• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_REGEXP_JSREGEXP_H_
6 #define V8_REGEXP_JSREGEXP_H_
7 
8 #include "src/allocation.h"
9 #include "src/assembler.h"
10 #include "src/regexp/regexp-ast.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 class NodeVisitor;
16 class RegExpCompiler;
17 class RegExpMacroAssembler;
18 class RegExpNode;
19 class RegExpTree;
20 class BoyerMooreLookahead;
21 
22 class RegExpImpl {
23  public:
24   // Whether V8 is compiled with native regexp support or not.
UsesNativeRegExp()25   static bool UsesNativeRegExp() {
26 #ifdef V8_INTERPRETED_REGEXP
27     return false;
28 #else
29     return true;
30 #endif
31   }
32 
33   // Returns a string representation of a regular expression.
34   // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
35   // This function calls the garbage collector if necessary.
36   static Handle<String> ToString(Handle<Object> value);
37 
38   // Parses the RegExp pattern and prepares the JSRegExp object with
39   // generic data and choice of implementation - as well as what
40   // the implementation wants to store in the data field.
41   // Returns false if compilation fails.
42   MUST_USE_RESULT static MaybeHandle<Object> Compile(Handle<JSRegExp> re,
43                                                      Handle<String> pattern,
44                                                      JSRegExp::Flags flags);
45 
46   // See ECMA-262 section 15.10.6.2.
47   // This function calls the garbage collector if necessary.
48   MUST_USE_RESULT static MaybeHandle<Object> Exec(
49       Handle<JSRegExp> regexp,
50       Handle<String> subject,
51       int index,
52       Handle<JSArray> lastMatchInfo);
53 
54   // Prepares a JSRegExp object with Irregexp-specific data.
55   static void IrregexpInitialize(Handle<JSRegExp> re,
56                                  Handle<String> pattern,
57                                  JSRegExp::Flags flags,
58                                  int capture_register_count);
59 
60 
61   static void AtomCompile(Handle<JSRegExp> re,
62                           Handle<String> pattern,
63                           JSRegExp::Flags flags,
64                           Handle<String> match_pattern);
65 
66 
67   static int AtomExecRaw(Handle<JSRegExp> regexp,
68                          Handle<String> subject,
69                          int index,
70                          int32_t* output,
71                          int output_size);
72 
73 
74   static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
75                                  Handle<String> subject,
76                                  int index,
77                                  Handle<JSArray> lastMatchInfo);
78 
79   enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
80 
81   // Prepare a RegExp for being executed one or more times (using
82   // IrregexpExecOnce) on the subject.
83   // This ensures that the regexp is compiled for the subject, and that
84   // the subject is flat.
85   // Returns the number of integer spaces required by IrregexpExecOnce
86   // as its "registers" argument.  If the regexp cannot be compiled,
87   // an exception is set as pending, and this function returns negative.
88   static int IrregexpPrepare(Handle<JSRegExp> regexp,
89                              Handle<String> subject);
90 
91   // Execute a regular expression on the subject, starting from index.
92   // If matching succeeds, return the number of matches.  This can be larger
93   // than one in the case of global regular expressions.
94   // The captures and subcaptures are stored into the registers vector.
95   // If matching fails, returns RE_FAILURE.
96   // If execution fails, sets a pending exception and returns RE_EXCEPTION.
97   static int IrregexpExecRaw(Handle<JSRegExp> regexp,
98                              Handle<String> subject,
99                              int index,
100                              int32_t* output,
101                              int output_size);
102 
103   // Execute an Irregexp bytecode pattern.
104   // On a successful match, the result is a JSArray containing
105   // captured positions.  On a failure, the result is the null value.
106   // Returns an empty handle in case of an exception.
107   MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec(
108       Handle<JSRegExp> regexp,
109       Handle<String> subject,
110       int index,
111       Handle<JSArray> lastMatchInfo);
112 
113   // Set last match info.  If match is NULL, then setting captures is omitted.
114   static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info,
115                                           Handle<String> subject,
116                                           int capture_count,
117                                           int32_t* match);
118 
119 
120   class GlobalCache {
121    public:
122     GlobalCache(Handle<JSRegExp> regexp,
123                 Handle<String> subject,
124                 bool is_global,
125                 Isolate* isolate);
126 
127     INLINE(~GlobalCache());
128 
129     // Fetch the next entry in the cache for global regexp match results.
130     // This does not set the last match info.  Upon failure, NULL is returned.
131     // The cause can be checked with Result().  The previous
132     // result is still in available in memory when a failure happens.
133     INLINE(int32_t* FetchNext());
134 
135     INLINE(int32_t* LastSuccessfulMatch());
136 
INLINE(bool HasException ())137     INLINE(bool HasException()) { return num_matches_ < 0; }
138 
139    private:
140     int num_matches_;
141     int max_matches_;
142     int current_match_index_;
143     int registers_per_match_;
144     // Pointer to the last set of captures.
145     int32_t* register_array_;
146     int register_array_size_;
147     Handle<JSRegExp> regexp_;
148     Handle<String> subject_;
149   };
150 
151 
152   // Array index in the lastMatchInfo array.
153   static const int kLastCaptureCount = 0;
154   static const int kLastSubject = 1;
155   static const int kLastInput = 2;
156   static const int kFirstCapture = 3;
157   static const int kLastMatchOverhead = 3;
158 
159   // Direct offset into the lastMatchInfo array.
160   static const int kLastCaptureCountOffset =
161       FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
162   static const int kLastSubjectOffset =
163       FixedArray::kHeaderSize + kLastSubject * kPointerSize;
164   static const int kLastInputOffset =
165       FixedArray::kHeaderSize + kLastInput * kPointerSize;
166   static const int kFirstCaptureOffset =
167       FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
168 
169   // Used to access the lastMatchInfo array.
GetCapture(FixedArray * array,int index)170   static int GetCapture(FixedArray* array, int index) {
171     return Smi::cast(array->get(index + kFirstCapture))->value();
172   }
173 
SetLastCaptureCount(FixedArray * array,int to)174   static void SetLastCaptureCount(FixedArray* array, int to) {
175     array->set(kLastCaptureCount, Smi::FromInt(to));
176   }
177 
SetLastSubject(FixedArray * array,String * to)178   static void SetLastSubject(FixedArray* array, String* to) {
179     array->set(kLastSubject, to);
180   }
181 
SetLastInput(FixedArray * array,String * to)182   static void SetLastInput(FixedArray* array, String* to) {
183     array->set(kLastInput, to);
184   }
185 
SetCapture(FixedArray * array,int index,int to)186   static void SetCapture(FixedArray* array, int index, int to) {
187     array->set(index + kFirstCapture, Smi::FromInt(to));
188   }
189 
GetLastCaptureCount(FixedArray * array)190   static int GetLastCaptureCount(FixedArray* array) {
191     return Smi::cast(array->get(kLastCaptureCount))->value();
192   }
193 
194   // For acting on the JSRegExp data FixedArray.
195   static int IrregexpMaxRegisterCount(FixedArray* re);
196   static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
197   static int IrregexpNumberOfCaptures(FixedArray* re);
198   static int IrregexpNumberOfRegisters(FixedArray* re);
199   static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte);
200   static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte);
201 
202   // Limit the space regexps take up on the heap.  In order to limit this we
203   // would like to keep track of the amount of regexp code on the heap.  This
204   // is not tracked, however.  As a conservative approximation we track the
205   // total regexp code compiled including code that has subsequently been freed
206   // and the total executable memory at any point.
