1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "induction_var_range.h"
18
19 #include <limits>
20
21 namespace art {
22
23 /** Returns true if 64-bit constant fits in 32-bit constant. */
CanLongValueFitIntoInt(int64_t c)24 static bool CanLongValueFitIntoInt(int64_t c) {
25 return std::numeric_limits<int32_t>::min() <= c && c <= std::numeric_limits<int32_t>::max();
26 }
27
28 /** Returns true if 32-bit addition can be done safely. */
IsSafeAdd(int32_t c1,int32_t c2)29 static bool IsSafeAdd(int32_t c1, int32_t c2) {
30 return CanLongValueFitIntoInt(static_cast<int64_t>(c1) + static_cast<int64_t>(c2));
31 }
32
33 /** Returns true if 32-bit subtraction can be done safely. */
IsSafeSub(int32_t c1,int32_t c2)34 static bool IsSafeSub(int32_t c1, int32_t c2) {
35 return CanLongValueFitIntoInt(static_cast<int64_t>(c1) - static_cast<int64_t>(c2));
36 }
37
38 /** Returns true if 32-bit multiplication can be done safely. */
IsSafeMul(int32_t c1,int32_t c2)39 static bool IsSafeMul(int32_t c1, int32_t c2) {
40 return CanLongValueFitIntoInt(static_cast<int64_t>(c1) * static_cast<int64_t>(c2));
41 }
42
43 /** Returns true if 32-bit division can be done safely. */
IsSafeDiv(int32_t c1,int32_t c2)44 static bool IsSafeDiv(int32_t c1, int32_t c2) {
45 return c2 != 0 && CanLongValueFitIntoInt(static_cast<int64_t>(c1) / static_cast<int64_t>(c2));
46 }
47
48 /** Returns true for 32/64-bit constant instruction. */
IsIntAndGet(HInstruction * instruction,int64_t * value)49 static bool IsIntAndGet(HInstruction* instruction, int64_t* value) {
50 if (instruction->IsIntConstant()) {
51 *value = instruction->AsIntConstant()->GetValue();
52 return true;
53 } else if (instruction->IsLongConstant()) {
54 *value = instruction->AsLongConstant()->GetValue();
55 return true;
56 }
57 return false;
58 }
59
60 /**
61 * An upper bound a * (length / a) + b, where a >= 1, can be conservatively rewritten as length + b
62 * because length >= 0 is true. This makes it more likely the bound is useful to clients.
63 */
SimplifyMax(InductionVarRange::Value v)64 static InductionVarRange::Value SimplifyMax(InductionVarRange::Value v) {
65 int64_t value;
66 if (v.is_known &&
67 v.a_constant >= 1 &&
68 v.instruction->IsDiv() &&
69 v.instruction->InputAt(0)->IsArrayLength() &&
70 IsIntAndGet(v.instruction->InputAt(1), &value) && v.a_constant == value) {
71 return InductionVarRange::Value(v.instruction->InputAt(0), 1, v.b_constant);
72 }
73 return v;
74 }
75
76 /**
77 * Corrects a value for type to account for arithmetic wrap-around in lower precision.
78 */
CorrectForType(InductionVarRange::Value v,Primitive::Type type)79 static InductionVarRange::Value CorrectForType(InductionVarRange::Value v, Primitive::Type type) {
80 switch (type) {
81 case Primitive::kPrimShort:
82 case Primitive::kPrimChar:
83 case Primitive::kPrimByte: {
84 // Constants within range only.
85 // TODO: maybe some room for improvement, like allowing widening conversions
86 const int32_t min = Primitive::MinValueOfIntegralType(type);
87 const int32_t max = Primitive::MaxValueOfIntegralType(type);
88 return (v.is_known && v.a_constant == 0 && min <= v.b_constant && v.b_constant <= max)
89 ? v
90 : InductionVarRange::Value();
91 }
92 default:
93 // At int or higher.
94 return v;
95 }
96 }
97
98 /** Helper method to test for a constant value. */
IsConstantValue(InductionVarRange::Value v)99 static bool IsConstantValue(InductionVarRange::Value v) {
100 return v.is_known && v.a_constant == 0;
101 }
102
103 /** Helper method to test for same constant value. */
IsSameConstantValue(InductionVarRange::Value v1,InductionVarRange::Value v2)104 static bool IsSameConstantValue(InductionVarRange::Value v1, InductionVarRange::Value v2) {
105 return IsConstantValue(v1) && IsConstantValue(v2) && v1.b_constant == v2.b_constant;
106 }
107
108 /** Helper method to insert an instruction. */
Insert(HBasicBlock * block,HInstruction * instruction)109 static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) {
110 DCHECK(block != nullptr);
111 DCHECK(block->GetLastInstruction() != nullptr) << block->GetBlockId();
112 DCHECK(instruction != nullptr);
113 block->InsertInstructionBefore(instruction, block->GetLastInstruction());
114 return instruction;
115 }
116
117 //
118 // Public class methods.
