• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the mechanics required to implement inlining without
11 // missing any calls and updating the call graph.  The decisions of which calls
12 // are profitable to inline are implemented elsewhere.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/InlinerPass.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/CallGraph.h"
23 #include "llvm/Analysis/InlineCost.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "inline"
39 
40 STATISTIC(NumInlined, "Number of functions inlined");
41 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
42 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
43 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
44 
45 // This weirdly named statistic tracks the number of times that, when attempting
46 // to inline a function A into B, we analyze the callers of B in order to see
47 // if those would be more profitable and blocked inline steps.
48 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
49 
50 static cl::opt<int>
51 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
52         cl::desc("Control the amount of inlining to perform (default = 225)"));
53 
54 static cl::opt<int>
55 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325),
56               cl::desc("Threshold for inlining functions with inline hint"));
57 
58 // We instroduce this threshold to help performance of instrumentation based
59 // PGO before we actually hook up inliner with analysis passes such as BPI and
60 // BFI.
61 static cl::opt<int>
62 ColdThreshold("inlinecold-threshold", cl::Hidden, cl::init(225),
63               cl::desc("Threshold for inlining functions with cold attribute"));
64 
65 // Threshold to use when optsize is specified (and there is no -inline-limit).
66 const int OptSizeThreshold = 75;
67 
Inliner(char & ID)68 Inliner::Inliner(char &ID)
69   : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {}
70 
Inliner(char & ID,int Threshold,bool InsertLifetime)71 Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
72   : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ?
73                                           InlineLimit : Threshold),
74     InsertLifetime(InsertLifetime) {}
75 
76 /// For this class, we declare that we require and preserve the call graph.
77 /// If the derived class implements this method, it should
78 /// always explicitly call the implementation here.
getAnalysisUsage(AnalysisUsage & AU) const79 void Inliner::getAnalysisUsage(AnalysisUsage &AU) const {
80   AU.addRequired<AssumptionCacheTracker>();
81   AU.addRequired<TargetLibraryInfoWrapperPass>();
82   CallGraphSCCPass::getAnalysisUsage(AU);
83 }
84 
85 
86 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
87 InlinedArrayAllocasTy;
88 
89 /// \brief If the inlined function had a higher stack protection level than the
90 /// calling function, then bump up the caller's stack protection level.
AdjustCallerSSPLevel(Function * Caller,Function * Callee)91 static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) {
92   // If upgrading the SSP attribute, clear out the old SSP Attributes first.
93   // Having multiple SSP attributes doesn't actually hurt, but it adds useless
94   // clutter to the IR.
95   AttrBuilder B;
96   B.addAttribute(Attribute::StackProtect)
97     .addAttribute(Attribute::StackProtectStrong)
98     .addAttribute(Attribute::StackProtectReq);
99   AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(),
100                                               AttributeSet::FunctionIndex,
101                                               B);
102 
103   if (Callee->hasFnAttribute(Attribute::SafeStack)) {
104     Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
105     Caller->addFnAttr(Attribute::SafeStack);
106   } else if (Callee->hasFnAttribute(Attribute::StackProtectReq) &&
107              !Caller->hasFnAttribute(Attribute::SafeStack)) {
108     Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
109     Caller->addFnAttr(Attribute::StackProtectReq);
110   } else if (Callee->hasFnAttribute(Attribute::StackProtectStrong) &&
111              !Caller->hasFnAttribute(Attribute::SafeStack) &&
112              !Caller->hasFnAttribute(Attribute::StackProtectReq)) {
113     Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
114     Caller->addFnAttr(Attribute::StackProtectStrong);
115   } else if (Callee->hasFnAttribute(Attribute::StackProtect) &&
116              !Caller->hasFnAttribute(Attribute::SafeStack) &&
117              !Caller->hasFnAttribute(Attribute::StackProtectReq) &&
118              !Caller->hasFnAttribute(Attribute::StackProtectStrong))
119     Caller->addFnAttr(Attribute::StackProtect);
120 }
121 
122 /// If it is possible to inline the specified call site,
123 /// do so and update the CallGraph for this operation.
124 ///
125 /// This function also does some basic book-keeping to update the IR.  The
126 /// InlinedArrayAllocas map keeps track of any allocas that are already
127 /// available from other functions inlined into the caller.  If we are able to
128 /// inline this call site we attempt to reuse already available allocas or add
129 /// any new allocas to the set if not possible.