207   static const int kRegExpExecutableMemoryLimit = 16 * MB;
208   static const int kRegExpCompiledLimit = 1 * MB;
209   static const int kRegExpTooLargeToOptimize = 20 * KB;
210 
211  private:
212   static bool CompileIrregexp(Handle<JSRegExp> re,
213                               Handle<String> sample_subject, bool is_one_byte);
214   static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re,
215                                             Handle<String> sample_subject,
216                                             bool is_one_byte);
217 };
218 
219 
220 // Represents the location of one element relative to the intersection of
221 // two sets. Corresponds to the four areas of a Venn diagram.
222 enum ElementInSetsRelation {
223   kInsideNone = 0,
224   kInsideFirst = 1,
225   kInsideSecond = 2,
226   kInsideBoth = 3
227 };
228 
229 
230 // A set of unsigned integers that behaves especially well on small
231 // integers (< 32).  May do zone-allocation.
232 class OutSet: public ZoneObject {
233  public:
OutSet()234   OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
235   OutSet* Extend(unsigned value, Zone* zone);
236   bool Get(unsigned value) const;
237   static const unsigned kFirstLimit = 32;
238 
239  private:
240   // Destructively set a value in this set.  In most cases you want
241   // to use Extend instead to ensure that only one instance exists
242   // that contains the same values.
243   void Set(unsigned value, Zone* zone);
244 
245   // The successors are a list of sets that contain the same values
246   // as this set and the one more value that is not present in this
247   // set.
successors(Zone * zone)248   ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
249 
OutSet(uint32_t first,ZoneList<unsigned> * remaining)250   OutSet(uint32_t first, ZoneList<unsigned>* remaining)
251       : first_(first), remaining_(remaining), successors_(NULL) { }
252   uint32_t first_;
253   ZoneList<unsigned>* remaining_;
254   ZoneList<OutSet*>* successors_;
255   friend class Trace;
256 };
257 
258 
259 // A mapping from integers, specified as ranges, to a set of integers.
260 // Used for mapping character ranges to choices.
261 class DispatchTable : public ZoneObject {
262  public:
DispatchTable(Zone * zone)263   explicit DispatchTable(Zone* zone) : tree_(zone) { }
264 
265   class Entry {
266    public:
Entry()267     Entry() : from_(0), to_(0), out_set_(NULL) { }
Entry(uc16 from,uc16 to,OutSet * out_set)268     Entry(uc16 from, uc16 to, OutSet* out_set)
269         : from_(from), to_(to), out_set_(out_set) { }
from()270     uc16 from() { return from_; }
to()271     uc16 to() { return to_; }
set_to(uc16 value)272     void set_to(uc16 value) { to_ = value; }
AddValue(int value,Zone * zone)273     void AddValue(int value, Zone* zone) {
274       out_set_ = out_set_->Extend(value, zone);
275     }
out_set()276     OutSet* out_set() { return out_set_; }
277    private:
278     uc16 from_;
279     uc16 to_;
280     OutSet* out_set_;
281   };
282 
283   class Config {
284    public:
285     typedef uc16 Key;
286     typedef Entry Value;
287     static const uc16 kNoKey;
NoValue()288     static const Entry NoValue() { return Value(); }
Compare(uc16 a,uc16 b)289     static inline int Compare(uc16 a, uc16 b) {
290       if (a == b)
291         return 0;
292       else if (a < b)
293         return -1;
294       else
295         return 1;
296     }
297   };
298 
299   void AddRange(CharacterRange range, int value, Zone* zone);
300   OutSet* Get(uc16 value);
301   void Dump();
302 
303   template <typename Callback>
ForEach(Callback * callback)304   void ForEach(Callback* callback) {
305     return tree()->ForEach(callback);
306   }
307 
308  private:
309   // There can't be a static empty set since it allocates its
310   // successors in a zone and caches them.
empty()311   OutSet* empty() { return &empty_; }
312   OutSet empty_;
tree()313   ZoneSplayTree<Config>* tree() { return &tree_; }
314   ZoneSplayTree<Config> tree_;
315 };
316 
317 
318 #define FOR_EACH_NODE_TYPE(VISIT)                                    \
319   VISIT(End)                                                         \
320   VISIT(Action)                                                      \
321   VISIT(Choice)                                                      \
322   VISIT(BackReference)                                               \
323   VISIT(Assertion)                                                   \
324   VISIT(Text)
325 
326 
327 class Trace;
328 struct PreloadState;
329 class GreedyLoopState;
330 class AlternativeGenerationList;
331 
332 struct NodeInfo {
NodeInfoNodeInfo333   NodeInfo()
334       : being_analyzed(false),
335         been_analyzed(false),
336         follows_word_interest(false),
337         follows_newline_interest(false),
338         follows_start_interest(false),
339         at_end(false),
340         visited(false),
341         replacement_calculated(false) { }
342 
343   // Returns true if the interests and assumptions of this node
344   // matches the given one.
MatchesNodeInfo345   bool Matches(NodeInfo* that) {
346     return (at_end == that->at_end) &&
347            (follows_word_interest == that->follows_word_interest) &&
348            (follows_newline_interest == that->follows_newline_interest) &&
349            (follows_start_interest == that->follows_start_interest);
350   }
351 
352   // Updates the interests of this node given the interests of the
353   // node preceding it.
AddFromPrecedingNodeInfo354   void AddFromPreceding(NodeInfo* that) {
355     at_end |= that->at_end;
356     follows_word_interest |= that->follows_word_interest;
357     follows_newline_interest |= that->follows_newline_interest;
358     follows_start_interest |= that->follows_start_interest;
359   }
360 
HasLookbehindNodeInfo361   bool HasLookbehind() {
362     return follows_word_interest ||
363            follows_newline_interest ||
364            follows_start_interest;
365   }
366 
367   // Sets the interests of this node to include the interests of the
368   // following node.
AddFromFollowingNodeInfo369   void AddFromFollowing(NodeInfo* that) {
370     follows_word_interest |= that->follows_word_interest;
371     follows_newline_interest |= that->follows_newline_interest;
372     follows_start_interest |= that->follows_start_interest;
373   }
374 
ResetCompilationStateNodeInfo375   void ResetCompilationState() {
376     being_analyzed = false;
377     been_analyzed = false;
378   }
379 
380   bool being_analyzed: 1;
381   bool been_analyzed: 1;
382 
383   // These bits are set of this node has to know what the preceding
384   // character was.
385   bool follows_word_interest: 1;
386   bool follows_newline_interest: 1;
387   bool follows_start_interest: 1;
388 
389   bool at_end: 1;
390   bool visited: 1;
391   bool replacement_calculated: 1;
392 };
393 
394 
395 // Details of a quick mask-compare check that can look ahead in the
396 // input stream.
397 class QuickCheckDetails {
398  public:
QuickCheckDetails()399   QuickCheckDetails()
400       : characters_(0),
401         mask_(0),
402         value_(0),
403         cannot_match_(false) { }
QuickCheckDetails(int characters)404   explicit QuickCheckDetails(int characters)
405       : characters_(characters),
406         mask_(0),
407         value_(0),
408         cannot_match_(false) { }
409   bool Rationalize(bool one_byte);
410   // Merge in the information from another branch of an alternation.
411   void Merge(QuickCheckDetails* other, int from_index);
412   // Advance the current position by some amount.
