• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "induction_var_range.h"
18 
19 #include <limits>
20 
21 namespace art {
22 
23 /** Returns true if 64-bit constant fits in 32-bit constant. */
CanLongValueFitIntoInt(int64_t c)24 static bool CanLongValueFitIntoInt(int64_t c) {
25   return std::numeric_limits<int32_t>::min() <= c && c <= std::numeric_limits<int32_t>::max();
26 }
27 
28 /** Returns true if 32-bit addition can be done safely. */
IsSafeAdd(int32_t c1,int32_t c2)29 static bool IsSafeAdd(int32_t c1, int32_t c2) {
30   return CanLongValueFitIntoInt(static_cast<int64_t>(c1) + static_cast<int64_t>(c2));
31 }
32 
33 /** Returns true if 32-bit subtraction can be done safely. */
IsSafeSub(int32_t c1,int32_t c2)34 static bool IsSafeSub(int32_t c1, int32_t c2) {
35   return CanLongValueFitIntoInt(static_cast<int64_t>(c1) - static_cast<int64_t>(c2));
36 }
37 
38 /** Returns true if 32-bit multiplication can be done safely. */
IsSafeMul(int32_t c1,int32_t c2)39 static bool IsSafeMul(int32_t c1, int32_t c2) {
40   return CanLongValueFitIntoInt(static_cast<int64_t>(c1) * static_cast<int64_t>(c2));
41 }
42 
43 /** Returns true if 32-bit division can be done safely. */
IsSafeDiv(int32_t c1,int32_t c2)44 static bool IsSafeDiv(int32_t c1, int32_t c2) {
45   return c2 != 0 && CanLongValueFitIntoInt(static_cast<int64_t>(c1) / static_cast<int64_t>(c2));
46 }
47 
48 /** Returns true for 32/64-bit constant instruction. */
IsIntAndGet(HInstruction * instruction,int64_t * value)49 static bool IsIntAndGet(HInstruction* instruction, int64_t* value) {
50   if (instruction->IsIntConstant()) {
51     *value = instruction->AsIntConstant()->GetValue();
52     return true;
53   } else if (instruction->IsLongConstant()) {
54     *value = instruction->AsLongConstant()->GetValue();
55     return true;
56   }
57   return false;
58 }
59 
60 /**
61  * An upper bound a * (length / a) + b, where a >= 1, can be conservatively rewritten as length + b
62  * because length >= 0 is true. This makes it more likely the bound is useful to clients.
63  */
SimplifyMax(InductionVarRange::Value v)64 static InductionVarRange::Value SimplifyMax(InductionVarRange::Value v) {
65   int64_t value;
66   if (v.is_known &&
67       v.a_constant >= 1 &&
68       v.instruction->IsDiv() &&
69       v.instruction->InputAt(0)->IsArrayLength() &&
70       IsIntAndGet(v.instruction->InputAt(1), &value) && v.a_constant == value) {
71     return InductionVarRange::Value(v.instruction->InputAt(0), 1, v.b_constant);
72   }
73   return v;
74 }
75 
76 /**
77  * Corrects a value for type to account for arithmetic wrap-around in lower precision.
78  */
CorrectForType(InductionVarRange::Value v,Primitive::Type type)79 static InductionVarRange::Value CorrectForType(InductionVarRange::Value v, Primitive::Type type) {
80   switch (type) {
81     case Primitive::kPrimShort:
82     case Primitive::kPrimChar:
83     case Primitive::kPrimByte: {
84       // Constants within range only.
85       // TODO: maybe some room for improvement, like allowing widening conversions
86       const int32_t min = Primitive::MinValueOfIntegralType(type);
87       const int32_t max = Primitive::MaxValueOfIntegralType(type);
88       return (v.is_known && v.a_constant == 0 && min <= v.b_constant && v.b_constant <= max)
89           ? v
90           : InductionVarRange::Value();
91     }
92     default:
93       // At int or higher.
94       return v;
95   }
96 }
97 
98 /** Helper method to test for a constant value. */
IsConstantValue(InductionVarRange::Value v)99 static bool IsConstantValue(InductionVarRange::Value v) {
100   return v.is_known && v.a_constant == 0;
101 }
102 
103 /** Helper method to test for same constant value. */
IsSameConstantValue(InductionVarRange::Value v1,InductionVarRange::Value v2)104 static bool IsSameConstantValue(InductionVarRange::Value v1, InductionVarRange::Value v2) {
105   return IsConstantValue(v1) && IsConstantValue(v2) && v1.b_constant == v2.b_constant;
106 }
107 
108 /** Helper method to insert an instruction. */
Insert(HBasicBlock * block,HInstruction * instruction)109 static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) {
110   DCHECK(block != nullptr);
111   DCHECK(block->GetLastInstruction() != nullptr) << block->GetBlockId();
112   DCHECK(instruction != nullptr);
113   block->InsertInstructionBefore(instruction, block->GetLastInstruction());
114   return instruction;
115 }
116 
117 //
118 // Public class methods.