119 //
120
InductionVarRange(HInductionVarAnalysis * induction_analysis)121 InductionVarRange::InductionVarRange(HInductionVarAnalysis* induction_analysis)
122 : induction_analysis_(induction_analysis) {
123 DCHECK(induction_analysis != nullptr);
124 }
125
GetInductionRange(HInstruction * context,HInstruction * instruction,Value * min_val,Value * max_val,bool * needs_finite_test)126 bool InductionVarRange::GetInductionRange(HInstruction* context,
127 HInstruction* instruction,
128 /*out*/Value* min_val,
129 /*out*/Value* max_val,
130 /*out*/bool* needs_finite_test) {
131 HLoopInformation* loop = context->GetBlock()->GetLoopInformation(); // closest enveloping loop
132 if (loop == nullptr) {
133 return false; // no loop
134 }
135 HInductionVarAnalysis::InductionInfo* info = induction_analysis_->LookupInfo(loop, instruction);
136 if (info == nullptr) {
137 return false; // no induction information
138 }
139 // Type int or lower (this is not too restrictive since intended clients, like
140 // bounds check elimination, will have truncated higher precision induction
141 // at their use point already).
142 switch (info->type) {
143 case Primitive::kPrimInt:
144 case Primitive::kPrimShort:
145 case Primitive::kPrimChar:
146 case Primitive::kPrimByte:
147 break;
148 default:
149 return false;
150 }
151 // Set up loop information.
152 HBasicBlock* header = loop->GetHeader();
153 bool in_body = context->GetBlock() != header;
154 HInductionVarAnalysis::InductionInfo* trip =
155 induction_analysis_->LookupInfo(loop, header->GetLastInstruction());
156 // Find range.
157 *min_val = GetVal(info, trip, in_body, /* is_min */ true);
158 *max_val = SimplifyMax(GetVal(info, trip, in_body, /* is_min */ false));
159 *needs_finite_test = NeedsTripCount(info) && IsUnsafeTripCount(trip);
160 return true;
161 }
162
RefineOuter(Value * min_val,Value * max_val) const163 bool InductionVarRange::RefineOuter(/*in-out*/ Value* min_val,
164 /*in-out*/ Value* max_val) const {
165 if (min_val->instruction != nullptr || max_val->instruction != nullptr) {
166 Value v1_min = RefineOuter(*min_val, /* is_min */ true);
167 Value v2_max = RefineOuter(*max_val, /* is_min */ false);
168 // The refined range is safe if both sides refine the same instruction. Otherwise, since two
169 // different ranges are combined, the new refined range is safe to pass back to the client if
170 // the extremes of the computed ranges ensure no arithmetic wrap-around anomalies occur.
171 if (min_val->instruction != max_val->instruction) {
172 Value v1_max = RefineOuter(*min_val, /* is_min */ false);
173 Value v2_min = RefineOuter(*max_val, /* is_min */ true);
174 if (!IsConstantValue(v1_max) ||
175 !IsConstantValue(v2_min) ||
176 v1_max.b_constant > v2_min.b_constant) {
177 return false;
178 }
179 }
180 // Did something change?
181 if (v1_min.instruction != min_val->instruction || v2_max.instruction != max_val->instruction) {
182 *min_val = v1_min;
183 *max_val = v2_max;
184 return true;
185 }
186 }
187 return false;
188 }
189
CanGenerateCode(HInstruction * context,HInstruction * instruction,bool * needs_finite_test,bool * needs_taken_test)190 bool InductionVarRange::CanGenerateCode(HInstruction* context,
191 HInstruction* instruction,
192 /*out*/bool* needs_finite_test,
193 /*out*/bool* needs_taken_test) {
194 return GenerateCode(context,
195 instruction,
196 nullptr, nullptr, nullptr, nullptr, nullptr, // nothing generated yet
197 needs_finite_test,
198 needs_taken_test);
199 }
200
GenerateRangeCode(HInstruction * context,HInstruction * instruction,HGraph * graph,HBasicBlock * block,HInstruction ** lower,HInstruction ** upper)201 void InductionVarRange::GenerateRangeCode(HInstruction* context,
202 HInstruction* instruction,
203 HGraph* graph,
204 HBasicBlock* block,
205 /*out*/HInstruction** lower,
206 /*out*/HInstruction** upper) {
207 bool b1, b2; // unused
208 if (!GenerateCode(context, instruction, graph, block, lower, upper, nullptr, &b1, &b2)) {
209 LOG(FATAL) << "Failed precondition: GenerateCode()";
210 }
211 }
212
GenerateTakenTest(HInstruction * context,HGraph * graph,HBasicBlock * block,HInstruction ** taken_test)213 void InductionVarRange::GenerateTakenTest(HInstruction* context,
214 HGraph* graph,
215 HBasicBlock* block,
216 /*out*/HInstruction** taken_test) {
217 bool b1, b2; // unused
218 if (!GenerateCode(context, context, graph, block, nullptr, nullptr, taken_test, &b1, &b2)) {
219 LOG(FATAL) << "Failed precondition: GenerateCode()";
220 }
221 }
222
223 //
224 // Private class methods.
