• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_
18 #define ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_
19 
20 #include "code_generator.h"
21 #include "locations.h"
22 #include "nodes.h"
23 #include "utils/arm64/assembler_arm64.h"
24 #include "vixl/a64/disasm-a64.h"
25 #include "vixl/a64/macro-assembler-a64.h"
26 
27 namespace art {
28 namespace arm64 {
29 namespace helpers {
30 
31 // Convenience helpers to ease conversion to and from VIXL operands.
32 static_assert((SP == 31) && (WSP == 31) && (XZR == 32) && (WZR == 32),
33               "Unexpected values for register codes.");
34 
VIXLRegCodeFromART(int code)35 static inline int VIXLRegCodeFromART(int code) {
36   if (code == SP) {
37     return vixl::kSPRegInternalCode;
38   }
39   if (code == XZR) {
40     return vixl::kZeroRegCode;
41   }
42   return code;
43 }
44 
ARTRegCodeFromVIXL(int code)45 static inline int ARTRegCodeFromVIXL(int code) {
46   if (code == vixl::kSPRegInternalCode) {
47     return SP;
48   }
49   if (code == vixl::kZeroRegCode) {
50     return XZR;
51   }
52   return code;
53 }
54 
XRegisterFrom(Location location)55 static inline vixl::Register XRegisterFrom(Location location) {
56   DCHECK(location.IsRegister()) << location;
57   return vixl::Register::XRegFromCode(VIXLRegCodeFromART(location.reg()));
58 }
59 
WRegisterFrom(Location location)60 static inline vixl::Register WRegisterFrom(Location location) {
61   DCHECK(location.IsRegister()) << location;
62   return vixl::Register::WRegFromCode(VIXLRegCodeFromART(location.reg()));
63 }
64 
RegisterFrom(Location location,Primitive::Type type)65 static inline vixl::Register RegisterFrom(Location location, Primitive::Type type) {
66   DCHECK(type != Primitive::kPrimVoid && !Primitive::IsFloatingPointType(type)) << type;
67   return type == Primitive::kPrimLong ? XRegisterFrom(location) : WRegisterFrom(location);
68 }
69 
OutputRegister(HInstruction * instr)70 static inline vixl::Register OutputRegister(HInstruction* instr) {
71   return RegisterFrom(instr->GetLocations()->Out(), instr->GetType());
72 }
73 
InputRegisterAt(HInstruction * instr,int input_index)74 static inline vixl::Register InputRegisterAt(HInstruction* instr, int input_index) {
75   return RegisterFrom(instr->GetLocations()->InAt(input_index),
76                       instr->InputAt(input_index)->GetType());
77 }
78 
DRegisterFrom(Location location)79 static inline vixl::FPRegister DRegisterFrom(Location location) {
80   DCHECK(location.IsFpuRegister()) << location;
81   return vixl::FPRegister::DRegFromCode(location.reg());
82 }
83 
SRegisterFrom(Location location)84 static inline vixl::FPRegister SRegisterFrom(Location location) {
85   DCHECK(location.IsFpuRegister()) << location;
86   return vixl::FPRegister::SRegFromCode(location.reg());
87 }
88 
FPRegisterFrom(Location location,Primitive::Type type)89 static inline vixl::FPRegister FPRegisterFrom(Location location, Primitive::Type type) {
90   DCHECK(Primitive::IsFloatingPointType(type)) << type;
91   return type == Primitive::kPrimDouble ? DRegisterFrom(location) : SRegisterFrom(location);
92 }
93 
OutputFPRegister(HInstruction * instr)94 static inline vixl::FPRegister OutputFPRegister(HInstruction* instr) {
95   return FPRegisterFrom(instr->GetLocations()->Out(), instr->GetType());