119 //
120 
InductionVarRange(HInductionVarAnalysis * induction_analysis)121 InductionVarRange::InductionVarRange(HInductionVarAnalysis* induction_analysis)
122     : induction_analysis_(induction_analysis) {
123   DCHECK(induction_analysis != nullptr);
124 }
125 
GetInductionRange(HInstruction * context,HInstruction * instruction,Value * min_val,Value * max_val,bool * needs_finite_test)126 bool InductionVarRange::GetInductionRange(HInstruction* context,
127                                           HInstruction* instruction,
128                                           /*out*/Value* min_val,
129                                           /*out*/Value* max_val,
130                                           /*out*/bool* needs_finite_test) {
131   HLoopInformation* loop = context->GetBlock()->GetLoopInformation();  // closest enveloping loop
132   if (loop == nullptr) {
133     return false;  // no loop
134   }
135   HInductionVarAnalysis::InductionInfo* info = induction_analysis_->LookupInfo(loop, instruction);
136   if (info == nullptr) {
137     return false;  // no induction information
138   }
139   // Type int or lower (this is not too restrictive since intended clients, like
140   // bounds check elimination, will have truncated higher precision induction
141   // at their use point already).
142   switch (info->type) {
143     case Primitive::kPrimInt:
144     case Primitive::kPrimShort:
145     case Primitive::kPrimChar:
146     case Primitive::kPrimByte:
147       break;
148     default:
149       return false;
150   }
151   // Set up loop information.
152   HBasicBlock* header = loop->GetHeader();
153   bool in_body = context->GetBlock() != header;
154   HInductionVarAnalysis::InductionInfo* trip =
155       induction_analysis_->LookupInfo(loop, header->GetLastInstruction());
156   // Find range.
157   *min_val = GetVal(info, trip, in_body, /* is_min */ true);
158   *max_val = SimplifyMax(GetVal(info, trip, in_body, /* is_min */ false));
159   *needs_finite_test = NeedsTripCount(info) && IsUnsafeTripCount(trip);
160   return true;
161 }
162 
RefineOuter(Value * min_val,Value * max_val) const163 bool InductionVarRange::RefineOuter(/*in-out*/ Value* min_val,
164                                     /*in-out*/ Value* max_val) const {
165   if (min_val->instruction != nullptr || max_val->instruction != nullptr) {
166     Value v1_min = RefineOuter(*min_val, /* is_min */ true);
167     Value v2_max = RefineOuter(*max_val, /* is_min */ false);
168     // The refined range is safe if both sides refine the same instruction. Otherwise, since two
169     // different ranges are combined, the new refined range is safe to pass back to the client if
170     // the extremes of the computed ranges ensure no arithmetic wrap-around anomalies occur.
171     if (min_val->instruction != max_val->instruction) {
172       Value v1_max = RefineOuter(*min_val, /* is_min */ false);
173       Value v2_min = RefineOuter(*max_val, /* is_min */ true);
174       if (!IsConstantValue(v1_max) ||
175           !IsConstantValue(v2_min) ||
176           v1_max.b_constant > v2_min.b_constant) {
177         return false;
178       }
179     }
180     // Did something change?
181     if (v1_min.instruction != min_val->instruction || v2_max.instruction != max_val->instruction) {
182       *min_val = v1_min;
183       *max_val = v2_max;
184       return true;
185     }
186   }
187   return false;
188 }
189 
CanGenerateCode(HInstruction * context,HInstruction * instruction,bool * needs_finite_test,bool * needs_taken_test)190 bool InductionVarRange::CanGenerateCode(HInstruction* context,
191                                         HInstruction* instruction,
192                                         /*out*/bool* needs_finite_test,
193                                         /*out*/bool* needs_taken_test) {
194   return GenerateCode(context,
195                       instruction,
196                       nullptr, nullptr, nullptr, nullptr, nullptr,  // nothing generated yet
197                       needs_finite_test,
198                       needs_taken_test);
199 }
200 
GenerateRangeCode(HInstruction * context,HInstruction * instruction,HGraph * graph,HBasicBlock * block,HInstruction ** lower,HInstruction ** upper)201 void InductionVarRange::GenerateRangeCode(HInstruction* context,
202                                           HInstruction* instruction,
203                                           HGraph* graph,
204                                           HBasicBlock* block,
205                                           /*out*/HInstruction** lower,
206                                           /*out*/HInstruction** upper) {
207   bool b1, b2;  // unused
208   if (!GenerateCode(context, instruction, graph, block, lower, upper, nullptr, &b1, &b2)) {
209     LOG(FATAL) << "Failed precondition: GenerateCode()";
210   }
211 }
212 
GenerateTakenTest(HInstruction * context,HGraph * graph,HBasicBlock * block,HInstruction ** taken_test)213 void InductionVarRange::GenerateTakenTest(HInstruction* context,
214                                           HGraph* graph,
215                                           HBasicBlock* block,
216                                           /*out*/HInstruction** taken_test) {
217   bool b1, b2;  // unused
218   if (!GenerateCode(context, context, graph, block, nullptr, nullptr, taken_test, &b1, &b2)) {
219     LOG(FATAL) << "Failed precondition: GenerateCode()";
220   }
221 }
222 
223 //
224 // Private class methods.