InlineCallIfPossible(Pass & P,CallSite CS,InlineFunctionInfo & IFI,InlinedArrayAllocasTy & InlinedArrayAllocas,int InlineHistory,bool InsertLifetime)130 static bool InlineCallIfPossible(Pass &P, CallSite CS, InlineFunctionInfo &IFI,
131                                  InlinedArrayAllocasTy &InlinedArrayAllocas,
132                                  int InlineHistory, bool InsertLifetime) {
133   Function *Callee = CS.getCalledFunction();
134   Function *Caller = CS.getCaller();
135 
136   // We need to manually construct BasicAA directly in order to disable
137   // its use of other function analyses.
138   BasicAAResult BAR(createLegacyPMBasicAAResult(P, *Callee));
139 
140   // Construct our own AA results for this function. We do this manually to
141   // work around the limitations of the legacy pass manager.
142   AAResults AAR(createLegacyPMAAResults(P, *Callee, BAR));
143 
144   // Try to inline the function.  Get the list of static allocas that were
145   // inlined.
146   if (!InlineFunction(CS, IFI, &AAR, InsertLifetime))
147     return false;
148 
149   AdjustCallerSSPLevel(Caller, Callee);
150 
151   // Look at all of the allocas that we inlined through this call site.  If we
152   // have already inlined other allocas through other calls into this function,
153   // then we know that they have disjoint lifetimes and that we can merge them.
154   //
155   // There are many heuristics possible for merging these allocas, and the
156   // different options have different tradeoffs.  One thing that we *really*
157   // don't want to hurt is SRoA: once inlining happens, often allocas are no
158   // longer address taken and so they can be promoted.
159   //
160   // Our "solution" for that is to only merge allocas whose outermost type is an
161   // array type.  These are usually not promoted because someone is using a
162   // variable index into them.  These are also often the most important ones to
163   // merge.
164   //
165   // A better solution would be to have real memory lifetime markers in the IR
166   // and not have the inliner do any merging of allocas at all.  This would
167   // allow the backend to do proper stack slot coloring of all allocas that
168   // *actually make it to the backend*, which is really what we want.
169   //
170   // Because we don't have this information, we do this simple and useful hack.
171   //
172   SmallPtrSet<AllocaInst*, 16> UsedAllocas;
173 
174   // When processing our SCC, check to see if CS was inlined from some other
175   // call site.  For example, if we're processing "A" in this code:
176   //   A() { B() }
177   //   B() { x = alloca ... C() }
178   //   C() { y = alloca ... }
179   // Assume that C was not inlined into B initially, and so we're processing A
180   // and decide to inline B into A.  Doing this makes an alloca available for
181   // reuse and makes a callsite (C) available for inlining.  When we process
182   // the C call site we don't want to do any alloca merging between X and Y
183   // because their scopes are not disjoint.  We could make this smarter by
184   // keeping track of the inline history for each alloca in the
185   // InlinedArrayAllocas but this isn't likely to be a significant win.
186   if (InlineHistory != -1)  // Only do merging for top-level call sites in SCC.
187     return true;
188 
189   // Loop over all the allocas we have so far and see if they can be merged with
190   // a previously inlined alloca.  If not, remember that we had it.
191   for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
192        AllocaNo != e; ++AllocaNo) {
193     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
194 
195     // Don't bother trying to merge array allocations (they will usually be
196     // canonicalized to be an allocation *of* an array), or allocations whose
197     // type is not itself an array (because we're afraid of pessimizing SRoA).
198     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
199     if (!ATy || AI->isArrayAllocation())
200       continue;
201 
202     // Get the list of all available allocas for this array type.
203     std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
204 
205     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
206     // that we have to be careful not to reuse the same "available" alloca for
207     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
208     // set to keep track of which "available" allocas are being used by this
209     // function.  Also, AllocasForType can be empty of course!
210     bool MergedAwayAlloca = false;
211     for (AllocaInst *AvailableAlloca : AllocasForType) {
212 
213       unsigned Align1 = AI->getAlignment(),
214                Align2 = AvailableAlloca->getAlignment();
215 
216       // The available alloca has to be in the right function, not in some other
217       // function in this SCC.
218       if (AvailableAlloca->getParent() != AI->getParent())
219         continue;
220 
221       // If the inlined function already uses this alloca then we can't reuse
222       // it.