413   void Advance(int by, bool one_byte);
414   void Clear();
cannot_match()415   bool cannot_match() { return cannot_match_; }
set_cannot_match()416   void set_cannot_match() { cannot_match_ = true; }
417   struct Position {
PositionPosition418     Position() : mask(0), value(0), determines_perfectly(false) { }
419     uc16 mask;
420     uc16 value;
421     bool determines_perfectly;
422   };
characters()423   int characters() { return characters_; }
set_characters(int characters)424   void set_characters(int characters) { characters_ = characters; }
positions(int index)425   Position* positions(int index) {
426     DCHECK(index >= 0);
427     DCHECK(index < characters_);
428     return positions_ + index;
429   }
mask()430   uint32_t mask() { return mask_; }
value()431   uint32_t value() { return value_; }
432 
433  private:
434   // How many characters do we have quick check information from.  This is
435   // the same for all branches of a choice node.
436   int characters_;
437   Position positions_[4];
438   // These values are the condensate of the above array after Rationalize().
439   uint32_t mask_;
440   uint32_t value_;
441   // If set to true, there is no way this quick check can match at all.
442   // E.g., if it requires to be at the start of the input, and isn't.
443   bool cannot_match_;
444 };
445 
446 
447 extern int kUninitializedRegExpNodePlaceHolder;
448 
449 
450 class RegExpNode: public ZoneObject {
451  public:
RegExpNode(Zone * zone)452   explicit RegExpNode(Zone* zone)
453       : replacement_(NULL), on_work_list_(false), trace_count_(0), zone_(zone) {
454     bm_info_[0] = bm_info_[1] = NULL;
455   }
456   virtual ~RegExpNode();
457   virtual void Accept(NodeVisitor* visitor) = 0;
458   // Generates a goto to this node or actually generates the code at this point.
459   virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
460   // How many characters must this node consume at a minimum in order to
461   // succeed.  If we have found at least 'still_to_find' characters that
462   // must be consumed there is no need to ask any following nodes whether
463   // they are sure to eat any more characters.  The not_at_start argument is
464   // used to indicate that we know we are not at the start of the input.  In
465   // this case anchored branches will always fail and can be ignored when
466   // determining how many characters are consumed on success.
467   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
468   // Emits some quick code that checks whether the preloaded characters match.
469   // Falls through on certain failure, jumps to the label on possible success.
470   // If the node cannot make a quick check it does nothing and returns false.
471   bool EmitQuickCheck(RegExpCompiler* compiler,
472                       Trace* bounds_check_trace,
473                       Trace* trace,
474                       bool preload_has_checked_bounds,
475                       Label* on_possible_success,
476                       QuickCheckDetails* details_return,
477                       bool fall_through_on_failure);
478   // For a given number of characters this returns a mask and a value.  The
479   // next n characters are anded with the mask and compared with the value.
480   // A comparison failure indicates the node cannot match the next n characters.
481   // A comparison success indicates the node may match.
482   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
483                                     RegExpCompiler* compiler,
484                                     int characters_filled_in,
485                                     bool not_at_start) = 0;
486   static const int kNodeIsTooComplexForGreedyLoops = kMinInt;
GreedyLoopTextLength()487   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
488   // Only returns the successor for a text node of length 1 that matches any
489   // character and that has no guards on it.
GetSuccessorOfOmnivorousTextNode(RegExpCompiler * compiler)490   virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
491       RegExpCompiler* compiler) {
492     return NULL;
493   }
494 
495   // Collects information on the possible code units (mod 128) that can match if
496   // we look forward.  This is used for a Boyer-Moore-like string searching
497   // implementation.  TODO(erikcorry):  This should share more code with
498   // EatsAtLeast, GetQuickCheckDetails.  The budget argument is used to limit
499   // the number of nodes we are willing to look at in order to create this data.
500   static const int kRecursionBudget = 200;
501   bool KeepRecursing(RegExpCompiler* compiler);
FillInBMInfo(Isolate * isolate,int offset,int budget,BoyerMooreLookahead * bm,bool not_at_start)502   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
503                             BoyerMooreLookahead* bm, bool not_at_start) {
504     UNREACHABLE();
505   }
506 
507   // If we know that the input is one-byte then there are some nodes that can
508   // never match.  This method returns a node that can be substituted for
509   // itself, or NULL if the node can never match.
FilterOneByte(int depth,bool ignore_case)510   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) {
511     return this;
512   }
513   // Helper for FilterOneByte.
replacement()514   RegExpNode* replacement() {
515     DCHECK(info()->replacement_calculated);
516     return replacement_;
517   }
set_replacement(RegExpNode * replacement)518   RegExpNode* set_replacement(RegExpNode* replacement) {
519     info()->replacement_calculated = true;
520     replacement_ =  replacement;
521     return replacement;  // For convenience.
522   }
523 
524   // We want to avoid recalculating the lookahead info, so we store it on the
525   // node.  Only info that is for this node is stored.  We can tell that the
526   // info is for this node when offset == 0, so the information is calculated
527   // relative to this node.
SaveBMInfo(BoyerMooreLookahead * bm,bool not_at_start,int offset)528   void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
529     if (offset == 0) set_bm_info(not_at_start, bm);
530   }
531 
label()532   Label* label() { return &label_; }
533   // If non-generic code is generated for a node (i.e. the node is not at the
534   // start of the trace) then it cannot be reused.  This variable sets a limit
535   // on how often we allow that to happen before we insist on starting a new
536   // trace and generating generic code for a node that can be reused by flushing
537   // the deferred actions in the current trace and generating a goto.
538   static const int kMaxCopiesCodeGenerated = 10;
539 
on_work_list()540   bool on_work_list() { return on_work_list_; }
set_on_work_list(bool value)541   void set_on_work_list(bool value) { on_work_list_ = value; }
542 
info()543   NodeInfo* info() { return &info_; }
544 
bm_info(bool not_at_start)545   BoyerMooreLookahead* bm_info(bool not_at_start) {
546     return bm_info_[not_at_start ? 1 : 0];
547   }
548 
zone()549   Zone* zone() const { return zone_; }
550 
551  protected:
552   enum LimitResult { DONE, CONTINUE };
553   RegExpNode* replacement_;
554 
555   LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
556 
set_bm_info(bool not_at_start,BoyerMooreLookahead * bm)557   void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
558     bm_info_[not_at_start ? 1 : 0] = bm;
559   }
560 
561  private:
562   static const int kFirstCharBudget = 10;
563   Label label_;
564   bool on_work_list_;
565   NodeInfo info_;
566   // This variable keeps track of how many times code has been generated for
567   // this node (in different traces).  We don't keep track of where the
568   // generated code is located unless the code is generated at the start of
569   // a trace, in which case it is generic and can be reused by flushing the
570   // deferred operations in the current trace and generating a goto.