225 //
226 
IsConstant(HInductionVarAnalysis::InductionInfo * info,ConstantRequest request,int64_t * value) const227 bool InductionVarRange::IsConstant(HInductionVarAnalysis::InductionInfo* info,
228                                    ConstantRequest request,
229                                    /*out*/ int64_t *value) const {
230   if (info != nullptr) {
231     // A direct 32-bit or 64-bit constant fetch. This immediately satisfies
232     // any of the three requests (kExact, kAtMost, and KAtLeast).
233     if (info->induction_class == HInductionVarAnalysis::kInvariant &&
234         info->operation == HInductionVarAnalysis::kFetch) {
235       if (IsIntAndGet(info->fetch, value)) {
236         return true;
237       }
238     }
239     // Try range analysis while traversing outward on loops.
240     bool in_body = true;  // no known trip count
241     Value v_min = GetVal(info, nullptr, in_body, /* is_min */ true);
242     Value v_max = GetVal(info, nullptr, in_body, /* is_min */ false);
243     do {
244       // Make sure *both* extremes are known to avoid arithmetic wrap-around anomalies.
245       if (IsConstantValue(v_min) && IsConstantValue(v_max) && v_min.b_constant <= v_max.b_constant) {
246         if ((request == kExact && v_min.b_constant == v_max.b_constant) || request == kAtMost) {
247           *value = v_max.b_constant;
248           return true;
249         } else if (request == kAtLeast) {
250           *value = v_min.b_constant;
251           return true;
252         }
253       }
254     } while (RefineOuter(&v_min, &v_max));
255     // Exploit array length + c >= c, with c <= 0 to avoid arithmetic wrap-around anomalies
256     // (e.g. array length == maxint and c == 1 would yield minint).
257     if (request == kAtLeast) {
258       if (v_min.a_constant == 1 && v_min.b_constant <= 0 && v_min.instruction->IsArrayLength()) {
259         *value = v_min.b_constant;
260         return true;
261       }
262     }
263   }
264   return false;
265 }
266 
NeedsTripCount(HInductionVarAnalysis::InductionInfo * info) const267 bool InductionVarRange::NeedsTripCount(HInductionVarAnalysis::InductionInfo* info) const {
268   if (info != nullptr) {
269     if (info->induction_class == HInductionVarAnalysis::kLinear) {
270       return true;
271     } else if (info->induction_class == HInductionVarAnalysis::kWrapAround) {
272       return NeedsTripCount(info->op_b);
273     }
274   }
275   return false;
276 }
277 
IsBodyTripCount(HInductionVarAnalysis::InductionInfo * trip) const278 bool InductionVarRange::IsBodyTripCount(HInductionVarAnalysis::InductionInfo* trip) const {
279   if (trip != nullptr) {
280     if (trip->induction_class == HInductionVarAnalysis::kInvariant) {
281       return trip->operation == HInductionVarAnalysis::kTripCountInBody ||
282              trip->operation == HInductionVarAnalysis::kTripCountInBodyUnsafe;
283     }
284   }
285   return false;
286 }
287 
IsUnsafeTripCount(HInductionVarAnalysis::InductionInfo * trip) const288 bool InductionVarRange::IsUnsafeTripCount(HInductionVarAnalysis::InductionInfo* trip) const {
289   if (trip != nullptr) {
290     if (trip->induction_class == HInductionVarAnalysis::kInvariant) {
291       return trip->operation == HInductionVarAnalysis::kTripCountInBodyUnsafe ||
292              trip->operation == HInductionVarAnalysis::kTripCountInLoopUnsafe;
293     }
294   }
295   return false;
296 }
297 
GetLinear(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const298 InductionVarRange::Value InductionVarRange::GetLinear(HInductionVarAnalysis::InductionInfo* info,
299                                                       HInductionVarAnalysis::InductionInfo* trip,
300                                                       bool in_body,
301                                                       bool is_min) const {
302   // Detect common situation where an offset inside the trip count cancels out during range
303   // analysis (finding max a * (TC - 1) + OFFSET for a == 1 and TC = UPPER - OFFSET or finding
304   // min a * (TC - 1) + OFFSET for a == -1 and TC = OFFSET - UPPER) to avoid losing information
305   // with intermediate results that only incorporate single instructions.
306   if (trip != nullptr) {
307     HInductionVarAnalysis::InductionInfo* trip_expr = trip->op_a;
308     if (trip_expr->operation == HInductionVarAnalysis::kSub) {
309       int64_t stride_value = 0;
310       if (IsConstant(info->op_a, kExact, &stride_value)) {
311         if (!is_min && stride_value == 1) {
312           // Test original trip's negative operand (trip_expr->op_b) against offset of induction.