96 }
97 
InputFPRegisterAt(HInstruction * instr,int input_index)98 static inline vixl::FPRegister InputFPRegisterAt(HInstruction* instr, int input_index) {
99   return FPRegisterFrom(instr->GetLocations()->InAt(input_index),
100                         instr->InputAt(input_index)->GetType());
101 }
102 
CPURegisterFrom(Location location,Primitive::Type type)103 static inline vixl::CPURegister CPURegisterFrom(Location location, Primitive::Type type) {
104   return Primitive::IsFloatingPointType(type) ? vixl::CPURegister(FPRegisterFrom(location, type))
105                                               : vixl::CPURegister(RegisterFrom(location, type));
106 }
107 
OutputCPURegister(HInstruction * instr)108 static inline vixl::CPURegister OutputCPURegister(HInstruction* instr) {
109   return Primitive::IsFloatingPointType(instr->GetType())
110       ? static_cast<vixl::CPURegister>(OutputFPRegister(instr))
111       : static_cast<vixl::CPURegister>(OutputRegister(instr));
112 }
113 
InputCPURegisterAt(HInstruction * instr,int index)114 static inline vixl::CPURegister InputCPURegisterAt(HInstruction* instr, int index) {
115   return Primitive::IsFloatingPointType(instr->InputAt(index)->GetType())
116       ? static_cast<vixl::CPURegister>(InputFPRegisterAt(instr, index))
117       : static_cast<vixl::CPURegister>(InputRegisterAt(instr, index));
118 }
119 
Int64ConstantFrom(Location location)120 static inline int64_t Int64ConstantFrom(Location location) {
121   HConstant* instr = location.GetConstant();
122   if (instr->IsIntConstant()) {
123     return instr->AsIntConstant()->GetValue();
124   } else if (instr->IsNullConstant()) {
125     return 0;
126   } else {
127     DCHECK(instr->IsLongConstant()) << instr->DebugName();
128     return instr->AsLongConstant()->GetValue();
129   }
130 }
131 
OperandFrom(Location location,Primitive::Type type)132 static inline vixl::Operand OperandFrom(Location location, Primitive::Type type) {
133   if (location.IsRegister()) {
134     return vixl::Operand(RegisterFrom(location, type));
135   } else {
136     return vixl::Operand(Int64ConstantFrom(location));
137   }
138 }
139 
InputOperandAt(HInstruction * instr,int input_index)140 static inline vixl::Operand InputOperandAt(HInstruction* instr, int input_index) {
141   return OperandFrom(instr->GetLocations()->InAt(input_index),
142                      instr->InputAt(input_index)->GetType());
143 }
144 
StackOperandFrom(Location location)145 static inline vixl::MemOperand StackOperandFrom(Location location) {
146   return vixl::MemOperand(vixl::sp, location.GetStackIndex());
147 }
148 
149 static inline vixl::MemOperand HeapOperand(const vixl::Register& base, size_t offset = 0) {
150   // A heap reference must be 32bit, so fit in a W register.
151   DCHECK(base.IsW());
152   return vixl::MemOperand(base.X(), offset);
153 }
154 
155 static inline vixl::MemOperand HeapOperand(const vixl::Register& base,
156                                            const vixl::Register& regoffset,
157                                            vixl::Shift shift = vixl::LSL,
158                                            unsigned shift_amount = 0) {
159   // A heap reference must be 32bit, so fit in a W register.
