DelLoc, diag::err_deleted_decl_not_first);
12797       Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
12798            Prev->isImplicit() ? diag::note_previous_implicit_declaration
12799                               : diag::note_previous_declaration);
12800     }
12801     // If the declaration wasn't the first, we delete the function anyway for
12802     // recovery.
12803     Fn = Fn->getCanonicalDecl();
12804   }
12805 
12806   // dllimport/dllexport cannot be deleted.
12807   if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
12808     Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
12809     Fn->setInvalidDecl();
12810   }
12811 
12812   if (Fn->isDeleted())
12813     return;
12814 
12815   // See if we're deleting a function which is already known to override a
12816   // non-deleted virtual function.
12817   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
12818     bool IssuedDiagnostic = false;
12819     for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
12820                                         E = MD->end_overridden_methods();
12821          I != E; ++I) {
12822       if (!(*MD->begin_overridden_methods())->isDeleted()) {
12823         if (!IssuedDiagnostic) {
12824           Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
12825           IssuedDiagnostic = true;
12826         }
12827         Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
12828       }
12829     }
12830   }
12831 
12832   // C++11 [basic.start.main]p3:
12833   //   A program that defines main as deleted [...] is ill-formed.
12834   if (Fn->isMain())
12835     Diag(DelLoc, diag::err_deleted_main);
12836 
12837   Fn->setDeletedAsWritten();
12838 }
12839 
SetDeclDefaulted(Decl * Dcl,SourceLocation DefaultLoc)12840 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
12841   CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
12842 
12843   if (MD) {
12844     if (MD->getParent()->isDependentType()) {
12845       MD->setDefaulted();
12846       MD->setExplicitlyDefaulted();
12847       return;
12848     }
12849 
12850     CXXSpecialMember Member = getSpecialMember(MD);
12851     if (Member == CXXInvalid) {
12852       if (!MD->isInvalidDecl())
12853         Diag(DefaultLoc, diag::err_default_special_members);
12854       return;
12855     }
12856 
12857     MD->setDefaulted();
12858     MD->setExplicitlyDefaulted();
12859 
12860     // If this definition appears within the record, do the checking when
12861     // the record is complete.
12862     const FunctionDecl *Primary = MD;
12863     if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
12864       // Find the uninstantiated declaration that actually had the '= default'
12865       // on it.
12866       Pattern->isDefined(Primary);
12867 
12868     // If the method was defaulted on its first declaration, we will have
12869     // already performed the checking in CheckCompletedCXXClass. Such a
12870     // declaration doesn't trigger an implicit definition.
12871     if (Primary == Primary->getCanonicalDecl())
12872       return;
12873 
12874     CheckExplicitlyDefaultedSpecialMember(MD);
12875 
12876     if (MD->isInvalidDecl())
12877       return;
12878 
12879     switch (Member) {
12880     case CXXDefaultConstructor:
12881       DefineImplicitDefaultConstructor(DefaultLoc,
12882                                        cast<CXXConstructorDecl>(MD));
12883       break;
12884     case CXXCopyConstructor:
12885       DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
12886       break;
12887     case CXXCopyAssignment:
12888       DefineImplicitCopyAssignment(DefaultLoc, MD);
12889       break;
12890     case CXXDestructor:
12891       DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
12892       break;
12893     case CXXMoveConstructor:
12894       DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
12895       break;
12896     case CXXMoveAssignment:
12897       DefineImplicitMoveAssignment(DefaultLoc, MD);
12898       break;
12899     case CXXInvalid:
12900       llvm_unreachable("Invalid special member.");
12901     }
12902   } else {
12903     Diag(DefaultLoc, diag::err_default_special_members);
12904   }
12905 }
12906 
SearchForReturnInStmt(Sema & Self,Stmt * S)12907 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
12908   for (Stmt *SubStmt : S->children()) {
12909     if (!SubStmt)
12910       continue;
12911     if (isa<ReturnStmt>(SubStmt))
12912       Self.Diag(SubStmt->getLocStart(),
12913            diag::err_return_in_constructor_handler);
12914     if (!isa<Expr>(SubStmt))
12915       SearchForReturnInStmt(Self, SubStmt);
12916   }
12917 }
12918 
DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt * TryBlock)12919 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
12920   for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
12921     CXXCatchStmt *Handler = TryBlock->getHandler(I);
12922     SearchForReturnInStmt(*this, Handler);
12923   }
12924 }
12925 
CheckOverridingFunctionAttributes(const CXXMethodDecl * New,const CXXMethodDecl * Old)12926 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
12927                                              const CXXMethodDecl *Old) {
12928   const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
12929   const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
12930 
12931   CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
12932 
12933   // If the calling conventions match, everything is fine
12934   if (NewCC == OldCC)
12935     return false;
12936 
12937   // If the calling conventions mismatch because the new function is static,
12938   // suppress the calling convention mismatch error; the error about static
12939   // function override (err_static_overrides_virtual from
12940   // Sema::CheckFunctionDeclaration) is more clear.