571   int trace_count_;
572   BoyerMooreLookahead* bm_info_[2];
573 
574   Zone* zone_;
575 };
576 
577 
578 class SeqRegExpNode: public RegExpNode {
579  public:
SeqRegExpNode(RegExpNode * on_success)580   explicit SeqRegExpNode(RegExpNode* on_success)
581       : RegExpNode(on_success->zone()), on_success_(on_success) { }
on_success()582   RegExpNode* on_success() { return on_success_; }
set_on_success(RegExpNode * node)583   void set_on_success(RegExpNode* node) { on_success_ = node; }
584   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
FillInBMInfo(Isolate * isolate,int offset,int budget,BoyerMooreLookahead * bm,bool not_at_start)585   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
586                             BoyerMooreLookahead* bm, bool not_at_start) {
587     on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
588     if (offset == 0) set_bm_info(not_at_start, bm);
589   }
590 
591  protected:
592   RegExpNode* FilterSuccessor(int depth, bool ignore_case);
593 
594  private:
595   RegExpNode* on_success_;
596 };
597 
598 
599 class ActionNode: public SeqRegExpNode {
600  public:
601   enum ActionType {
602     SET_REGISTER,
603     INCREMENT_REGISTER,
604     STORE_POSITION,
605     BEGIN_SUBMATCH,
606     POSITIVE_SUBMATCH_SUCCESS,
607     EMPTY_MATCH_CHECK,
608     CLEAR_CAPTURES
609   };
610   static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
611   static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
612   static ActionNode* StorePosition(int reg,
613                                    bool is_capture,
614                                    RegExpNode* on_success);
615   static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
616   static ActionNode* BeginSubmatch(int stack_pointer_reg,
617                                    int position_reg,
618                                    RegExpNode* on_success);
619   static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
620                                              int restore_reg,
621                                              int clear_capture_count,
622                                              int clear_capture_from,
623                                              RegExpNode* on_success);
624   static ActionNode* EmptyMatchCheck(int start_register,
625                                      int repetition_register,
626                                      int repetition_limit,
627                                      RegExpNode* on_success);
628   virtual void Accept(NodeVisitor* visitor);
629   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
630   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int filled_in,bool not_at_start)631   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
632                                     RegExpCompiler* compiler,
633                                     int filled_in,
634                                     bool not_at_start) {
635     return on_success()->GetQuickCheckDetails(
636         details, compiler, filled_in, not_at_start);
637   }
638   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
639                             BoyerMooreLookahead* bm, bool not_at_start);
action_type()640   ActionType action_type() { return action_type_; }
641   // TODO(erikcorry): We should allow some action nodes in greedy loops.
GreedyLoopTextLength()642   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
643 
644  private:
645   union {
646     struct {
647       int reg;
648       int value;
649     } u_store_register;
650     struct {
651       int reg;
652     } u_increment_register;
653     struct {
654       int reg;
655       bool is_capture;
656     } u_position_register;
657     struct {
658       int stack_pointer_register;
659       int current_position_register;
660       int clear_register_count;
661       int clear_register_from;
662     } u_submatch;
663     struct {
664       int start_register;
665       int repetition_register;
666       int repetition_limit;
667     } u_empty_match_check;
668     struct {
669       int range_from;
670       int range_to;
671     } u_clear_captures;
672   } data_;
ActionNode(ActionType action_type,RegExpNode * on_success)673   ActionNode(ActionType action_type, RegExpNode* on_success)
674       : SeqRegExpNode(on_success),
675         action_type_(action_type) { }
676   ActionType action_type_;
677   friend class DotPrinter;
678 };
679 
680 
681 class TextNode: public SeqRegExpNode {
682  public:
TextNode(ZoneList<TextElement> * elms,bool read_backward,RegExpNode * on_success)683   TextNode(ZoneList<TextElement>* elms, bool read_backward,
684            RegExpNode* on_success)
685       : SeqRegExpNode(on_success), elms_(elms), read_backward_(read_backward) {}
TextNode(RegExpCharacterClass * that,bool read_backward,RegExpNode * on_success)686   TextNode(RegExpCharacterClass* that, bool read_backward,
687            RegExpNode* on_success)
688       : SeqRegExpNode(on_success),
689         elms_(new (zone()) ZoneList<TextElement>(1, zone())),
690         read_backward_(read_backward) {
691     elms_->Add(TextElement::CharClass(that), zone());
692   }
693   virtual void Accept(NodeVisitor* visitor);
694   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
695   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
696   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
697                                     RegExpCompiler* compiler,
698                                     int characters_filled_in,
699                                     bool not_at_start);
elements()700   ZoneList<TextElement>* elements() { return elms_; }
read_backward()701   bool read_backward() { return read_backward_; }
702   void MakeCaseIndependent(Isolate* isolate, bool is_one_byte);
703   virtual int GreedyLoopTextLength();
704   virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
705       RegExpCompiler* compiler);
706   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
707                             BoyerMooreLookahead* bm, bool not_at_start);
708   void CalculateOffsets();
709   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
710 
711  private:
712   enum TextEmitPassType {
713     NON_LATIN1_MATCH,            // Check for characters that can't match.
714     SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
715     NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
716     CASE_CHARACTER_MATCH,        // Case-independent single character check.
717     CHARACTER_CLASS_MATCH        // Character class.
718   };
719   static bool SkipPass(int pass, bool ignore_case);
720   static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
721   static const int kLastPass = CHARACTER_CLASS_MATCH;
722   void TextEmitPass(RegExpCompiler* compiler,
723                     TextEmitPassType pass,
724                     bool preloaded,
725                     Trace* trace,
726                     bool first_element_checked,
727                     int* checked_up_to);
728   int Length();
729   ZoneList<TextElement>* elms_;
730   bool read_backward_;
731 };
732 
733 
734 class AssertionNode: public SeqRegExpNode {
735  public:
736   enum AssertionType {
737     AT_END,
738     AT_START,
739     AT_BOUNDARY,
740     AT_NON_BOUNDARY,
741     AFTER_NEWLINE
742   };
AtEnd(RegExpNode * on_success)743   static AssertionNode* AtEnd(RegExpNode* on_success) {
744     return new(on_success->zone()) AssertionNode(AT_END, on_success);
745   }
AtStart(RegExpNode * on_success)746   static AssertionNode* AtStart(RegExpNode* on_success) {
747     return new(on_success->zone()) AssertionNode(AT_START, on_success);
748   }
AtBoundary(RegExpNode * on_success)749   static AssertionNode* AtBoundary(RegExpNode* on_success) {
750     return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
751   }
AtNonBoundary(RegExpNode * on_success)752   static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
753     return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
754   }
AfterNewline(RegExpNode * on_success)755   static AssertionNode* AfterNewline(RegExpNode* on_success) {
756     return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
757   }
758   virtual void Accept(NodeVisitor* visitor);
759   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
760   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
761   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
762                                     RegExpCompiler* compiler,
763                                     int filled_in,
764                                     bool not_at_start);
765   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
766                             BoyerMooreLookahead* bm, bool not_at_start);
assertion_type()767   AssertionType assertion_type() { return assertion_type_; }
768 
769  private:
770   void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
771   enum IfPrevious { kIsNonWord, kIsWord };
772   void BacktrackIfPrevious(RegExpCompiler* compiler,
773                            Trace* trace,
774                            IfPrevious backtrack_if_previous);
AssertionNode(AssertionType t,RegExpNode * on_success)775   AssertionNode(AssertionType t, RegExpNode* on_success)
776       : SeqRegExpNode(on_success), assertion_type_(t) { }
777   AssertionType assertion_type_;
778 };
779 
780 
781 class BackReferenceNode: public SeqRegExpNode {
782  public:
BackReferenceNode(int start_reg,int end_reg,bool read_backward,RegExpNode * on_success)783   BackReferenceNode(int start_reg, int end_reg, bool read_backward,
784                     RegExpNode* on_success)
785       : SeqRegExpNode(on_success),
786         start_reg_(start_reg),
787         end_reg_(end_reg),
788         read_backward_(read_backward) {}
789   virtual void Accept(NodeVisitor* visitor);
start_register()790   int start_register() { return start_reg_; }
end_register()791   int end_register() { return end_reg_; }
read_backward()792   bool read_backward() { return read_backward_; }
793   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
794   virtual int EatsAtLeast(int still_to_find,
795                           int recursion_depth,
796                           bool not_at_start);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)797   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
798                                     RegExpCompiler* compiler,
799                                     int characters_filled_in,
800                                     bool not_at_start) {
801     return;
802   }
803   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
804                             BoyerMooreLookahead* bm, bool not_at_start);
805 
806  private:
807   int start_reg_;
808   int end_reg_;
809   bool read_backward_;
810 };
811 
812 
813 class EndNode: public RegExpNode {
814  public:
815   enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
EndNode(Action action,Zone * zone)816   explicit EndNode(Action action, Zone* zone)
817       : RegExpNode(zone), action_(action) { }
818   virtual void Accept(NodeVisitor* visitor);
819   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
EatsAtLeast(int still_to_find,int recursion_depth,bool not_at_start)820   virtual int EatsAtLeast(int still_to_find,
821                           int recursion_depth,
822                           bool not_at_start) { return 0; }
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)823   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
824                                     RegExpCompiler* compiler,
825                                     int characters_filled_in,
826                                     bool not_at_start) {
827     // Returning 0 from EatsAtLeast should ensure we never get here.