313           if (HInductionVarAnalysis::InductionEqual(trip_expr->op_b, info->op_b)) {
314             // Analyze cancelled trip with just the positive operand (trip_expr->op_a).
315             HInductionVarAnalysis::InductionInfo cancelled_trip(
316                 trip->induction_class,
317                 trip->operation,
318                 trip_expr->op_a,
319                 trip->op_b,
320                 nullptr,
321                 trip->type);
322             return GetVal(&cancelled_trip, trip, in_body, is_min);
323           }
324         } else if (is_min && stride_value == -1) {
325           // Test original trip's positive operand (trip_expr->op_a) against offset of induction.
326           if (HInductionVarAnalysis::InductionEqual(trip_expr->op_a, info->op_b)) {
327             // Analyze cancelled trip with just the negative operand (trip_expr->op_b).
328             HInductionVarAnalysis::InductionInfo neg(
329                 HInductionVarAnalysis::kInvariant,
330                 HInductionVarAnalysis::kNeg,
331                 nullptr,
332                 trip_expr->op_b,
333                 nullptr,
334                 trip->type);
335             HInductionVarAnalysis::InductionInfo cancelled_trip(
336                 trip->induction_class, trip->operation, &neg, trip->op_b, nullptr, trip->type);
337             return SubValue(Value(0), GetVal(&cancelled_trip, trip, in_body, !is_min));
338           }
339         }
340       }
341     }
342   }
343   // General rule of linear induction a * i + b, for normalized 0 <= i < TC.
344   return AddValue(GetMul(info->op_a, trip, trip, in_body, is_min),
345                   GetVal(info->op_b, trip, in_body, is_min));
346 }
347 
GetFetch(HInstruction * instruction,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const348 InductionVarRange::Value InductionVarRange::GetFetch(HInstruction* instruction,
349                                                      HInductionVarAnalysis::InductionInfo* trip,
350                                                      bool in_body,
351                                                      bool is_min) const {
352   // Detect constants and chase the fetch a bit deeper into the HIR tree, so that it becomes
353   // more likely range analysis will compare the same instructions as terminal nodes.
354   int64_t value;
355   if (IsIntAndGet(instruction, &value) && CanLongValueFitIntoInt(value))  {
356     return Value(static_cast<int32_t>(value));
357   } else if (instruction->IsAdd()) {
358     if (IsIntAndGet(instruction->InputAt(0), &value) && CanLongValueFitIntoInt(value)) {
359       return AddValue(Value(static_cast<int32_t>(value)),
360                       GetFetch(instruction->InputAt(1), trip, in_body, is_min));
361     } else if (IsIntAndGet(instruction->InputAt(1), &value) && CanLongValueFitIntoInt(value)) {
362       return AddValue(GetFetch(instruction->InputAt(0), trip, in_body, is_min),
363                       Value(static_cast<int32_t>(value)));
364     }
365   } else if (instruction->IsArrayLength() && instruction->InputAt(0)->IsNewArray()) {
366     return GetFetch(instruction->InputAt(0)->InputAt(0), trip, in_body, is_min);
367   } else if (instruction->IsTypeConversion()) {
368     // Since analysis is 32-bit (or narrower) we allow a widening along the path.
369     if (instruction->AsTypeConversion()->GetInputType() == Primitive::kPrimInt &&
370         instruction->AsTypeConversion()->GetResultType() == Primitive::kPrimLong) {
371       return GetFetch(instruction->InputAt(0), trip, in_body, is_min);
372     }
373   } else if (is_min) {
374     // Special case for finding minimum: minimum of trip-count in loop-body is 1.
375     if (trip != nullptr && in_body && instruction == trip->op_a->fetch) {
376       return Value(1);
377     }
378   }
379   return Value(instruction, 1, 0);
380 }
381 
GetVal(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const382 InductionVarRange::Value InductionVarRange::GetVal(HInductionVarAnalysis::InductionInfo* info,
383                                                    HInductionVarAnalysis::InductionInfo* trip,
384                                                    bool in_body,
385                                                    bool is_min) const {
386   if (info != nullptr) {
387     switch (info->induction_class) {
388       case HInductionVarAnalysis::kInvariant:
389         // Invariants.
390         switch (info->operation) {
391           case HInductionVarAnalysis::kAdd:
392             return AddValue(GetVal(info->op_a, trip, in_body, is_min),
393                             GetVal(info->op_b, trip, in_body, is_min));
394           case HInductionVarAnalysis::kSub:  // second reversed!
395             return SubValue(GetVal(info->op_a, trip, in_body, is_min),
396                             GetVal(info->op_b, trip, in_body, !is_min));
397           case HInductionVarAnalysis::kNeg:  // second reversed!