223       if (!UsedAllocas.insert(AvailableAlloca).second)
224         continue;
225 
226       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
227       // success!
228       DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
229                    << *AvailableAlloca << '\n');
230 
231       // Move affected dbg.declare calls immediately after the new alloca to
232       // avoid the situation when a dbg.declare preceeds its alloca.
233       if (auto *L = LocalAsMetadata::getIfExists(AI))
234         if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
235           for (User *U : MDV->users())
236             if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
237               DDI->moveBefore(AvailableAlloca->getNextNode());
238 
239       AI->replaceAllUsesWith(AvailableAlloca);
240 
241       if (Align1 != Align2) {
242         if (!Align1 || !Align2) {
243           const DataLayout &DL = Caller->getParent()->getDataLayout();
244           unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());
245 
246           Align1 = Align1 ? Align1 : TypeAlign;
247           Align2 = Align2 ? Align2 : TypeAlign;
248         }
249 
250         if (Align1 > Align2)
251           AvailableAlloca->setAlignment(AI->getAlignment());
252       }
253 
254       AI->eraseFromParent();
255       MergedAwayAlloca = true;
256       ++NumMergedAllocas;
257       IFI.StaticAllocas[AllocaNo] = nullptr;
258       break;
259     }
260 
261     // If we already nuked the alloca, we're done with it.
262     if (MergedAwayAlloca)
263       continue;
264 
265     // If we were unable to merge away the alloca either because there are no
266     // allocas of the right type available or because we reused them all
267     // already, remember that this alloca came from an inlined function and mark
268     // it used so we don't reuse it for other allocas from this inline
269     // operation.
270     AllocasForType.push_back(AI);
271     UsedAllocas.insert(AI);
272   }
273 
274   return true;
275 }
276 
getInlineThreshold(CallSite CS) const277 unsigned Inliner::getInlineThreshold(CallSite CS) const {
278   int Threshold = InlineThreshold; // -inline-threshold or else selected by
279                                    // overall opt level
280 
281   // If -inline-threshold is not given, listen to the optsize attribute when it
282   // would decrease the threshold.
283   Function *Caller = CS.getCaller();
284   bool OptSize = Caller && !Caller->isDeclaration() &&
285                  // FIXME: Use Function::optForSize().
286                  Caller->hasFnAttribute(Attribute::OptimizeForSize);
287   if (!(InlineLimit.getNumOccurrences() > 0) && OptSize &&
288       OptSizeThreshold < Threshold)
289     Threshold = OptSizeThreshold;
290 
291   Function *Callee = CS.getCalledFunction();
292   if (!Callee || Callee->isDeclaration())
293     return Threshold;
294 
295   // If profile information is available, use that to adjust threshold of hot
296   // and cold functions.
297   // FIXME: The heuristic used below for determining hotness and coldness are
298   // based on preliminary SPEC tuning and may not be optimal. Replace this with
299   // a well-tuned heuristic based on *callsite* hotness and not callee hotness.
300   uint64_t FunctionCount = 0, MaxFunctionCount = 0;
301   bool HasPGOCounts = false;
302   if (Callee->getEntryCount() &&
303       Callee->getParent()->getMaximumFunctionCount()) {
304     HasPGOCounts = true;
305     FunctionCount = Callee->getEntryCount().getValue();
306     MaxFunctionCount =
307         Callee->getParent()->getMaximumFunctionCount().getValue();
308   }
309 
310   // Listen to the inlinehint attribute or profile based hotness information
311   // when it would increase the threshold and the caller does not need to
312   // minimize its size.
313   bool InlineHint =
314       Callee->hasFnAttribute(Attribute::InlineHint) ||
315       (HasPGOCounts &&
316        FunctionCount >= (uint64_t)(0.3 * (double)MaxFunctionCount));
317   if (InlineHint && HintThreshold > Threshold &&
318       !Caller->hasFnAttribute(Attribute::MinSize))
319     Threshold = HintThreshold;
320 
321   // Listen to the cold attribute or profile based coldness information
322   // when it would decrease the threshold.
323   bool ColdCallee =
324       Callee->hasFnAttribute(Attribute::Cold) ||
325       (HasPGOCounts &&
326        FunctionCount <= (uint64_t)(0.01 * (double)MaxFunctionCount));
327   // Command line argument for InlineLimit will override the default
328   // ColdThreshold. If we have -inline-threshold but no -inlinecold-threshold,
329   // do not use the default cold threshold even if it is smaller.