225 //
226
IsConstant(HInductionVarAnalysis::InductionInfo * info,ConstantRequest request,int64_t * value) const227 bool InductionVarRange::IsConstant(HInductionVarAnalysis::InductionInfo* info,
228 ConstantRequest request,
229 /*out*/ int64_t *value) const {
230 if (info != nullptr) {
231 // A direct 32-bit or 64-bit constant fetch. This immediately satisfies
232 // any of the three requests (kExact, kAtMost, and KAtLeast).
233 if (info->induction_class == HInductionVarAnalysis::kInvariant &&
234 info->operation == HInductionVarAnalysis::kFetch) {
235 if (IsIntAndGet(info->fetch, value)) {
236 return true;
237 }
238 }
239 // Try range analysis while traversing outward on loops.
240 bool in_body = true; // no known trip count
241 Value v_min = GetVal(info, nullptr, in_body, /* is_min */ true);
242 Value v_max = GetVal(info, nullptr, in_body, /* is_min */ false);
243 do {
244 // Make sure *both* extremes are known to avoid arithmetic wrap-around anomalies.
245 if (IsConstantValue(v_min) && IsConstantValue(v_max) && v_min.b_constant <= v_max.b_constant) {
246 if ((request == kExact && v_min.b_constant == v_max.b_constant) || request == kAtMost) {
247 *value = v_max.b_constant;
248 return true;
249 } else if (request == kAtLeast) {
250 *value = v_min.b_constant;
251 return true;
252 }
253 }
254 } while (RefineOuter(&v_min, &v_max));
255 // Exploit array length + c >= c, with c <= 0 to avoid arithmetic wrap-around anomalies
256 // (e.g. array length == maxint and c == 1 would yield minint).
257 if (request == kAtLeast) {
258 if (v_min.a_constant == 1 && v_min.b_constant <= 0 && v_min.instruction->IsArrayLength()) {
259 *value = v_min.b_constant;
260 return true;
261 }
262 }
263 }
264 return false;
265 }
266
NeedsTripCount(HInductionVarAnalysis::InductionInfo * info) const267 bool InductionVarRange::NeedsTripCount(HInductionVarAnalysis::InductionInfo* info) const {
268 if (info != nullptr) {
269 if (info->induction_class == HInductionVarAnalysis::kLinear) {
270 return true;
271 } else if (info->induction_class == HInductionVarAnalysis::kWrapAround) {
272 return NeedsTripCount(info->op_b);
273 }
274 }
275 return false;
276 }
277
IsBodyTripCount(HInductionVarAnalysis::InductionInfo * trip) const278 bool InductionVarRange::IsBodyTripCount(HInductionVarAnalysis::InductionInfo* trip) const {
279 if (trip != nullptr) {
280 if (trip->induction_class == HInductionVarAnalysis::kInvariant) {
281 return trip->operation == HInductionVarAnalysis::kTripCountInBody ||
282 trip->operation == HInductionVarAnalysis::kTripCountInBodyUnsafe;
283 }
284 }
285 return false;
286 }
287
IsUnsafeTripCount(HInductionVarAnalysis::InductionInfo * trip) const288 bool InductionVarRange::IsUnsafeTripCount(HInductionVarAnalysis::InductionInfo* trip) const {
289 if (trip != nullptr) {
290 if (trip->induction_class == HInductionVarAnalysis::kInvariant) {
291 return trip->operation == HInductionVarAnalysis::kTripCountInBodyUnsafe ||
292 trip->operation == HInductionVarAnalysis::kTripCountInLoopUnsafe;
293 }
294 }
295 return false;
296 }
297
GetLinear(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const298 InductionVarRange::Value InductionVarRange::GetLinear(HInductionVarAnalysis::InductionInfo* info,
299 HInductionVarAnalysis::InductionInfo* trip,
300 bool in_body,
301 bool is_min) const {
302 // Detect common situation where an offset inside the trip count cancels out during range
303 // analysis (finding max a * (TC - 1) + OFFSET for a == 1 and TC = UPPER - OFFSET or finding
304 // min a * (TC - 1) + OFFSET for a == -1 and TC = OFFSET - UPPER) to avoid losing information
305 // with intermediate results that only incorporate single instructions.
