1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AArch64TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AArch64ISelLowering.h"
15 #include "AArch64CallingConvention.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64PerfectShuffle.h"
18 #include "AArch64Subtarget.h"
19 #include "AArch64TargetMachine.h"
20 #include "AArch64TargetObjectFile.h"
21 #include "MCTargetDesc/AArch64AddressingModes.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GetElementPtrTypeIterator.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetOptions.h"
36 using namespace llvm;
37
38 #define DEBUG_TYPE "aarch64-lower"
39
40 STATISTIC(NumTailCalls, "Number of tail calls");
41 STATISTIC(NumShiftInserts, "Number of vector shift inserts");
42
43 // Place holder until extr generation is tested fully.
44 static cl::opt<bool>
45 EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
46 cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
47 cl::init(true));
48
49 static cl::opt<bool>
50 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
51 cl::desc("Allow AArch64 SLI/SRI formation"),
52 cl::init(false));
53
54 // FIXME: The necessary dtprel relocations don't seem to be supported
55 // well in the GNU bfd and gold linkers at the moment. Therefore, by
56 // default, for now, fall back to GeneralDynamic code generation.
57 cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
58 "aarch64-elf-ldtls-generation", cl::Hidden,
59 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
60 cl::init(false));
61
62 /// Value type used for condition codes.
63 static const MVT MVT_CC = MVT::i32;
64
AArch64TargetLowering(const TargetMachine & TM,const AArch64Subtarget & STI)65 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
66 const AArch64Subtarget &STI)
67 : TargetLowering(TM), Subtarget(&STI) {
68
69 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
70 // we have to make something up. Arbitrarily, choose ZeroOrOne.
71 setBooleanContents(ZeroOrOneBooleanContent);
72 // When comparing vectors the result sets the different elements in the
73 // vector to all-one or all-zero.
74 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
75
76 // Set up the register classes.
77 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
78 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
79
80 if (Subtarget->hasFPARMv8()) {
81 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
82 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
83 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
84 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
85 }
86
87 if (Subtarget->hasNEON()) {
88 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
89 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
90 // Someone set us up the NEON.
91 addDRTypeForNEON(MVT::v2f32);
92 addDRTypeForNEON(MVT::v8i8);
93 addDRTypeForNEON(MVT::v4i16);
94 addDRTypeForNEON(MVT::v2i32);
95 addDRTypeForNEON(MVT::v1i64);
96 addDRTypeForNEON(MVT::v1f64);
97 addDRTypeForNEON(MVT::v4f16);
98
99 addQRTypeForNEON(MVT::v4f32);
100 addQRTypeForNEON(MVT::v2f64);
101 addQRTypeForNEON(MVT::v16i8);
102 addQRTypeForNEON(MVT::v8i16);
103 addQRTypeForNEON(MVT::v4i32);
104 addQRTypeForNEON(MVT::v2i64);
105 addQRTypeForNEON(MVT::v8f16);
106 }
107
108 // Compute derived properties from the register classes
109 computeRegisterProperties(Subtarget->getRegisterInfo());
110
111 // Provide all sorts of operation actions
112 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
113 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
114 setOperationAction(ISD::SETCC, MVT::i32, Custom);
115 setOperationAction(ISD::SETCC, MVT::i64, Custom);
116 setOperationAction(ISD::SETCC, MVT::f32, Custom);
117 setOperationAction(ISD::SETCC, MVT::f64, Custom);
118 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
119 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
120 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
121 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
122 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
123 setOperationAction(ISD::SELECT, MVT::i32, Custom);
124 setOperationAction(ISD::SELECT, MVT::i64, Custom);
125 setOperationAction(ISD::SELECT, MVT::f32, Custom);
126 setOperationAction(ISD::SELECT, MVT::f64, Custom);
127 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
128 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
129 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
130 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
131 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
132 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
133
134 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
135 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
136 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
137
138 setOperationAction(ISD::FREM, MVT::f32, Expand);
139 setOperationAction(ISD::FREM, MVT::f64, Expand);
140 setOperationAction(ISD::FREM, MVT::f80, Expand);
141
142 // Custom lowering hooks are needed for XOR
143 // to fold it into CSINC/CSINV.
144 setOperationAction(ISD::XOR, MVT::i32, Custom);
145 setOperationAction(ISD::XOR, MVT::i64, Custom);
146
147 // Virtually no operation on f128 is legal, but LLVM can't expand them when
148 // there's a valid register class, so we need custom operations in most cases.
149 setOperationAction(ISD::FABS, MVT::f128, Expand);
150 setOperationAction(ISD::FADD, MVT::f128, Custom);
151 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
152 setOperationAction(ISD::FCOS, MVT::f128, Expand);
153 setOperationAction(ISD::FDIV, MVT::f128, Custom);
154 setOperationAction(ISD::FMA, MVT::f128, Expand);
155 setOperationAction(ISD::FMUL, MVT::f128, Custom);
156 setOperationAction(ISD::FNEG, MVT::f128, Expand);
157 setOperationAction(ISD::FPOW, MVT::f128, Expand);
158 setOperationAction(ISD::FREM, MVT::f128, Expand);
159 setOperationAction(ISD::FRINT, MVT::f128, Expand);
160 setOperationAction(ISD::FSIN, MVT::f128, Expand);
161 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
162 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
163 setOperationAction(ISD::FSUB, MVT::f128, Custom);
164 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
165 setOperationAction(ISD::SETCC, MVT::f128, Custom);
166 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
167 setOperationAction(ISD::SELECT, MVT::f128, Custom);
168 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
169 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
170
171 // Lowering for many of the conversions is actually specified by the non-f128
172 // type. The LowerXXX function will be trivial when f128 isn't involved.
173 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
174 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
175 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
176 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
177 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
178 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
179 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
180 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
181 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
182 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
183 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
184 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
185 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
186 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
187
188 // Variable arguments.
189 setOperationAction(ISD::VASTART, MVT::Other, Custom);
190 setOperationAction(ISD::VAARG, MVT::Other, Custom);
191 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
192 setOperationAction(ISD::VAEND, MVT::Other, Expand);
193
194 // Variable-sized objects.
195 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
196 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
197 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
198
199 // Constant pool entries
200 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
201
202 // BlockAddress
203 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
204
205 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
206 setOperationAction(ISD::ADDC, MVT::i32, Custom);
207 setOperationAction(ISD::ADDE, MVT::i32, Custom);
208 setOperationAction(ISD::SUBC, MVT::i32, Custom);
209 setOperationAction(ISD::SUBE, MVT::i32, Custom);
210 setOperationAction(ISD::ADDC, MVT::i64, Custom);
211 setOperationAction(ISD::ADDE, MVT::i64, Custom);
212 setOperationAction(ISD::SUBC, MVT::i64, Custom);
213 setOperationAction(ISD::SUBE, MVT::i64, Custom);
214
215 // AArch64 lacks both left-rotate and popcount instructions.
216 setOperationAction(ISD::ROTL, MVT::i32, Expand);
217 setOperationAction(ISD::ROTL, MVT::i64, Expand);
218 for (MVT VT : MVT::vector_valuetypes()) {
219 setOperationAction(ISD::ROTL, VT, Expand);
220 setOperationAction(ISD::ROTR, VT, Expand);
221 }
222
223 // AArch64 doesn't have {U|S}MUL_LOHI.
224 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
225 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
226
227
228 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
229 // counterparts, which AArch64 supports directly.
230 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
231 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
232 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
233 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
234
235 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
236 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
237
238 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
239 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
240 for (MVT VT : MVT::vector_valuetypes()) {
241 setOperationAction(ISD::SDIVREM, VT, Expand);
242 setOperationAction(ISD::UDIVREM, VT, Expand);
243 }
244 setOperationAction(ISD::SREM, MVT::i32, Expand);
245 setOperationAction(ISD::SREM, MVT::i64, Expand);
246 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
247 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
248 setOperationAction(ISD::UREM, MVT::i32, Expand);
249 setOperationAction(ISD::UREM, MVT::i64, Expand);
250
251 // Custom lower Add/Sub/Mul with overflow.
252 setOperationAction(ISD::SADDO, MVT::i32, Custom);
253 setOperationAction(ISD::SADDO, MVT::i64, Custom);
254 setOperationAction(ISD::UADDO, MVT::i32, Custom);
255 setOperationAction(ISD::UADDO, MVT::i64, Custom);
256 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
257 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
258 setOperationAction(ISD::USUBO, MVT::i32, Custom);
259 setOperationAction(ISD::USUBO, MVT::i64, Custom);
260 setOperationAction(ISD::SMULO, MVT::i32, Custom);
261 setOperationAction(ISD::SMULO, MVT::i64, Custom);
262 setOperationAction(ISD::UMULO, MVT::i32, Custom);
263 setOperationAction(ISD::UMULO, MVT::i64, Custom);
264
265 setOperationAction(ISD::FSIN, MVT::f32, Expand);
266 setOperationAction(ISD::FSIN, MVT::f64, Expand);
267 setOperationAction(ISD::FCOS, MVT::f32, Expand);
268 setOperationAction(ISD::FCOS, MVT::f64, Expand);
269 setOperationAction(ISD::FPOW, MVT::f32, Expand);
270 setOperationAction(ISD::FPOW, MVT::f64, Expand);
271 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
272 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
273
274 // f16 is a storage-only type, always promote it to f32.
275 setOperationAction(ISD::SETCC, MVT::f16, Promote);
276 setOperationAction(ISD::BR_CC, MVT::f16, Promote);
277 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
278 setOperationAction(ISD::SELECT, MVT::f16, Promote);
279 setOperationAction(ISD::FADD, MVT::f16, Promote);
280 setOperationAction(ISD::FSUB, MVT::f16, Promote);
281 setOperationAction(ISD::FMUL, MVT::f16, Promote);
282 setOperationAction(ISD::FDIV, MVT::f16, Promote);
283 setOperationAction(ISD::FREM, MVT::f16, Promote);
284 setOperationAction(ISD::FMA, MVT::f16, Promote);
285 setOperationAction(ISD::FNEG, MVT::f16, Promote);
286 setOperationAction(ISD::FABS, MVT::f16, Promote);
287 setOperationAction(ISD::FCEIL, MVT::f16, Promote);
288 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
289 setOperationAction(ISD::FCOS, MVT::f16, Promote);
290 setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
291 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
292 setOperationAction(ISD::FPOW, MVT::f16, Promote);
293 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
294 setOperationAction(ISD::FRINT, MVT::f16, Promote);
295 setOperationAction(ISD::FSIN, MVT::f16, Promote);
296 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
297 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
298 setOperationAction(ISD::FEXP, MVT::f16, Promote);
299 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
300 setOperationAction(ISD::FLOG, MVT::f16, Promote);
301 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
302 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
303 setOperationAction(ISD::FROUND, MVT::f16, Promote);
304 setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
305 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
306 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
307 setOperationAction(ISD::FMINNAN, MVT::f16, Promote);
308 setOperationAction(ISD::FMAXNAN, MVT::f16, Promote);
309
310 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
311 // known to be safe.
312 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
313 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
314 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
315 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
316 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
317 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
318 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
319 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
320 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
321 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
322 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
323 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
324
325 // Expand all other v4f16 operations.
326 // FIXME: We could generate better code by promoting some operations to
327 // a pair of v4f32s
328 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
329 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
330 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
331 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
332 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
333 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
334 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
335 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
336 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
337 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
338 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
339 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
340 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
341 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
342 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
343 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
344 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
345 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
346 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
347 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
348 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
349 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
350 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
351 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
352 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
353 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
354
355
356 // v8f16 is also a storage-only type, so expand it.
357 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
358 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
359 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
360 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
361 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
362 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
363 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
364 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
365 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
366 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
367 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
368 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
369 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
370 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
371 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
372 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
373 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
374 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
375 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
376 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
377 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
378 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
379 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
380 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
381 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
382 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
383 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
384 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
385 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
386 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
387 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
388
389 // AArch64 has implementations of a lot of rounding-like FP operations.
390 for (MVT Ty : {MVT::f32, MVT::f64}) {
391 setOperationAction(ISD::FFLOOR, Ty, Legal);
392 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
393 setOperationAction(ISD::FCEIL, Ty, Legal);
394 setOperationAction(ISD::FRINT, Ty, Legal);
395 setOperationAction(ISD::FTRUNC, Ty, Legal);
396 setOperationAction(ISD::FROUND, Ty, Legal);
397 setOperationAction(ISD::FMINNUM, Ty, Legal);
398 setOperationAction(ISD::FMAXNUM, Ty, Legal);
399 setOperationAction(ISD::FMINNAN, Ty, Legal);
400 setOperationAction(ISD::FMAXNAN, Ty, Legal);
401 }
402
403 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
404
405 // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
406 // This requires the Performance Monitors extension.
407 if (Subtarget->hasPerfMon())
408 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
409
410 if (Subtarget->isTargetMachO()) {
411 // For iOS, we don't want to the normal expansion of a libcall to
412 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
413 // traffic.
414 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
415 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
416 } else {
417 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
418 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
419 }
420
421 // Make floating-point constants legal for the large code model, so they don't
422 // become loads from the constant pool.
423 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
424 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
425 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
426 }
427
428 // AArch64 does not have floating-point extending loads, i1 sign-extending
429 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
430 for (MVT VT : MVT::fp_valuetypes()) {
431 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
432 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
433 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
434 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
435 }
436 for (MVT VT : MVT::integer_valuetypes())
437 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
438
439 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
440 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
441 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
442 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
443 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
444 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
445 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
446
447 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
448 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
449
450 // Indexed loads and stores are supported.
451 for (unsigned im = (unsigned)ISD::PRE_INC;
452 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
453 setIndexedLoadAction(im, MVT::i8, Legal);
454 setIndexedLoadAction(im, MVT::i16, Legal);
455 setIndexedLoadAction(im, MVT::i32, Legal);
456 setIndexedLoadAction(im, MVT::i64, Legal);
457 setIndexedLoadAction(im, MVT::f64, Legal);
458 setIndexedLoadAction(im, MVT::f32, Legal);
459 setIndexedLoadAction(im, MVT::f16, Legal);
460 setIndexedStoreAction(im, MVT::i8, Legal);
461 setIndexedStoreAction(im, MVT::i16, Legal);
462 setIndexedStoreAction(im, MVT::i32, Legal);
463 setIndexedStoreAction(im, MVT::i64, Legal);
464 setIndexedStoreAction(im, MVT::f64, Legal);
465 setIndexedStoreAction(im, MVT::f32, Legal);
466 setIndexedStoreAction(im, MVT::f16, Legal);
467 }
468
469 // Trap.
470 setOperationAction(ISD::TRAP, MVT::Other, Legal);
471
472 // We combine OR nodes for bitfield operations.
473 setTargetDAGCombine(ISD::OR);
474
475 // Vector add and sub nodes may conceal a high-half opportunity.
476 // Also, try to fold ADD into CSINC/CSINV..
477 setTargetDAGCombine(ISD::ADD);
478 setTargetDAGCombine(ISD::SUB);
479
480 setTargetDAGCombine(ISD::XOR);
481 setTargetDAGCombine(ISD::SINT_TO_FP);
482 setTargetDAGCombine(ISD::UINT_TO_FP);
483
484 setTargetDAGCombine(ISD::FP_TO_SINT);
485 setTargetDAGCombine(ISD::FP_TO_UINT);
486 setTargetDAGCombine(ISD::FDIV);
487
488 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
489
490 setTargetDAGCombine(ISD::ANY_EXTEND);
491 setTargetDAGCombine(ISD::ZERO_EXTEND);
492 setTargetDAGCombine(ISD::SIGN_EXTEND);
493 setTargetDAGCombine(ISD::BITCAST);
494 setTargetDAGCombine(ISD::CONCAT_VECTORS);
495 setTargetDAGCombine(ISD::STORE);
496 if (Subtarget->supportsAddressTopByteIgnored())
497 setTargetDAGCombine(ISD::LOAD);
498
499 setTargetDAGCombine(ISD::MUL);
500
501 setTargetDAGCombine(ISD::SELECT);
502 setTargetDAGCombine(ISD::VSELECT);
503
504 setTargetDAGCombine(ISD::INTRINSIC_VOID);
505 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
506 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
507 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
508
509 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
510 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
511 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
512
513 setStackPointerRegisterToSaveRestore(AArch64::SP);
514
515 setSchedulingPreference(Sched::Hybrid);
516
517 // Enable TBZ/TBNZ
518 MaskAndBranchFoldingIsLegal = true;
519 EnableExtLdPromotion = true;
520
521 setMinFunctionAlignment(2);
522
523 setHasExtractBitsInsn(true);
524
525 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
526
527 if (Subtarget->hasNEON()) {
528 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
529 // silliness like this:
530 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
531 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
532 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
533 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
534 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
535 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
536 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
537 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
538 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
539 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
540 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
541 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
542 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
543 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
544 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
545 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
546 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
547 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
548 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
549 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
550 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
551 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
552 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
553 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
554 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
555
556 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
557 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
558 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
559 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
560 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
561
562 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
563
564 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
565 // elements smaller than i32, so promote the input to i32 first.
