1 // Copyright 2015 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_HEAP_SLOTS_BUFFER_H_ 6 #define V8_HEAP_SLOTS_BUFFER_H_ 7 8 #include "src/objects.h" 9 10 namespace v8 { 11 namespace internal { 12 13 // Forward declarations. 14 class SlotsBuffer; 15 16 17 // SlotsBufferAllocator manages the allocation and deallocation of slots buffer 18 // chunks and links them together. Slots buffer chunks are always created by the 19 // SlotsBufferAllocator. 20 class SlotsBufferAllocator { 21 public: 22 SlotsBuffer* AllocateBuffer(SlotsBuffer* next_buffer); 23 void DeallocateBuffer(SlotsBuffer* buffer); 24 25 void DeallocateChain(SlotsBuffer** buffer_address); 26 }; 27 28 29 // SlotsBuffer records a sequence of slots that has to be updated 30 // after live objects were relocated from evacuation candidates. 31 // All slots are either untyped or typed: 32 // - Untyped slots are expected to contain a tagged object pointer. 33 // They are recorded by an address. 34 // - Typed slots are expected to contain an encoded pointer to a heap 35 // object where the way of encoding depends on the type of the slot. 36 // They are recorded as a pair (SlotType, slot address). 37 // We assume that zero-page is never mapped this allows us to distinguish 38 // untyped slots from typed slots during iteration by a simple comparison: 39 // if element of slots buffer is less than NUMBER_OF_SLOT_TYPES then it 40 // is the first element of typed slot's pair. 41 class SlotsBuffer { 42 public: 43 typedef Object** ObjectSlot; 44 SlotsBuffer(SlotsBuffer * next_buffer)45 explicit SlotsBuffer(SlotsBuffer* next_buffer) 46 : idx_(0), chain_length_(1), next_(next_buffer) { 47 if (next_ != NULL) { 48 chain_length_ = next_->chain_length_ + 1; 49 } 50 } 51 ~SlotsBuffer()52 ~SlotsBuffer() {} 53 Add(ObjectSlot slot)54 void Add(ObjectSlot slot) { 55 DCHECK(0 <= idx_ && idx_ < kNumberOfElements); 56 #ifdef DEBUG 57 if (slot >= reinterpret_cast<ObjectSlot>(NUMBER_OF_SLOT_TYPES)) { 58 DCHECK_NOT_NULL(*slot); 59 } 60 #endif 61 slots_[idx_++] = slot; 62 } 63 Get(intptr_t i)64 ObjectSlot Get(intptr_t i) { 65 DCHECK(i >= 0 && i < kNumberOfElements); 66 return slots_[i]; 67 } 68 Size()69 size_t Size() { 70 DCHECK(idx_ <= kNumberOfElements); 71 return idx_; 72 } 73 74 enum SlotType { 75 EMBEDDED_OBJECT_SLOT, 76 OBJECT_SLOT, 77 RELOCATED_CODE_OBJECT, 78 CELL_TARGET_SLOT, 79 CODE_TARGET_SLOT, 80 CODE_ENTRY_SLOT, 81 DEBUG_TARGET_SLOT, 82 NUMBER_OF_SLOT_TYPES 83 }; 84 SlotTypeToString(SlotType type)85 static const char* SlotTypeToString(SlotType type) { 86 switch (type) { 87 case EMBEDDED_OBJECT_SLOT: 88 return "EMBEDDED_OBJECT_SLOT"; 89 case OBJECT_SLOT: 90 return "OBJECT_SLOT"; 91 case RELOCATED_CODE_OBJECT: 92 return "RELOCATED_CODE_OBJECT"; 93 case CELL_TARGET_SLOT: 94 return "CELL_TARGET_SLOT"; 95 case CODE_TARGET_SLOT: 96 return "CODE_TARGET_SLOT"; 97 case CODE_ENTRY_SLOT: 98 return "CODE_ENTRY_SLOT"; 99 case DEBUG_TARGET_SLOT: 100 return "DEBUG_TARGET_SLOT"; 101 case NUMBER_OF_SLOT_TYPES: 102 return "NUMBER_OF_SLOT_TYPES"; 103 } 104 return "UNKNOWN SlotType"; 105 } 106 next()107 SlotsBuffer* next() { return next_; } 108 SizeOfChain(SlotsBuffer * buffer)109 static int SizeOfChain(SlotsBuffer* buffer) { 110 if (buffer == NULL) return 0; 111 return static_cast<int>(buffer->idx_ + 112 (buffer->chain_length_ - 1) * kNumberOfElements); 113 } 114 IsFull()115 inline bool IsFull() { return idx_ == kNumberOfElements; } 116 HasSpaceForTypedSlot()117 inline bool HasSpaceForTypedSlot() { return idx_ < kNumberOfElements - 1; } 118 119 enum AdditionMode { FAIL_ON_OVERFLOW, IGNORE_OVERFLOW }; 120 ChainLengthThresholdReached(SlotsBuffer * buffer)121 static bool ChainLengthThresholdReached(SlotsBuffer* buffer) { 122 return buffer != NULL && buffer->chain_length_ >= kChainLengthThreshold; 123 } 124 INLINE(static bool AddTo (SlotsBufferAllocator * allocator,SlotsBuffer ** buffer_address,ObjectSlot slot,AdditionMode mode))125 INLINE(static bool AddTo(SlotsBufferAllocator* allocator, 126 SlotsBuffer** buffer_address, ObjectSlot slot, 127 AdditionMode mode)) { 128 SlotsBuffer* buffer = *buffer_address; 129 if (buffer == NULL || buffer->IsFull()) { 130 if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) { 131 allocator->DeallocateChain(buffer_address); 132 return false; 133 } 134 buffer = allocator->AllocateBuffer(buffer); 135 *buffer_address = buffer; 136 } 137 buffer->Add(slot); 138 return true; 139 } 140 141 static bool IsTypedSlot(ObjectSlot slot); 142 143 static bool AddTo(SlotsBufferAllocator* allocator, 144 SlotsBuffer** buffer_address, SlotType type, Address addr, 145 AdditionMode mode); 146 147 // Eliminates all stale entries from the slots buffer, i.e., slots that 148 // are not part of live objects anymore. This method must be called after 149 // marking, when the whole transitive closure is known and must be called 150 // before sweeping when mark bits are still intact. 151 static void RemoveInvalidSlots(Heap* heap, SlotsBuffer* buffer); 152 153 // Eliminate all slots that are within the given address range. 154 static void RemoveObjectSlots(Heap* heap, SlotsBuffer* buffer, 155 Address start_slot, Address end_slot); 156 157 // Ensures that there are no invalid slots in the chain of slots buffers. 158 static void VerifySlots(Heap* heap, SlotsBuffer* buffer); 159 160 static const int kNumberOfElements = 1021; 161 162 private: 163 static const int kChainLengthThreshold = 15; 164 165 intptr_t idx_; 166 intptr_t chain_length_; 167 SlotsBuffer* next_; 168 ObjectSlot slots_[kNumberOfElements]; 169 }; 170 171 172 } // namespace internal 173 } // namespace v8 174 175 #endif // V8_HEAP_SLOTS_BUFFER_H_ 176