160   DCHECK(base.IsW());
161   return vixl::MemOperand(base.X(), regoffset, shift, shift_amount);
162 }
163 
HeapOperand(const vixl::Register & base,Offset offset)164 static inline vixl::MemOperand HeapOperand(const vixl::Register& base, Offset offset) {
165   return HeapOperand(base, offset.SizeValue());
166 }
167 
HeapOperandFrom(Location location,Offset offset)168 static inline vixl::MemOperand HeapOperandFrom(Location location, Offset offset) {
169   return HeapOperand(RegisterFrom(location, Primitive::kPrimNot), offset);
170 }
171 
LocationFrom(const vixl::Register & reg)172 static inline Location LocationFrom(const vixl::Register& reg) {
173   return Location::RegisterLocation(ARTRegCodeFromVIXL(reg.code()));
174 }
175 
LocationFrom(const vixl::FPRegister & fpreg)176 static inline Location LocationFrom(const vixl::FPRegister& fpreg) {
177   return Location::FpuRegisterLocation(fpreg.code());
178 }
179 
OperandFromMemOperand(const vixl::MemOperand & mem_op)180 static inline vixl::Operand OperandFromMemOperand(const vixl::MemOperand& mem_op) {
181   if (mem_op.IsImmediateOffset()) {
182     return vixl::Operand(mem_op.offset());
183   } else {
184     DCHECK(mem_op.IsRegisterOffset());
185     if (mem_op.extend() != vixl::NO_EXTEND) {
186       return vixl::Operand(mem_op.regoffset(), mem_op.extend(), mem_op.shift_amount());
187     } else if (mem_op.shift() != vixl::NO_SHIFT) {
188       return vixl::Operand(mem_op.regoffset(), mem_op.shift(), mem_op.shift_amount());
189     } else {
190       LOG(FATAL) << "Should not reach here";
191       UNREACHABLE();
192     }
193   }
194 }
195 
CanEncodeConstantAsImmediate(HConstant * constant,HInstruction * instr)196 static bool CanEncodeConstantAsImmediate(HConstant* constant, HInstruction* instr) {
197   DCHECK(constant->IsIntConstant() || constant->IsLongConstant() || constant->IsNullConstant())
198       << constant->DebugName();
199 
200   // For single uses we let VIXL handle the constant generation since it will
201   // use registers that are not managed by the register allocator (wip0, wip1).
202   if (constant->GetUses().HasExactlyOneElement()) {
203     return true;
204   }
205 
206   // Our code generator ensures shift distances are within an encodable range.
207   if (instr->IsRor()) {
208     return true;
209   }
210 
211   int64_t value = CodeGenerator::GetInt64ValueOf(constant);
212 
213   if (instr->IsAnd() || instr->IsOr() || instr->IsXor()) {
214     // Uses logical operations.
215     return vixl::Assembler::IsImmLogical(value, vixl::kXRegSize);
216   } else if (instr->IsNeg()) {
217     // Uses mov -immediate.
218     return vixl::Assembler::IsImmMovn(value, vixl::kXRegSize);
219   } else {
220     DCHECK(instr->IsAdd() ||
221            instr->IsArm64IntermediateAddress() ||
222            instr->IsBoundsCheck() ||
223            instr->IsCompare() ||
224            instr->IsCondition() ||
225            instr->IsSub())
226         << instr->DebugName();
227     // Uses aliases of ADD/SUB instructions.
228     // If `value` does not fit but `-value` does, VIXL will automatically use
229     // the 'opposite' instruction.
230     return vixl::Assembler::IsImmAddSub(value) || vixl::Assembler::IsImmAddSub(-value);
231   }
232 }
233 
ARM64EncodableConstantOrRegister(HInstruction * constant,HInstruction * instr)234 static inline Location ARM64EncodableConstantOrRegister(HInstruction* constant,
235                                                         HInstruction* instr) {
236   if (constant->IsConstant()
237       && CanEncodeConstantAsImmediate(constant->AsConstant(), instr)) {
238     return Location::ConstantLocation(constant->AsConstant());
239   }
240 
241   return Location::RequiresRegister();
242 }
243 
244 // Check if registers in art register set have the same register code in vixl. If the register
245 // codes are same, we can initialize vixl register list simply by the register masks. Currently,
246 // only SP/WSP and ZXR/WZR codes are different between art and vixl.
247 // Note: This function is only used for debug checks.
ArtVixlRegCodeCoherentForRegSet(uint32_t art_core_registers,size_t num_core,uint32_t art_fpu_registers,size_t num_fpu)248 static inline bool ArtVixlRegCodeCoherentForRegSet(uint32_t art_core_registers,
249                                                    size_t num_core,
250                                                    uint32_t art_fpu_registers,
251                                                    size_t num_fpu) {
252   // The register masks won't work if the number of register is larger than 32.