398             return SubValue(Value(0),
399                             GetVal(info->op_b, trip, in_body, !is_min));
400           case HInductionVarAnalysis::kMul:
401             return GetMul(info->op_a, info->op_b, trip, in_body, is_min);
402           case HInductionVarAnalysis::kDiv:
403             return GetDiv(info->op_a, info->op_b, trip, in_body, is_min);
404           case HInductionVarAnalysis::kFetch:
405             return GetFetch(info->fetch, trip, in_body, is_min);
406           case HInductionVarAnalysis::kTripCountInLoop:
407           case HInductionVarAnalysis::kTripCountInLoopUnsafe:
408             if (!in_body && !is_min) {  // one extra!
409               return GetVal(info->op_a, trip, in_body, is_min);
410             }
411             FALLTHROUGH_INTENDED;
412           case HInductionVarAnalysis::kTripCountInBody:
413           case HInductionVarAnalysis::kTripCountInBodyUnsafe:
414             if (is_min) {
415               return Value(0);
416             } else if (in_body) {
417               return SubValue(GetVal(info->op_a, trip, in_body, is_min), Value(1));
418             }
419             break;
420           default:
421             break;
422         }
423         break;
424       case HInductionVarAnalysis::kLinear: {
425         return CorrectForType(GetLinear(info, trip, in_body, is_min), info->type);
426       }
427       case HInductionVarAnalysis::kWrapAround:
428       case HInductionVarAnalysis::kPeriodic:
429         return MergeVal(GetVal(info->op_a, trip, in_body, is_min),
430                         GetVal(info->op_b, trip, in_body, is_min), is_min);
431     }
432   }
433   return Value();
434 }
435 
GetMul(HInductionVarAnalysis::InductionInfo * info1,HInductionVarAnalysis::InductionInfo * info2,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const436 InductionVarRange::Value InductionVarRange::GetMul(HInductionVarAnalysis::InductionInfo* info1,
437                                                    HInductionVarAnalysis::InductionInfo* info2,
438                                                    HInductionVarAnalysis::InductionInfo* trip,
439                                                    bool in_body,
440                                                    bool is_min) const {
441   Value v1_min = GetVal(info1, trip, in_body, /* is_min */ true);
442   Value v1_max = GetVal(info1, trip, in_body, /* is_min */ false);
443   Value v2_min = GetVal(info2, trip, in_body, /* is_min */ true);
444   Value v2_max = GetVal(info2, trip, in_body, /* is_min */ false);
445   // Try to refine first operand.
446   if (!IsConstantValue(v1_min) && !IsConstantValue(v1_max)) {
447     RefineOuter(&v1_min, &v1_max);
448   }
449   // Constant times range.
450   if (IsSameConstantValue(v1_min, v1_max)) {
451     return MulRangeAndConstant(v2_min, v2_max, v1_min, is_min);
452   } else if (IsSameConstantValue(v2_min, v2_max)) {
453     return MulRangeAndConstant(v1_min, v1_max, v2_min, is_min);
454   }
455   // Positive range vs. positive or negative range.
456   if (IsConstantValue(v1_min) && v1_min.b_constant >= 0) {
457     if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
458       return is_min ? MulValue(v1_min, v2_min) : MulValue(v1_max, v2_max);
459     } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
460       return is_min ? MulValue(v1_max, v2_min) : MulValue(v1_min, v2_max);
461     }
462   }
463   // Negative range vs. positive or negative range.
464   if (IsConstantValue(v1_max) && v1_max.b_constant <= 0) {
465     if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
466       return is_min ? MulValue(v1_min, v2_max) : MulValue(v1_max, v2_min);
467     } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
468       return is_min ? MulValue(v1_max, v2_max) : MulValue(v1_min, v2_min);
469     }
470   }
471   return Value();
472 }
473 
GetDiv(HInductionVarAnalysis::InductionInfo * info1,HInductionVarAnalysis::InductionInfo * info2,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const474 InductionVarRange::Value InductionVarRange::GetDiv(HInductionVarAnalysis::InductionInfo* info1,
475                                                    HInductionVarAnalysis::InductionInfo* info2,
476                                                    HInductionVarAnalysis::InductionInfo* trip,
477                                                    bool in_body,
478                                                    bool is_min) const {
479   Value v1_min = GetVal(info1, trip, in_body, /* is_min */ true);
480   Value v1_max = GetVal(info1, trip, in_body, /* is_min */ false);
481   Value v2_min = GetVal(info2, trip, in_body, /* is_min */ true);
482   Value v2_max = GetVal(info2, trip, in_body, /* is_min */ false);
483   // Range divided by constant.
484   if (IsSameConstantValue(v2_min, v2_max)) {
485     return DivRangeAndConstant(v1_min, v1_max, v2_min, is_min);
486   }
487   // Positive range vs. positive or negative range.