330   if ((InlineLimit.getNumOccurrences() == 0 ||
331        ColdThreshold.getNumOccurrences() > 0) && ColdCallee &&
332       ColdThreshold < Threshold)
333     Threshold = ColdThreshold;
334 
335   return Threshold;
336 }
337 
emitAnalysis(CallSite CS,const Twine & Msg)338 static void emitAnalysis(CallSite CS, const Twine &Msg) {
339   Function *Caller = CS.getCaller();
340   LLVMContext &Ctx = Caller->getContext();
341   DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
342   emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg);
343 }
344 
345 /// Return true if the inliner should attempt to inline at the given CallSite.
shouldInline(CallSite CS)346 bool Inliner::shouldInline(CallSite CS) {
347   InlineCost IC = getInlineCost(CS);
348 
349   if (IC.isAlways()) {
350     DEBUG(dbgs() << "    Inlining: cost=always"
351           << ", Call: " << *CS.getInstruction() << "\n");
352     emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) +
353                          " should always be inlined (cost=always)");
354     return true;
355   }
356 
357   if (IC.isNever()) {
358     DEBUG(dbgs() << "    NOT Inlining: cost=never"
359           << ", Call: " << *CS.getInstruction() << "\n");
360     emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() +
361                            " should never be inlined (cost=never)"));
362     return false;
363   }
364 
365   Function *Caller = CS.getCaller();
366   if (!IC) {
367     DEBUG(dbgs() << "    NOT Inlining: cost=" << IC.getCost()
368           << ", thres=" << (IC.getCostDelta() + IC.getCost())
369           << ", Call: " << *CS.getInstruction() << "\n");
370     emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() +
371                            " too costly to inline (cost=") +
372                          Twine(IC.getCost()) + ", threshold=" +
373                          Twine(IC.getCostDelta() + IC.getCost()) + ")");
374     return false;
375   }
376 
377   // Try to detect the case where the current inlining candidate caller (call
378   // it B) is a static or linkonce-ODR function and is an inlining candidate
379   // elsewhere, and the current candidate callee (call it C) is large enough
380   // that inlining it into B would make B too big to inline later. In these
381   // circumstances it may be best not to inline C into B, but to inline B into
382   // its callers.
383   //
384   // This only applies to static and linkonce-ODR functions because those are
385   // expected to be available for inlining in the translation units where they
386   // are used. Thus we will always have the opportunity to make local inlining
387   // decisions. Importantly the linkonce-ODR linkage covers inline functions
388   // and templates in C++.
389   //
390   // FIXME: All of this logic should be sunk into getInlineCost. It relies on
391   // the internal implementation of the inline cost metrics rather than
392   // treating them as truly abstract units etc.
393   if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) {
394     int TotalSecondaryCost = 0;
395     // The candidate cost to be imposed upon the current function.
396     int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
397     // This bool tracks what happens if we do NOT inline C into B.
398     bool callerWillBeRemoved = Caller->hasLocalLinkage();
399     // This bool tracks what happens if we DO inline C into B.
400     bool inliningPreventsSomeOuterInline = false;
401     for (User *U : Caller->users()) {
402       CallSite CS2(U);
403 
404       // If this isn't a call to Caller (it could be some other sort
405       // of reference) skip it.  Such references will prevent the caller
406       // from being removed.
407       if (!CS2 || CS2.getCalledFunction() != Caller) {
408         callerWillBeRemoved = false;
409         continue;
410       }
411 
412       InlineCost IC2 = getInlineCost(CS2);
413       ++NumCallerCallersAnalyzed;
414       if (!IC2) {
415         callerWillBeRemoved = false;
416         continue;
417       }
418       if (IC2.isAlways())
419         continue;
420 
421       // See if inlining or original callsite would erase the cost delta of
422       // this callsite. We subtract off the penalty for the call instruction,
423       // which we would be deleting.
424       if (IC2.getCostDelta() <= CandidateCost) {
425         inliningPreventsSomeOuterInline = true;
426         TotalSecondaryCost += IC2.getCost();
427       }
428     }
429     // If all outer calls to Caller would get inlined, the cost for the last
430     // one is set very low by getInlineCost, in anticipation that Caller will
431     // be removed entirely.  We did not account for this above unless there
432     // is only one caller of Caller.