566 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
567 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
568 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
569 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
570 // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
571 // -> v8f16 conversions.
572 setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Promote);
573 setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Promote);
574 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
575 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Promote);
576 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
577 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
578 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
579 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
580 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
581 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the
582 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
583 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
584 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
585
586 // AArch64 doesn't have MUL.2d:
587 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
588 // Custom handling for some quad-vector types to detect MULL.
589 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
590 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
591 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
592
593 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
594 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
595 // Likewise, narrowing and extending vector loads/stores aren't handled
596 // directly.
597 for (MVT VT : MVT::vector_valuetypes()) {
598 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
599
600 setOperationAction(ISD::MULHS, VT, Expand);
601 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
602 setOperationAction(ISD::MULHU, VT, Expand);
603 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
604
605 setOperationAction(ISD::BSWAP, VT, Expand);
606
607 for (MVT InnerVT : MVT::vector_valuetypes()) {
608 setTruncStoreAction(VT, InnerVT, Expand);
609 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
610 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
611 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
612 }
613 }
614
615 // AArch64 has implementations of a lot of rounding-like FP operations.
616 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
617 setOperationAction(ISD::FFLOOR, Ty, Legal);
618 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
619 setOperationAction(ISD::FCEIL, Ty, Legal);
620 setOperationAction(ISD::FRINT, Ty, Legal);
621 setOperationAction(ISD::FTRUNC, Ty, Legal);
622 setOperationAction(ISD::FROUND, Ty, Legal);
623 }
624 }
625
626 // Prefer likely predicted branches to selects on out-of-order cores.
627 if (Subtarget->isCortexA57())
628 PredictableSelectIsExpensive = true;
629 }
630
addTypeForNEON(EVT VT,EVT PromotedBitwiseVT)631 void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
632 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
633 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
634 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
635
636 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
637 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
638 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
639 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
640 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
641
642 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
643 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
644 }
645
646 // Mark vector float intrinsics as expand.
647 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
648 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
649 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
650 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
651 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
652 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
653 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
654 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
655 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
656 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
657
658 // But we do support custom-lowering for FCOPYSIGN.
659 setOperationAction(ISD::FCOPYSIGN, VT.getSimpleVT(), Custom);
660 }
661
662 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
663 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
664 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
665 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
666 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
667 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
668 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
669 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
670 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
671 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
672 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
673 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
674
675 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
676 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
677 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
678 for (MVT InnerVT : MVT::all_valuetypes())
679 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT.getSimpleVT(), Expand);
680
681 // CNT supports only B element sizes.
682 if (VT != MVT::v8i8 && VT != MVT::v16i8)
683 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
684
685 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
686 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
687 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
688 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
689 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
690
691 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
692 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
693
694 // [SU][MIN|MAX] are available for all NEON types apart from i64.
695 if (!VT.isFloatingPoint() &&
696 VT.getSimpleVT() != MVT::v2i64 && VT.getSimpleVT() != MVT::v1i64)
697 for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
698 setOperationAction(Opcode, VT.getSimpleVT(), Legal);
699
700 // F[MIN|MAX][NUM|NAN] are available for all FP NEON types (not f16 though!).
701 if (VT.isFloatingPoint() && VT.getVectorElementType() != MVT::f16)
702 for (unsigned Opcode : {ISD::FMINNAN, ISD::FMAXNAN,
703 ISD::FMINNUM, ISD::FMAXNUM})
704 setOperationAction(Opcode, VT.getSimpleVT(), Legal);
705
706 if (Subtarget->isLittleEndian()) {
707 for (unsigned im = (unsigned)ISD::PRE_INC;
708 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
709 setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
710 setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
711 }
712 }
713 }
714
addDRTypeForNEON(MVT VT)715 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
716 addRegisterClass(VT, &AArch64::FPR64RegClass);
717 addTypeForNEON(VT, MVT::v2i32);
718 }
719
addQRTypeForNEON(MVT VT)720 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
721 addRegisterClass(VT, &AArch64::FPR128RegClass);
722 addTypeForNEON(VT, MVT::v4i32);
723 }
724
getSetCCResultType(const DataLayout &,LLVMContext &,EVT VT) const725 EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
726 EVT VT) const {
727 if (!VT.isVector())
728 return MVT::i32;
729 return VT.changeVectorElementTypeToInteger();
730 }
731
732 /// computeKnownBitsForTargetNode - Determine which of the bits specified in
733 /// Mask are known to be either zero or one and return them in the
734 /// KnownZero/KnownOne bitsets.
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const735 void AArch64TargetLowering::computeKnownBitsForTargetNode(
736 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
737 const SelectionDAG &DAG, unsigned Depth) const {
738 switch (Op.getOpcode()) {
739 default:
740 break;
741 case AArch64ISD::CSEL: {
742 APInt KnownZero2, KnownOne2;
743 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
744 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
745 KnownZero &= KnownZero2;
746 KnownOne &= KnownOne2;
747 break;
748 }
749 case ISD::INTRINSIC_W_CHAIN: {
750 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
751 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
752 switch (IntID) {
753 default: return;
754 case Intrinsic::aarch64_ldaxr:
755 case Intrinsic::aarch64_ldxr: {
756 unsigned BitWidth = KnownOne.getBitWidth();
757 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
758 unsigned MemBits = VT.getScalarType().getSizeInBits();
759 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
760 return;
761 }
762 }
763 break;
764 }
765 case ISD::INTRINSIC_WO_CHAIN:
766 case ISD::INTRINSIC_VOID: {
767 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
768 switch (IntNo) {
769 default:
770 break;
771 case Intrinsic::aarch64_neon_umaxv:
772 case Intrinsic::aarch64_neon_uminv: {
773 // Figure out the datatype of the vector operand. The UMINV instruction
774 // will zero extend the result, so we can mark as known zero all the
775 // bits larger than the element datatype. 32-bit or larget doesn't need
776 // this as those are legal types and will be handled by isel directly.
777 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
778 unsigned BitWidth = KnownZero.getBitWidth();
779 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
780 assert(BitWidth >= 8 && "Unexpected width!");
781 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
782 KnownZero |= Mask;
783 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
784 assert(BitWidth >= 16 && "Unexpected width!");
785 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
786 KnownZero |= Mask;
787 }
788 break;
789 } break;
790 }
791 }
792 }
793 }
794
getScalarShiftAmountTy(const DataLayout & DL,EVT) const795 MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
796 EVT) const {
797 return MVT::i64;
798 }
799
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,unsigned Align,bool * Fast) const800 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
801 unsigned AddrSpace,
802 unsigned Align,
803 bool *Fast) const {
804 if (Subtarget->requiresStrictAlign())
805 return false;
806
807 // FIXME: This is mostly true for Cyclone, but not necessarily others.
808 if (Fast) {
809 // FIXME: Define an attribute for slow unaligned accesses instead of
810 // relying on the CPU type as a proxy.
811 // On Cyclone, unaligned 128-bit stores are slow.
812 *Fast = !Subtarget->isCyclone() || VT.getStoreSize() != 16 ||
813 // See comments in performSTORECombine() for more details about
814 // these conditions.
815
816 // Code that uses clang vector extensions can mark that it
817 // wants unaligned accesses to be treated as fast by
818 // underspecifying alignment to be 1 or 2.
819 Align <= 2 ||
820
821 // Disregard v2i64. Memcpy lowering produces those and splitting
822 // them regresses performance on micro-benchmarks and olden/bh.
823 VT == MVT::v2i64;
824 }
825 return true;
826 }
827
828 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const829 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
830 const TargetLibraryInfo *libInfo) const {
831 return AArch64::createFastISel(funcInfo, libInfo);
832 }
833
getTargetNodeName(unsigned Opcode) const834 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
835 switch ((AArch64ISD::NodeType)Opcode) {
836 case AArch64ISD::FIRST_NUMBER: break;
837 case AArch64ISD::CALL: return "AArch64ISD::CALL";
838 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
839 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
840 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
841 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
842 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
843 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
844 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
845 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
846 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
847 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
848 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
849 case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ";
850 case AArch64ISD::ADC: return "AArch64ISD::ADC";
851 case AArch64ISD::SBC: return "AArch64ISD::SBC";
852 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
853 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
854 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
855 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
856 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
857 case AArch64ISD::CCMP: return "AArch64ISD::CCMP";
858 case AArch64ISD::CCMN: return "AArch64ISD::CCMN";
859 case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP";
860 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
861 case AArch64ISD::DUP: return "AArch64ISD::DUP";
862 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
863 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
864 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
865 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
866 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
867 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
868 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
869 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
870 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
871 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
872 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
873 case AArch64ISD::BICi: return "AArch64ISD::BICi";
874 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
875 case AArch64ISD::BSL: return "AArch64ISD::BSL";
876 case AArch64ISD::NEG: return "AArch64ISD::NEG";
877 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
878 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
879 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
880 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
881 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
882 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
883 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
884 case AArch64ISD::REV16: return "AArch64ISD::REV16";
885 case AArch64ISD::REV32: return "AArch64ISD::REV32";
886 case AArch64ISD::REV64: return "AArch64ISD::REV64";
887 case AArch64ISD::EXT: return "AArch64ISD::EXT";
888 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
889 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
890 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
891 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
892 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
893 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
894 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
895 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
896 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
897 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
898 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
899 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
900 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
901 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
902 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
903 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
904 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
905 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
906 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
907 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
908 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
909 case AArch64ISD::SADDV: return "AArch64ISD::SADDV";
910 case AArch64ISD::UADDV: return "AArch64ISD::UADDV";
911 case AArch64ISD::SMINV: return "AArch64ISD::SMINV";
912 case AArch64ISD::UMINV: return "AArch64ISD::UMINV";
913 case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV";
914 case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV";
915 case AArch64ISD::NOT: return "AArch64ISD::NOT";
916 case AArch64ISD::BIT: return "AArch64ISD::BIT";
917 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
918 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
919 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
920 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
921 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
922 case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH";
923 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
924 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
925 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
926 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
927 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
928 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
929 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
930 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
931 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
932 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
933 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
934 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
935 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
936 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
937 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
938 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
939 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
940 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
941 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
942 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
943 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
944 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
945 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
946 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
947 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
948 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
949 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
950 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
951 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
952 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
953 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
954 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
955 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
956 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
957 }
958 return nullptr;
959 }
960
961 MachineBasicBlock *
EmitF128CSEL(MachineInstr * MI,MachineBasicBlock * MBB) const962 AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
963 MachineBasicBlock *MBB) const {
964 // We materialise the F128CSEL pseudo-instruction as some control flow and a
965 // phi node:
966
967 // OrigBB:
968 // [... previous instrs leading to comparison ...]
969 // b.ne TrueBB
970 // b EndBB
971 // TrueBB:
972 // ; Fallthrough
973 // EndBB:
974 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
975
976 MachineFunction *MF = MBB->getParent();
977 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
978 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
979 DebugLoc DL = MI->getDebugLoc();
980 MachineFunction::iterator It = ++MBB->getIterator();
981
982 unsigned DestReg = MI->getOperand(0).getReg();
983 unsigned IfTrueReg = MI->getOperand(1).getReg();
984 unsigned IfFalseReg = MI->getOperand(2).getReg();
985 unsigned CondCode = MI->getOperand(3).getImm();
986 bool NZCVKilled = MI->getOperand(4).isKill();
987
988 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
989 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
990 MF->insert(It, TrueBB);
991 MF->insert(It, EndBB);
992
993 // Transfer rest of current basic-block to EndBB
994 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
995 MBB->end());
996 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
997
998 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
999 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
1000 MBB->addSuccessor(TrueBB);
1001 MBB->addSuccessor(EndBB);
1002
1003 // TrueBB falls through to the end.
1004 TrueBB->addSuccessor(EndBB);
1005
1006 if (!NZCVKilled) {
1007 TrueBB->addLiveIn(AArch64::NZCV);
1008 EndBB->addLiveIn(AArch64::NZCV);
1009 }
1010
1011 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
1012 .addReg(IfTrueReg)
1013 .addMBB(TrueBB)
1014 .addReg(IfFalseReg)
1015 .addMBB(MBB);
1016
1017 MI->eraseFromParent();
1018 return EndBB;
1019 }
1020
1021 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * BB) const1022 AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1023 MachineBasicBlock *BB) const {
1024 switch (MI->getOpcode()) {
1025 default:
1026 #ifndef NDEBUG
1027 MI->dump();
1028 #endif
1029 llvm_unreachable("Unexpected instruction for custom inserter!");
1030
1031 case AArch64::F128CSEL:
1032 return EmitF128CSEL(MI, BB);
1033
1034 case TargetOpcode::STACKMAP:
1035 case TargetOpcode::PATCHPOINT:
1036 return emitPatchPoint(MI, BB);
1037 }
1038 }
1039
1040 //===----------------------------------------------------------------------===//
1041 // AArch64 Lowering private implementation.
1042 //===----------------------------------------------------------------------===//
1043
1044 //===----------------------------------------------------------------------===//
1045 // Lowering Code
1046 //===----------------------------------------------------------------------===//
1047
1048 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1049 /// CC
changeIntCCToAArch64CC(ISD::CondCode CC)1050 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1051 switch (CC) {
1052 default:
1053 llvm_unreachable("Unknown condition code!");
1054 case ISD::SETNE:
1055 return AArch64CC::NE;
1056 case ISD::SETEQ:
1057 return AArch64CC::EQ;
1058 case ISD::SETGT:
1059 return AArch64CC::GT;
1060 case ISD::SETGE:
1061 return AArch64CC::GE;
1062 case ISD::SETLT:
1063 return AArch64CC::LT;
1064 case ISD::SETLE:
1065 return AArch64CC::LE;
1066 case ISD::SETUGT:
1067 return AArch64CC::HI;
1068 case ISD::SETUGE:
1069 return AArch64CC::HS;
1070 case ISD::SETULT:
1071 return AArch64CC::LO;
1072 case ISD::SETULE:
1073 return AArch64CC::LS;
1074 }
1075 }
1076
1077 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
changeFPCCToAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)1078 static void changeFPCCToAArch64CC(ISD::CondCode CC,
1079 AArch64CC::CondCode &CondCode,
1080 AArch64CC::CondCode &CondCode2) {
1081 CondCode2 = AArch64CC::AL;
1082 switch (CC) {
1083 default:
1084 llvm_unreachable("Unknown FP condition!");
1085 case ISD::SETEQ:
1086 case ISD::SETOEQ:
1087 CondCode = AArch64CC::EQ;
1088 break;
1089 case ISD::SETGT:
1090 case ISD::SETOGT:
1091 CondCode = AArch64CC::GT;
1092 break;
1093 case ISD::SETGE:
1094 case ISD::SETOGE:
1095 CondCode = AArch64CC::GE;
1096 break;
1097 case ISD::SETOLT:
1098 CondCode = AArch64CC::MI;
1099 break;
1100 case ISD::SETOLE:
1101 CondCode = AArch64CC::LS;
1102 break;
1103 case ISD::SETONE:
1104 CondCode = AArch64CC::MI;
1105 CondCode2 = AArch64CC::GT;
1106 break;
1107 case ISD::SETO:
1108 CondCode = AArch64CC::VC;
1109 break;
1110 case ISD::SETUO:
1111 CondCode = AArch64CC::VS;
1112 break;
1113 case ISD::SETUEQ:
1114 CondCode = AArch64CC::EQ;
1115 CondCode2 = AArch64CC::VS;
1116 break;
1117 case ISD::SETUGT:
1118 CondCode = AArch64CC::HI;
1119 break;
1120 case ISD::SETUGE:
1121 CondCode = AArch64CC::PL;
1122 break;
1123 case ISD::SETLT:
1124 case ISD::SETULT:
1125 CondCode = AArch64CC::LT;
1126 break;
1127 case ISD::SETLE:
1128 case ISD::SETULE:
1129 CondCode = AArch64CC::LE;
1130 break;
1131 case ISD::SETNE:
1132 case ISD::SETUNE:
1133 CondCode = AArch64CC::NE;
1134 break;
1135 }
1136 }
1137
1138 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1139 /// CC usable with the vector instructions. Fewer operations are available
1140 /// without a real NZCV register, so we have to use less efficient combinations
1141 /// to get the same effect.
changeVectorFPCCToAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2,bool & Invert)1142 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1143 AArch64CC::CondCode &CondCode,
1144 AArch64CC::CondCode &CondCode2,
1145 bool &Invert) {
1146 Invert = false;
1147 switch (CC) {
1148 default:
1149 // Mostly the scalar mappings work fine.