12941   if (New->getStorageClass() == SC_Static)
12942     return false;
12943 
12944   Diag(New->getLocation(),
12945        diag::err_conflicting_overriding_cc_attributes)
12946     << New->getDeclName() << New->getType() << Old->getType();
12947   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12948   return true;
12949 }
12950 
CheckOverridingFunctionReturnType(const CXXMethodDecl * New,const CXXMethodDecl * Old)12951 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
12952                                              const CXXMethodDecl *Old) {
12953   QualType NewTy = New->getType()->getAs<FunctionType>()->getReturnType();
12954   QualType OldTy = Old->getType()->getAs<FunctionType>()->getReturnType();
12955 
12956   if (Context.hasSameType(NewTy, OldTy) ||
12957       NewTy->isDependentType() || OldTy->isDependentType())
12958     return false;
12959 
12960   // Check if the return types are covariant
12961   QualType NewClassTy, OldClassTy;
12962 
12963   /// Both types must be pointers or references to classes.
12964   if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
12965     if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
12966       NewClassTy = NewPT->getPointeeType();
12967       OldClassTy = OldPT->getPointeeType();
12968     }
12969   } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
12970     if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
12971       if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
12972         NewClassTy = NewRT->getPointeeType();
12973         OldClassTy = OldRT->getPointeeType();
12974       }
12975     }
12976   }
12977 
12978   // The return types aren't either both pointers or references to a class type.
12979   if (NewClassTy.isNull()) {
12980     Diag(New->getLocation(),
12981          diag::err_different_return_type_for_overriding_virtual_function)
12982         << New->getDeclName() << NewTy << OldTy
12983         << New->getReturnTypeSourceRange();
12984     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12985         << Old->getReturnTypeSourceRange();
12986 
12987     return true;
12988   }
12989 
12990   // C++ [class.virtual]p6:
12991   //   If the return type of D::f differs from the return type of B::f, the
12992   //   class type in the return type of D::f shall be complete at the point of
12993   //   declaration of D::f or shall be the class type D.
12994   if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
12995     if (!RT->isBeingDefined() &&
12996         RequireCompleteType(New->getLocation(), NewClassTy,
12997                             diag::err_covariant_return_incomplete,
12998                             New->getDeclName()))
12999     return true;
13000   }
13001 
13002   if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
13003     // Check if the new class derives from the old class.
13004     if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) {
13005       Diag(New->getLocation(), diag::err_covariant_return_not_derived)
13006           << New->getDeclName() << NewTy << OldTy
13007           << New->getReturnTypeSourceRange();
13008       Diag(Old->getLocation(), diag::note_overridden_virtual_function)
13009           << Old->getReturnTypeSourceRange();
13010       return true;
13011     }
13012 
13013     // Check if we the conversion from derived to base is valid.
13014     if (CheckDerivedToBaseConversion(
13015             NewClassTy, OldClassTy,
13016             diag::err_covariant_return_inaccessible_base,
13017             diag::err_covariant_return_ambiguous_derived_to_base_conv,
13018             New->getLocation(), New->getReturnTypeSourceRange(),
13019             New->getDeclName(), nullptr)) {
13020       // FIXME: this note won't trigger for delayed access control
13021       // diagnostics, and it's impossible to get an undelayed error
13022       // here from access control during the original parse because
13023       // the ParsingDeclSpec/ParsingDeclarator are still in scope.
13024       Diag(Old->getLocation(), diag::note_overridden_virtual_function)
13025           << Old->getReturnTypeSourceRange();
13026       return true;
13027     }
13028   }
13029 
13030   // The qualifiers of the return types must be the same.
13031   if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
13032     Diag(New->getLocation(),
13033          diag::err_covariant_return_type_different_qualifications)
13034         << New->getDeclName() << NewTy << OldTy
13035         << New->getReturnTypeSourceRange();
13036     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
13037         << Old->getReturnTypeSourceRange();
13038     return true;
13039   };
13040 
13041 
13042   // The new class type must have the same or less qualifiers as the old type.
13043   if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
13044     Diag(New->getLocation(),
13045          diag::err_covariant_return_type_class_type_more_qualified)
13046         << New->getDeclName() << NewTy << OldTy
13047         << New->getReturnTypeSourceRange();
13048     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
13049         << Old->getReturnTypeSourceRange();
13050     return true;
13051   };
13052 
13053   return false;
13054 }
13055 
13056 /// \brief Mark the given method pure.