433     if (callerWillBeRemoved && !Caller->use_empty())
434       TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
435 
436     if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) {
437       DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction() <<
438            " Cost = " << IC.getCost() <<
439            ", outer Cost = " << TotalSecondaryCost << '\n');
440       emitAnalysis(
441           CS, Twine("Not inlining. Cost of inlining " +
442                     CS.getCalledFunction()->getName() +
443                     " increases the cost of inlining " +
444                     CS.getCaller()->getName() + " in other contexts"));
445       return false;
446     }
447   }
448 
449   DEBUG(dbgs() << "    Inlining: cost=" << IC.getCost()
450         << ", thres=" << (IC.getCostDelta() + IC.getCost())
451         << ", Call: " << *CS.getInstruction() << '\n');
452   emitAnalysis(
453       CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") +
454               CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) +
455               " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")");
456   return true;
457 }
458 
459 /// Return true if the specified inline history ID
460 /// indicates an inline history that includes the specified function.
InlineHistoryIncludes(Function * F,int InlineHistoryID,const SmallVectorImpl<std::pair<Function *,int>> & InlineHistory)461 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
462             const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
463   while (InlineHistoryID != -1) {
464     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
465            "Invalid inline history ID");
466     if (InlineHistory[InlineHistoryID].first == F)
467       return true;
468     InlineHistoryID = InlineHistory[InlineHistoryID].second;
469   }
470   return false;
471 }
472 
runOnSCC(CallGraphSCC & SCC)473 bool Inliner::runOnSCC(CallGraphSCC &SCC) {
474   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
475   AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>();
476   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
477 
478   SmallPtrSet<Function*, 8> SCCFunctions;
479   DEBUG(dbgs() << "Inliner visiting SCC:");
480   for (CallGraphNode *Node : SCC) {
481     Function *F = Node->getFunction();
482     if (F) SCCFunctions.insert(F);
483     DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
484   }
485 
486   // Scan through and identify all call sites ahead of time so that we only
487   // inline call sites in the original functions, not call sites that result
488   // from inlining other functions.
489   SmallVector<std::pair<CallSite, int>, 16> CallSites;
490 
491   // When inlining a callee produces new call sites, we want to keep track of
492   // the fact that they were inlined from the callee.  This allows us to avoid
493   // infinite inlining in some obscure cases.  To represent this, we use an
494   // index into the InlineHistory vector.
495   SmallVector<std::pair<Function*, int>, 8> InlineHistory;
496 
497   for (CallGraphNode *Node : SCC) {
498     Function *F = Node->getFunction();
499     if (!F) continue;
500 
501     for (BasicBlock &BB : *F)
502       for (Instruction &I : BB) {
503         CallSite CS(cast<Value>(&I));
504         // If this isn't a call, or it is a call to an intrinsic, it can
505         // never be inlined.
506         if (!CS || isa<IntrinsicInst>(I))
507           continue;
508 
509         // If this is a direct call to an external function, we can never inline
510         // it.  If it is an indirect call, inlining may resolve it to be a
511         // direct call, so we keep it.
512         if (Function *Callee = CS.getCalledFunction())
513           if (Callee->isDeclaration())
514             continue;
515 
516         CallSites.push_back(std::make_pair(CS, -1));
517       }
518   }
519 
520   DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
521 
522   // If there are no calls in this function, exit early.
523   if (CallSites.empty())
524     return false;
525 
526   // Now that we have all of the call sites, move the ones to functions in the
527   // current SCC to the end of the list.
528   unsigned FirstCallInSCC = CallSites.size();
529   for (unsigned i = 0; i < FirstCallInSCC; ++i)
530     if (Function *F = CallSites[i].first.getCalledFunction())
531       if (SCCFunctions.count(F))
532         std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
533 
534 
535   InlinedArrayAllocasTy InlinedArrayAllocas;
536   InlineFunctionInfo InlineInfo(&CG, ACT);
537 
538   // Now that we have all of the call sites, loop over them and inline them if
539   // it looks profitable to do so.
540   bool Changed = false;
541   bool LocalChange;
542   do {
543     LocalChange = false;
544     // Iterate over the outer loop because inlining functions can cause indirect
545     // calls to become direct calls.
546     // CallSites may be modified inside so ranged for loop can not be used.