1150 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1151 break;
1152 case ISD::SETUO:
1153 Invert = true; // Fallthrough
1154 case ISD::SETO:
1155 CondCode = AArch64CC::MI;
1156 CondCode2 = AArch64CC::GE;
1157 break;
1158 case ISD::SETUEQ:
1159 case ISD::SETULT:
1160 case ISD::SETULE:
1161 case ISD::SETUGT:
1162 case ISD::SETUGE:
1163 // All of the compare-mask comparisons are ordered, but we can switch
1164 // between the two by a double inversion. E.g. ULE == !OGT.
1165 Invert = true;
1166 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1167 break;
1168 }
1169 }
1170
isLegalArithImmed(uint64_t C)1171 static bool isLegalArithImmed(uint64_t C) {
1172 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1173 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1174 }
1175
emitComparison(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDLoc dl,SelectionDAG & DAG)1176 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1177 SDLoc dl, SelectionDAG &DAG) {
1178 EVT VT = LHS.getValueType();
1179
1180 if (VT.isFloatingPoint())
1181 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1182
1183 // The CMP instruction is just an alias for SUBS, and representing it as
1184 // SUBS means that it's possible to get CSE with subtract operations.
1185 // A later phase can perform the optimization of setting the destination
1186 // register to WZR/XZR if it ends up being unused.
1187 unsigned Opcode = AArch64ISD::SUBS;
1188
1189 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
1190 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1191 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1192 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1193 // can be set differently by this operation. It comes down to whether
1194 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1195 // everything is fine. If not then the optimization is wrong. Thus general
1196 // comparisons are only valid if op2 != 0.
1197
1198 // So, finally, the only LLVM-native comparisons that don't mention C and V
1199 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1200 // the absence of information about op2.
1201 Opcode = AArch64ISD::ADDS;
1202 RHS = RHS.getOperand(1);
1203 } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
1204 !isUnsignedIntSetCC(CC)) {
1205 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1206 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1207 // of the signed comparisons.
1208 Opcode = AArch64ISD::ANDS;
1209 RHS = LHS.getOperand(1);
1210 LHS = LHS.getOperand(0);
1211 }
1212
1213 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
1214 .getValue(1);
1215 }
1216
1217 /// \defgroup AArch64CCMP CMP;CCMP matching
1218 ///
1219 /// These functions deal with the formation of CMP;CCMP;... sequences.
1220 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1221 /// a comparison. They set the NZCV flags to a predefined value if their
1222 /// predicate is false. This allows to express arbitrary conjunctions, for
1223 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B))))"
1224 /// expressed as:
1225 /// cmp A
1226 /// ccmp B, inv(CB), CA
1227 /// check for CB flags
1228 ///
1229 /// In general we can create code for arbitrary "... (and (and A B) C)"
1230 /// sequences. We can also implement some "or" expressions, because "(or A B)"
1231 /// is equivalent to "not (and (not A) (not B))" and we can implement some
1232 /// negation operations:
1233 /// We can negate the results of a single comparison by inverting the flags
1234 /// used when the predicate fails and inverting the flags tested in the next
1235 /// instruction; We can also negate the results of the whole previous
1236 /// conditional compare sequence by inverting the flags tested in the next
1237 /// instruction. However there is no way to negate the result of a partial
1238 /// sequence.
1239 ///
1240 /// Therefore on encountering an "or" expression we can negate the subtree on
1241 /// one side and have to be able to push the negate to the leafs of the subtree
1242 /// on the other side (see also the comments in code). As complete example:
1243 /// "or (or (setCA (cmp A)) (setCB (cmp B)))
1244 /// (and (setCC (cmp C)) (setCD (cmp D)))"
1245 /// is transformed to
1246 /// "not (and (not (and (setCC (cmp C)) (setCC (cmp D))))
1247 /// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1248 /// and implemented as:
1249 /// cmp C
1250 /// ccmp D, inv(CD), CC
1251 /// ccmp A, CA, inv(CD)
1252 /// ccmp B, CB, inv(CA)
1253 /// check for CB flags
1254 /// A counterexample is "or (and A B) (and C D)" which cannot be implemented
1255 /// by conditional compare sequences.
1256 /// @{
1257
1258 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
emitConditionalComparison(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue CCOp,SDValue Condition,unsigned NZCV,SDLoc DL,SelectionDAG & DAG)1259 static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
1260 ISD::CondCode CC, SDValue CCOp,
1261 SDValue Condition, unsigned NZCV,
1262 SDLoc DL, SelectionDAG &DAG) {
1263 unsigned Opcode = 0;
1264 if (LHS.getValueType().isFloatingPoint())
1265 Opcode = AArch64ISD::FCCMP;
1266 else if (RHS.getOpcode() == ISD::SUB) {
1267 SDValue SubOp0 = RHS.getOperand(0);
1268 if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1269 // See emitComparison() on why we can only do this for SETEQ and SETNE.
1270 Opcode = AArch64ISD::CCMN;
1271 RHS = RHS.getOperand(1);
1272 }
1273 }
1274 if (Opcode == 0)
1275 Opcode = AArch64ISD::CCMP;
1276
1277 SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
1278 return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
1279 }
1280
1281 /// Returns true if @p Val is a tree of AND/OR/SETCC operations.
1282 /// CanPushNegate is set to true if we can push a negate operation through
1283 /// the tree in a was that we are left with AND operations and negate operations
1284 /// at the leafs only. i.e. "not (or (or x y) z)" can be changed to
1285 /// "and (and (not x) (not y)) (not z)"; "not (or (and x y) z)" cannot be
1286 /// brought into such a form.
isConjunctionDisjunctionTree(const SDValue Val,bool & CanPushNegate,unsigned Depth=0)1287 static bool isConjunctionDisjunctionTree(const SDValue Val, bool &CanPushNegate,
1288 unsigned Depth = 0) {
1289 if (!Val.hasOneUse())
1290 return false;
1291 unsigned Opcode = Val->getOpcode();
1292 if (Opcode == ISD::SETCC) {
1293 CanPushNegate = true;
1294 return true;
1295 }
1296 // Protect against stack overflow.
1297 if (Depth > 15)
1298 return false;
1299 if (Opcode == ISD::AND || Opcode == ISD::OR) {
1300 SDValue O0 = Val->getOperand(0);
1301 SDValue O1 = Val->getOperand(1);
1302 bool CanPushNegateL;
1303 if (!isConjunctionDisjunctionTree(O0, CanPushNegateL, Depth+1))
1304 return false;
1305 bool CanPushNegateR;
1306 if (!isConjunctionDisjunctionTree(O1, CanPushNegateR, Depth+1))
1307 return false;
1308 // We cannot push a negate through an AND operation (it would become an OR),
1309 // we can however change a (not (or x y)) to (and (not x) (not y)) if we can
1310 // push the negate through the x/y subtrees.
1311 CanPushNegate = (Opcode == ISD::OR) && CanPushNegateL && CanPushNegateR;
1312 return true;
1313 }
1314 return false;
1315 }
1316
1317 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1318 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1319 /// Tries to transform the given i1 producing node @p Val to a series compare
1320 /// and conditional compare operations. @returns an NZCV flags producing node
1321 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1322 /// transformation was not possible.
1323 /// On recursive invocations @p PushNegate may be set to true to have negation
1324 /// effects pushed to the tree leafs; @p Predicate is an NZCV flag predicate
1325 /// for the comparisons in the current subtree; @p Depth limits the search
1326 /// depth to avoid stack overflow.
emitConjunctionDisjunctionTree(SelectionDAG & DAG,SDValue Val,AArch64CC::CondCode & OutCC,bool PushNegate=false,SDValue CCOp=SDValue (),AArch64CC::CondCode Predicate=AArch64CC::AL,unsigned Depth=0)1327 static SDValue emitConjunctionDisjunctionTree(SelectionDAG &DAG, SDValue Val,
1328 AArch64CC::CondCode &OutCC, bool PushNegate = false,
1329 SDValue CCOp = SDValue(), AArch64CC::CondCode Predicate = AArch64CC::AL,
1330 unsigned Depth = 0) {
1331 // We're at a tree leaf, produce a conditional comparison operation.
1332 unsigned Opcode = Val->getOpcode();
1333 if (Opcode == ISD::SETCC) {
1334 SDValue LHS = Val->getOperand(0);
1335 SDValue RHS = Val->getOperand(1);
1336 ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
1337 bool isInteger = LHS.getValueType().isInteger();
1338 if (PushNegate)
1339 CC = getSetCCInverse(CC, isInteger);
1340 SDLoc DL(Val);
1341 // Determine OutCC and handle FP special case.
1342 if (isInteger) {
1343 OutCC = changeIntCCToAArch64CC(CC);
1344 } else {
1345 assert(LHS.getValueType().isFloatingPoint());
1346 AArch64CC::CondCode ExtraCC;
1347 changeFPCCToAArch64CC(CC, OutCC, ExtraCC);
1348 // Surpisingly some floating point conditions can't be tested with a
1349 // single condition code. Construct an additional comparison in this case.
1350 // See comment below on how we deal with OR conditions.
1351 if (ExtraCC != AArch64CC::AL) {
1352 SDValue ExtraCmp;
1353 if (!CCOp.getNode())
1354 ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
1355 else {
1356 SDValue ConditionOp = DAG.getConstant(Predicate, DL, MVT_CC);
1357 // Note that we want the inverse of ExtraCC, so NZCV is not inversed.
1358 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(ExtraCC);
1359 ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, ConditionOp,
1360 NZCV, DL, DAG);
1361 }
1362 CCOp = ExtraCmp;
1363 Predicate = AArch64CC::getInvertedCondCode(ExtraCC);
1364 OutCC = AArch64CC::getInvertedCondCode(OutCC);
1365 }
1366 }
1367
1368 // Produce a normal comparison if we are first in the chain
1369 if (!CCOp.getNode())
1370 return emitComparison(LHS, RHS, CC, DL, DAG);
1371 // Otherwise produce a ccmp.
1372 SDValue ConditionOp = DAG.getConstant(Predicate, DL, MVT_CC);
1373 AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
1374 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
1375 return emitConditionalComparison(LHS, RHS, CC, CCOp, ConditionOp, NZCV, DL,
1376 DAG);
1377 } else if ((Opcode != ISD::AND && Opcode != ISD::OR) || !Val->hasOneUse())
1378 return SDValue();
1379
1380 assert((Opcode == ISD::OR || !PushNegate)
1381 && "Can only push negate through OR operation");
1382
1383 // Check if both sides can be transformed.
1384 SDValue LHS = Val->getOperand(0);
1385 SDValue RHS = Val->getOperand(1);
1386 bool CanPushNegateL;
1387 if (!isConjunctionDisjunctionTree(LHS, CanPushNegateL, Depth+1))
1388 return SDValue();
1389 bool CanPushNegateR;
1390 if (!isConjunctionDisjunctionTree(RHS, CanPushNegateR, Depth+1))
1391 return SDValue();
1392
1393 // Do we need to negate our operands?
1394 bool NegateOperands = Opcode == ISD::OR;
1395 // We can negate the results of all previous operations by inverting the
1396 // predicate flags giving us a free negation for one side. For the other side
1397 // we need to be able to push the negation to the leafs of the tree.
1398 if (NegateOperands) {
1399 if (!CanPushNegateL && !CanPushNegateR)
1400 return SDValue();
1401 // Order the side where we can push the negate through to LHS.
1402 if (!CanPushNegateL && CanPushNegateR)
1403 std::swap(LHS, RHS);
1404 } else {
1405 bool NeedsNegOutL = LHS->getOpcode() == ISD::OR;
1406 bool NeedsNegOutR = RHS->getOpcode() == ISD::OR;
1407 if (NeedsNegOutL && NeedsNegOutR)
1408 return SDValue();
1409 // Order the side where we need to negate the output flags to RHS so it
1410 // gets emitted first.
1411 if (NeedsNegOutL)
1412 std::swap(LHS, RHS);
1413 }
1414
1415 // Emit RHS. If we want to negate the tree we only need to push a negate
1416 // through if we are already in a PushNegate case, otherwise we can negate
1417 // the "flags to test" afterwards.
1418 AArch64CC::CondCode RHSCC;
1419 SDValue CmpR = emitConjunctionDisjunctionTree(DAG, RHS, RHSCC, PushNegate,
1420 CCOp, Predicate, Depth+1);
1421 if (NegateOperands && !PushNegate)
1422 RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
1423 // Emit LHS. We must push the negate through if we need to negate it.
1424 SDValue CmpL = emitConjunctionDisjunctionTree(DAG, LHS, OutCC, NegateOperands,
1425 CmpR, RHSCC, Depth+1);
1426 // If we transformed an OR to and AND then we have to negate the result
1427 // (or absorb a PushNegate resulting in a double negation).
1428 if (Opcode == ISD::OR && !PushNegate)
1429 OutCC = AArch64CC::getInvertedCondCode(OutCC);
1430 return CmpL;
1431 }
1432
1433 /// @}
1434
getAArch64Cmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & AArch64cc,SelectionDAG & DAG,SDLoc dl)1435 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1436 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
1437 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1438 EVT VT = RHS.getValueType();
1439 uint64_t C = RHSC->getZExtValue();
1440 if (!isLegalArithImmed(C)) {
1441 // Constant does not fit, try adjusting it by one?
1442 switch (CC) {
1443 default:
1444 break;
1445 case ISD::SETLT:
1446 case ISD::SETGE:
1447 if ((VT == MVT::i32 && C != 0x80000000 &&
1448 isLegalArithImmed((uint32_t)(C - 1))) ||
1449 (VT == MVT::i64 && C != 0x80000000ULL &&
1450 isLegalArithImmed(C - 1ULL))) {
1451 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1452 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1453 RHS = DAG.getConstant(C, dl, VT);
1454 }
1455 break;
1456 case ISD::SETULT:
1457 case ISD::SETUGE:
1458 if ((VT == MVT::i32 && C != 0 &&
1459 isLegalArithImmed((uint32_t)(C - 1))) ||
1460 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1461 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1462 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1463 RHS = DAG.getConstant(C, dl, VT);
1464 }
1465 break;
1466 case ISD::SETLE:
1467 case ISD::SETGT:
1468 if ((VT == MVT::i32 && C != INT32_MAX &&
1469 isLegalArithImmed((uint32_t)(C + 1))) ||
1470 (VT == MVT::i64 && C != INT64_MAX &&
1471 isLegalArithImmed(C + 1ULL))) {
1472 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1473 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1474 RHS = DAG.getConstant(C, dl, VT);
1475 }
1476 break;
1477 case ISD::SETULE:
1478 case ISD::SETUGT:
1479 if ((VT == MVT::i32 && C != UINT32_MAX &&
1480 isLegalArithImmed((uint32_t)(C + 1))) ||
1481 (VT == MVT::i64 && C != UINT64_MAX &&
1482 isLegalArithImmed(C + 1ULL))) {
1483 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1484 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1485 RHS = DAG.getConstant(C, dl, VT);
1486 }
1487 break;
1488 }
1489 }
1490 }
1491 SDValue Cmp;
1492 AArch64CC::CondCode AArch64CC;
1493 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1494 const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
1495
1496 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1497 // For the i8 operand, the largest immediate is 255, so this can be easily
1498 // encoded in the compare instruction. For the i16 operand, however, the
1499 // largest immediate cannot be encoded in the compare.