13057 ///
13058 /// \param Method the method to be marked pure.
13059 ///
13060 /// \param InitRange the source range that covers the "0" initializer.
CheckPureMethod(CXXMethodDecl * Method,SourceRange InitRange)13061 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
13062   SourceLocation EndLoc = InitRange.getEnd();
13063   if (EndLoc.isValid())
13064     Method->setRangeEnd(EndLoc);
13065 
13066   if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
13067     Method->setPure();
13068     return false;
13069   }
13070 
13071   if (!Method->isInvalidDecl())
13072     Diag(Method->getLocation(), diag::err_non_virtual_pure)
13073       << Method->getDeclName() << InitRange;
13074   return true;
13075 }
13076 
ActOnPureSpecifier(Decl * D,SourceLocation ZeroLoc)13077 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) {
13078   if (D->getFriendObjectKind())
13079     Diag(D->getLocation(), diag::err_pure_friend);
13080   else if (auto *M = dyn_cast<CXXMethodDecl>(D))
13081     CheckPureMethod(M, ZeroLoc);
13082   else
13083     Diag(D->getLocation(), diag::err_illegal_initializer);
13084 }
13085 
13086 /// \brief Determine whether the given declaration is a static data member.
isStaticDataMember(const Decl * D)13087 static bool isStaticDataMember(const Decl *D) {
13088   if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
13089     return Var->isStaticDataMember();
13090 
13091   return false;
13092 }
13093 
13094 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
13095 /// an initializer for the out-of-line declaration 'Dcl'.  The scope
13096 /// is a fresh scope pushed for just this purpose.
13097 ///
13098 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
13099 /// static data member of class X, names should be looked up in the scope of
13100 /// class X.
ActOnCXXEnterDeclInitializer(Scope * S,Decl * D)13101 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
13102   // If there is no declaration, there was an error parsing it.
13103   if (!D || D->isInvalidDecl())
13104     return;
13105 
13106   // We will always have a nested name specifier here, but this declaration
13107   // might not be out of line if the specifier names the current namespace:
13108   //   extern int n;
13109   //   int ::n = 0;
13110   if (D->isOutOfLine())
13111     EnterDeclaratorContext(S, D->getDeclContext());
13112 
13113   // If we are parsing the initializer for a static data member, push a
13114   // new expression evaluation context that is associated with this static
13115   // data member.
13116   if (isStaticDataMember(D))
13117     PushExpressionEvaluationContext(PotentiallyEvaluated, D);
13118 }
13119 
13120 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
13121 /// initializer for the out-of-line declaration 'D'.
ActOnCXXExitDeclInitializer(Scope * S,Decl * D)13122 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
13123   // If there is no declaration, there was an error parsing it.
13124   if (!D || D->isInvalidDecl())
13125     return;
13126 
13127   if (isStaticDataMember(D))
13128     PopExpressionEvaluationContext();
13129 
13130   if (D->isOutOfLine())
13131     ExitDeclaratorContext(S);
13132 }
13133 
13134 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
13135 /// C++ if/switch/while/for statement.
13136 /// e.g: "if (int x = f()) {...}"
ActOnCXXConditionDeclaration(Scope * S,Declarator & D)13137 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
13138   // C++ 6.4p2:
13139   // The declarator shall not specify a function or an array.
13140   // The type-specifier-seq shall not contain typedef and shall not declare a
13141   // new class or enumeration.
13142   assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
13143          "Parser allowed 'typedef' as storage class of condition decl.");
13144 
13145   Decl *Dcl = ActOnDeclarator(S, D);
13146   if (!Dcl)
13147     return true;
13148 
13149   if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
13150     Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
13151       << D.getSourceRange();
13152     return true;
13153   }
13154 
13155   return Dcl;
13156 }
13157 
LoadExternalVTableUses()13158 void Sema::LoadExternalVTableUses() {
13159   if (!ExternalSource)
13160     return;
13161 
13162   SmallVector<ExternalVTableUse, 4> VTables;
13163   ExternalSource->ReadUsedVTables(VTables);
13164   SmallVector<VTableUse, 4> NewUses;
13165   for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
13166     llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
13167       = VTablesUsed.find(VTables[I].Record);
13168     // Even if a definition wasn't required before, it may be required now.
13169     if (Pos != VTablesUsed.end()) {
13170       if (!Pos->second && VTables[I].DefinitionRequired)
13171         Pos->second = true;
13172       continue;
13173     }
13174 
13175     VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
13176     NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
13177   }
13178 
13179   VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
13180 }
13181 
MarkVTableUsed(SourceLocation Loc,CXXRecordDecl * Class,bool DefinitionRequired)13182 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
13183                           bool DefinitionRequired) {
13184   // Ignore any vtable uses in unevaluated operands or for classes that do
13185   // not have a vtable.