828     UNREACHABLE();
829   }
FillInBMInfo(Isolate * isolate,int offset,int budget,BoyerMooreLookahead * bm,bool not_at_start)830   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
831                             BoyerMooreLookahead* bm, bool not_at_start) {
832     // Returning 0 from EatsAtLeast should ensure we never get here.
833     UNREACHABLE();
834   }
835 
836  private:
837   Action action_;
838 };
839 
840 
841 class NegativeSubmatchSuccess: public EndNode {
842  public:
NegativeSubmatchSuccess(int stack_pointer_reg,int position_reg,int clear_capture_count,int clear_capture_start,Zone * zone)843   NegativeSubmatchSuccess(int stack_pointer_reg,
844                           int position_reg,
845                           int clear_capture_count,
846                           int clear_capture_start,
847                           Zone* zone)
848       : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
849         stack_pointer_register_(stack_pointer_reg),
850         current_position_register_(position_reg),
851         clear_capture_count_(clear_capture_count),
852         clear_capture_start_(clear_capture_start) { }
853   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
854 
855  private:
856   int stack_pointer_register_;
857   int current_position_register_;
858   int clear_capture_count_;
859   int clear_capture_start_;
860 };
861 
862 
863 class Guard: public ZoneObject {
864  public:
865   enum Relation { LT, GEQ };
Guard(int reg,Relation op,int value)866   Guard(int reg, Relation op, int value)
867       : reg_(reg),
868         op_(op),
869         value_(value) { }
reg()870   int reg() { return reg_; }
op()871   Relation op() { return op_; }
value()872   int value() { return value_; }
873 
874  private:
875   int reg_;
876   Relation op_;
877   int value_;
878 };
879 
880 
881 class GuardedAlternative {
882  public:
GuardedAlternative(RegExpNode * node)883   explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
884   void AddGuard(Guard* guard, Zone* zone);
node()885   RegExpNode* node() { return node_; }
set_node(RegExpNode * node)886   void set_node(RegExpNode* node) { node_ = node; }
guards()887   ZoneList<Guard*>* guards() { return guards_; }
888 
889  private:
890   RegExpNode* node_;
891   ZoneList<Guard*>* guards_;
892 };
893 
894 
895 class AlternativeGeneration;
896 
897 
898 class ChoiceNode: public RegExpNode {
899  public:
ChoiceNode(int expected_size,Zone * zone)900   explicit ChoiceNode(int expected_size, Zone* zone)
901       : RegExpNode(zone),
902         alternatives_(new(zone)
903                       ZoneList<GuardedAlternative>(expected_size, zone)),
904         table_(NULL),
905         not_at_start_(false),
906         being_calculated_(false) { }
907   virtual void Accept(NodeVisitor* visitor);
AddAlternative(GuardedAlternative node)908   void AddAlternative(GuardedAlternative node) {
909     alternatives()->Add(node, zone());
910   }
alternatives()911   ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
912   DispatchTable* GetTable(bool ignore_case);
913   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
914   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
915   int EatsAtLeastHelper(int still_to_find,
916                         int budget,
917                         RegExpNode* ignore_this_node,
918                         bool not_at_start);
919   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
920                                     RegExpCompiler* compiler,
921                                     int characters_filled_in,
922                                     bool not_at_start);
923   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
924                             BoyerMooreLookahead* bm, bool not_at_start);
925 
being_calculated()926   bool being_calculated() { return being_calculated_; }
not_at_start()927   bool not_at_start() { return not_at_start_; }
set_not_at_start()928   void set_not_at_start() { not_at_start_ = true; }
set_being_calculated(bool b)929   void set_being_calculated(bool b) { being_calculated_ = b; }
try_to_emit_quick_check_for_alternative(bool is_first)930   virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
931     return true;
932   }
933   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
read_backward()934   virtual bool read_backward() { return false; }
935 
936  protected:
937   int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
938   ZoneList<GuardedAlternative>* alternatives_;
939 
940  private:
941   friend class DispatchTableConstructor;
942   friend class Analysis;
943   void GenerateGuard(RegExpMacroAssembler* macro_assembler,
944                      Guard* guard,
945                      Trace* trace);
946   int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
947   void EmitOutOfLineContinuation(RegExpCompiler* compiler,
948                                  Trace* trace,
949                                  GuardedAlternative alternative,
950                                  AlternativeGeneration* alt_gen,
951                                  int preload_characters,
952                                  bool next_expects_preload);
953   void SetUpPreLoad(RegExpCompiler* compiler,
954                     Trace* current_trace,
955                     PreloadState* preloads);
956   void AssertGuardsMentionRegisters(Trace* trace);
957   int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace);
958   Trace* EmitGreedyLoop(RegExpCompiler* compiler,
959                         Trace* trace,
960                         AlternativeGenerationList* alt_gens,
961                         PreloadState* preloads,
962                         GreedyLoopState* greedy_loop_state,
963                         int text_length);
964   void EmitChoices(RegExpCompiler* compiler,
965                    AlternativeGenerationList* alt_gens,
966                    int first_choice,
967                    Trace* trace,
968                    PreloadState* preloads);
969   DispatchTable* table_;
970   // If true, this node is never checked at the start of the input.
971   // Allows a new trace to start with at_start() set to false.