488   if (IsConstantValue(v1_min) && v1_min.b_constant >= 0) {
489     if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
490       return is_min ? DivValue(v1_min, v2_max) : DivValue(v1_max, v2_min);
491     } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
492       return is_min ? DivValue(v1_max, v2_max) : DivValue(v1_min, v2_min);
493     }
494   }
495   // Negative range vs. positive or negative range.
496   if (IsConstantValue(v1_max) && v1_max.b_constant <= 0) {
497     if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
498       return is_min ? DivValue(v1_min, v2_min) : DivValue(v1_max, v2_max);
499     } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
500       return is_min ? DivValue(v1_max, v2_min) : DivValue(v1_min, v2_max);
501     }
502   }
503   return Value();
504 }
505 
MulRangeAndConstant(Value v_min,Value v_max,Value c,bool is_min) const506 InductionVarRange::Value InductionVarRange::MulRangeAndConstant(Value v_min,
507                                                                 Value v_max,
508                                                                 Value c,
509                                                                 bool is_min) const {
510   return is_min == (c.b_constant >= 0) ? MulValue(v_min, c) : MulValue(v_max, c);
511 }
512 
DivRangeAndConstant(Value v_min,Value v_max,Value c,bool is_min) const513 InductionVarRange::Value InductionVarRange::DivRangeAndConstant(Value v_min,
514                                                                 Value v_max,
515                                                                 Value c,
516                                                                 bool is_min) const {
517   return is_min == (c.b_constant >= 0) ? DivValue(v_min, c) : DivValue(v_max, c);
518 }
519 
AddValue(Value v1,Value v2) const520 InductionVarRange::Value InductionVarRange::AddValue(Value v1, Value v2) const {
521   if (v1.is_known && v2.is_known && IsSafeAdd(v1.b_constant, v2.b_constant)) {
522     const int32_t b = v1.b_constant + v2.b_constant;
523     if (v1.a_constant == 0) {
524       return Value(v2.instruction, v2.a_constant, b);
525     } else if (v2.a_constant == 0) {
526       return Value(v1.instruction, v1.a_constant, b);
527     } else if (v1.instruction == v2.instruction && IsSafeAdd(v1.a_constant, v2.a_constant)) {
528       return Value(v1.instruction, v1.a_constant + v2.a_constant, b);
529     }
530   }
531   return Value();
532 }
533 
SubValue(Value v1,Value v2) const534 InductionVarRange::Value InductionVarRange::SubValue(Value v1, Value v2) const {
535   if (v1.is_known && v2.is_known && IsSafeSub(v1.b_constant, v2.b_constant)) {
536     const int32_t b = v1.b_constant - v2.b_constant;
537     if (v1.a_constant == 0 && IsSafeSub(0, v2.a_constant)) {
538       return Value(v2.instruction, -v2.a_constant, b);
539     } else if (v2.a_constant == 0) {
540       return Value(v1.instruction, v1.a_constant, b);
541     } else if (v1.instruction == v2.instruction && IsSafeSub(v1.a_constant, v2.a_constant)) {
542       return Value(v1.instruction, v1.a_constant - v2.a_constant, b);
543     }
544   }
545   return Value();
546 }
547 
MulValue(Value v1,Value v2) const548 InductionVarRange::Value InductionVarRange::MulValue(Value v1, Value v2) const {
549   if (v1.is_known && v2.is_known) {
550     if (v1.a_constant == 0) {
551       if (IsSafeMul(v1.b_constant, v2.a_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) {
552         return Value(v2.instruction, v1.b_constant * v2.a_constant, v1.b_constant * v2.b_constant);
553       }
554     } else if (v2.a_constant == 0) {
555       if (IsSafeMul(v1.a_constant, v2.b_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) {
556         return Value(v1.instruction, v1.a_constant * v2.b_constant, v1.b_constant * v2.b_constant);
557       }
558     }
559   }
560   return Value();
561 }
562 
DivValue(Value v1,Value v2) const563 InductionVarRange::Value InductionVarRange::DivValue(Value v1, Value v2) const {
564   if (v1.is_known && v2.is_known && v1.a_constant == 0 && v2.a_constant == 0) {
565     if (IsSafeDiv(v1.b_constant, v2.b_constant)) {
566       return Value(v1.b_constant / v2.b_constant);
567     }
568   }
569   return Value();
570 }
571 
MergeVal(Value v1,Value v2,bool is_min) const572 InductionVarRange::Value InductionVarRange::MergeVal(Value v1, Value v2, bool is_min) const {
573   if (v1.is_known && v2.is_known) {
574     if (v1.instruction == v2.instruction && v1.a_constant == v2.a_constant) {
575       return Value(v1.instruction, v1.a_constant,
576                    is_min ? std::min(v1.b_constant, v2.b_constant)
577                           : std::max(v1.b_constant, v2.b_constant));
578     }
579   }
580   return Value();
581 }
582 
RefineOuter(Value v,bool is_min) const583 InductionVarRange::Value InductionVarRange::RefineOuter(Value v, bool is_min) const {
584   if (v.instruction == nullptr) {
585     return v;  // nothing to refine
586   }
587   HLoopInformation* loop =
588       v.instruction->GetBlock()->GetLoopInformation();  // closest enveloping loop
589   if (loop == nullptr) {
590     return v;  // no loop
591   }
592   HInductionVarAnalysis::InductionInfo* info = induction_analysis_->LookupInfo(loop, v.instruction);
593   if (info == nullptr) {
594     return v;  // no induction information
595   }
596   // Set up loop information.