1500 // Therefore, use a sign extending load and cmn to avoid materializing the
1501 // -1 constant. For example,
1502 // movz w1, #65535
1503 // ldrh w0, [x0, #0]
1504 // cmp w0, w1
1505 // >
1506 // ldrsh w0, [x0, #0]
1507 // cmn w0, #1
1508 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1509 // if and only if (sext LHS) == (sext RHS). The checks are in place to
1510 // ensure both the LHS and RHS are truly zero extended and to make sure the
1511 // transformation is profitable.
1512 if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
1513 cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1514 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1515 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1516 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1517 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1518 SDValue SExt =
1519 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1520 DAG.getValueType(MVT::i16));
1521 Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
1522 RHS.getValueType()),
1523 CC, dl, DAG);
1524 AArch64CC = changeIntCCToAArch64CC(CC);
1525 }
1526 }
1527
1528 if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
1529 if ((Cmp = emitConjunctionDisjunctionTree(DAG, LHS, AArch64CC))) {
1530 if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
1531 AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
1532 }
1533 }
1534 }
1535
1536 if (!Cmp) {
1537 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1538 AArch64CC = changeIntCCToAArch64CC(CC);
1539 }
1540 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
1541 return Cmp;
1542 }
1543
1544 static std::pair<SDValue, SDValue>
getAArch64XALUOOp(AArch64CC::CondCode & CC,SDValue Op,SelectionDAG & DAG)1545 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1546 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1547 "Unsupported value type");
1548 SDValue Value, Overflow;
1549 SDLoc DL(Op);
1550 SDValue LHS = Op.getOperand(0);
1551 SDValue RHS = Op.getOperand(1);
1552 unsigned Opc = 0;
1553 switch (Op.getOpcode()) {
1554 default:
1555 llvm_unreachable("Unknown overflow instruction!");
1556 case ISD::SADDO:
1557 Opc = AArch64ISD::ADDS;
1558 CC = AArch64CC::VS;
1559 break;
1560 case ISD::UADDO:
1561 Opc = AArch64ISD::ADDS;
1562 CC = AArch64CC::HS;
1563 break;
1564 case ISD::SSUBO:
1565 Opc = AArch64ISD::SUBS;
1566 CC = AArch64CC::VS;
1567 break;
1568 case ISD::USUBO:
1569 Opc = AArch64ISD::SUBS;
1570 CC = AArch64CC::LO;
1571 break;
1572 // Multiply needs a little bit extra work.
1573 case ISD::SMULO:
1574 case ISD::UMULO: {
1575 CC = AArch64CC::NE;
1576 bool IsSigned = Op.getOpcode() == ISD::SMULO;
1577 if (Op.getValueType() == MVT::i32) {
1578 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1579 // For a 32 bit multiply with overflow check we want the instruction
1580 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1581 // need to generate the following pattern:
1582 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1583 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1584 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1585 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1586 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1587 DAG.getConstant(0, DL, MVT::i64));
1588 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1589 // operation. We need to clear out the upper 32 bits, because we used a
1590 // widening multiply that wrote all 64 bits. In the end this should be a
1591 // noop.
1592 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1593 if (IsSigned) {
1594 // The signed overflow check requires more than just a simple check for
1595 // any bit set in the upper 32 bits of the result. These bits could be
1596 // just the sign bits of a negative number. To perform the overflow
1597 // check we have to arithmetic shift right the 32nd bit of the result by
1598 // 31 bits. Then we compare the result to the upper 32 bits.
1599 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1600 DAG.getConstant(32, DL, MVT::i64));
1601 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1602 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1603 DAG.getConstant(31, DL, MVT::i64));
1604 // It is important that LowerBits is last, otherwise the arithmetic
1605 // shift will not be folded into the compare (SUBS).
1606 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1607 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1608 .getValue(1);
1609 } else {
1610 // The overflow check for unsigned multiply is easy. We only need to
1611 // check if any of the upper 32 bits are set. This can be done with a
1612 // CMP (shifted register). For that we need to generate the following
1613 // pattern:
1614 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1615 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1616 DAG.getConstant(32, DL, MVT::i64));
1617 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1618 Overflow =
1619 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1620 DAG.getConstant(0, DL, MVT::i64),
1621 UpperBits).getValue(1);
1622 }
1623 break;
1624 }
1625 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1626 // For the 64 bit multiply
1627 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1628 if (IsSigned) {
1629 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1630 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1631 DAG.getConstant(63, DL, MVT::i64));
1632 // It is important that LowerBits is last, otherwise the arithmetic
1633 // shift will not be folded into the compare (SUBS).
1634 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1635 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1636 .getValue(1);
1637 } else {
1638 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1639 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1640 Overflow =
1641 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1642 DAG.getConstant(0, DL, MVT::i64),
1643 UpperBits).getValue(1);
1644 }
1645 break;
1646 }
1647 } // switch (...)
1648
1649 if (Opc) {
1650 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1651
1652 // Emit the AArch64 operation with overflow check.
1653 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1654 Overflow = Value.getValue(1);
1655 }
1656 return std::make_pair(Value, Overflow);
1657 }
1658
LowerF128Call(SDValue Op,SelectionDAG & DAG,RTLIB::Libcall Call) const1659 SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1660 RTLIB::Libcall Call) const {
1661 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
1662 return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first;
1663 }
1664
LowerXOR(SDValue Op,SelectionDAG & DAG)1665 static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1666 SDValue Sel = Op.getOperand(0);
1667 SDValue Other = Op.getOperand(1);
1668
1669 // If neither operand is a SELECT_CC, give up.
1670 if (Sel.getOpcode() != ISD::SELECT_CC)
1671 std::swap(Sel, Other);
1672 if (Sel.getOpcode() != ISD::SELECT_CC)
1673 return Op;
1674
1675 // The folding we want to perform is:
1676 // (xor x, (select_cc a, b, cc, 0, -1) )
1677 // -->
1678 // (csel x, (xor x, -1), cc ...)
1679 //
1680 // The latter will get matched to a CSINV instruction.
1681
1682 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1683 SDValue LHS = Sel.getOperand(0);
1684 SDValue RHS = Sel.getOperand(1);
1685 SDValue TVal = Sel.getOperand(2);
1686 SDValue FVal = Sel.getOperand(3);
1687 SDLoc dl(Sel);
1688
1689 // FIXME: This could be generalized to non-integer comparisons.
1690 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1691 return Op;
1692
1693 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1694 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1695
1696 // The values aren't constants, this isn't the pattern we're looking for.
1697 if (!CFVal || !CTVal)
1698 return Op;
1699
1700 // We can commute the SELECT_CC by inverting the condition. This
1701 // might be needed to make this fit into a CSINV pattern.
1702 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1703 std::swap(TVal, FVal);
1704 std::swap(CTVal, CFVal);
1705 CC = ISD::getSetCCInverse(CC, true);
1706 }
1707
1708 // If the constants line up, perform the transform!
1709 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1710 SDValue CCVal;
1711 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1712
1713 FVal = Other;
1714 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
1715 DAG.getConstant(-1ULL, dl, Other.getValueType()));
1716
1717 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1718 CCVal, Cmp);
1719 }
1720
1721 return Op;
1722 }
1723
LowerADDC_ADDE_SUBC_SUBE(SDValue Op,SelectionDAG & DAG)1724 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1725 EVT VT = Op.getValueType();
1726
1727 // Let legalize expand this if it isn't a legal type yet.
1728 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1729 return SDValue();
1730
1731 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1732
1733 unsigned Opc;
1734 bool ExtraOp = false;
1735 switch (Op.getOpcode()) {
1736 default:
1737 llvm_unreachable("Invalid code");
1738 case ISD::ADDC:
1739 Opc = AArch64ISD::ADDS;
1740 break;
1741 case ISD::SUBC:
1742 Opc = AArch64ISD::SUBS;
1743 break;
1744 case ISD::ADDE:
1745 Opc = AArch64ISD::ADCS;
1746 ExtraOp = true;
1747 break;
1748 case ISD::SUBE:
1749 Opc = AArch64ISD::SBCS;
1750 ExtraOp = true;
1751 break;
1752 }
1753
1754 if (!ExtraOp)
1755 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1756 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1757 Op.getOperand(2));
1758 }
1759
LowerXALUO(SDValue Op,SelectionDAG & DAG)1760 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1761 // Let legalize expand this if it isn't a legal type yet.
1762 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1763 return SDValue();
1764
1765 SDLoc dl(Op);
1766 AArch64CC::CondCode CC;
1767 // The actual operation that sets the overflow or carry flag.
1768 SDValue Value, Overflow;
1769 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1770
1771 // We use 0 and 1 as false and true values.
1772 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
1773 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
1774
1775 // We use an inverted condition, because the conditional select is inverted
1776 // too. This will allow it to be selected to a single instruction:
1777 // CSINC Wd, WZR, WZR, invert(cond).
1778 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
1779 Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
1780 CCVal, Overflow);
1781
1782 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
1783 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
1784 }
1785
1786 // Prefetch operands are:
1787 // 1: Address to prefetch
1788 // 2: bool isWrite
1789 // 3: int locality (0 = no locality ... 3 = extreme locality)
1790 // 4: bool isDataCache
LowerPREFETCH(SDValue Op,SelectionDAG & DAG)1791 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1792 SDLoc DL(Op);
1793 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1794 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
1795 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
1796
1797 bool IsStream = !Locality;
1798 // When the locality number is set
1799 if (Locality) {
1800 // The front-end should have filtered out the out-of-range values
1801 assert(Locality <= 3 && "Prefetch locality out-of-range");
1802 // The locality degree is the opposite of the cache speed.
1803 // Put the number the other way around.
1804 // The encoding starts at 0 for level 1
1805 Locality = 3 - Locality;
1806 }
1807
1808 // built the mask value encoding the expected behavior.
1809 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
1810 (!IsData << 3) | // IsDataCache bit
1811 (Locality << 1) | // Cache level bits
1812 (unsigned)IsStream; // Stream bit
1813 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
1814 DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
1815 }
1816
LowerFP_EXTEND(SDValue Op,SelectionDAG & DAG) const1817 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1818 SelectionDAG &DAG) const {
1819 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1820
1821 RTLIB::Libcall LC;
1822 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1823
1824 return LowerF128Call(Op, DAG, LC);
1825 }
1826
LowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const1827 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1828 SelectionDAG &DAG) const {
1829 if (Op.getOperand(0).getValueType() != MVT::f128) {
1830 // It's legal except when f128 is involved
1831 return Op;
1832 }
1833
1834 RTLIB::Libcall LC;
1835 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1836
1837 // FP_ROUND node has a second operand indicating whether it is known to be
1838 // precise. That doesn't take part in the LibCall so we can't directly use
1839 // LowerF128Call.
1840 SDValue SrcVal = Op.getOperand(0);
1841 return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
1842 SDLoc(Op)).first;
1843 }
1844
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)1845 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1846 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1847 // Any additional optimization in this function should be recorded
1848 // in the cost tables.
1849 EVT InVT = Op.getOperand(0).getValueType();
1850 EVT VT = Op.getValueType();
1851 unsigned NumElts = InVT.getVectorNumElements();
1852
1853 // f16 vectors are promoted to f32 before a conversion.
1854 if (InVT.getVectorElementType() == MVT::f16) {
1855 MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
1856 SDLoc dl(Op);
1857 return DAG.getNode(
1858 Op.getOpcode(), dl, Op.getValueType(),
1859 DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
1860 }
1861
1862 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1863 SDLoc dl(Op);
1864 SDValue Cv =
1865 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1866 Op.getOperand(0));
1867 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
1868 }
1869
1870 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1871 SDLoc dl(Op);
1872 MVT ExtVT =
1873 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1874 VT.getVectorNumElements());
1875 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
1876 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1877 }
1878
1879 // Type changing conversions are illegal.
1880 return Op;
1881 }
1882
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG) const1883 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1884 SelectionDAG &DAG) const {
1885 if (Op.getOperand(0).getValueType().isVector())
1886 return LowerVectorFP_TO_INT(Op, DAG);
1887
1888 // f16 conversions are promoted to f32.
1889 if (Op.getOperand(0).getValueType() == MVT::f16) {
1890 SDLoc dl(Op);
1891 return DAG.getNode(
1892 Op.getOpcode(), dl, Op.getValueType(),
1893 DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
1894 }
1895
1896 if (Op.getOperand(0).getValueType() != MVT::f128) {
1897 // It's legal except when f128 is involved
1898 return Op;
1899 }
1900
1901 RTLIB::Libcall LC;
1902 if (Op.getOpcode() == ISD::FP_TO_SINT)
1903 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1904 else
1905 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1906
1907 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
1908 return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first;
1909 }
1910
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)1911 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1912 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1913 // Any additional optimization in this function should be recorded
1914 // in the cost tables.
1915 EVT VT = Op.getValueType();
1916 SDLoc dl(Op);
1917 SDValue In = Op.getOperand(0);
1918 EVT InVT = In.getValueType();
1919
1920 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1921 MVT CastVT =
1922 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1923 InVT.getVectorNumElements());
1924 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
1925 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
1926 }
1927
1928 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1929 unsigned CastOpc =
1930 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1931 EVT CastVT = VT.changeVectorElementTypeToInteger();
1932 In = DAG.getNode(CastOpc, dl, CastVT, In);
1933 return DAG.getNode(Op.getOpcode(), dl, VT, In);
1934 }
1935
1936 return Op;
1937 }
1938
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const1939 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1940 SelectionDAG &DAG) const {
1941 if (Op.getValueType().isVector())
1942 return LowerVectorINT_TO_FP(Op, DAG);
1943
1944 // f16 conversions are promoted to f32.
1945 if (Op.getValueType() == MVT::f16) {
1946 SDLoc dl(Op);
1947 return DAG.getNode(
1948 ISD::FP_ROUND, dl, MVT::f16,
1949 DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
1950 DAG.getIntPtrConstant(0, dl));
1951 }
1952
1953 // i128 conversions are libcalls.
1954 if (Op.getOperand(0).getValueType() == MVT::i128)
1955 return SDValue();
1956
1957 // Other conversions are legal, unless it's to the completely software-based
1958 // fp128.
1959 if (Op.getValueType() != MVT::f128)
1960 return Op;
1961
1962 RTLIB::Libcall LC;
1963 if (Op.getOpcode() == ISD::SINT_TO_FP)
1964 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1965 else
1966 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1967
1968 return LowerF128Call(Op, DAG, LC);
1969 }
1970
LowerFSINCOS(SDValue Op,SelectionDAG & DAG) const1971 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1972 SelectionDAG &DAG) const {
1973 // For iOS, we want to call an alternative entry point: __sincos_stret,
1974 // which returns the values in two S / D registers.
1975 SDLoc dl(Op);
1976 SDValue Arg = Op.getOperand(0);
1977 EVT ArgVT = Arg.getValueType();
1978 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1979
1980 ArgListTy Args;
1981 ArgListEntry Entry;
1982
1983 Entry.Node = Arg;
1984 Entry.Ty = ArgTy;
1985 Entry.isSExt = false;
1986 Entry.isZExt = false;
1987 Args.push_back(Entry);
1988
1989 const char *LibcallName =
1990 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
1991 SDValue Callee =
1992 DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
1993
1994 StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
1995 TargetLowering::CallLoweringInfo CLI(DAG);
1996 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
1997 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
1998
1999 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2000 return CallResult.first;
2001 }
2002
LowerBITCAST(SDValue Op,SelectionDAG & DAG)2003 static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
2004 if (Op.getValueType() != MVT::f16)
2005 return SDValue();
2006
2007 assert(Op.getOperand(0).getValueType() == MVT::i16);
2008 SDLoc DL(Op);
2009
2010 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
2011 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
2012 return SDValue(
2013 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
2014 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
2015 0);
2016 }
2017
getExtensionTo64Bits(const EVT & OrigVT)2018 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
2019 if (OrigVT.getSizeInBits() >= 64)
2020 return OrigVT;
2021
2022 assert(OrigVT.isSimple() && "Expecting a simple value type");
2023
2024 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
2025 switch (OrigSimpleTy) {
2026 default: llvm_unreachable("Unexpected Vector Type");
2027 case MVT::v2i8:
2028 case MVT::v2i16:
2029 return MVT::v2i32;
2030 case MVT::v4i8:
2031 return MVT::v4i16;
2032 }
2033 }
2034
addRequiredExtensionForVectorMULL(SDValue N,SelectionDAG & DAG,const EVT & OrigTy,const EVT & ExtTy,unsigned ExtOpcode)2035 static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
2036 const EVT &OrigTy,
2037 const EVT &ExtTy,
2038 unsigned ExtOpcode) {
2039 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2040 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2041 // 64-bits we need to insert a new extension so that it will be 64-bits.