306 if (trip != nullptr) {
307 HInductionVarAnalysis::InductionInfo* trip_expr = trip->op_a;
308 if (trip_expr->operation == HInductionVarAnalysis::kSub) {
309 int64_t stride_value = 0;
310 if (IsConstant(info->op_a, kExact, &stride_value)) {
311 if (!is_min && stride_value == 1) {
312 // Test original trip's negative operand (trip_expr->op_b) against offset of induction.
313 if (HInductionVarAnalysis::InductionEqual(trip_expr->op_b, info->op_b)) {
314 // Analyze cancelled trip with just the positive operand (trip_expr->op_a).
315 HInductionVarAnalysis::InductionInfo cancelled_trip(
316 trip->induction_class,
317 trip->operation,
318 trip_expr->op_a,
319 trip->op_b,
320 nullptr,
321 trip->type);
322 return GetVal(&cancelled_trip, trip, in_body, is_min);
323 }
324 } else if (is_min && stride_value == -1) {
325 // Test original trip's positive operand (trip_expr->op_a) against offset of induction.
326 if (HInductionVarAnalysis::InductionEqual(trip_expr->op_a, info->op_b)) {
327 // Analyze cancelled trip with just the negative operand (trip_expr->op_b).
328 HInductionVarAnalysis::InductionInfo neg(
329 HInductionVarAnalysis::kInvariant,
330 HInductionVarAnalysis::kNeg,
331 nullptr,
332 trip_expr->op_b,
333 nullptr,
334 trip->type);
335 HInductionVarAnalysis::InductionInfo cancelled_trip(
336 trip->induction_class, trip->operation, &neg, trip->op_b, nullptr, trip->type);
337 return SubValue(Value(0), GetVal(&cancelled_trip, trip, in_body, !is_min));
338 }
339 }
340 }
341 }
342 }
343 // General rule of linear induction a * i + b, for normalized 0 <= i < TC.
344 return AddValue(GetMul(info->op_a, trip, trip, in_body, is_min),
345 GetVal(info->op_b, trip, in_body, is_min));
346 }
347
GetFetch(HInstruction * instruction,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const348 InductionVarRange::Value InductionVarRange::GetFetch(HInstruction* instruction,
349 HInductionVarAnalysis::InductionInfo* trip,
350 bool in_body,
351 bool is_min) const {
352 // Detect constants and chase the fetch a bit deeper into the HIR tree, so that it becomes
353 // more likely range analysis will compare the same instructions as terminal nodes.
354 int64_t value;
355 if (IsIntAndGet(instruction, &value) && CanLongValueFitIntoInt(value)) {
356 return Value(static_cast<int32_t>(value));
357 } else if (instruction->IsAdd()) {
358 if (IsIntAndGet(instruction->InputAt(0), &value) && CanLongValueFitIntoInt(value)) {
359 return AddValue(Value(static_cast<int32_t>(value)),
360 GetFetch(instruction->InputAt(1), trip, in_body, is_min));
361 } else if (IsIntAndGet(instruction->InputAt(1), &value) && CanLongValueFitIntoInt(value)) {
362 return AddValue(GetFetch(instruction->InputAt(0), trip, in_body, is_min),
363 Value(static_cast<int32_t>(value)));
364 }
365 } else if (instruction->IsArrayLength() && instruction->InputAt(0)->IsNewArray()) {
366 return GetFetch(instruction->InputAt(0)->InputAt(0), trip, in_body, is_min);
367 } else if (instruction->IsTypeConversion()) {
368 // Since analysis is 32-bit (or narrower) we allow a widening along the path.
369 if (instruction->AsTypeConversion()->GetInputType() == Primitive::kPrimInt &&
370 instruction->AsTypeConversion()->GetResultType() == Primitive::kPrimLong) {
371 return GetFetch(instruction->InputAt(0), trip, in_body, is_min);
372 }
373 } else if (is_min) {
374 // Special case for finding minimum: minimum of trip-count in loop-body is 1.
375 if (trip != nullptr && in_body && instruction == trip->op_a->fetch) {
376 return Value(1);
377 }
378 }
379 return Value(instruction, 1, 0);
380 }
381
GetVal(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const382 InductionVarRange::Value InductionVarRange::GetVal(HInductionVarAnalysis::InductionInfo* info,
383 HInductionVarAnalysis::InductionInfo* trip,
384 bool in_body,
385 bool is_min) const {
386 if (info != nullptr) {
387 switch (info->induction_class) {
388 case HInductionVarAnalysis::kInvariant:
389 // Invariants.
390 switch (info->operation) {
391 case HInductionVarAnalysis::kAdd:
392 return AddValue(GetVal(info->op_a, trip, in_body, is_min),
393 GetVal(info->op_b, trip, in_body, is_min));
394 case HInductionVarAnalysis::kSub: // second reversed!
395 return SubValue(GetVal(info->op_a, trip, in_body, is_min),
396 GetVal(info->op_b, trip, in_body, !is_min));
397 case HInductionVarAnalysis::kNeg: // second reversed!