253   DCHECK_GE(sizeof(art_core_registers) * 8, num_core);
254   DCHECK_GE(sizeof(art_fpu_registers) * 8, num_fpu);
255   for (size_t art_reg_code = 0;  art_reg_code < num_core; ++art_reg_code) {
256     if (RegisterSet::Contains(art_core_registers, art_reg_code)) {
257       if (art_reg_code != static_cast<size_t>(VIXLRegCodeFromART(art_reg_code))) {
258         return false;
259       }
260     }
261   }
262   // There is no register code translation for float registers.
263   return true;
264 }
265 
ShiftFromOpKind(HArm64DataProcWithShifterOp::OpKind op_kind)266 static inline vixl::Shift ShiftFromOpKind(HArm64DataProcWithShifterOp::OpKind op_kind) {
267   switch (op_kind) {
268     case HArm64DataProcWithShifterOp::kASR: return vixl::ASR;
269     case HArm64DataProcWithShifterOp::kLSL: return vixl::LSL;
270     case HArm64DataProcWithShifterOp::kLSR: return vixl::LSR;
271     default:
272       LOG(FATAL) << "Unexpected op kind " << op_kind;
273       UNREACHABLE();
274       return vixl::NO_SHIFT;
275   }
276 }
277 
ExtendFromOpKind(HArm64DataProcWithShifterOp::OpKind op_kind)278 static inline vixl::Extend ExtendFromOpKind(HArm64DataProcWithShifterOp::OpKind op_kind) {
279   switch (op_kind) {
280     case HArm64DataProcWithShifterOp::kUXTB: return vixl::UXTB;
281     case HArm64DataProcWithShifterOp::kUXTH: return vixl::UXTH;
282     case HArm64DataProcWithShifterOp::kUXTW: return vixl::UXTW;
283     case HArm64DataProcWithShifterOp::kSXTB: return vixl::SXTB;
284     case HArm64DataProcWithShifterOp::kSXTH: return vixl::SXTH;
285     case HArm64DataProcWithShifterOp::kSXTW: return vixl::SXTW;
286     default:
287       LOG(FATAL) << "Unexpected op kind " << op_kind;
288       UNREACHABLE();
289       return vixl::NO_EXTEND;
290   }
291 }
292 
CanFitInShifterOperand(HInstruction * instruction)293 static inline bool CanFitInShifterOperand(HInstruction* instruction) {
294   if (instruction->IsTypeConversion()) {
295     HTypeConversion* conversion = instruction->AsTypeConversion();
296     Primitive::Type result_type = conversion->GetResultType();
297     Primitive::Type input_type = conversion->GetInputType();
298     // We don't expect to see the same type as input and result.
299     return Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type) &&
300         (result_type != input_type);
301   } else {
302     return (instruction->IsShl() && instruction->AsShl()->InputAt(1)->IsIntConstant()) ||
303         (instruction->IsShr() && instruction->AsShr()->InputAt(1)->IsIntConstant()) ||
304         (instruction->IsUShr() && instruction->AsUShr()->InputAt(1)->IsIntConstant());
305   }
306 }
307 
HasShifterOperand(HInstruction * instr)308 static inline bool HasShifterOperand(HInstruction* instr) {
309   // `neg` instructions are an alias of `sub` using the zero register as the
310   // first register input.
311   bool res = instr->IsAdd() || instr->IsAnd() || instr->IsNeg() ||
312       instr->IsOr() || instr->IsSub() || instr->IsXor();
313   return res;
314 }
315 
ShifterOperandSupportsExtension(HInstruction * instruction)316 static inline bool ShifterOperandSupportsExtension(HInstruction* instruction) {
317   DCHECK(HasShifterOperand(instruction));
318   // Although the `neg` instruction is an alias of the `sub` instruction, `HNeg`
319   // does *not* support extension. This is because the `extended register` form
320   // of the `sub` instruction interprets the left register with code 31 as the
321   // stack pointer and not the zero register. (So does the `immediate` form.) In
322   // the other form `shifted register, the register with code 31 is interpreted
323   // as the zero register.
324   return instruction->IsAdd() || instruction->IsSub();
325 }
326 
327 }  // namespace helpers
328 }  // namespace arm64
329 }  // namespace art
330 
331 #endif  // ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_
332