597   HBasicBlock* header = loop->GetHeader();
598   bool in_body = true;  // inner always in more outer
599   HInductionVarAnalysis::InductionInfo* trip =
600       induction_analysis_->LookupInfo(loop, header->GetLastInstruction());
601   // Try to refine "a x instruction + b" with outer loop range information on instruction.
602   return AddValue(MulValue(Value(v.a_constant), GetVal(info, trip, in_body, is_min)), Value(v.b_constant));
603 }
604 
GenerateCode(HInstruction * context,HInstruction * instruction,HGraph * graph,HBasicBlock * block,HInstruction ** lower,HInstruction ** upper,HInstruction ** taken_test,bool * needs_finite_test,bool * needs_taken_test) const605 bool InductionVarRange::GenerateCode(HInstruction* context,
606                                      HInstruction* instruction,
607                                      HGraph* graph,
608                                      HBasicBlock* block,
609                                      /*out*/HInstruction** lower,
610                                      /*out*/HInstruction** upper,
611                                      /*out*/HInstruction** taken_test,
612                                      /*out*/bool* needs_finite_test,
613                                      /*out*/bool* needs_taken_test) const {
614   HLoopInformation* loop = context->GetBlock()->GetLoopInformation();  // closest enveloping loop
615   if (loop == nullptr) {
616     return false;  // no loop
617   }
618   HInductionVarAnalysis::InductionInfo* info = induction_analysis_->LookupInfo(loop, instruction);
619   if (info == nullptr) {
620     return false;  // no induction information
621   }
622   // Set up loop information.
623   HBasicBlock* header = loop->GetHeader();
624   bool in_body = context->GetBlock() != header;
625   HInductionVarAnalysis::InductionInfo* trip =
626       induction_analysis_->LookupInfo(loop, header->GetLastInstruction());
627   if (trip == nullptr) {
628     return false;  // codegen relies on trip count
629   }
630   // Determine what tests are needed. A finite test is needed if the evaluation code uses the
631   // trip-count and the loop maybe unsafe (because in such cases, the index could "overshoot"
632   // the computed range). A taken test is needed for any unknown trip-count, even if evaluation
633   // code does not use the trip-count explicitly (since there could be an implicit relation
634   // between e.g. an invariant subscript and a not-taken condition).
635   *needs_finite_test = NeedsTripCount(info) && IsUnsafeTripCount(trip);
636   *needs_taken_test = IsBodyTripCount(trip);
637   // Code generation for taken test: generate the code when requested or otherwise analyze
638   // if code generation is feasible when taken test is needed.
639   if (taken_test != nullptr) {
640     return GenerateCode(trip->op_b, nullptr, graph, block, taken_test, in_body, /* is_min */ false);
641   } else if (*needs_taken_test) {
642     if (!GenerateCode(
643         trip->op_b, nullptr, nullptr, nullptr, nullptr, in_body, /* is_min */ false)) {
644       return false;
645     }
646   }
647   // Code generation for lower and upper.
648   return
649       // Success on lower if invariant (not set), or code can be generated.
650       ((info->induction_class == HInductionVarAnalysis::kInvariant) ||
651           GenerateCode(info, trip, graph, block, lower, in_body, /* is_min */ true)) &&
652       // And success on upper.
653       GenerateCode(info, trip, graph, block, upper, in_body, /* is_min */ false);
654 }
655 
GenerateCode(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,HInstruction ** result,bool in_body,bool is_min) const656 bool InductionVarRange::GenerateCode(HInductionVarAnalysis::InductionInfo* info,
657                                      HInductionVarAnalysis::InductionInfo* trip,
658                                      HGraph* graph,  // when set, code is generated
659                                      HBasicBlock* block,
660                                      /*out*/HInstruction** result,
661                                      bool in_body,
662                                      bool is_min) const {
663   if (info != nullptr) {
664     // Verify type safety.
665     Primitive::Type type = Primitive::kPrimInt;
666     if (info->type != type) {
667       return false;
668     }
669     // Handle current operation.
670     HInstruction* opa = nullptr;
671     HInstruction* opb = nullptr;
672     switch (info->induction_class) {
673       case HInductionVarAnalysis::kInvariant:
674         // Invariants.