2042 assert(ExtTy.is128BitVector() && "Unexpected extension size");
2043 if (OrigTy.getSizeInBits() >= 64)
2044 return N;
2045
2046 // Must extend size to at least 64 bits to be used as an operand for VMULL.
2047 EVT NewVT = getExtensionTo64Bits(OrigTy);
2048
2049 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
2050 }
2051
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)2052 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
2053 bool isSigned) {
2054 EVT VT = N->getValueType(0);
2055
2056 if (N->getOpcode() != ISD::BUILD_VECTOR)
2057 return false;
2058
2059 for (const SDValue &Elt : N->op_values()) {
2060 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
2061 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
2062 unsigned HalfSize = EltSize / 2;
2063 if (isSigned) {
2064 if (!isIntN(HalfSize, C->getSExtValue()))
2065 return false;
2066 } else {
2067 if (!isUIntN(HalfSize, C->getZExtValue()))
2068 return false;
2069 }
2070 continue;
2071 }
2072 return false;
2073 }
2074
2075 return true;
2076 }
2077
skipExtensionForVectorMULL(SDNode * N,SelectionDAG & DAG)2078 static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
2079 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
2080 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
2081 N->getOperand(0)->getValueType(0),
2082 N->getValueType(0),
2083 N->getOpcode());
2084
2085 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
2086 EVT VT = N->getValueType(0);
2087 SDLoc dl(N);
2088 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
2089 unsigned NumElts = VT.getVectorNumElements();
2090 MVT TruncVT = MVT::getIntegerVT(EltSize);
2091 SmallVector<SDValue, 8> Ops;
2092 for (unsigned i = 0; i != NumElts; ++i) {
2093 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
2094 const APInt &CInt = C->getAPIntValue();
2095 // Element types smaller than 32 bits are not legal, so use i32 elements.
2096 // The values are implicitly truncated so sext vs. zext doesn't matter.
2097 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
2098 }
2099 return DAG.getNode(ISD::BUILD_VECTOR, dl,
2100 MVT::getVectorVT(TruncVT, NumElts), Ops);
2101 }
2102
isSignExtended(SDNode * N,SelectionDAG & DAG)2103 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
2104 if (N->getOpcode() == ISD::SIGN_EXTEND)
2105 return true;
2106 if (isExtendedBUILD_VECTOR(N, DAG, true))
2107 return true;
2108 return false;
2109 }
2110
isZeroExtended(SDNode * N,SelectionDAG & DAG)2111 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
2112 if (N->getOpcode() == ISD::ZERO_EXTEND)
2113 return true;
2114 if (isExtendedBUILD_VECTOR(N, DAG, false))
2115 return true;
2116 return false;
2117 }
2118
isAddSubSExt(SDNode * N,SelectionDAG & DAG)2119 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
2120 unsigned Opcode = N->getOpcode();
2121 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2122 SDNode *N0 = N->getOperand(0).getNode();
2123 SDNode *N1 = N->getOperand(1).getNode();
2124 return N0->hasOneUse() && N1->hasOneUse() &&
2125 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
2126 }
2127 return false;
2128 }
2129
isAddSubZExt(SDNode * N,SelectionDAG & DAG)2130 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
2131 unsigned Opcode = N->getOpcode();
2132 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2133 SDNode *N0 = N->getOperand(0).getNode();
2134 SDNode *N1 = N->getOperand(1).getNode();
2135 return N0->hasOneUse() && N1->hasOneUse() &&
2136 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
2137 }
2138 return false;
2139 }
2140
LowerMUL(SDValue Op,SelectionDAG & DAG)2141 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
2142 // Multiplications are only custom-lowered for 128-bit vectors so that
2143 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
2144 EVT VT = Op.getValueType();
2145 assert(VT.is128BitVector() && VT.isInteger() &&
2146 "unexpected type for custom-lowering ISD::MUL");
2147 SDNode *N0 = Op.getOperand(0).getNode();
2148 SDNode *N1 = Op.getOperand(1).getNode();
2149 unsigned NewOpc = 0;
2150 bool isMLA = false;
2151 bool isN0SExt = isSignExtended(N0, DAG);
2152 bool isN1SExt = isSignExtended(N1, DAG);
2153 if (isN0SExt && isN1SExt)
2154 NewOpc = AArch64ISD::SMULL;
2155 else {
2156 bool isN0ZExt = isZeroExtended(N0, DAG);
2157 bool isN1ZExt = isZeroExtended(N1, DAG);
2158 if (isN0ZExt && isN1ZExt)
2159 NewOpc = AArch64ISD::UMULL;
2160 else if (isN1SExt || isN1ZExt) {
2161 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2162 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2163 if (isN1SExt && isAddSubSExt(N0, DAG)) {
2164 NewOpc = AArch64ISD::SMULL;
2165 isMLA = true;
2166 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
2167 NewOpc = AArch64ISD::UMULL;
2168 isMLA = true;
2169 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
2170 std::swap(N0, N1);
2171 NewOpc = AArch64ISD::UMULL;
2172 isMLA = true;
2173 }
2174 }
2175
2176 if (!NewOpc) {
2177 if (VT == MVT::v2i64)
2178 // Fall through to expand this. It is not legal.
2179 return SDValue();
2180 else
2181 // Other vector multiplications are legal.
2182 return Op;
2183 }
2184 }
2185
2186 // Legalize to a S/UMULL instruction
2187 SDLoc DL(Op);
2188 SDValue Op0;
2189 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
2190 if (!isMLA) {
2191 Op0 = skipExtensionForVectorMULL(N0, DAG);
2192 assert(Op0.getValueType().is64BitVector() &&
2193 Op1.getValueType().is64BitVector() &&
2194 "unexpected types for extended operands to VMULL");
2195 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
2196 }
2197 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2198 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2199 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2200 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
2201 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
2202 EVT Op1VT = Op1.getValueType();
2203 return DAG.getNode(N0->getOpcode(), DL, VT,
2204 DAG.getNode(NewOpc, DL, VT,
2205 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
2206 DAG.getNode(NewOpc, DL, VT,
2207 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
2208 }
2209
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const2210 SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2211 SelectionDAG &DAG) const {
2212 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2213 SDLoc dl(Op);
2214 switch (IntNo) {
2215 default: return SDValue(); // Don't custom lower most intrinsics.
2216 case Intrinsic::aarch64_thread_pointer: {
2217 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2218 return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
2219 }
2220 case Intrinsic::aarch64_neon_smax:
2221 return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
2222 Op.getOperand(1), Op.getOperand(2));
2223 case Intrinsic::aarch64_neon_umax:
2224 return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
2225 Op.getOperand(1), Op.getOperand(2));
2226 case Intrinsic::aarch64_neon_smin:
2227 return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
2228 Op.getOperand(1), Op.getOperand(2));
2229 case Intrinsic::aarch64_neon_umin:
2230 return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
2231 Op.getOperand(1), Op.getOperand(2));
2232 }
2233 }
2234
LowerOperation(SDValue Op,SelectionDAG & DAG) const2235 SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
2236 SelectionDAG &DAG) const {
2237 switch (Op.getOpcode()) {
2238 default:
2239 llvm_unreachable("unimplemented operand");
2240 return SDValue();
2241 case ISD::BITCAST:
2242 return LowerBITCAST(Op, DAG);
2243 case ISD::GlobalAddress:
2244 return LowerGlobalAddress(Op, DAG);
2245 case ISD::GlobalTLSAddress:
2246 return LowerGlobalTLSAddress(Op, DAG);
2247 case ISD::SETCC:
2248 return LowerSETCC(Op, DAG);
2249 case ISD::BR_CC:
2250 return LowerBR_CC(Op, DAG);
2251 case ISD::SELECT:
2252 return LowerSELECT(Op, DAG);
2253 case ISD::SELECT_CC:
2254 return LowerSELECT_CC(Op, DAG);
2255 case ISD::JumpTable:
2256 return LowerJumpTable(Op, DAG);
2257 case ISD::ConstantPool:
2258 return LowerConstantPool(Op, DAG);
2259 case ISD::BlockAddress:
2260 return LowerBlockAddress(Op, DAG);
2261 case ISD::VASTART:
2262 return LowerVASTART(Op, DAG);
2263 case ISD::VACOPY:
2264 return LowerVACOPY(Op, DAG);
2265 case ISD::VAARG:
2266 return LowerVAARG(Op, DAG);
2267 case ISD::ADDC:
2268 case ISD::ADDE:
2269 case ISD::SUBC:
2270 case ISD::SUBE:
2271 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
2272 case ISD::SADDO:
2273 case ISD::UADDO:
2274 case ISD::SSUBO:
2275 case ISD::USUBO:
2276 case ISD::SMULO:
2277 case ISD::UMULO:
2278 return LowerXALUO(Op, DAG);
2279 case ISD::FADD:
2280 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
2281 case ISD::FSUB:
2282 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
2283 case ISD::FMUL:
2284 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
2285 case ISD::FDIV:
2286 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
2287 case ISD::FP_ROUND:
2288 return LowerFP_ROUND(Op, DAG);
2289 case ISD::FP_EXTEND:
2290 return LowerFP_EXTEND(Op, DAG);
2291 case ISD::FRAMEADDR:
2292 return LowerFRAMEADDR(Op, DAG);
2293 case ISD::RETURNADDR:
2294 return LowerRETURNADDR(Op, DAG);
2295 case ISD::INSERT_VECTOR_ELT:
2296 return LowerINSERT_VECTOR_ELT(Op, DAG);
2297 case ISD::EXTRACT_VECTOR_ELT:
2298 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2299 case ISD::BUILD_VECTOR:
2300 return LowerBUILD_VECTOR(Op, DAG);
2301 case ISD::VECTOR_SHUFFLE:
2302 return LowerVECTOR_SHUFFLE(Op, DAG);
2303 case ISD::EXTRACT_SUBVECTOR:
2304 return LowerEXTRACT_SUBVECTOR(Op, DAG);
2305 case ISD::SRA:
2306 case ISD::SRL:
2307 case ISD::SHL:
2308 return LowerVectorSRA_SRL_SHL(Op, DAG);
2309 case ISD::SHL_PARTS:
2310 return LowerShiftLeftParts(Op, DAG);
2311 case ISD::SRL_PARTS:
2312 case ISD::SRA_PARTS:
2313 return LowerShiftRightParts(Op, DAG);
2314 case ISD::CTPOP:
2315 return LowerCTPOP(Op, DAG);
2316 case ISD::FCOPYSIGN:
2317 return LowerFCOPYSIGN(Op, DAG);
2318 case ISD::AND:
2319 return LowerVectorAND(Op, DAG);
2320 case ISD::OR:
2321 return LowerVectorOR(Op, DAG);
2322 case ISD::XOR:
2323 return LowerXOR(Op, DAG);
2324 case ISD::PREFETCH:
2325 return LowerPREFETCH(Op, DAG);
2326 case ISD::SINT_TO_FP:
2327 case ISD::UINT_TO_FP:
2328 return LowerINT_TO_FP(Op, DAG);
2329 case ISD::FP_TO_SINT:
2330 case ISD::FP_TO_UINT:
2331 return LowerFP_TO_INT(Op, DAG);
2332 case ISD::FSINCOS:
2333 return LowerFSINCOS(Op, DAG);
2334 case ISD::MUL:
2335 return LowerMUL(Op, DAG);
2336 case ISD::INTRINSIC_WO_CHAIN:
2337 return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2338 }
2339 }
2340
2341 //===----------------------------------------------------------------------===//
2342 // Calling Convention Implementation
2343 //===----------------------------------------------------------------------===//
2344
2345 #include "AArch64GenCallingConv.inc"
2346
2347 /// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFnForCall(CallingConv::ID CC,bool IsVarArg) const2348 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2349 bool IsVarArg) const {
2350 switch (CC) {
2351 default:
2352 llvm_unreachable("Unsupported calling convention.");
2353 case CallingConv::WebKit_JS:
2354 return CC_AArch64_WebKit_JS;
2355 case CallingConv::GHC:
2356 return CC_AArch64_GHC;
2357 case CallingConv::C:
2358 case CallingConv::Fast:
2359 if (!Subtarget->isTargetDarwin())
2360 return CC_AArch64_AAPCS;
2361 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
2362 }
2363 }
2364
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2365 SDValue AArch64TargetLowering::LowerFormalArguments(
2366 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2367 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2368 SmallVectorImpl<SDValue> &InVals) const {
2369 MachineFunction &MF = DAG.getMachineFunction();
2370 MachineFrameInfo *MFI = MF.getFrameInfo();
2371
2372 // Assign locations to all of the incoming arguments.
2373 SmallVector<CCValAssign, 16> ArgLocs;
2374 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2375 *DAG.getContext());
2376
2377 // At this point, Ins[].VT may already be promoted to i32. To correctly
2378 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2379 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2380 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2381 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2382 // LocVT.
2383 unsigned NumArgs = Ins.size();
2384 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2385 unsigned CurArgIdx = 0;
2386 for (unsigned i = 0; i != NumArgs; ++i) {
2387 MVT ValVT = Ins[i].VT;
2388 if (Ins[i].isOrigArg()) {
2389 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2390 CurArgIdx = Ins[i].getOrigArgIndex();
2391
2392 // Get type of the original argument.
2393 EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
2394 /*AllowUnknown*/ true);
2395 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2396 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2397 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2398 ValVT = MVT::i8;
2399 else if (ActualMVT == MVT::i16)
2400 ValVT = MVT::i16;
2401 }
2402 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2403 bool Res =
2404 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
2405 assert(!Res && "Call operand has unhandled type");
2406 (void)Res;
2407 }
2408 assert(ArgLocs.size() == Ins.size());
2409 SmallVector<SDValue, 16> ArgValues;
2410 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2411 CCValAssign &VA = ArgLocs[i];
2412
2413 if (Ins[i].Flags.isByVal()) {
2414 // Byval is used for HFAs in the PCS, but the system should work in a
2415 // non-compliant manner for larger structs.
2416 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2417 int Size = Ins[i].Flags.getByValSize();
2418 unsigned NumRegs = (Size + 7) / 8;
2419
2420 // FIXME: This works on big-endian for composite byvals, which are the common
2421 // case. It should also work for fundamental types too.
2422 unsigned FrameIdx =
2423 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
2424 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
2425 InVals.push_back(FrameIdxN);
2426
2427 continue;
2428 }
2429
2430 if (VA.isRegLoc()) {
2431 // Arguments stored in registers.
2432 EVT RegVT = VA.getLocVT();
2433
2434 SDValue ArgValue;
2435 const TargetRegisterClass *RC;
2436
2437 if (RegVT == MVT::i32)
2438 RC = &AArch64::GPR32RegClass;
2439 else if (RegVT == MVT::i64)
2440 RC = &AArch64::GPR64RegClass;
2441 else if (RegVT == MVT::f16)
2442 RC = &AArch64::FPR16RegClass;
2443 else if (RegVT == MVT::f32)
2444 RC = &AArch64::FPR32RegClass;
2445 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2446 RC = &AArch64::FPR64RegClass;
2447 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2448 RC = &AArch64::FPR128RegClass;
2449 else
2450 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2451
2452 // Transform the arguments in physical registers into virtual ones.
2453 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2454 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2455
2456 // If this is an 8, 16 or 32-bit value, it is really passed promoted
2457 // to 64 bits. Insert an assert[sz]ext to capture this, then
2458 // truncate to the right size.
2459 switch (VA.getLocInfo()) {
2460 default:
2461 llvm_unreachable("Unknown loc info!");
2462 case CCValAssign::Full:
2463 break;
2464 case CCValAssign::BCvt:
2465 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2466 break;
2467 case CCValAssign::AExt:
2468 case CCValAssign::SExt:
2469 case CCValAssign::ZExt:
2470 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2471 // nodes after our lowering.