398 return SubValue(Value(0),
399 GetVal(info->op_b, trip, in_body, !is_min));
400 case HInductionVarAnalysis::kMul:
401 return GetMul(info->op_a, info->op_b, trip, in_body, is_min);
402 case HInductionVarAnalysis::kDiv:
403 return GetDiv(info->op_a, info->op_b, trip, in_body, is_min);
404 case HInductionVarAnalysis::kFetch:
405 return GetFetch(info->fetch, trip, in_body, is_min);
406 case HInductionVarAnalysis::kTripCountInLoop:
407 case HInductionVarAnalysis::kTripCountInLoopUnsafe:
408 if (!in_body && !is_min) { // one extra!
409 return GetVal(info->op_a, trip, in_body, is_min);
410 }
411 FALLTHROUGH_INTENDED;
412 case HInductionVarAnalysis::kTripCountInBody:
413 case HInductionVarAnalysis::kTripCountInBodyUnsafe:
414 if (is_min) {
415 return Value(0);
416 } else if (in_body) {
417 return SubValue(GetVal(info->op_a, trip, in_body, is_min), Value(1));
418 }
419 break;
420 default:
421 break;
422 }
423 break;
424 case HInductionVarAnalysis::kLinear: {
425 return CorrectForType(GetLinear(info, trip, in_body, is_min), info->type);
426 }
427 case HInductionVarAnalysis::kWrapAround:
428 case HInductionVarAnalysis::kPeriodic:
429 return MergeVal(GetVal(info->op_a, trip, in_body, is_min),
430 GetVal(info->op_b, trip, in_body, is_min), is_min);
431 }
432 }
433 return Value();
434 }
435
GetMul(HInductionVarAnalysis::InductionInfo * info1,HInductionVarAnalysis::InductionInfo * info2,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const436 InductionVarRange::Value InductionVarRange::GetMul(HInductionVarAnalysis::InductionInfo* info1,
437 HInductionVarAnalysis::InductionInfo* info2,
438 HInductionVarAnalysis::InductionInfo* trip,
439 bool in_body,
440 bool is_min) const {
441 Value v1_min = GetVal(info1, trip, in_body, /* is_min */ true);
442 Value v1_max = GetVal(info1, trip, in_body, /* is_min */ false);
443 Value v2_min = GetVal(info2, trip, in_body, /* is_min */ true);
444 Value v2_max = GetVal(info2, trip, in_body, /* is_min */ false);
445 // Try to refine first operand.
446 if (!IsConstantValue(v1_min) && !IsConstantValue(v1_max)) {
447 RefineOuter(&v1_min, &v1_max);
448 }
449 // Constant times range.
450 if (IsSameConstantValue(v1_min, v1_max)) {
451 return MulRangeAndConstant(v2_min, v2_max, v1_min, is_min);
452 } else if (IsSameConstantValue(v2_min, v2_max)) {
453 return MulRangeAndConstant(v1_min, v1_max, v2_min, is_min);
454 }
455 // Positive range vs. positive or negative range.
456 if (IsConstantValue(v1_min) && v1_min.b_constant >= 0) {
457 if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
458 return is_min ? MulValue(v1_min, v2_min) : MulValue(v1_max, v2_max);
459 } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
460 return is_min ? MulValue(v1_max, v2_min) : MulValue(v1_min, v2_max);
461 }
462 }
463 // Negative range vs. positive or negative range.
464 if (IsConstantValue(v1_max) && v1_max.b_constant <= 0) {
465 if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
466 return is_min ? MulValue(v1_min, v2_max) : MulValue(v1_max, v2_min);
467 } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
468 return is_min ? MulValue(v1_max, v2_max) : MulValue(v1_min, v2_min);
469 }
470 }
471 return Value();
472 }
473
GetDiv(HInductionVarAnalysis::InductionInfo * info1,HInductionVarAnalysis::InductionInfo * info2,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const474 InductionVarRange::Value InductionVarRange::GetDiv(HInductionVarAnalysis::InductionInfo* info1,
475 HInductionVarAnalysis::InductionInfo* info2,
476 HInductionVarAnalysis::InductionInfo* trip,
477 bool in_body,
478 bool is_min) const {
479 Value v1_min = GetVal(info1, trip, in_body, /* is_min */ true);
480 Value v1_max = GetVal(info1, trip, in_body, /* is_min */ false);
481 Value v2_min = GetVal(info2, trip, in_body, /* is_min */ true);
482 Value v2_max = GetVal(info2, trip, in_body, /* is_min */ false);
483 // Range divided by constant.
484 if (IsSameConstantValue(v2_min, v2_max)) {
485 return DivRangeAndConstant(v1_min, v1_max, v2_min, is_min);
486 }
487 // Positive range vs. positive or negative range.