972   bool not_at_start_;
973   bool being_calculated_;
974 };
975 
976 
977 class NegativeLookaroundChoiceNode : public ChoiceNode {
978  public:
NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail,GuardedAlternative then_do_this,Zone * zone)979   explicit NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail,
980                                         GuardedAlternative then_do_this,
981                                         Zone* zone)
982       : ChoiceNode(2, zone) {
983     AddAlternative(this_must_fail);
984     AddAlternative(then_do_this);
985   }
986   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
987   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
988                                     RegExpCompiler* compiler,
989                                     int characters_filled_in,
990                                     bool not_at_start);
FillInBMInfo(Isolate * isolate,int offset,int budget,BoyerMooreLookahead * bm,bool not_at_start)991   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
992                             BoyerMooreLookahead* bm, bool not_at_start) {
993     alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm,
994                                               not_at_start);
995     if (offset == 0) set_bm_info(not_at_start, bm);
996   }
997   // For a negative lookahead we don't emit the quick check for the
998   // alternative that is expected to fail.  This is because quick check code
999   // starts by loading enough characters for the alternative that takes fewest
1000   // characters, but on a negative lookahead the negative branch did not take
1001   // part in that calculation (EatsAtLeast) so the assumptions don't hold.
try_to_emit_quick_check_for_alternative(bool is_first)1002   virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
1003     return !is_first;
1004   }
1005   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
1006 };
1007 
1008 
1009 class LoopChoiceNode: public ChoiceNode {
1010  public:
LoopChoiceNode(bool body_can_be_zero_length,bool read_backward,Zone * zone)1011   LoopChoiceNode(bool body_can_be_zero_length, bool read_backward, Zone* zone)
1012       : ChoiceNode(2, zone),
1013         loop_node_(NULL),
1014         continue_node_(NULL),
1015         body_can_be_zero_length_(body_can_be_zero_length),
1016         read_backward_(read_backward) {}
1017   void AddLoopAlternative(GuardedAlternative alt);
1018   void AddContinueAlternative(GuardedAlternative alt);
1019   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1020   virtual int EatsAtLeast(int still_to_find,  int budget, bool not_at_start);
1021   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1022                                     RegExpCompiler* compiler,
1023                                     int characters_filled_in,
1024                                     bool not_at_start);
1025   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
1026                             BoyerMooreLookahead* bm, bool not_at_start);
loop_node()1027   RegExpNode* loop_node() { return loop_node_; }
continue_node()1028   RegExpNode* continue_node() { return continue_node_; }
body_can_be_zero_length()1029   bool body_can_be_zero_length() { return body_can_be_zero_length_; }
read_backward()1030   virtual bool read_backward() { return read_backward_; }
1031   virtual void Accept(NodeVisitor* visitor);
1032   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
1033 
1034  private:
1035   // AddAlternative is made private for loop nodes because alternatives
1036   // should not be added freely, we need to keep track of which node
1037   // goes back to the node itself.
AddAlternative(GuardedAlternative node)1038   void AddAlternative(GuardedAlternative node) {
1039     ChoiceNode::AddAlternative(node);
1040   }
1041 
1042   RegExpNode* loop_node_;
1043   RegExpNode* continue_node_;
1044   bool body_can_be_zero_length_;
1045   bool read_backward_;
1046 };
1047 
1048 
1049 // Improve the speed that we scan for an initial point where a non-anchored
1050 // regexp can match by using a Boyer-Moore-like table. This is done by
1051 // identifying non-greedy non-capturing loops in the nodes that eat any
1052 // character one at a time.  For example in the middle of the regexp
1053 // /foo[\s\S]*?bar/ we find such a loop.  There is also such a loop implicitly
1054 // inserted at the start of any non-anchored regexp.
1055 //
1056 // When we have found such a loop we look ahead in the nodes to find the set of
1057 // characters that can come at given distances. For example for the regexp
1058 // /.?foo/ we know that there are at least 3 characters ahead of us, and the
1059 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in
1060 // the lookahead info where the set of characters is reasonably constrained. In
1061 // our example this is from index 1 to 2 (0 is not constrained). We can now
1062 // look 3 characters ahead and if we don't find one of [f, o] (the union of
1063 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
1064 //
1065 // For Unicode input strings we do the same, but modulo 128.
1066 //
1067 // We also look at the first string fed to the regexp and use that to get a hint
1068 // of the character frequencies in the inputs. This affects the assessment of
1069 // whether the set of characters is 'reasonably constrained'.
1070 //
1071 // We also have another lookahead mechanism (called quick check in the code),
1072 // which uses a wide load of multiple characters followed by a mask and compare
1073 // to determine whether a match is possible at this point.
1074 enum ContainedInLattice {
1075   kNotYet = 0,
1076   kLatticeIn = 1,
1077   kLatticeOut = 2,
1078   kLatticeUnknown = 3  // Can also mean both in and out.
1079 };
1080 
1081 
Combine(ContainedInLattice a,ContainedInLattice b)1082 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
1083   return static_cast<ContainedInLattice>(a | b);
1084 }
1085 
1086 
1087 ContainedInLattice AddRange(ContainedInLattice a,
1088                             const int* ranges,
1089                             int ranges_size,
1090                             Interval new_range);
1091 
1092 
1093 class BoyerMoorePositionInfo : public ZoneObject {
1094  public:
BoyerMoorePositionInfo(Zone * zone)1095   explicit BoyerMoorePositionInfo(Zone* zone)
1096       : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
1097         map_count_(0),
1098         w_(kNotYet),
1099         s_(kNotYet),
1100         d_(kNotYet),
1101         surrogate_(kNotYet) {
1102      for (int i = 0; i < kMapSize; i++) {
1103        map_->Add(false, zone);
1104      }
1105   }
1106 
at(int i)1107   bool& at(int i) { return map_->at(i); }
1108 
1109   static const int kMapSize = 128;
1110   static const int kMask = kMapSize - 1;
1111 
map_count()1112   int map_count() const { return map_count_; }
1113 
1114   void Set(int character);
1115   void SetInterval(const Interval& interval);
1116   void SetAll();
is_non_word()1117   bool is_non_word() { return w_ == kLatticeOut; }
is_word()1118   bool is_word() { return w_ == kLatticeIn; }
1119 
1120  private:
1121   ZoneList<bool>* map_;
1122   int map_count_;  // Number of set bits in the map.
1123   ContainedInLattice w_;  // The \w character class.
1124   ContainedInLattice s_;  // The \s character class.
1125   ContainedInLattice d_;  // The \d character class.
1126   ContainedInLattice surrogate_;  // Surrogate UTF-16 code units.
1127 };
1128 
1129 
1130 class BoyerMooreLookahead : public ZoneObject {
1131  public:
1132   BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
1133 
length()1134   int length() { return length_; }
max_char()1135   int max_char() { return max_char_; }
compiler()1136   RegExpCompiler* compiler() { return compiler_; }
1137 
Count(int map_number)1138   int Count(int map_number) {
1139     return bitmaps_->at(map_number)->map_count();
1140   }
1141 
at(int i)1142   BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
1143 
Set(int map_number,int character)1144   void Set(int map_number, int character) {
1145     if (character > max_char_) return;
1146     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
1147     info->Set(character);
1148   }
1149 
SetInterval(int map_number,const Interval & interval)1150   void SetInterval(int map_number, const Interval& interval) {
1151     if (interval.from() > max_char_) return;
1152     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
1153     if (interval.to() > max_char_) {
1154       info->SetInterval(Interval(interval.from(), max_char_));
1155     } else {
1156       info->SetInterval(interval);
1157     }
1158   }
1159 
SetAll(int map_number)1160   void SetAll(int map_number) {
1161     bitmaps_->at(map_number)->SetAll();
1162   }
1163 
SetRest(int from_map)1164   void SetRest(int from_map) {
1165     for (int i = from_map; i < length_; i++) SetAll(i);
1166   }
1167   void EmitSkipInstructions(RegExpMacroAssembler* masm);
1168 
1169  private:
1170   // This is the value obtained by EatsAtLeast.  If we do not have at least this
1171   // many characters left in the sample string then the match is bound to fail.
1172   // Therefore it is OK to read a character this far ahead of the current match
1173   // point.
1174   int length_;
1175   RegExpCompiler* compiler_;
1176   // 0xff for Latin1, 0xffff for UTF-16.