2472 assert(RegVT == Ins[i].VT && "incorrect register location selected");
2473 break;
2474 }
2475
2476 InVals.push_back(ArgValue);
2477
2478 } else { // VA.isRegLoc()
2479 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2480 unsigned ArgOffset = VA.getLocMemOffset();
2481 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
2482
2483 uint32_t BEAlign = 0;
2484 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2485 !Ins[i].Flags.isInConsecutiveRegs())
2486 BEAlign = 8 - ArgSize;
2487
2488 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
2489
2490 // Create load nodes to retrieve arguments from the stack.
2491 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2492 SDValue ArgValue;
2493
2494 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
2495 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
2496 MVT MemVT = VA.getValVT();
2497
2498 switch (VA.getLocInfo()) {
2499 default:
2500 break;
2501 case CCValAssign::BCvt:
2502 MemVT = VA.getLocVT();
2503 break;
2504 case CCValAssign::SExt:
2505 ExtType = ISD::SEXTLOAD;
2506 break;
2507 case CCValAssign::ZExt:
2508 ExtType = ISD::ZEXTLOAD;
2509 break;
2510 case CCValAssign::AExt:
2511 ExtType = ISD::EXTLOAD;
2512 break;
2513 }
2514
2515 ArgValue = DAG.getExtLoad(
2516 ExtType, DL, VA.getLocVT(), Chain, FIN,
2517 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
2518 MemVT, false, false, false, 0);
2519
2520 InVals.push_back(ArgValue);
2521 }
2522 }
2523
2524 // varargs
2525 if (isVarArg) {
2526 if (!Subtarget->isTargetDarwin()) {
2527 // The AAPCS variadic function ABI is identical to the non-variadic
2528 // one. As a result there may be more arguments in registers and we should
2529 // save them for future reference.
2530 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2531 }
2532
2533 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2534 // This will point to the next argument passed via stack.
2535 unsigned StackOffset = CCInfo.getNextStackOffset();
2536 // We currently pass all varargs at 8-byte alignment.
2537 StackOffset = ((StackOffset + 7) & ~7);
2538 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2539 }
2540
2541 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2542 unsigned StackArgSize = CCInfo.getNextStackOffset();
2543 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2544 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2545 // This is a non-standard ABI so by fiat I say we're allowed to make full
2546 // use of the stack area to be popped, which must be aligned to 16 bytes in
2547 // any case:
2548 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
2549
2550 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2551 // a multiple of 16.
2552 FuncInfo->setArgumentStackToRestore(StackArgSize);
2553
2554 // This realignment carries over to the available bytes below. Our own
2555 // callers will guarantee the space is free by giving an aligned value to
2556 // CALLSEQ_START.
2557 }
2558 // Even if we're not expected to free up the space, it's useful to know how
2559 // much is there while considering tail calls (because we can reuse it).
2560 FuncInfo->setBytesInStackArgArea(StackArgSize);
2561
2562 return Chain;
2563 }
2564
saveVarArgRegisters(CCState & CCInfo,SelectionDAG & DAG,SDLoc DL,SDValue & Chain) const2565 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2566 SelectionDAG &DAG, SDLoc DL,
2567 SDValue &Chain) const {
2568 MachineFunction &MF = DAG.getMachineFunction();
2569 MachineFrameInfo *MFI = MF.getFrameInfo();
2570 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2571 auto PtrVT = getPointerTy(DAG.getDataLayout());
2572
2573 SmallVector<SDValue, 8> MemOps;
2574
2575 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2576 AArch64::X3, AArch64::X4, AArch64::X5,
2577 AArch64::X6, AArch64::X7 };
2578 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
2579 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
2580
2581 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2582 int GPRIdx = 0;
2583 if (GPRSaveSize != 0) {
2584 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2585
2586 SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
2587
2588 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2589 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2590 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
2591 SDValue Store = DAG.getStore(
2592 Val.getValue(1), DL, Val, FIN,
2593 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8), false,
2594 false, 0);
2595 MemOps.push_back(Store);
2596 FIN =
2597 DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
2598 }
2599 }
2600 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2601 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2602
2603 if (Subtarget->hasFPARMv8()) {
2604 static const MCPhysReg FPRArgRegs[] = {
2605 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2606 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2607 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
2608 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
2609
2610 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2611 int FPRIdx = 0;
2612 if (FPRSaveSize != 0) {
2613 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2614
2615 SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
2616
2617 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2618 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2619 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2620
2621 SDValue Store = DAG.getStore(
2622 Val.getValue(1), DL, Val, FIN,
2623 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16),
2624 false, false, 0);
2625 MemOps.push_back(Store);
2626 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
2627 DAG.getConstant(16, DL, PtrVT));
2628 }
2629 }
2630 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2631 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2632 }
2633
2634 if (!MemOps.empty()) {
2635 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2636 }
2637 }
2638
2639 /// LowerCallResult - Lower the result values of a call into the
2640 /// appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool isThisReturn,SDValue ThisVal) const2641 SDValue AArch64TargetLowering::LowerCallResult(
2642 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2643 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2644 SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2645 SDValue ThisVal) const {
2646 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2647 ? RetCC_AArch64_WebKit_JS
2648 : RetCC_AArch64_AAPCS;
2649 // Assign locations to each value returned by this call.
2650 SmallVector<CCValAssign, 16> RVLocs;
2651 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2652 *DAG.getContext());
2653 CCInfo.AnalyzeCallResult(Ins, RetCC);
2654
2655 // Copy all of the result registers out of their specified physreg.
2656 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2657 CCValAssign VA = RVLocs[i];
2658
2659 // Pass 'this' value directly from the argument to return value, to avoid
2660 // reg unit interference
2661 if (i == 0 && isThisReturn) {
2662 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2663 "unexpected return calling convention register assignment");
2664 InVals.push_back(ThisVal);
2665 continue;
2666 }
2667
2668 SDValue Val =
2669 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2670 Chain = Val.getValue(1);
2671 InFlag = Val.getValue(2);
2672
2673 switch (VA.getLocInfo()) {
2674 default:
2675 llvm_unreachable("Unknown loc info!");
2676 case CCValAssign::Full:
2677 break;
2678 case CCValAssign::BCvt:
2679 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2680 break;
2681 }
2682
2683 InVals.push_back(Val);
2684 }
2685
2686 return Chain;
2687 }
2688
isEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,bool isCalleeStructRet,bool isCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const2689 bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2690 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2691 bool isCalleeStructRet, bool isCallerStructRet,
2692 const SmallVectorImpl<ISD::OutputArg> &Outs,
2693 const SmallVectorImpl<SDValue> &OutVals,
2694 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2695 // For CallingConv::C this function knows whether the ABI needs
2696 // changing. That's not true for other conventions so they will have to opt in
2697 // manually.
2698 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2699 return false;
2700
2701 const MachineFunction &MF = DAG.getMachineFunction();
2702 const Function *CallerF = MF.getFunction();
2703 CallingConv::ID CallerCC = CallerF->getCallingConv();
2704 bool CCMatch = CallerCC == CalleeCC;
2705
2706 // Byval parameters hand the function a pointer directly into the stack area
2707 // we want to reuse during a tail call. Working around this *is* possible (see
2708 // X86) but less efficient and uglier in LowerCall.
2709 for (Function::const_arg_iterator i = CallerF->arg_begin(),
2710 e = CallerF->arg_end();
2711 i != e; ++i)
2712 if (i->hasByValAttr())
2713 return false;
2714
2715 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2716 if (IsTailCallConvention(CalleeCC) && CCMatch)
2717 return true;
2718 return false;
2719 }
2720
2721 // Externally-defined functions with weak linkage should not be
2722 // tail-called on AArch64 when the OS does not support dynamic
2723 // pre-emption of symbols, as the AAELF spec requires normal calls
2724 // to undefined weak functions to be replaced with a NOP or jump to the
2725 // next instruction. The behaviour of branch instructions in this
2726 // situation (as used for tail calls) is implementation-defined, so we
2727 // cannot rely on the linker replacing the tail call with a return.
2728 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2729 const GlobalValue *GV = G->getGlobal();
2730 const Triple &TT = getTargetMachine().getTargetTriple();
2731 if (GV->hasExternalWeakLinkage() &&
2732 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2733 return false;
2734 }
2735
2736 // Now we search for cases where we can use a tail call without changing the
2737 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2738 // concept.
2739
2740 // I want anyone implementing a new calling convention to think long and hard
2741 // about this assert.
2742 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2743 "Unexpected variadic calling convention");
2744
2745 if (isVarArg && !Outs.empty()) {
2746 // At least two cases here: if caller is fastcc then we can't have any
2747 // memory arguments (we'd be expected to clean up the stack afterwards). If
2748 // caller is C then we could potentially use its argument area.
2749
2750 // FIXME: for now we take the most conservative of these in both cases:
2751 // disallow all variadic memory operands.
2752 SmallVector<CCValAssign, 16> ArgLocs;
2753 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2754 *DAG.getContext());
2755
2756 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2757 for (const CCValAssign &ArgLoc : ArgLocs)
2758 if (!ArgLoc.isRegLoc())
2759 return false;
2760 }
2761
2762 // If the calling conventions do not match, then we'd better make sure the
2763 // results are returned in the same way as what the caller expects.
2764 if (!CCMatch) {
2765 SmallVector<CCValAssign, 16> RVLocs1;
2766 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2767 *DAG.getContext());
2768 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2769
2770 SmallVector<CCValAssign, 16> RVLocs2;
2771 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2772 *DAG.getContext());
2773 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2774
2775 if (RVLocs1.size() != RVLocs2.size())
2776 return false;
2777 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2778 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2779 return false;
2780 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2781 return false;
2782 if (RVLocs1[i].isRegLoc()) {
2783 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2784 return false;
2785 } else {
2786 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2787 return false;
2788 }
2789 }
2790 }
2791
2792 // Nothing more to check if the callee is taking no arguments
2793 if (Outs.empty())
2794 return true;
2795
2796 SmallVector<CCValAssign, 16> ArgLocs;
2797 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2798 *DAG.getContext());
2799
2800 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2801
2802 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2803
2804 // If the stack arguments for this call would fit into our own save area then
2805 // the call can be made tail.
2806 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2807 }
2808
addTokenForArgument(SDValue Chain,SelectionDAG & DAG,MachineFrameInfo * MFI,int ClobberedFI) const2809 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2810 SelectionDAG &DAG,
2811 MachineFrameInfo *MFI,
2812 int ClobberedFI) const {
2813 SmallVector<SDValue, 8> ArgChains;
2814 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2815 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2816
2817 // Include the original chain at the beginning of the list. When this is
2818 // used by target LowerCall hooks, this helps legalize find the
2819 // CALLSEQ_BEGIN node.
2820 ArgChains.push_back(Chain);
2821
2822 // Add a chain value for each stack argument corresponding
2823 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2824 UE = DAG.getEntryNode().getNode()->use_end();
2825 U != UE; ++U)
2826 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2827 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2828 if (FI->getIndex() < 0) {
2829 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2830 int64_t InLastByte = InFirstByte;
2831 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2832
2833 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2834 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2835 ArgChains.push_back(SDValue(L, 1));
2836 }
2837
2838 // Build a tokenfactor for all the chains.
2839 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2840 }
2841
DoesCalleeRestoreStack(CallingConv::ID CallCC,bool TailCallOpt) const2842 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2843 bool TailCallOpt) const {
2844 return CallCC == CallingConv::Fast && TailCallOpt;
2845 }
2846
IsTailCallConvention(CallingConv::ID CallCC) const2847 bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2848 return CallCC == CallingConv::Fast;
2849 }
2850
2851 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2852 /// and add input and output parameter nodes.
2853 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const2854 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2855 SmallVectorImpl<SDValue> &InVals) const {
2856 SelectionDAG &DAG = CLI.DAG;
2857 SDLoc &DL = CLI.DL;
2858 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2859 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2860 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2861 SDValue Chain = CLI.Chain;
2862 SDValue Callee = CLI.Callee;
2863 bool &IsTailCall = CLI.IsTailCall;
2864 CallingConv::ID CallConv = CLI.CallConv;
2865 bool IsVarArg = CLI.IsVarArg;
2866
2867 MachineFunction &MF = DAG.getMachineFunction();
2868 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2869 bool IsThisReturn = false;
2870
2871 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2872 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2873 bool IsSibCall = false;
2874
2875 if (IsTailCall) {
2876 // Check if it's really possible to do a tail call.
2877 IsTailCall = isEligibleForTailCallOptimization(
2878 Callee, CallConv, IsVarArg, IsStructRet,
2879 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2880 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2881 report_fatal_error("failed to perform tail call elimination on a call "
2882 "site marked musttail");
2883
2884 // A sibling call is one where we're under the usual C ABI and not planning
2885 // to change that but can still do a tail call:
2886 if (!TailCallOpt && IsTailCall)
2887 IsSibCall = true;
2888
2889 if (IsTailCall)
2890 ++NumTailCalls;
2891 }
2892
2893 // Analyze operands of the call, assigning locations to each operand.
2894 SmallVector<CCValAssign, 16> ArgLocs;
2895 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2896 *DAG.getContext());
2897
2898 if (IsVarArg) {
2899 // Handle fixed and variable vector arguments differently.
2900 // Variable vector arguments always go into memory.
2901 unsigned NumArgs = Outs.size();
2902
2903 for (unsigned i = 0; i != NumArgs; ++i) {
2904 MVT ArgVT = Outs[i].VT;
2905 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2906 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2907 /*IsVarArg=*/ !Outs[i].IsFixed);
2908 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2909 assert(!Res && "Call operand has unhandled type");
2910 (void)Res;
2911 }
2912 } else {
2913 // At this point, Outs[].VT may already be promoted to i32. To correctly
2914 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2915 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2916 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2917 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2918 // LocVT.
2919 unsigned NumArgs = Outs.size();
2920 for (unsigned i = 0; i != NumArgs; ++i) {
2921 MVT ValVT = Outs[i].VT;
2922 // Get type of the original argument.
2923 EVT ActualVT = getValueType(DAG.getDataLayout(),
2924 CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2925 /*AllowUnknown*/ true);
2926 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2927 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2928 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2929 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2930 ValVT = MVT::i8;
2931 else if (ActualMVT == MVT::i16)
2932 ValVT = MVT::i16;
2933
2934 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2935 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
2936 assert(!Res && "Call operand has unhandled type");
2937 (void)Res;
2938 }
2939 }
2940
2941 // Get a count of how many bytes are to be pushed on the stack.
2942 unsigned NumBytes = CCInfo.getNextStackOffset();
2943
2944 if (IsSibCall) {
2945 // Since we're not changing the ABI to make this a tail call, the memory
2946 // operands are already available in the caller's incoming argument space.
2947 NumBytes = 0;
2948 }
2949
2950 // FPDiff is the byte offset of the call's argument area from the callee's.
2951 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2952 // by this amount for a tail call. In a sibling call it must be 0 because the
2953 // caller will deallocate the entire stack and the callee still expects its
2954 // arguments to begin at SP+0. Completely unused for non-tail calls.
2955 int FPDiff = 0;
2956
2957 if (IsTailCall && !IsSibCall) {
2958 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2959
2960 // Since callee will pop argument stack as a tail call, we must keep the
2961 // popped size 16-byte aligned.
2962 NumBytes = RoundUpToAlignment(NumBytes, 16);
2963
2964 // FPDiff will be negative if this tail call requires more space than we
2965 // would automatically have in our incoming argument space. Positive if we
2966 // can actually shrink the stack.
2967 FPDiff = NumReusableBytes - NumBytes;
2968
2969 // The stack pointer must be 16-byte aligned at all times it's used for a
2970 // memory operation, which in practice means at *all* times and in
2971 // particular across call boundaries. Therefore our own arguments started at
2972 // a 16-byte aligned SP and the delta applied for the tail call should
2973 // satisfy the same constraint.
2974 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2975 }
2976
2977 // Adjust the stack pointer for the new arguments...
2978 // These operations are automatically eliminated by the prolog/epilog pass
2979 if (!IsSibCall)
2980 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, DL,
2981 true),
2982 DL);
2983
2984 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
2985 getPointerTy(DAG.getDataLayout()));
2986
2987 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2988 SmallVector<SDValue, 8> MemOpChains;
2989 auto PtrVT = getPointerTy(DAG.getDataLayout());
2990
2991 // Walk the register/memloc assignments, inserting copies/loads.