488 if (IsConstantValue(v1_min) && v1_min.b_constant >= 0) {
489 if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
490 return is_min ? DivValue(v1_min, v2_max) : DivValue(v1_max, v2_min);
491 } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
492 return is_min ? DivValue(v1_max, v2_max) : DivValue(v1_min, v2_min);
493 }
494 }
495 // Negative range vs. positive or negative range.
496 if (IsConstantValue(v1_max) && v1_max.b_constant <= 0) {
497 if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
498 return is_min ? DivValue(v1_min, v2_min) : DivValue(v1_max, v2_max);
499 } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
500 return is_min ? DivValue(v1_max, v2_min) : DivValue(v1_min, v2_max);
501 }
502 }
503 return Value();
504 }
505
MulRangeAndConstant(Value v_min,Value v_max,Value c,bool is_min) const506 InductionVarRange::Value InductionVarRange::MulRangeAndConstant(Value v_min,
507 Value v_max,
508 Value c,
509 bool is_min) const {
510 return is_min == (c.b_constant >= 0) ? MulValue(v_min, c) : MulValue(v_max, c);
511 }
512
DivRangeAndConstant(Value v_min,Value v_max,Value c,bool is_min) const513 InductionVarRange::Value InductionVarRange::DivRangeAndConstant(Value v_min,
514 Value v_max,
515 Value c,
516 bool is_min) const {
517 return is_min == (c.b_constant >= 0) ? DivValue(v_min, c) : DivValue(v_max, c);
518 }
519
AddValue(Value v1,Value v2) const520 InductionVarRange::Value InductionVarRange::AddValue(Value v1, Value v2) const {
521 if (v1.is_known && v2.is_known && IsSafeAdd(v1.b_constant, v2.b_constant)) {
522 const int32_t b = v1.b_constant + v2.b_constant;
523 if (v1.a_constant == 0) {
524 return Value(v2.instruction, v2.a_constant, b);
525 } else if (v2.a_constant == 0) {
526 return Value(v1.instruction, v1.a_constant, b);
527 } else if (v1.instruction == v2.instruction && IsSafeAdd(v1.a_constant, v2.a_constant)) {
528 return Value(v1.instruction, v1.a_constant + v2.a_constant, b);
529 }
530 }
531 return Value();
532 }
533
SubValue(Value v1,Value v2) const534 InductionVarRange::Value InductionVarRange::SubValue(Value v1, Value v2) const {
535 if (v1.is_known && v2.is_known && IsSafeSub(v1.b_constant, v2.b_constant)) {
536 const int32_t b = v1.b_constant - v2.b_constant;
537 if (v1.a_constant == 0 && IsSafeSub(0, v2.a_constant)) {
538 return Value(v2.instruction, -v2.a_constant, b);
539 } else if (v2.a_constant == 0) {
540 return Value(v1.instruction, v1.a_constant, b);
541 } else if (v1.instruction == v2.instruction && IsSafeSub(v1.a_constant, v2.a_constant)) {
542 return Value(v1.instruction, v1.a_constant - v2.a_constant, b);
543 }
544 }
545 return Value();
546 }
547
MulValue(Value v1,Value v2) const548 InductionVarRange::Value InductionVarRange::MulValue(Value v1, Value v2) const {
549 if (v1.is_known && v2.is_known) {
550 if (v1.a_constant == 0) {
551 if (IsSafeMul(v1.b_constant, v2.a_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) {
552 return Value(v2.instruction, v1.b_constant * v2.a_constant, v1.b_constant * v2.b_constant);
553 }
554 } else if (v2.a_constant == 0) {
555 if (IsSafeMul(v1.a_constant, v2.b_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) {
556 return Value(v1.instruction, v1.a_constant * v2.b_constant, v1.b_constant * v2.b_constant);
557 }
558 }
559 }
560 return Value();
561 }
562
DivValue(Value v1,Value v2) const563 InductionVarRange::Value InductionVarRange::DivValue(Value v1, Value v2) const {
564 if (v1.is_known && v2.is_known && v1.a_constant == 0 && v2.a_constant == 0) {
565 if (IsSafeDiv(v1.b_constant, v2.b_constant)) {
566 return Value(v1.b_constant / v2.b_constant);
567 }
568 }
569 return Value();
570 }
571
MergeVal(Value v1,Value v2,bool is_min) const572 InductionVarRange::Value InductionVarRange::MergeVal(Value v1, Value v2, bool is_min) const {
573 if (v1.is_known && v2.is_known) {
574 if (v1.instruction == v2.instruction && v1.a_constant == v2.a_constant) {
575 return Value(v1.instruction, v1.a_constant,
576 is_min ? std::min(v1.b_constant, v2.b_constant)
577 : std::max(v1.b_constant, v2.b_constant));
578 }
579 }
580 return Value();
581 }
582
RefineOuter(Value v,bool is_min) const583 InductionVarRange::Value InductionVarRange::RefineOuter(Value v, bool is_min) const {
584 if (v.instruction == nullptr) {
585 return v; // nothing to refine
586 }
587 HLoopInformation* loop =
588 v.instruction->GetBlock()->GetLoopInformation(); // closest enveloping loop
589 if (loop == nullptr) {
590 return v; // no loop
591 }
592 HInductionVarAnalysis::InductionInfo* info = induction_analysis_->LookupInfo(loop, v.instruction);
593 if (info == nullptr) {
594 return v; // no induction information
595 }
596 // Set up loop information.