13186   if (!Class->isDynamicClass() || Class->isDependentContext() ||
13187       CurContext->isDependentContext() || isUnevaluatedContext())
13188     return;
13189 
13190   // Try to insert this class into the map.
13191   LoadExternalVTableUses();
13192   Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
13193   std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
13194     Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
13195   if (!Pos.second) {
13196     // If we already had an entry, check to see if we are promoting this vtable
13197     // to require a definition. If so, we need to reappend to the VTableUses
13198     // list, since we may have already processed the first entry.
13199     if (DefinitionRequired && !Pos.first->second) {
13200       Pos.first->second = true;
13201     } else {
13202       // Otherwise, we can early exit.
13203       return;
13204     }
13205   } else {
13206     // The Microsoft ABI requires that we perform the destructor body
13207     // checks (i.e. operator delete() lookup) when the vtable is marked used, as
13208     // the deleting destructor is emitted with the vtable, not with the
13209     // destructor definition as in the Itanium ABI.
13210     // If it has a definition, we do the check at that point instead.
13211     if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
13212         Class->hasUserDeclaredDestructor() &&
13213         !Class->getDestructor()->isDefined() &&
13214         !Class->getDestructor()->isDeleted()) {
13215       CXXDestructorDecl *DD = Class->getDestructor();
13216       ContextRAII SavedContext(*this, DD);
13217       CheckDestructor(DD);
13218     }
13219   }
13220 
13221   // Local classes need to have their virtual members marked
13222   // immediately. For all other classes, we mark their virtual members
13223   // at the end of the translation unit.
13224   if (Class->isLocalClass())
13225     MarkVirtualMembersReferenced(Loc, Class);
13226   else
13227     VTableUses.push_back(std::make_pair(Class, Loc));
13228 }
13229 
DefineUsedVTables()13230 bool Sema::DefineUsedVTables() {
13231   LoadExternalVTableUses();
13232   if (VTableUses.empty())
13233     return false;
13234 
13235   // Note: The VTableUses vector could grow as a result of marking
13236   // the members of a class as "used", so we check the size each
13237   // time through the loop and prefer indices (which are stable) to
13238   // iterators (which are not).
13239   bool DefinedAnything = false;
13240   for (unsigned I = 0; I != VTableUses.size(); ++I) {
13241     CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
13242     if (!Class)
13243       continue;
13244 
13245     SourceLocation Loc = VTableUses[I].second;
13246 
13247     bool DefineVTable = true;
13248 
13249     // If this class has a key function, but that key function is
13250     // defined in another translation unit, we don't need to emit the
13251     // vtable even though we're using it.
13252     const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
13253     if (KeyFunction && !KeyFunction->hasBody()) {
13254       // The key function is in another translation unit.
13255       DefineVTable = false;
13256       TemplateSpecializationKind TSK =
13257           KeyFunction->getTemplateSpecializationKind();
13258       assert(TSK != TSK_ExplicitInstantiationDefinition &&
13259              TSK != TSK_ImplicitInstantiation &&
13260              "Instantiations don't have key functions");
13261       (void)TSK;
13262     } else if (!KeyFunction) {
13263       // If we have a class with no key function that is the subject
13264       // of an explicit instantiation declaration, suppress the
13265       // vtable; it will live with the explicit instantiation
13266       // definition.
13267       bool IsExplicitInstantiationDeclaration
13268         = Class->getTemplateSpecializationKind()
13269                                       == TSK_ExplicitInstantiationDeclaration;
13270       for (auto R : Class->redecls()) {
13271         TemplateSpecializationKind TSK
13272           = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
13273         if (TSK == TSK_ExplicitInstantiationDeclaration)
13274           IsExplicitInstantiationDeclaration = true;
13275         else if (TSK == TSK_ExplicitInstantiationDefinition) {
13276           IsExplicitInstantiationDeclaration = false;
13277           break;
13278         }
13279       }
13280 
13281       if (IsExplicitInstantiationDeclaration)
13282         DefineVTable = false;
13283     }
13284 
13285     // The exception specifications for all virtual members may be needed even
13286     // if we are not providing an authoritative form of the vtable in this TU.
13287     // We may choose to emit it available_externally anyway.
13288     if (!DefineVTable) {
13289       MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
13290       continue;
13291     }
13292 
13293     // Mark all of the virtual members of this class as referenced, so
13294     // that we can build a vtable. Then, tell the AST consumer that a
13295     // vtable for this class is required.
13296     DefinedAnything = true;
13297     MarkVirtualMembersReferenced(Loc, Class);
13298     CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
13299     if (VTablesUsed[Canonical])
13300       Consumer.HandleVTable(Class);
13301 
13302     // Optionally warn if we're emitting a weak vtable.