547     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
548       CallSite CS = CallSites[CSi].first;
549 
550       Function *Caller = CS.getCaller();
551       Function *Callee = CS.getCalledFunction();
552 
553       // If this call site is dead and it is to a readonly function, we should
554       // just delete the call instead of trying to inline it, regardless of
555       // size.  This happens because IPSCCP propagates the result out of the
556       // call and then we're left with the dead call.
557       if (isInstructionTriviallyDead(CS.getInstruction(), &TLI)) {
558         DEBUG(dbgs() << "    -> Deleting dead call: "
559                      << *CS.getInstruction() << "\n");
560         // Update the call graph by deleting the edge from Callee to Caller.
561         CG[Caller]->removeCallEdgeFor(CS);
562         CS.getInstruction()->eraseFromParent();
563         ++NumCallsDeleted;
564       } else {
565         // We can only inline direct calls to non-declarations.
566         if (!Callee || Callee->isDeclaration()) continue;
567 
568         // If this call site was obtained by inlining another function, verify
569         // that the include path for the function did not include the callee
570         // itself.  If so, we'd be recursively inlining the same function,
571         // which would provide the same callsites, which would cause us to
572         // infinitely inline.
573         int InlineHistoryID = CallSites[CSi].second;
574         if (InlineHistoryID != -1 &&
575             InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
576           continue;
577 
578         LLVMContext &CallerCtx = Caller->getContext();
579 
580         // Get DebugLoc to report. CS will be invalid after Inliner.
581         DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
582 
583         // If the policy determines that we should inline this function,
584         // try to do so.
585         if (!shouldInline(CS)) {
586           emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc,
587                                        Twine(Callee->getName() +
588                                              " will not be inlined into " +
589                                              Caller->getName()));
590           continue;
591         }
592 
593         // Attempt to inline the function.
594         if (!InlineCallIfPossible(*this, CS, InlineInfo, InlinedArrayAllocas,
595                                   InlineHistoryID, InsertLifetime)) {
596           emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc,
597                                        Twine(Callee->getName() +
598                                              " will not be inlined into " +
599                                              Caller->getName()));
600           continue;
601         }
602         ++NumInlined;
603 
604         // Report the inline decision.
605         emitOptimizationRemark(
606             CallerCtx, DEBUG_TYPE, *Caller, DLoc,
607             Twine(Callee->getName() + " inlined into " + Caller->getName()));
608 
609         // If inlining this function gave us any new call sites, throw them
610         // onto our worklist to process.  They are useful inline candidates.
611         if (!InlineInfo.InlinedCalls.empty()) {
612           // Create a new inline history entry for this, so that we remember
613           // that these new callsites came about due to inlining Callee.
614           int NewHistoryID = InlineHistory.size();
615           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
616 
617           for (Value *Ptr : InlineInfo.InlinedCalls)
618             CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
619         }
620       }
621 
622       // If we inlined or deleted the last possible call site to the function,
623       // delete the function body now.
624       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
625           // TODO: Can remove if in SCC now.
626           !SCCFunctions.count(Callee) &&
627 
628           // The function may be apparently dead, but if there are indirect
629           // callgraph references to the node, we cannot delete it yet, this
630           // could invalidate the CGSCC iterator.
631           CG[Callee]->getNumReferences() == 0) {
632         DEBUG(dbgs() << "    -> Deleting dead function: "
633               << Callee->getName() << "\n");
634         CallGraphNode *CalleeNode = CG[Callee];
635 
636         // Remove any call graph edges from the callee to its callees.
637         CalleeNode->removeAllCalledFunctions();
638 
639         // Removing the node for callee from the call graph and delete it.
640         delete CG.removeFunctionFromModule(CalleeNode);
641         ++NumDeleted;
642       }
643 
644       // Remove this call site from the list.  If possible, use
645       // swap/pop_back for efficiency, but do not use it if doing so would
646       // move a call site to a function in this SCC before the
647       // 'FirstCallInSCC' barrier.