2992 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2993 ++i, ++realArgIdx) {
2994 CCValAssign &VA = ArgLocs[i];
2995 SDValue Arg = OutVals[realArgIdx];
2996 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2997
2998 // Promote the value if needed.
2999 switch (VA.getLocInfo()) {
3000 default:
3001 llvm_unreachable("Unknown loc info!");
3002 case CCValAssign::Full:
3003 break;
3004 case CCValAssign::SExt:
3005 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3006 break;
3007 case CCValAssign::ZExt:
3008 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3009 break;
3010 case CCValAssign::AExt:
3011 if (Outs[realArgIdx].ArgVT == MVT::i1) {
3012 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
3013 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3014 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
3015 }
3016 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3017 break;
3018 case CCValAssign::BCvt:
3019 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3020 break;
3021 case CCValAssign::FPExt:
3022 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3023 break;
3024 }
3025
3026 if (VA.isRegLoc()) {
3027 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
3028 assert(VA.getLocVT() == MVT::i64 &&
3029 "unexpected calling convention register assignment");
3030 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
3031 "unexpected use of 'returned'");
3032 IsThisReturn = true;
3033 }
3034 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3035 } else {
3036 assert(VA.isMemLoc());
3037
3038 SDValue DstAddr;
3039 MachinePointerInfo DstInfo;
3040
3041 // FIXME: This works on big-endian for composite byvals, which are the
3042 // common case. It should also work for fundamental types too.
3043 uint32_t BEAlign = 0;
3044 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
3045 : VA.getValVT().getSizeInBits();
3046 OpSize = (OpSize + 7) / 8;
3047 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
3048 !Flags.isInConsecutiveRegs()) {
3049 if (OpSize < 8)
3050 BEAlign = 8 - OpSize;
3051 }
3052 unsigned LocMemOffset = VA.getLocMemOffset();
3053 int32_t Offset = LocMemOffset + BEAlign;
3054 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3055 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3056
3057 if (IsTailCall) {
3058 Offset = Offset + FPDiff;
3059 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3060
3061 DstAddr = DAG.getFrameIndex(FI, PtrVT);
3062 DstInfo =
3063 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
3064
3065 // Make sure any stack arguments overlapping with where we're storing
3066 // are loaded before this eventual operation. Otherwise they'll be
3067 // clobbered.
3068 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
3069 } else {
3070 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3071
3072 DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3073 DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
3074 LocMemOffset);
3075 }
3076
3077 if (Outs[i].Flags.isByVal()) {
3078 SDValue SizeNode =
3079 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
3080 SDValue Cpy = DAG.getMemcpy(
3081 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
3082 /*isVol = */ false, /*AlwaysInline = */ false,
3083 /*isTailCall = */ false,
3084 DstInfo, MachinePointerInfo());
3085
3086 MemOpChains.push_back(Cpy);
3087 } else {
3088 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3089 // promoted to a legal register type i32, we should truncate Arg back to
3090 // i1/i8/i16.
3091 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
3092 VA.getValVT() == MVT::i16)
3093 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
3094
3095 SDValue Store =
3096 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
3097 MemOpChains.push_back(Store);
3098 }
3099 }
3100 }
3101
3102 if (!MemOpChains.empty())
3103 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3104
3105 // Build a sequence of copy-to-reg nodes chained together with token chain
3106 // and flag operands which copy the outgoing args into the appropriate regs.
3107 SDValue InFlag;
3108 for (auto &RegToPass : RegsToPass) {
3109 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3110 RegToPass.second, InFlag);
3111 InFlag = Chain.getValue(1);
3112 }
3113
3114 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3115 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3116 // node so that legalize doesn't hack it.
3117 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3118 Subtarget->isTargetMachO()) {
3119 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3120 const GlobalValue *GV = G->getGlobal();
3121 bool InternalLinkage = GV->hasInternalLinkage();
3122 if (InternalLinkage)
3123 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
3124 else {
3125 Callee =
3126 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
3127 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3128 }
3129 } else if (ExternalSymbolSDNode *S =
3130 dyn_cast<ExternalSymbolSDNode>(Callee)) {
3131 const char *Sym = S->getSymbol();
3132 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
3133 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3134 }
3135 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3136 const GlobalValue *GV = G->getGlobal();
3137 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
3138 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3139 const char *Sym = S->getSymbol();
3140 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
3141 }
3142
3143 // We don't usually want to end the call-sequence here because we would tidy
3144 // the frame up *after* the call, however in the ABI-changing tail-call case
3145 // we've carefully laid out the parameters so that when sp is reset they'll be
3146 // in the correct location.
3147 if (IsTailCall && !IsSibCall) {
3148 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3149 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3150 InFlag = Chain.getValue(1);
3151 }
3152
3153 std::vector<SDValue> Ops;
3154 Ops.push_back(Chain);
3155 Ops.push_back(Callee);
3156
3157 if (IsTailCall) {
3158 // Each tail call may have to adjust the stack by a different amount, so
3159 // this information must travel along with the operation for eventual
3160 // consumption by emitEpilogue.
3161 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3162 }
3163
3164 // Add argument registers to the end of the list so that they are known live
3165 // into the call.
3166 for (auto &RegToPass : RegsToPass)
3167 Ops.push_back(DAG.getRegister(RegToPass.first,
3168 RegToPass.second.getValueType()));
3169
3170 // Add a register mask operand representing the call-preserved registers.
3171 const uint32_t *Mask;
3172 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3173 if (IsThisReturn) {
3174 // For 'this' returns, use the X0-preserving mask if applicable
3175 Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
3176 if (!Mask) {
3177 IsThisReturn = false;
3178 Mask = TRI->getCallPreservedMask(MF, CallConv);
3179 }
3180 } else
3181 Mask = TRI->getCallPreservedMask(MF, CallConv);
3182
3183 assert(Mask && "Missing call preserved mask for calling convention");
3184 Ops.push_back(DAG.getRegisterMask(Mask));
3185
3186 if (InFlag.getNode())
3187 Ops.push_back(InFlag);
3188
3189 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3190
3191 // If we're doing a tall call, use a TC_RETURN here rather than an
3192 // actual call instruction.
3193 if (IsTailCall) {
3194 MF.getFrameInfo()->setHasTailCall();
3195 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
3196 }
3197
3198 // Returns a chain and a flag for retval copy to use.
3199 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
3200 InFlag = Chain.getValue(1);
3201
3202 uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
3203 ? RoundUpToAlignment(NumBytes, 16)
3204 : 0;
3205
3206 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3207 DAG.getIntPtrConstant(CalleePopBytes, DL, true),
3208 InFlag, DL);
3209 if (!Ins.empty())
3210 InFlag = Chain.getValue(1);
3211
3212 // Handle result values, copying them out of physregs into vregs that we
3213 // return.
3214 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3215 InVals, IsThisReturn,
3216 IsThisReturn ? OutVals[0] : SDValue());
3217 }
3218
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const3219 bool AArch64TargetLowering::CanLowerReturn(
3220 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
3221 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
3222 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3223 ? RetCC_AArch64_WebKit_JS
3224 : RetCC_AArch64_AAPCS;
3225 SmallVector<CCValAssign, 16> RVLocs;
3226 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
3227 return CCInfo.CheckReturn(Outs, RetCC);
3228 }
3229
3230 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,SDLoc DL,SelectionDAG & DAG) const3231 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3232 bool isVarArg,
3233 const SmallVectorImpl<ISD::OutputArg> &Outs,
3234 const SmallVectorImpl<SDValue> &OutVals,
3235 SDLoc DL, SelectionDAG &DAG) const {
3236 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3237 ? RetCC_AArch64_WebKit_JS
3238 : RetCC_AArch64_AAPCS;
3239 SmallVector<CCValAssign, 16> RVLocs;
3240 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3241 *DAG.getContext());
3242 CCInfo.AnalyzeReturn(Outs, RetCC);
3243
3244 // Copy the result values into the output registers.
3245 SDValue Flag;
3246 SmallVector<SDValue, 4> RetOps(1, Chain);
3247 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
3248 ++i, ++realRVLocIdx) {
3249 CCValAssign &VA = RVLocs[i];
3250 assert(VA.isRegLoc() && "Can only return in registers!");
3251 SDValue Arg = OutVals[realRVLocIdx];
3252
3253 switch (VA.getLocInfo()) {
3254 default:
3255 llvm_unreachable("Unknown loc info!");
3256 case CCValAssign::Full:
3257 if (Outs[i].ArgVT == MVT::i1) {
3258 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
3259 // value. This is strictly redundant on Darwin (which uses "zeroext
3260 // i1"), but will be optimised out before ISel.
3261 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3262 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3263 }
3264 break;
3265 case CCValAssign::BCvt:
3266 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3267 break;
3268 }
3269
3270 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
3271 Flag = Chain.getValue(1);
3272 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3273 }
3274 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3275 const MCPhysReg *I =
3276 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3277 if (I) {
3278 for (; *I; ++I) {
3279 if (AArch64::GPR64RegClass.contains(*I))
3280 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
3281 else if (AArch64::FPR64RegClass.contains(*I))
3282 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3283 else
3284 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3285 }
3286 }
3287
3288 RetOps[0] = Chain; // Update chain.
3289
3290 // Add the flag if we have it.
3291 if (Flag.getNode())
3292 RetOps.push_back(Flag);
3293
3294 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
3295 }
3296
3297 //===----------------------------------------------------------------------===//
3298 // Other Lowering Code
3299 //===----------------------------------------------------------------------===//
3300
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const3301 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
3302 SelectionDAG &DAG) const {
3303 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3304 SDLoc DL(Op);
3305 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
3306 const GlobalValue *GV = GN->getGlobal();
3307 unsigned char OpFlags =
3308 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
3309
3310 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
3311 "unexpected offset in global node");
3312
3313 // This also catched the large code model case for Darwin.
3314 if ((OpFlags & AArch64II::MO_GOT) != 0) {
3315 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
3316 // FIXME: Once remat is capable of dealing with instructions with register
3317 // operands, expand this into two nodes instead of using a wrapper node.
3318 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3319 }
3320
3321 if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
3322 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3323 "use of MO_CONSTPOOL only supported on small model");
3324 SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
3325 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3326 unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3327 SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
3328 SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3329 SDValue GlobalAddr = DAG.getLoad(
3330 PtrVT, DL, DAG.getEntryNode(), PoolAddr,
3331 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
3332 /*isVolatile=*/false,
3333 /*isNonTemporal=*/true,
3334 /*isInvariant=*/true, 8);
3335 if (GN->getOffset() != 0)
3336 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
3337 DAG.getConstant(GN->getOffset(), DL, PtrVT));
3338 return GlobalAddr;
3339 }
3340
3341 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3342 const unsigned char MO_NC = AArch64II::MO_NC;
3343 return DAG.getNode(
3344 AArch64ISD::WrapperLarge, DL, PtrVT,
3345 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
3346 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3347 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3348 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3349 } else {
3350 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
3351 // the only correct model on Darwin.
3352 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3353 OpFlags | AArch64II::MO_PAGE);
3354 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3355 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
3356
3357 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3358 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3359 }
3360 }
3361
3362 /// \brief Convert a TLS address reference into the correct sequence of loads
3363 /// and calls to compute the variable's address (for Darwin, currently) and
3364 /// return an SDValue containing the final node.
3365
3366 /// Darwin only has one TLS scheme which must be capable of dealing with the
3367 /// fully general situation, in the worst case. This means:
3368 /// + "extern __thread" declaration.
3369 /// + Defined in a possibly unknown dynamic library.
3370 ///
3371 /// The general system is that each __thread variable has a [3 x i64] descriptor
3372 /// which contains information used by the runtime to calculate the address. The
3373 /// only part of this the compiler needs to know about is the first xword, which
3374 /// contains a function pointer that must be called with the address of the
3375 /// entire descriptor in "x0".
3376 ///
3377 /// Since this descriptor may be in a different unit, in general even the
3378 /// descriptor must be accessed via an indirect load. The "ideal" code sequence
3379 /// is:
3380 /// adrp x0, _var@TLVPPAGE
3381 /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
3382 /// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
3383 /// ; the function pointer
3384 /// blr x1 ; Uses descriptor address in x0
3385 /// ; Address of _var is now in x0.
3386 ///
3387 /// If the address of _var's descriptor *is* known to the linker, then it can
3388 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
3389 /// a slight efficiency gain.
3390 SDValue
LowerDarwinGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3391 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
3392 SelectionDAG &DAG) const {
3393 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
3394
3395 SDLoc DL(Op);
3396 MVT PtrVT = getPointerTy(DAG.getDataLayout());
3397 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3398
3399 SDValue TLVPAddr =
3400 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3401 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3402
3403 // The first entry in the descriptor is a function pointer that we must call
3404 // to obtain the address of the variable.
3405 SDValue Chain = DAG.getEntryNode();
3406 SDValue FuncTLVGet =
3407 DAG.getLoad(MVT::i64, DL, Chain, DescAddr,
3408 MachinePointerInfo::getGOT(DAG.getMachineFunction()), false,
3409 true, true, 8);
3410 Chain = FuncTLVGet.getValue(1);
3411
3412 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3413 MFI->setAdjustsStack(true);
3414
3415 // TLS calls preserve all registers except those that absolutely must be
3416 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3417 // silly).
3418 const uint32_t *Mask =
3419 Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
3420
3421 // Finally, we can make the call. This is just a degenerate version of a
3422 // normal AArch64 call node: x0 takes the address of the descriptor, and
3423 // returns the address of the variable in this thread.
3424 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3425 Chain =
3426 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3427 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3428 DAG.getRegisterMask(Mask), Chain.getValue(1));
3429 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3430 }
3431
3432 /// When accessing thread-local variables under either the general-dynamic or
3433 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3434 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
3435 /// is a function pointer to carry out the resolution.
3436 ///
3437 /// The sequence is:
3438 /// adrp x0, :tlsdesc:var
3439 /// ldr x1, [x0, #:tlsdesc_lo12:var]
3440 /// add x0, x0, #:tlsdesc_lo12:var
3441 /// .tlsdesccall var
3442 /// blr x1
3443 /// (TPIDR_EL0 offset now in x0)
3444 ///
3445 /// The above sequence must be produced unscheduled, to enable the linker to
3446 /// optimize/relax this sequence.
3447 /// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
3448 /// above sequence, and expanded really late in the compilation flow, to ensure
3449 /// the sequence is produced as per above.
LowerELFTLSDescCallSeq(SDValue SymAddr,SDLoc DL,SelectionDAG & DAG) const3450 SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, SDLoc DL,
3451 SelectionDAG &DAG) const {
3452 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3453
3454 SDValue Chain = DAG.getEntryNode();
3455 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3456
3457 SmallVector<SDValue, 2> Ops;
3458 Ops.push_back(Chain);
3459 Ops.push_back(SymAddr);
3460
3461 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, Ops);
3462 SDValue Glue = Chain.getValue(1);
3463
3464 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3465 }
3466
3467 SDValue
LowerELFGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3468 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3469 SelectionDAG &DAG) const {
3470 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3471 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3472 "ELF TLS only supported in small memory model");
3473 // Different choices can be made for the maximum size of the TLS area for a
3474 // module. For the small address model, the default TLS size is 16MiB and the
3475 // maximum TLS size is 4GiB.
3476 // FIXME: add -mtls-size command line option and make it control the 16MiB
3477 // vs. 4GiB code sequence generation.
3478 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3479
3480 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
3481
3482 if (DAG.getTarget().Options.EmulatedTLS)
3483 return LowerToTLSEmulatedModel(GA, DAG);
3484
3485 if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
3486 if (Model == TLSModel::LocalDynamic)
3487 Model = TLSModel::GeneralDynamic;
3488 }
3489
3490 SDValue TPOff;
3491 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3492 SDLoc DL(Op);
3493 const GlobalValue *GV = GA->getGlobal();
3494
3495 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3496
3497 if (Model == TLSModel::LocalExec) {
3498 SDValue HiVar = DAG.getTargetGlobalAddress(
3499 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
3500 SDValue LoVar = DAG.getTargetGlobalAddress(
3501 GV, DL, PtrVT, 0,
3502 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3503
3504 SDValue TPWithOff_lo =
3505 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
3506 HiVar,
3507 DAG.getTargetConstant(0, DL, MVT::i32)),
3508 0);
3509 SDValue TPWithOff =
3510 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
3511 LoVar,
3512 DAG.getTargetConstant(0, DL, MVT::i32)),
3513 0);
3514 return TPWithOff;
3515 } else if (Model == TLSModel::InitialExec) {
3516 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3517 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3518 } else if (Model == TLSModel::LocalDynamic) {
3519 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3520 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3521 // the beginning of the module's TLS region, followed by a DTPREL offset
3522 // calculation.