675         switch (info->operation) {
676           case HInductionVarAnalysis::kAdd:
677           case HInductionVarAnalysis::kLT:
678           case HInductionVarAnalysis::kLE:
679           case HInductionVarAnalysis::kGT:
680           case HInductionVarAnalysis::kGE:
681             if (GenerateCode(info->op_a, trip, graph, block, &opa, in_body, is_min) &&
682                 GenerateCode(info->op_b, trip, graph, block, &opb, in_body, is_min)) {
683               if (graph != nullptr) {
684                 HInstruction* operation = nullptr;
685                 switch (info->operation) {
686                   case HInductionVarAnalysis::kAdd:
687                     operation = new (graph->GetArena()) HAdd(type, opa, opb); break;
688                   case HInductionVarAnalysis::kLT:
689                     operation = new (graph->GetArena()) HLessThan(opa, opb); break;
690                   case HInductionVarAnalysis::kLE:
691                     operation = new (graph->GetArena()) HLessThanOrEqual(opa, opb); break;
692                   case HInductionVarAnalysis::kGT:
693                     operation = new (graph->GetArena()) HGreaterThan(opa, opb); break;
694                   case HInductionVarAnalysis::kGE:
695                     operation = new (graph->GetArena()) HGreaterThanOrEqual(opa, opb); break;
696                   default:
697                     LOG(FATAL) << "unknown operation";
698                 }
699                 *result = Insert(block, operation);
700               }
701               return true;
702             }
703             break;
704           case HInductionVarAnalysis::kSub:  // second reversed!
705             if (GenerateCode(info->op_a, trip, graph, block, &opa, in_body, is_min) &&
706                 GenerateCode(info->op_b, trip, graph, block, &opb, in_body, !is_min)) {
707               if (graph != nullptr) {
708                 *result = Insert(block, new (graph->GetArena()) HSub(type, opa, opb));
709               }
710               return true;
711             }
712             break;
713           case HInductionVarAnalysis::kNeg:  // reversed!
714             if (GenerateCode(info->op_b, trip, graph, block, &opb, in_body, !is_min)) {
715               if (graph != nullptr) {
716                 *result = Insert(block, new (graph->GetArena()) HNeg(type, opb));
717               }
718               return true;
719             }
720             break;
721           case HInductionVarAnalysis::kFetch:
722             if (graph != nullptr) {
723               *result = info->fetch;  // already in HIR
724             }
725             return true;
726           case HInductionVarAnalysis::kTripCountInLoop:
727           case HInductionVarAnalysis::kTripCountInLoopUnsafe:
728             if (!in_body && !is_min) {  // one extra!
729               return GenerateCode(info->op_a, trip, graph, block, result, in_body, is_min);
730             }
731             FALLTHROUGH_INTENDED;
732           case HInductionVarAnalysis::kTripCountInBody:
733           case HInductionVarAnalysis::kTripCountInBodyUnsafe:
734             if (is_min) {
735               if (graph != nullptr) {
736                 *result = graph->GetIntConstant(0);
737               }
738               return true;
739             } else if (in_body) {
740               if (GenerateCode(info->op_a, trip, graph, block, &opb, in_body, is_min)) {
741                 if (graph != nullptr) {
742                   *result = Insert(block,
743                                    new (graph->GetArena())
744                                        HSub(type, opb, graph->GetIntConstant(1)));
745                 }
746                 return true;
747               }
748             }
749             break;
750           default:
751             break;
752         }
753         break;
754       case HInductionVarAnalysis::kLinear: {
755         // Linear induction a * i + b, for normalized 0 <= i < TC. Restrict to unit stride only
756         // to avoid arithmetic wrap-around situations that are hard to guard against.
757         int64_t stride_value = 0;
758         if (IsConstant(info->op_a, kExact, &stride_value)) {
759           if (stride_value == 1 || stride_value == -1) {
760             const bool is_min_a = stride_value == 1 ? is_min : !is_min;
761             if (GenerateCode(trip,       trip, graph, block, &opa, in_body, is_min_a) &&
762                 GenerateCode(info->op_b, trip, graph, block, &opb, in_body, is_min)) {
763               if (graph != nullptr) {
764                 HInstruction* oper;
765                 if (stride_value == 1) {
766                   oper = new (graph->GetArena()) HAdd(type, opa, opb);
767                 } else {
768                   oper = new (graph->GetArena()) HSub(type, opb, opa);
769                 }
770                 *result = Insert(block, oper);
771               }
772               return true;
773             }
774           }
775         }
776         break;
777       }
778       case HInductionVarAnalysis::kWrapAround:
779       case HInductionVarAnalysis::kPeriodic: {
780         // Wrap-around and periodic inductions are restricted to constants only, so that extreme
781         // values are easy to test at runtime without complications of arithmetic wrap-around.
782         Value extreme = GetVal(info, trip, in_body, is_min);
783         if (IsConstantValue(extreme)) {
784           if (graph != nullptr) {
785             *result = graph->GetIntConstant(extreme.b_constant);
786           }
787           return true;
788         }
789         break;
790       }
791       default:
792         break;
793     }
794   }
795   return false;
796 }
797 
798 }  // namespace art
799