648       if (SCC.isSingular()) {
649         CallSites[CSi] = CallSites.back();
650         CallSites.pop_back();
651       } else {
652         CallSites.erase(CallSites.begin()+CSi);
653       }
654       --CSi;
655 
656       Changed = true;
657       LocalChange = true;
658     }
659   } while (LocalChange);
660 
661   return Changed;
662 }
663 
664 /// Remove now-dead linkonce functions at the end of
665 /// processing to avoid breaking the SCC traversal.
doFinalization(CallGraph & CG)666 bool Inliner::doFinalization(CallGraph &CG) {
667   return removeDeadFunctions(CG);
668 }
669 
670 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
removeDeadFunctions(CallGraph & CG,bool AlwaysInlineOnly)671 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
672   SmallVector<CallGraphNode*, 16> FunctionsToRemove;
673   SmallVector<CallGraphNode *, 16> DeadFunctionsInComdats;
674   SmallDenseMap<const Comdat *, int, 16> ComdatEntriesAlive;
675 
676   auto RemoveCGN = [&](CallGraphNode *CGN) {
677     // Remove any call graph edges from the function to its callees.
678     CGN->removeAllCalledFunctions();
679 
680     // Remove any edges from the external node to the function's call graph
681     // node.  These edges might have been made irrelegant due to
682     // optimization of the program.
683     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
684 
685     // Removing the node for callee from the call graph and delete it.
686     FunctionsToRemove.push_back(CGN);
687   };
688 
689   // Scan for all of the functions, looking for ones that should now be removed
690   // from the program.  Insert the dead ones in the FunctionsToRemove set.
691   for (const auto &I : CG) {
692     CallGraphNode *CGN = I.second.get();
693     Function *F = CGN->getFunction();
694     if (!F || F->isDeclaration())
695       continue;
696 
697     // Handle the case when this function is called and we only want to care
698     // about always-inline functions. This is a bit of a hack to share code
699     // between here and the InlineAlways pass.
700     if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
701       continue;
702 
703     // If the only remaining users of the function are dead constants, remove
704     // them.
705     F->removeDeadConstantUsers();
706 
707     if (!F->isDefTriviallyDead())
708       continue;
709 
710     // It is unsafe to drop a function with discardable linkage from a COMDAT
711     // without also dropping the other members of the COMDAT.
712     // The inliner doesn't visit non-function entities which are in COMDAT
713     // groups so it is unsafe to do so *unless* the linkage is local.
714     if (!F->hasLocalLinkage()) {
715       if (const Comdat *C = F->getComdat()) {
716         --ComdatEntriesAlive[C];
717         DeadFunctionsInComdats.push_back(CGN);
718         continue;
719       }
720     }
721 
722     RemoveCGN(CGN);
723   }
724   if (!DeadFunctionsInComdats.empty()) {
725     // Count up all the entities in COMDAT groups
726     auto ComdatGroupReferenced = [&](const Comdat *C) {
727       auto I = ComdatEntriesAlive.find(C);
728       if (I != ComdatEntriesAlive.end())
729         ++(I->getSecond());
730     };
731     for (const Function &F : CG.getModule())
732       if (const Comdat *C = F.getComdat())
733         ComdatGroupReferenced(C);
734     for (const GlobalVariable &GV : CG.getModule().globals())
735       if (const Comdat *C = GV.getComdat())
736         ComdatGroupReferenced(C);
737     for (const GlobalAlias &GA : CG.getModule().aliases())
738       if (const Comdat *C = GA.getComdat())
739         ComdatGroupReferenced(C);
740     for (CallGraphNode *CGN : DeadFunctionsInComdats) {
741       Function *F = CGN->getFunction();
742       const Comdat *C = F->getComdat();
743       int NumAlive = ComdatEntriesAlive[C];
744       // We can remove functions in a COMDAT group if the entire group is dead.
745       assert(NumAlive >= 0);
746       if (NumAlive > 0)
747         continue;
748 
749       RemoveCGN(CGN);
750     }
751   }
752 
753   if (FunctionsToRemove.empty())
754     return false;
755 
756   // Now that we know which functions to delete, do so.  We didn't want to do
757   // this inline, because that would invalidate our CallGraph::iterator
758   // objects. :(
759   //
760   // Note that it doesn't matter that we are iterating over a non-stable order
761   // here to do this, it doesn't matter which order the functions are deleted
762   // in.
763   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
764   FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(),
765                                       FunctionsToRemove.end()),
766                           FunctionsToRemove.end());
767   for (CallGraphNode *CGN : FunctionsToRemove) {
768     delete CG.removeFunctionFromModule(CGN);
769     ++NumDeleted;
770   }
771   return true;
772 }
773