13303     if (Class->isExternallyVisible() &&
13304         Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
13305       const FunctionDecl *KeyFunctionDef = nullptr;
13306       if (!KeyFunction ||
13307           (KeyFunction->hasBody(KeyFunctionDef) &&
13308            KeyFunctionDef->isInlined()))
13309         Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
13310              TSK_ExplicitInstantiationDefinition
13311              ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
13312           << Class;
13313     }
13314   }
13315   VTableUses.clear();
13316 
13317   return DefinedAnything;
13318 }
13319 
MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,const CXXRecordDecl * RD)13320 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
13321                                                  const CXXRecordDecl *RD) {
13322   for (const auto *I : RD->methods())
13323     if (I->isVirtual() && !I->isPure())
13324       ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
13325 }
13326 
MarkVirtualMembersReferenced(SourceLocation Loc,const CXXRecordDecl * RD)13327 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
13328                                         const CXXRecordDecl *RD) {
13329   // Mark all functions which will appear in RD's vtable as used.
13330   CXXFinalOverriderMap FinalOverriders;
13331   RD->getFinalOverriders(FinalOverriders);
13332   for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
13333                                             E = FinalOverriders.end();
13334        I != E; ++I) {
13335     for (OverridingMethods::const_iterator OI = I->second.begin(),
13336                                            OE = I->second.end();
13337          OI != OE; ++OI) {
13338       assert(OI->second.size() > 0 && "no final overrider");
13339       CXXMethodDecl *Overrider = OI->second.front().Method;
13340 
13341       // C++ [basic.def.odr]p2:
13342       //   [...] A virtual member function is used if it is not pure. [...]
13343       if (!Overrider->isPure())
13344         MarkFunctionReferenced(Loc, Overrider);
13345     }
13346   }
13347 
13348   // Only classes that have virtual bases need a VTT.
13349   if (RD->getNumVBases() == 0)
13350     return;
13351 
13352   for (const auto &I : RD->bases()) {
13353     const CXXRecordDecl *Base =
13354         cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
13355     if (Base->getNumVBases() == 0)
13356       continue;
13357     MarkVirtualMembersReferenced(Loc, Base);
13358   }
13359 }
13360 
13361 /// SetIvarInitializers - This routine builds initialization ASTs for the
13362 /// Objective-C implementation whose ivars need be initialized.
SetIvarInitializers(ObjCImplementationDecl * ObjCImplementation)13363 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
13364   if (!getLangOpts().CPlusPlus)
13365     return;
13366   if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
13367     SmallVector<ObjCIvarDecl*, 8> ivars;
13368     CollectIvarsToConstructOrDestruct(OID, ivars);
13369     if (ivars.empty())
13370       return;
13371     SmallVector<CXXCtorInitializer*, 32> AllToInit;
13372     for (unsigned i = 0; i < ivars.size(); i++) {
13373       FieldDecl *Field = ivars[i];
13374       if (Field->isInvalidDecl())
13375         continue;
13376 
13377       CXXCtorInitializer *Member;
13378       InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
13379       InitializationKind InitKind =
13380         InitializationKind::CreateDefault(ObjCImplementation->getLocation());
13381 
13382       InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
13383       ExprResult MemberInit =
13384         InitSeq.Perform(*this, InitEntity, InitKind, None);
13385       MemberInit = MaybeCreateExprWithCleanups(MemberInit);
13386       // Note, MemberInit could actually come back empty if no initialization
13387       // is required (e.g., because it would call a trivial default constructor)
13388       if (!MemberInit.get() || MemberInit.isInvalid())
13389         continue;
13390 
13391       Member =
13392         new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
13393                                          SourceLocation(),
13394                                          MemberInit.getAs<Expr>(),
13395                                          SourceLocation());
13396       AllToInit.push_back(Member);
13397 
13398       // Be sure that the destructor is accessible and is marked as referenced.
13399       if (const RecordType *RecordTy =
13400               Context.getBaseElementType(Field->getType())
13401                   ->getAs<RecordType>()) {
13402         CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
13403         if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
13404           MarkFunctionReferenced(Field->getLocation(), Destructor);
13405           CheckDestructorAccess(Field->getLocation(), Destructor,
13406                             PDiag(diag::err_access_dtor_ivar)
13407                               << Context.getBaseElementType(Field->getType()));
13408         }
13409       }
13410     }
13411     ObjCImplementation->setIvarInitializers(Context,
13412                                             AllToInit.data(), AllToInit.size());
13413   }
13414 }
13415 
13416 static
DelegatingCycleHelper(CXXConstructorDecl * Ctor,llvm::SmallSet<CXXConstructorDecl *,4> & Valid,llvm::SmallSet<CXXConstructorDecl *,4> & Invalid,llvm::SmallSet<CXXConstructorDecl *,4> & Current,Sema & S)13417 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
13418                            llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
13419                            llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
13420                            llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
13421                            Sema &S) {
13422   if (Ctor->isInvalidDecl())
13423     return;
13424 
13425   CXXConstructorDecl *Target = Ctor->getTargetConstructor();
13426 
13427   // Target may not be determinable yet, for instance if this is a dependent
13428   // call in an uninstantiated template.