597 HBasicBlock* header = loop->GetHeader();
598 bool in_body = true; // inner always in more outer
599 HInductionVarAnalysis::InductionInfo* trip =
600 induction_analysis_->LookupInfo(loop, header->GetLastInstruction());
601 // Try to refine "a x instruction + b" with outer loop range information on instruction.
602 return AddValue(MulValue(Value(v.a_constant), GetVal(info, trip, in_body, is_min)), Value(v.b_constant));
603 }
604
GenerateCode(HInstruction * context,HInstruction * instruction,HGraph * graph,HBasicBlock * block,HInstruction ** lower,HInstruction ** upper,HInstruction ** taken_test,bool * needs_finite_test,bool * needs_taken_test) const605 bool InductionVarRange::GenerateCode(HInstruction* context,
606 HInstruction* instruction,
607 HGraph* graph,
608 HBasicBlock* block,
609 /*out*/HInstruction** lower,
610 /*out*/HInstruction** upper,
611 /*out*/HInstruction** taken_test,
612 /*out*/bool* needs_finite_test,
613 /*out*/bool* needs_taken_test) const {
614 HLoopInformation* loop = context->GetBlock()->GetLoopInformation(); // closest enveloping loop
615 if (loop == nullptr) {
616 return false; // no loop
617 }
618 HInductionVarAnalysis::InductionInfo* info = induction_analysis_->LookupInfo(loop, instruction);
619 if (info == nullptr) {
620 return false; // no induction information
621 }
622 // Set up loop information.
623 HBasicBlock* header = loop->GetHeader();
624 bool in_body = context->GetBlock() != header;
625 HInductionVarAnalysis::InductionInfo* trip =
626 induction_analysis_->LookupInfo(loop, header->GetLastInstruction());
627 if (trip == nullptr) {
628 return false; // codegen relies on trip count
629 }
630 // Determine what tests are needed. A finite test is needed if the evaluation code uses the
631 // trip-count and the loop maybe unsafe (because in such cases, the index could "overshoot"
632 // the computed range). A taken test is needed for any unknown trip-count, even if evaluation
633 // code does not use the trip-count explicitly (since there could be an implicit relation
634 // between e.g. an invariant subscript and a not-taken condition).
635 *needs_finite_test = NeedsTripCount(info) && IsUnsafeTripCount(trip);
636 *needs_taken_test = IsBodyTripCount(trip);
637 // Code generation for taken test: generate the code when requested or otherwise analyze
638 // if code generation is feasible when taken test is needed.
639 if (taken_test != nullptr) {
640 return GenerateCode(trip->op_b, nullptr, graph, block, taken_test, in_body, /* is_min */ false);
641 } else if (*needs_taken_test) {
642 if (!GenerateCode(
643 trip->op_b, nullptr, nullptr, nullptr, nullptr, in_body, /* is_min */ false)) {
644 return false;
645 }
646 }
647 // Code generation for lower and upper.
648 return
649 // Success on lower if invariant (not set), or code can be generated.
650 ((info->induction_class == HInductionVarAnalysis::kInvariant) ||
651 GenerateCode(info, trip, graph, block, lower, in_body, /* is_min */ true)) &&
652 // And success on upper.
653 GenerateCode(info, trip, graph, block, upper, in_body, /* is_min */ false);
654 }
655
GenerateCode(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,HInstruction ** result,bool in_body,bool is_min) const656 bool InductionVarRange::GenerateCode(HInductionVarAnalysis::InductionInfo* info,
657 HInductionVarAnalysis::InductionInfo* trip,
658 HGraph* graph, // when set, code is generated
659 HBasicBlock* block,
660 /*out*/HInstruction** result,
661 bool in_body,
662 bool is_min) const {
663 if (info != nullptr) {
664 // Verify type safety.
665 Primitive::Type type = Primitive::kPrimInt;
666 if (info->type != type) {
667 return false;
668 }
669 // Handle current operation.
670 HInstruction* opa = nullptr;
671 HInstruction* opb = nullptr;
672 switch (info->induction_class) {
673 case HInductionVarAnalysis::kInvariant:
674 // Invariants.