1177   int max_char_;
1178   ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
1179 
1180   int GetSkipTable(int min_lookahead,
1181                    int max_lookahead,
1182                    Handle<ByteArray> boolean_skip_table);
1183   bool FindWorthwhileInterval(int* from, int* to);
1184   int FindBestInterval(
1185     int max_number_of_chars, int old_biggest_points, int* from, int* to);
1186 };
1187 
1188 
1189 // There are many ways to generate code for a node.  This class encapsulates
1190 // the current way we should be generating.  In other words it encapsulates
1191 // the current state of the code generator.  The effect of this is that we
1192 // generate code for paths that the matcher can take through the regular
1193 // expression.  A given node in the regexp can be code-generated several times
1194 // as it can be part of several traces.  For example for the regexp:
1195 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1196 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
1197 // to match foo is generated only once (the traces have a common prefix).  The
1198 // code to store the capture is deferred and generated (twice) after the places
1199 // where baz has been matched.
1200 class Trace {
1201  public:
1202   // A value for a property that is either known to be true, know to be false,
1203   // or not known.
1204   enum TriBool {
1205     UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
1206   };
1207 
1208   class DeferredAction {
1209    public:
DeferredAction(ActionNode::ActionType action_type,int reg)1210     DeferredAction(ActionNode::ActionType action_type, int reg)
1211         : action_type_(action_type), reg_(reg), next_(NULL) { }
next()1212     DeferredAction* next() { return next_; }
1213     bool Mentions(int reg);
reg()1214     int reg() { return reg_; }
action_type()1215     ActionNode::ActionType action_type() { return action_type_; }
1216    private:
1217     ActionNode::ActionType action_type_;
1218     int reg_;
1219     DeferredAction* next_;
1220     friend class Trace;
1221   };
1222 
1223   class DeferredCapture : public DeferredAction {
1224    public:
DeferredCapture(int reg,bool is_capture,Trace * trace)1225     DeferredCapture(int reg, bool is_capture, Trace* trace)
1226         : DeferredAction(ActionNode::STORE_POSITION, reg),
1227           cp_offset_(trace->cp_offset()),
1228           is_capture_(is_capture) { }
cp_offset()1229     int cp_offset() { return cp_offset_; }
is_capture()1230     bool is_capture() { return is_capture_; }
1231    private:
1232     int cp_offset_;
1233     bool is_capture_;
set_cp_offset(int cp_offset)1234     void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
1235   };
1236 
1237   class DeferredSetRegister : public DeferredAction {
1238    public:
DeferredSetRegister(int reg,int value)1239     DeferredSetRegister(int reg, int value)
1240         : DeferredAction(ActionNode::SET_REGISTER, reg),
1241           value_(value) { }
value()1242     int value() { return value_; }
1243    private:
1244     int value_;
1245   };
1246 
1247   class DeferredClearCaptures : public DeferredAction {
1248    public:
DeferredClearCaptures(Interval range)1249     explicit DeferredClearCaptures(Interval range)
1250         : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1251           range_(range) { }
range()1252     Interval range() { return range_; }
1253    private:
1254     Interval range_;
1255   };
1256 
1257   class DeferredIncrementRegister : public DeferredAction {
1258    public:
DeferredIncrementRegister(int reg)1259     explicit DeferredIncrementRegister(int reg)
1260         : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1261   };
1262 
Trace()1263   Trace()
1264       : cp_offset_(0),
1265         actions_(NULL),
1266         backtrack_(NULL),
1267         stop_node_(NULL),
1268         loop_label_(NULL),
1269         characters_preloaded_(0),
1270         bound_checked_up_to_(0),
1271         flush_budget_(100),
1272         at_start_(UNKNOWN) { }
1273 
1274   // End the trace.  This involves flushing the deferred actions in the trace
1275   // and pushing a backtrack location onto the backtrack stack.  Once this is
1276   // done we can start a new trace or go to one that has already been
1277   // generated.
1278   void Flush(RegExpCompiler* compiler, RegExpNode* successor);
cp_offset()1279   int cp_offset() { return cp_offset_; }
actions()1280   DeferredAction* actions() { return actions_; }
1281   // A trivial trace is one that has no deferred actions or other state that
1282   // affects the assumptions used when generating code.  There is no recorded
1283   // backtrack location in a trivial trace, so with a trivial trace we will
1284   // generate code that, on a failure to match, gets the backtrack location
1285   // from the backtrack stack rather than using a direct jump instruction.  We
1286   // always start code generation with a trivial trace and non-trivial traces
1287   // are created as we emit code for nodes or add to the list of deferred
1288   // actions in the trace.  The location of the code generated for a node using
1289   // a trivial trace is recorded in a label in the node so that gotos can be
1290   // generated to that code.
is_trivial()1291   bool is_trivial() {
1292     return backtrack_ == NULL &&
1293            actions_ == NULL &&
1294            cp_offset_ == 0 &&
1295            characters_preloaded_ == 0 &&
1296            bound_checked_up_to_ == 0 &&
1297            quick_check_performed_.characters() == 0 &&
1298            at_start_ == UNKNOWN;
1299   }
at_start()1300   TriBool at_start() { return at_start_; }
set_at_start(TriBool at_start)1301   void set_at_start(TriBool at_start) { at_start_ = at_start; }
backtrack()1302   Label* backtrack() { return backtrack_; }
loop_label()1303   Label* loop_label() { return loop_label_; }
stop_node()1304   RegExpNode* stop_node() { return stop_node_; }
characters_preloaded()1305   int characters_preloaded() { return characters_preloaded_; }
bound_checked_up_to()1306   int bound_checked_up_to() { return bound_checked_up_to_; }
flush_budget()1307   int flush_budget() { return flush_budget_; }
quick_check_performed()1308   QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1309   bool mentions_reg(int reg);
1310   // Returns true if a deferred position store exists to the specified
1311   // register and stores the offset in the out-parameter.  Otherwise
1312   // returns false.
1313   bool GetStoredPosition(int reg, int* cp_offset);
1314   // These set methods and AdvanceCurrentPositionInTrace should be used only on
1315   // new traces - the intention is that traces are immutable after creation.