13429   if (Target) {
13430     const FunctionDecl *FNTarget = nullptr;
13431     (void)Target->hasBody(FNTarget);
13432     Target = const_cast<CXXConstructorDecl*>(
13433       cast_or_null<CXXConstructorDecl>(FNTarget));
13434   }
13435 
13436   CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
13437                      // Avoid dereferencing a null pointer here.
13438                      *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
13439 
13440   if (!Current.insert(Canonical).second)
13441     return;
13442 
13443   // We know that beyond here, we aren't chaining into a cycle.
13444   if (!Target || !Target->isDelegatingConstructor() ||
13445       Target->isInvalidDecl() || Valid.count(TCanonical)) {
13446     Valid.insert(Current.begin(), Current.end());
13447     Current.clear();
13448   // We've hit a cycle.
13449   } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
13450              Current.count(TCanonical)) {
13451     // If we haven't diagnosed this cycle yet, do so now.
13452     if (!Invalid.count(TCanonical)) {
13453       S.Diag((*Ctor->init_begin())->getSourceLocation(),
13454              diag::warn_delegating_ctor_cycle)
13455         << Ctor;
13456 
13457       // Don't add a note for a function delegating directly to itself.
13458       if (TCanonical != Canonical)
13459         S.Diag(Target->getLocation(), diag::note_it_delegates_to);
13460 
13461       CXXConstructorDecl *C = Target;
13462       while (C->getCanonicalDecl() != Canonical) {
13463         const FunctionDecl *FNTarget = nullptr;
13464         (void)C->getTargetConstructor()->hasBody(FNTarget);
13465         assert(FNTarget && "Ctor cycle through bodiless function");
13466 
13467         C = const_cast<CXXConstructorDecl*>(
13468           cast<CXXConstructorDecl>(FNTarget));
13469         S.Diag(C->getLocation(), diag::note_which_delegates_to);
13470       }
13471     }
13472 
13473     Invalid.insert(Current.begin(), Current.end());
13474     Current.clear();
13475   } else {
13476     DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
13477   }
13478 }
13479 
13480 
CheckDelegatingCtorCycles()13481 void Sema::CheckDelegatingCtorCycles() {
13482   llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
13483 
13484   for (DelegatingCtorDeclsType::iterator
13485          I = DelegatingCtorDecls.begin(ExternalSource),
13486          E = DelegatingCtorDecls.end();
13487        I != E; ++I)
13488     DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
13489 
13490   for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
13491                                                          CE = Invalid.end();
13492        CI != CE; ++CI)
13493     (*CI)->setInvalidDecl();
13494 }
13495 
13496 namespace {
13497   /// \brief AST visitor that finds references to the 'this' expression.
13498   class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
13499     Sema &S;
13500 
13501   public:
FindCXXThisExpr(Sema & S)13502     explicit FindCXXThisExpr(Sema &S) : S(S) { }
13503 
VisitCXXThisExpr(CXXThisExpr * E)13504     bool VisitCXXThisExpr(CXXThisExpr *E) {
13505       S.Diag(E->getLocation(), diag::err_this_static_member_func)
13506         << E->isImplicit();
13507       return false;
13508     }
13509   };
13510 }
13511 
checkThisInStaticMemberFunctionType(CXXMethodDecl * Method)13512 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
13513   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
13514   if (!TSInfo)
13515     return false;
13516 
13517   TypeLoc TL = TSInfo->getTypeLoc();
13518   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
13519   if (!ProtoTL)
13520     return false;
13521 
13522   // C++11 [expr.prim.general]p3:
13523   //   [The expression this] shall not appear before the optional
13524   //   cv-qualifier-seq and it shall not appear within the declaration of a
13525   //   static member function (although its type and value category are defined
13526   //   within a static member function as they are within a non-static member
13527   //   function). [ Note: this is because declaration matching does not occur
13528   //  until the complete declarator is known. - end note ]
13529   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
13530   FindCXXThisExpr Finder(*this);
13531 
13532   // If the return type came after the cv-qualifier-seq, check it now.
13533   if (Proto->hasTrailingReturn() &&
13534       !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
13535     return true;
13536 
13537   // Check the exception specification.