675 switch (info->operation) {
676 case HInductionVarAnalysis::kAdd:
677 case HInductionVarAnalysis::kLT:
678 case HInductionVarAnalysis::kLE:
679 case HInductionVarAnalysis::kGT:
680 case HInductionVarAnalysis::kGE:
681 if (GenerateCode(info->op_a, trip, graph, block, &opa, in_body, is_min) &&
682 GenerateCode(info->op_b, trip, graph, block, &opb, in_body, is_min)) {
683 if (graph != nullptr) {
684 HInstruction* operation = nullptr;
685 switch (info->operation) {
686 case HInductionVarAnalysis::kAdd:
687 operation = new (graph->GetArena()) HAdd(type, opa, opb); break;
688 case HInductionVarAnalysis::kLT:
689 operation = new (graph->GetArena()) HLessThan(opa, opb); break;
690 case HInductionVarAnalysis::kLE:
691 operation = new (graph->GetArena()) HLessThanOrEqual(opa, opb); break;
692 case HInductionVarAnalysis::kGT:
693 operation = new (graph->GetArena()) HGreaterThan(opa, opb); break;
694 case HInductionVarAnalysis::kGE:
695 operation = new (graph->GetArena()) HGreaterThanOrEqual(opa, opb); break;
696 default:
697 LOG(FATAL) << "unknown operation";
698 }
699 *result = Insert(block, operation);
700 }
701 return true;
702 }
703 break;
704 case HInductionVarAnalysis::kSub: // second reversed!
705 if (GenerateCode(info->op_a, trip, graph, block, &opa, in_body, is_min) &&
706 GenerateCode(info->op_b, trip, graph, block, &opb, in_body, !is_min)) {
707 if (graph != nullptr) {
708 *result = Insert(block, new (graph->GetArena()) HSub(type, opa, opb));
709 }
710 return true;
711 }
712 break;
713 case HInductionVarAnalysis::kNeg: // reversed!
714 if (GenerateCode(info->op_b, trip, graph, block, &opb, in_body, !is_min)) {
715 if (graph != nullptr) {
716 *result = Insert(block, new (graph->GetArena()) HNeg(type, opb));
717 }
718 return true;
719 }
720 break;
721 case HInductionVarAnalysis::kFetch:
722 if (graph != nullptr) {
723 *result = info->fetch; // already in HIR
724 }
725 return true;
726 case HInductionVarAnalysis::kTripCountInLoop:
727 case HInductionVarAnalysis::kTripCountInLoopUnsafe:
728 if (!in_body && !is_min) { // one extra!
729 return GenerateCode(info->op_a, trip, graph, block, result, in_body, is_min);
730 }
731 FALLTHROUGH_INTENDED;
732 case HInductionVarAnalysis::kTripCountInBody:
733 case HInductionVarAnalysis::kTripCountInBodyUnsafe:
734 if (is_min) {
735 if (graph != nullptr) {
736 *result = graph->GetIntConstant(0);
737 }
738 return true;
739 } else if (in_body) {
740 if (GenerateCode(info->op_a, trip, graph, block, &opb, in_body, is_min)) {
741 if (graph != nullptr) {
742 *result = Insert(block,
743 new (graph->GetArena())
744 HSub(type, opb, graph->GetIntConstant(1)));
745 }
746 return true;
747 }
748 }
749 break;
750 default:
751 break;
752 }
753 break;
754 case HInductionVarAnalysis::kLinear: {
755 // Linear induction a * i + b, for normalized 0 <= i < TC. Restrict to unit stride only
756 // to avoid arithmetic wrap-around situations that are hard to guard against.
757 int64_t stride_value = 0;
758 if (IsConstant(info->op_a, kExact, &stride_value)) {
759 if (stride_value == 1 || stride_value == -1) {
760 const bool is_min_a = stride_value == 1 ? is_min : !is_min;
761 if (GenerateCode(trip, trip, graph, block, &opa, in_body, is_min_a) &&
762 GenerateCode(info->op_b, trip, graph, block, &opb, in_body, is_min)) {
763 if (graph != nullptr) {
764 HInstruction* oper;
765 if (stride_value == 1) {
766 oper = new (graph->GetArena()) HAdd(type, opa, opb);
767 } else {
768 oper = new (graph->GetArena()) HSub(type, opb, opa);
769 }
770 *result = Insert(block, oper);
771 }
772 return true;
773 }
774 }
775 }
776 break;
777 }
778 case HInductionVarAnalysis::kWrapAround:
779 case HInductionVarAnalysis::kPeriodic: {
780 // Wrap-around and periodic inductions are restricted to constants only, so that extreme
781 // values are easy to test at runtime without complications of arithmetic wrap-around.
782 Value extreme = GetVal(info, trip, in_body, is_min);
783 if (IsConstantValue(extreme)) {
784 if (graph != nullptr) {
785 *result = graph->GetIntConstant(extreme.b_constant);
786 }
787 return true;
788 }
789 break;
790 }
791 default:
792 break;
793 }
794 }
795 return false;
796 }
797
798 } // namespace art
799