add_action(DeferredAction * new_action)1316   void add_action(DeferredAction* new_action) {
1317     DCHECK(new_action->next_ == NULL);
1318     new_action->next_ = actions_;
1319     actions_ = new_action;
1320   }
set_backtrack(Label * backtrack)1321   void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
set_stop_node(RegExpNode * node)1322   void set_stop_node(RegExpNode* node) { stop_node_ = node; }
set_loop_label(Label * label)1323   void set_loop_label(Label* label) { loop_label_ = label; }
set_characters_preloaded(int count)1324   void set_characters_preloaded(int count) { characters_preloaded_ = count; }
set_bound_checked_up_to(int to)1325   void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
set_flush_budget(int to)1326   void set_flush_budget(int to) { flush_budget_ = to; }
set_quick_check_performed(QuickCheckDetails * d)1327   void set_quick_check_performed(QuickCheckDetails* d) {
1328     quick_check_performed_ = *d;
1329   }
1330   void InvalidateCurrentCharacter();
1331   void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
1332 
1333  private:
1334   int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
1335   void PerformDeferredActions(RegExpMacroAssembler* macro,
1336                               int max_register,
1337                               const OutSet& affected_registers,
1338                               OutSet* registers_to_pop,
1339                               OutSet* registers_to_clear,
1340                               Zone* zone);
1341   void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1342                                 int max_register,
1343                                 const OutSet& registers_to_pop,
1344                                 const OutSet& registers_to_clear);
1345   int cp_offset_;
1346   DeferredAction* actions_;
1347   Label* backtrack_;
1348   RegExpNode* stop_node_;
1349   Label* loop_label_;
1350   int characters_preloaded_;
1351   int bound_checked_up_to_;
1352   QuickCheckDetails quick_check_performed_;
1353   int flush_budget_;
1354   TriBool at_start_;
1355 };
1356 
1357 
1358 class GreedyLoopState {
1359  public:
1360   explicit GreedyLoopState(bool not_at_start);
1361 
label()1362   Label* label() { return &label_; }
counter_backtrack_trace()1363   Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
1364 
1365  private:
1366   Label label_;
1367   Trace counter_backtrack_trace_;
1368 };
1369 
1370 
1371 struct PreloadState {
1372   static const int kEatsAtLeastNotYetInitialized = -1;
1373   bool preload_is_current_;
1374   bool preload_has_checked_bounds_;
1375   int preload_characters_;
1376   int eats_at_least_;
initPreloadState1377   void init() {
1378     eats_at_least_ = kEatsAtLeastNotYetInitialized;
1379   }
1380 };
1381 
1382 
1383 class NodeVisitor {
1384  public:
~NodeVisitor()1385   virtual ~NodeVisitor() { }
1386 #define DECLARE_VISIT(Type)                                          \
1387   virtual void Visit##Type(Type##Node* that) = 0;
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1388 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1389 #undef DECLARE_VISIT
1390   virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1391 };
1392 
1393 
1394 // Node visitor used to add the start set of the alternatives to the
1395 // dispatch table of a choice node.
1396 class DispatchTableConstructor: public NodeVisitor {
1397  public:
DispatchTableConstructor(DispatchTable * table,bool ignore_case,Zone * zone)1398   DispatchTableConstructor(DispatchTable* table, bool ignore_case,
1399                            Zone* zone)
1400       : table_(table),
1401         choice_index_(-1),
1402         ignore_case_(ignore_case),
1403         zone_(zone) { }
1404 
1405   void BuildTable(ChoiceNode* node);
1406 
AddRange(CharacterRange range)1407   void AddRange(CharacterRange range) {
1408     table()->AddRange(range, choice_index_, zone_);
1409   }
1410 
1411   void AddInverse(ZoneList<CharacterRange>* ranges);
1412 
1413 #define DECLARE_VISIT(Type)                                          \
1414   virtual void Visit##Type(Type##Node* that);
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1415 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1416 #undef DECLARE_VISIT
1417 
1418   DispatchTable* table() { return table_; }
set_choice_index(int value)1419   void set_choice_index(int value) { choice_index_ = value; }
1420 
1421  protected:
1422   DispatchTable* table_;
1423   int choice_index_;
1424   bool ignore_case_;
1425   Zone* zone_;
1426 };
1427 
1428 
1429 // Assertion propagation moves information about assertions such as
1430 // \b to the affected nodes.  For instance, in /.\b./ information must
1431 // be propagated to the first '.' that whatever follows needs to know
1432 // if it matched a word or a non-word, and to the second '.' that it
1433 // has to check if it succeeds a word or non-word.  In this case the
1434 // result will be something like:
1435 //
1436 //   +-------+        +------------+
1437 //   |   .   |        |      .     |
1438 //   +-------+  --->  +------------+
1439 //   | word? |        | check word |
1440 //   +-------+        +------------+
1441 class Analysis: public NodeVisitor {
1442  public:
Analysis(Isolate * isolate,bool ignore_case,bool is_one_byte)1443   Analysis(Isolate* isolate, bool ignore_case, bool is_one_byte)
1444       : isolate_(isolate),
1445         ignore_case_(ignore_case),
1446         is_one_byte_(is_one_byte),
1447         error_message_(NULL) {}
1448   void EnsureAnalyzed(RegExpNode* node);
1449 
1450 #define DECLARE_VISIT(Type)                                          \
1451   virtual void Visit##Type(Type##Node* that);
1452 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1453 #undef DECLARE_VISIT
1454   virtual void VisitLoopChoice(LoopChoiceNode* that);
1455 
has_failed()1456   bool has_failed() { return error_message_ != NULL; }
error_message()1457   const char* error_message() {
1458     DCHECK(error_message_ != NULL);
1459     return error_message_;
1460   }
fail(const char * error_message)1461   void fail(const char* error_message) {
1462     error_message_ = error_message;
1463   }
1464 
isolate()1465   Isolate* isolate() const { return isolate_; }
1466 
1467  private:
1468   Isolate* isolate_;
1469   bool ignore_case_;
1470   bool is_one_byte_;
1471   const char* error_message_;
1472 
1473   DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1474 };
1475 
1476 
1477 struct RegExpCompileData {
RegExpCompileDataRegExpCompileData1478   RegExpCompileData()
1479     : tree(NULL),
1480       node(NULL),
1481       simple(true),
1482       contains_anchor(false),
1483       capture_count(0) { }
1484   RegExpTree* tree;
1485   RegExpNode* node;
1486   bool simple;
1487   bool contains_anchor;
1488   Handle<String> error;
1489   int capture_count;
1490 };
1491 
1492 
1493 class RegExpEngine: public AllStatic {
1494  public:
1495   struct CompilationResult {
CompilationResultCompilationResult1496     CompilationResult(Isolate* isolate, const char* error_message)
1497         : error_message(error_message),
1498           code(isolate->heap()->the_hole_value()),
1499           num_registers(0) {}
CompilationResultCompilationResult1500     CompilationResult(Object* code, int registers)
1501         : error_message(NULL), code(code), num_registers(registers) {}
1502     const char* error_message;
1503     Object* code;
1504     int num_registers;
1505   };
1506 
1507   static CompilationResult Compile(Isolate* isolate, Zone* zone,
1508                                    RegExpCompileData* input, bool ignore_case,
1509                                    bool global, bool multiline, bool sticky,
1510                                    Handle<String> pattern,
1511                                    Handle<String> sample_subject,
1512                                    bool is_one_byte);
1513 
1514   static bool TooMuchRegExpCode(Handle<String> pattern);
1515 
1516   static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1517 };
1518 
1519 
1520 class RegExpResultsCache : public AllStatic {
1521  public:
1522   enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };
1523 
1524   // Attempt to retrieve a cached result.  On failure, 0 is returned as a Smi.
1525   // On success, the returned result is guaranteed to be a COW-array.
1526   static Object* Lookup(Heap* heap, String* key_string, Object* key_pattern,
1527                         FixedArray** last_match_out, ResultsCacheType type);
1528   // Attempt to add value_array to the cache specified by type.  On success,
1529   // value_array is turned into a COW-array.
1530   static void Enter(Isolate* isolate, Handle<String> key_string,
1531                     Handle<Object> key_pattern, Handle<FixedArray> value_array,
1532                     Handle<FixedArray> last_match_cache, ResultsCacheType type);
1533   static void Clear(FixedArray* cache);
1534   static const int kRegExpResultsCacheSize = 0x100;
1535 
1536  private:
1537   static const int kArrayEntriesPerCacheEntry = 4;
1538   static const int kStringOffset = 0;
1539   static const int kPatternOffset = 1;
1540   static const int kArrayOffset = 2;
1541   static const int kLastMatchOffset = 3;
1542 };
1543 
1544 }  // namespace internal
1545 }  // namespace v8
1546 
1547 #endif  // V8_REGEXP_JSREGEXP_H_
1548