13538   if (checkThisInStaticMemberFunctionExceptionSpec(Method))
13539     return true;
13540 
13541   return checkThisInStaticMemberFunctionAttributes(Method);
13542 }
13543 
checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl * Method)13544 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
13545   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
13546   if (!TSInfo)
13547     return false;
13548 
13549   TypeLoc TL = TSInfo->getTypeLoc();
13550   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
13551   if (!ProtoTL)
13552     return false;
13553 
13554   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
13555   FindCXXThisExpr Finder(*this);
13556 
13557   switch (Proto->getExceptionSpecType()) {
13558   case EST_Unparsed:
13559   case EST_Uninstantiated:
13560   case EST_Unevaluated:
13561   case EST_BasicNoexcept:
13562   case EST_DynamicNone:
13563   case EST_MSAny:
13564   case EST_None:
13565     break;
13566 
13567   case EST_ComputedNoexcept:
13568     if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
13569       return true;
13570 
13571   case EST_Dynamic:
13572     for (const auto &E : Proto->exceptions()) {
13573       if (!Finder.TraverseType(E))
13574         return true;
13575     }
13576     break;
13577   }
13578 
13579   return false;
13580 }
13581 
checkThisInStaticMemberFunctionAttributes(CXXMethodDecl * Method)13582 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
13583   FindCXXThisExpr Finder(*this);
13584 
13585   // Check attributes.
13586   for (const auto *A : Method->attrs()) {
13587     // FIXME: This should be emitted by tblgen.
13588     Expr *Arg = nullptr;
13589     ArrayRef<Expr *> Args;
13590     if (const auto *G = dyn_cast<GuardedByAttr>(A))
13591       Arg = G->getArg();
13592     else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
13593       Arg = G->getArg();
13594     else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
13595       Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
13596     else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
13597       Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
13598     else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
13599       Arg = ETLF->getSuccessValue();
13600       Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
13601     } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
13602       Arg = STLF->getSuccessValue();
13603       Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
13604     } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
13605       Arg = LR->getArg();
13606     else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
13607       Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
13608     else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
13609       Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
13610     else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
13611       Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
13612     else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
13613       Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
13614     else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
13615       Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
13616 
13617     if (Arg && !Finder.TraverseStmt(Arg))
13618       return true;
13619 
13620     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
13621       if (!Finder.TraverseStmt(Args[I]))
13622         return true;
13623     }
13624   }
13625 
13626   return false;
13627 }
13628 
checkExceptionSpecification(bool IsTopLevel,ExceptionSpecificationType EST,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr,SmallVectorImpl<QualType> & Exceptions,FunctionProtoType::ExceptionSpecInfo & ESI)13629 void Sema::checkExceptionSpecification(
13630     bool IsTopLevel, ExceptionSpecificationType EST,
13631     ArrayRef<ParsedType> DynamicExceptions,
13632     ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
13633     SmallVectorImpl<QualType> &Exceptions,
13634     FunctionProtoType::ExceptionSpecInfo &ESI) {
13635   Exceptions.clear();
13636   ESI.Type = EST;
13637   if (EST == EST_Dynamic) {
13638     Exceptions.reserve(DynamicExceptions.size());
13639     for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
13640       // FIXME: Preserve type source info.
13641       QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
13642 
13643       if (IsTopLevel) {
13644         SmallVector<UnexpandedParameterPack, 2> Unexpanded;
13645         collectUnexpandedParameterPacks(ET, Unexpanded);
13646         if (!Unexpanded.empty()) {
13647           DiagnoseUnexpandedParameterPacks(
13648               DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
13649               Unexpanded);
13650           continue;
13651         }
13652       }
13653 
13654       // Check that the type is valid for an exception spec, and
13655       // drop it if not.
13656       if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
13657         Exceptions.push_back(ET);
13658     }
13659     ESI.Exceptions = Exceptions;
13660     return;
13661   }
13662 
13663   if (EST == EST_ComputedNoexcept) {
13664     // If an error occurred, there's no expression here.
13665     if (NoexceptExpr) {
13666       assert((NoexceptExpr->isTypeDependent() ||
13667               NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
13668               Context.BoolTy) &&
13669              "Parser should have made sure that the expression is boolean");
13670       if (IsTopLevel && NoexceptExpr &&
13671           DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
13672         ESI.Type = EST_BasicNoexcept;
13673         return;
13674       }
13675 
13676       if (!NoexceptExpr->isValueDependent())
13677         NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, nullptr,
13678                          diag::err_noexcept_needs_constant_expression,
13679                          /*AllowFold*/ false).get();
13680       ESI.NoexceptExpr = NoexceptExpr;
13681     }
13682     return;
13683   }
13684 }
13685 
actOnDelayedExceptionSpecification(Decl * MethodD,ExceptionSpecificationType EST,SourceRange SpecificationRange,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr)13686 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
13687              ExceptionSpecificationType EST,
13688              SourceRange SpecificationRange,
13689              ArrayRef<ParsedType> DynamicExceptions,
13690              ArrayRef<SourceRange> DynamicExceptionRanges,
13691              Expr *NoexceptExpr) {
13692   if (!MethodD)
13693     return;
13694 
13695   // Dig out the method we're referring to.
13696   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
13697     MethodD = FunTmpl->getTemplatedDecl();
13698 
13699   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
13700   if (!Method)
13701     return;
13702 
13703   // Check the exception specification.
13704   llvm::SmallVector<QualType, 4> Exceptions;
13705   FunctionProtoType::ExceptionSpecInfo ESI;
13706   checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
13707                               DynamicExceptionRanges, NoexceptExpr, Exceptions,
13708                               ESI);
13709 
13710   // Update the exception specification on the function type.
13711   Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
13712 
13713   if (Method->isStatic())
13714     checkThisInStaticMemberFunctionExceptionSpec(Method);
13715 
13716   if (Method->isVirtual()) {
13717     // Check overrides, which we previously had to delay.
13718     for (CXXMethodDecl::method_iterator O = Method->begin_overridden_methods(),
13719                                      OEnd = Method->end_overridden_methods();
13720          O != OEnd; ++O)
13721       CheckOverridingFunctionExceptionSpec(Method, *O);
13722   }
13723 }
13724 
13725 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
13726 ///
HandleMSProperty(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS,AttributeList * MSPropertyAttr)13727 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
13728                                        SourceLocation DeclStart,
13729                                        Declarator &D, Expr *BitWidth,
13730                                        InClassInitStyle InitStyle,
13731                                        AccessSpecifier AS,
13732                                        AttributeList *MSPropertyAttr) {
13733   IdentifierInfo *II = D.getIdentifier();
13734   if (!II) {
13735     Diag(DeclStart, diag::err_anonymous_property);
13736     return nullptr;
13737   }
13738   SourceLocation Loc = D.getIdentifierLoc();
13739 
13740   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13741   QualType T = TInfo->getType();
13742   if (getLangOpts().CPlusPlus) {
13743     CheckExtraCXXDefaultArguments(D);
13744 
13745     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
13746                                         UPPC_DataMemberType)) {
13747       D.setInvalidType();
13748       T = Context.IntTy;
13749       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
13750     }
13751   }
13752 
13753   DiagnoseFunctionSpecifiers(D.getDeclSpec());
13754 
13755   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
13756     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
13757          diag::err_invalid_thread)
13758       << DeclSpec::getSpecifierName(TSCS);
13759 
13760   // Check to see if this name was declared as a member previously
13761   NamedDecl *PrevDecl = nullptr;
13762   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
13763   LookupName(Previous, S);
13764   switch (Previous.getResultKind()) {
13765   case LookupResult::Found:
13766   case LookupResult::FoundUnresolvedValue:
13767     PrevDecl = Previous.getAsSingle<NamedDecl>();
13768     break;
13769 
13770   case LookupResult::FoundOverloaded:
13771     PrevDecl = Previous.getRepresentativeDecl();
13772     break;
13773 
13774   case LookupResult::NotFound:
13775   case LookupResult::NotFoundInCurrentInstantiation:
13776   case LookupResult::Ambiguous:
13777     break;
13778   }
13779 
13780   if (PrevDecl && PrevDecl->isTemplateParameter()) {
13781     // Maybe we will complain about the shadowed template parameter.
13782     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
13783     // Just pretend that we didn't see the previous declaration.
13784     PrevDecl = nullptr;
13785   }
13786 
13787   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
13788     PrevDecl = nullptr;
13789 
13790   SourceLocation TSSL = D.getLocStart();
13791   const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
13792   MSPropertyDecl *NewPD = MSPropertyDecl::Create(
13793       Context, Record, Loc, II, T, TInfo, TSSL, Data.GetterId, Data.SetterId);
13794   ProcessDeclAttributes(TUScope, NewPD, D);
13795   NewPD->setAccess(AS);
13796 
13797   if (NewPD->isInvalidDecl())
13798     Record->setInvalidDecl();
13799 
13800   if (D.getDeclSpec().isModulePrivateSpecified())
13801     NewPD->setModulePrivate();
13802 
13803   if (NewPD->isInvalidDecl() && PrevDecl) {
13804     // Don't introduce NewFD into scope; there's already something
13805     // with the same name in the same scope.
13806   } else if (II) {
13807     PushOnScopeChains(NewPD, S);
13808   } else
13809     Record->addDecl(NewPD);
13810 
13811   return NewPD;
13812 }
13813