3523
3524 // These accesses will need deduplicating if there's more than one.
3525 AArch64FunctionInfo *MFI =
3526 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3527 MFI->incNumLocalDynamicTLSAccesses();
3528
3529 // The call needs a relocation too for linker relaxation. It doesn't make
3530 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3531 // the address.
3532 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3533 AArch64II::MO_TLS);
3534
3535 // Now we can calculate the offset from TPIDR_EL0 to this module's
3536 // thread-local area.
3537 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
3538
3539 // Now use :dtprel_whatever: operations to calculate this variable's offset
3540 // in its thread-storage area.
3541 SDValue HiVar = DAG.getTargetGlobalAddress(
3542 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
3543 SDValue LoVar = DAG.getTargetGlobalAddress(
3544 GV, DL, MVT::i64, 0,
3545 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3546
3547 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
3548 DAG.getTargetConstant(0, DL, MVT::i32)),
3549 0);
3550 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
3551 DAG.getTargetConstant(0, DL, MVT::i32)),
3552 0);
3553 } else if (Model == TLSModel::GeneralDynamic) {
3554 // The call needs a relocation too for linker relaxation. It doesn't make
3555 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3556 // the address.
3557 SDValue SymAddr =
3558 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3559
3560 // Finally we can make a call to calculate the offset from tpidr_el0.
3561 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
3562 } else
3563 llvm_unreachable("Unsupported ELF TLS access model");
3564
3565 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3566 }
3567
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3568 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3569 SelectionDAG &DAG) const {
3570 if (Subtarget->isTargetDarwin())
3571 return LowerDarwinGlobalTLSAddress(Op, DAG);
3572 else if (Subtarget->isTargetELF())
3573 return LowerELFGlobalTLSAddress(Op, DAG);
3574
3575 llvm_unreachable("Unexpected platform trying to use TLS");
3576 }
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const3577 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3578 SDValue Chain = Op.getOperand(0);
3579 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3580 SDValue LHS = Op.getOperand(2);
3581 SDValue RHS = Op.getOperand(3);
3582 SDValue Dest = Op.getOperand(4);
3583 SDLoc dl(Op);
3584
3585 // Handle f128 first, since lowering it will result in comparing the return
3586 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3587 // is expecting to deal with.
3588 if (LHS.getValueType() == MVT::f128) {
3589 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3590
3591 // If softenSetCCOperands returned a scalar, we need to compare the result
3592 // against zero to select between true and false values.
3593 if (!RHS.getNode()) {
3594 RHS = DAG.getConstant(0, dl, LHS.getValueType());
3595 CC = ISD::SETNE;
3596 }
3597 }
3598
3599 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3600 // instruction.
3601 unsigned Opc = LHS.getOpcode();
3602 if (LHS.getResNo() == 1 && isOneConstant(RHS) &&
3603 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3604 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3605 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3606 "Unexpected condition code.");
3607 // Only lower legal XALUO ops.
3608 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3609 return SDValue();
3610
3611 // The actual operation with overflow check.
3612 AArch64CC::CondCode OFCC;
3613 SDValue Value, Overflow;
3614 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3615
3616 if (CC == ISD::SETNE)
3617 OFCC = getInvertedCondCode(OFCC);
3618 SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
3619
3620 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3621 Overflow);
3622 }
3623
3624 if (LHS.getValueType().isInteger()) {
3625 assert((LHS.getValueType() == RHS.getValueType()) &&
3626 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3627
3628 // If the RHS of the comparison is zero, we can potentially fold this
3629 // to a specialized branch.
3630 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3631 if (RHSC && RHSC->getZExtValue() == 0) {
3632 if (CC == ISD::SETEQ) {
3633 // See if we can use a TBZ to fold in an AND as well.
3634 // TBZ has a smaller branch displacement than CBZ. If the offset is
3635 // out of bounds, a late MI-layer pass rewrites branches.
3636 // 403.gcc is an example that hits this case.
3637 if (LHS.getOpcode() == ISD::AND &&
3638 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3639 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3640 SDValue Test = LHS.getOperand(0);
3641 uint64_t Mask = LHS.getConstantOperandVal(1);
3642 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
3643 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3644 Dest);
3645 }
3646
3647 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3648 } else if (CC == ISD::SETNE) {
3649 // See if we can use a TBZ to fold in an AND as well.
3650 // TBZ has a smaller branch displacement than CBZ. If the offset is
3651 // out of bounds, a late MI-layer pass rewrites branches.
3652 // 403.gcc is an example that hits this case.
3653 if (LHS.getOpcode() == ISD::AND &&
3654 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3655 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3656 SDValue Test = LHS.getOperand(0);
3657 uint64_t Mask = LHS.getConstantOperandVal(1);
3658 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
3659 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3660 Dest);
3661 }
3662
3663 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
3664 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3665 // Don't combine AND since emitComparison converts the AND to an ANDS
3666 // (a.k.a. TST) and the test in the test bit and branch instruction
3667 // becomes redundant. This would also increase register pressure.
3668 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3669 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
3670 DAG.getConstant(Mask, dl, MVT::i64), Dest);
3671 }
3672 }
3673 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3674 LHS.getOpcode() != ISD::AND) {
3675 // Don't combine AND since emitComparison converts the AND to an ANDS
3676 // (a.k.a. TST) and the test in the test bit and branch instruction
3677 // becomes redundant. This would also increase register pressure.
3678 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3679 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
3680 DAG.getConstant(Mask, dl, MVT::i64), Dest);
3681 }
3682
3683 SDValue CCVal;
3684 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3685 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3686 Cmp);
3687 }
3688
3689 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3690
3691 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3692 // clean. Some of them require two branches to implement.
3693 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3694 AArch64CC::CondCode CC1, CC2;
3695 changeFPCCToAArch64CC(CC, CC1, CC2);
3696 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
3697 SDValue BR1 =
3698 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3699 if (CC2 != AArch64CC::AL) {
3700 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
3701 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3702 Cmp);
3703 }
3704
3705 return BR1;
3706 }
3707
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const3708 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3709 SelectionDAG &DAG) const {
3710 EVT VT = Op.getValueType();
3711 SDLoc DL(Op);
3712
3713 SDValue In1 = Op.getOperand(0);
3714 SDValue In2 = Op.getOperand(1);
3715 EVT SrcVT = In2.getValueType();
3716
3717 if (SrcVT.bitsLT(VT))
3718 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3719 else if (SrcVT.bitsGT(VT))
3720 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
3721
3722 EVT VecVT;
3723 EVT EltVT;
3724 uint64_t EltMask;
3725 SDValue VecVal1, VecVal2;
3726 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3727 EltVT = MVT::i32;
3728 VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
3729 EltMask = 0x80000000ULL;
3730
3731 if (!VT.isVector()) {
3732 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3733 DAG.getUNDEF(VecVT), In1);
3734 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3735 DAG.getUNDEF(VecVT), In2);
3736 } else {
3737 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3738 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3739 }
3740 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3741 EltVT = MVT::i64;
3742 VecVT = MVT::v2i64;
3743
3744 // We want to materialize a mask with the high bit set, but the AdvSIMD
3745 // immediate moves cannot materialize that in a single instruction for
3746 // 64-bit elements. Instead, materialize zero and then negate it.
3747 EltMask = 0;
3748
3749 if (!VT.isVector()) {
3750 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3751 DAG.getUNDEF(VecVT), In1);
3752 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3753 DAG.getUNDEF(VecVT), In2);
3754 } else {
3755 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3756 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3757 }
3758 } else {
3759 llvm_unreachable("Invalid type for copysign!");
3760 }
3761
3762 SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
3763
3764 // If we couldn't materialize the mask above, then the mask vector will be
3765 // the zero vector, and we need to negate it here.
3766 if (VT == MVT::f64 || VT == MVT::v2f64) {
3767 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3768 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3769 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3770 }
3771
3772 SDValue Sel =
3773 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3774
3775 if (VT == MVT::f32)
3776 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3777 else if (VT == MVT::f64)
3778 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3779 else
3780 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3781 }
3782
LowerCTPOP(SDValue Op,SelectionDAG & DAG) const3783 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
3784 if (DAG.getMachineFunction().getFunction()->hasFnAttribute(
3785 Attribute::NoImplicitFloat))
3786 return SDValue();
3787
3788 if (!Subtarget->hasNEON())
3789 return SDValue();
3790
3791 // While there is no integer popcount instruction, it can
3792 // be more efficiently lowered to the following sequence that uses
3793 // AdvSIMD registers/instructions as long as the copies to/from
3794 // the AdvSIMD registers are cheap.
3795 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3796 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3797 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3798 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3799 SDValue Val = Op.getOperand(0);
3800 SDLoc DL(Op);
3801 EVT VT = Op.getValueType();
3802
3803 if (VT == MVT::i32)
3804 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
3805 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
3806
3807 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
3808 SDValue UaddLV = DAG.getNode(
3809 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3810 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
3811
3812 if (VT == MVT::i64)
3813 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3814 return UaddLV;
3815 }
3816
LowerSETCC(SDValue Op,SelectionDAG & DAG) const3817 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3818
3819 if (Op.getValueType().isVector())
3820 return LowerVSETCC(Op, DAG);
3821
3822 SDValue LHS = Op.getOperand(0);
3823 SDValue RHS = Op.getOperand(1);
3824 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3825 SDLoc dl(Op);
3826
3827 // We chose ZeroOrOneBooleanContents, so use zero and one.
3828 EVT VT = Op.getValueType();
3829 SDValue TVal = DAG.getConstant(1, dl, VT);
3830 SDValue FVal = DAG.getConstant(0, dl, VT);
3831
3832 // Handle f128 first, since one possible outcome is a normal integer
3833 // comparison which gets picked up by the next if statement.
3834 if (LHS.getValueType() == MVT::f128) {
3835 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3836
3837 // If softenSetCCOperands returned a scalar, use it.
3838 if (!RHS.getNode()) {
3839 assert(LHS.getValueType() == Op.getValueType() &&
3840 "Unexpected setcc expansion!");
3841 return LHS;
3842 }
3843 }
3844
3845 if (LHS.getValueType().isInteger()) {
3846 SDValue CCVal;
3847 SDValue Cmp =
3848 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3849
3850 // Note that we inverted the condition above, so we reverse the order of
3851 // the true and false operands here. This will allow the setcc to be
3852 // matched to a single CSINC instruction.
3853 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3854 }
3855
3856 // Now we know we're dealing with FP values.
3857 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3858
3859 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3860 // and do the comparison.
3861 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3862
3863 AArch64CC::CondCode CC1, CC2;
3864 changeFPCCToAArch64CC(CC, CC1, CC2);
3865 if (CC2 == AArch64CC::AL) {
3866 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
3867 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
3868
3869 // Note that we inverted the condition above, so we reverse the order of
3870 // the true and false operands here. This will allow the setcc to be
3871 // matched to a single CSINC instruction.
3872 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3873 } else {
3874 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3875 // totally clean. Some of them require two CSELs to implement. As is in
3876 // this case, we emit the first CSEL and then emit a second using the output
3877 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3878
3879 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
3880 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
3881 SDValue CS1 =
3882 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3883
3884 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
3885 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3886 }
3887 }
3888
LowerSELECT_CC(ISD::CondCode CC,SDValue LHS,SDValue RHS,SDValue TVal,SDValue FVal,SDLoc dl,SelectionDAG & DAG) const3889 SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
3890 SDValue RHS, SDValue TVal,
3891 SDValue FVal, SDLoc dl,
3892 SelectionDAG &DAG) const {
3893 // Handle f128 first, because it will result in a comparison of some RTLIB
3894 // call result against zero.
3895 if (LHS.getValueType() == MVT::f128) {
3896 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3897
3898 // If softenSetCCOperands returned a scalar, we need to compare the result
3899 // against zero to select between true and false values.
3900 if (!RHS.getNode()) {
3901 RHS = DAG.getConstant(0, dl, LHS.getValueType());
3902 CC = ISD::SETNE;
3903 }
3904 }
3905
3906 // Also handle f16, for which we need to do a f32 comparison.
3907 if (LHS.getValueType() == MVT::f16) {
3908 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
3909 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
3910 }
3911
3912 // Next, handle integers.
3913 if (LHS.getValueType().isInteger()) {
3914 assert((LHS.getValueType() == RHS.getValueType()) &&
3915 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3916
3917 unsigned Opcode = AArch64ISD::CSEL;
3918
3919 // If both the TVal and the FVal are constants, see if we can swap them in
3920 // order to for a CSINV or CSINC out of them.
3921 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3922 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3923
3924 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3925 std::swap(TVal, FVal);
3926 std::swap(CTVal, CFVal);
3927 CC = ISD::getSetCCInverse(CC, true);
3928 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3929 std::swap(TVal, FVal);
3930 std::swap(CTVal, CFVal);
3931 CC = ISD::getSetCCInverse(CC, true);
3932 } else if (TVal.getOpcode() == ISD::XOR) {
3933 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3934 // with a CSINV rather than a CSEL.
3935 if (isAllOnesConstant(TVal.getOperand(1))) {
3936 std::swap(TVal, FVal);
3937 std::swap(CTVal, CFVal);
3938 CC = ISD::getSetCCInverse(CC, true);
3939 }
3940 } else if (TVal.getOpcode() == ISD::SUB) {
3941 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3942 // that we can match with a CSNEG rather than a CSEL.
3943 if (isNullConstant(TVal.getOperand(0))) {
3944 std::swap(TVal, FVal);
3945 std::swap(CTVal, CFVal);
3946 CC = ISD::getSetCCInverse(CC, true);
3947 }
3948 } else if (CTVal && CFVal) {
3949 const int64_t TrueVal = CTVal->getSExtValue();
3950 const int64_t FalseVal = CFVal->getSExtValue();
3951 bool Swap = false;
3952
3953 // If both TVal and FVal are constants, see if FVal is the
3954 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3955 // instead of a CSEL in that case.
3956 if (TrueVal == ~FalseVal) {
3957 Opcode = AArch64ISD::CSINV;
3958 } else if (TrueVal == -FalseVal) {
3959 Opcode = AArch64ISD::CSNEG;
3960 } else if (TVal.getValueType() == MVT::i32) {
3961 // If our operands are only 32-bit wide, make sure we use 32-bit
3962 // arithmetic for the check whether we can use CSINC. This ensures that
3963 // the addition in the check will wrap around properly in case there is
3964 // an overflow (which would not be the case if we do the check with
3965 // 64-bit arithmetic).
3966 const uint32_t TrueVal32 = CTVal->getZExtValue();
3967 const uint32_t FalseVal32 = CFVal->getZExtValue();
3968
3969 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3970 Opcode = AArch64ISD::CSINC;
3971
3972 if (TrueVal32 > FalseVal32) {
3973 Swap = true;
3974 }
3975 }
3976 // 64-bit check whether we can use CSINC.
3977 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3978 Opcode = AArch64ISD::CSINC;
3979
3980 if (TrueVal > FalseVal) {
3981 Swap = true;
3982 }
3983 }
3984
3985 // Swap TVal and FVal if necessary.
3986 if (Swap) {
3987 std::swap(TVal, FVal);
3988 std::swap(CTVal, CFVal);
3989 CC = ISD::getSetCCInverse(CC, true);
3990 }
3991
3992 if (Opcode != AArch64ISD::CSEL) {
3993 // Drop FVal since we can get its value by simply inverting/negating
3994 // TVal.
3995 FVal = TVal;
3996 }
3997 }
3998
3999 SDValue CCVal;
4000 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
4001
4002 EVT VT = TVal.getValueType();
4003 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
4004 }
4005
4006 // Now we know we're dealing with FP values.
4007 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
4008 assert(LHS.getValueType() == RHS.getValueType());
4009 EVT VT = TVal.getValueType();
4010 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4011
4012 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4013 // clean. Some of them require two CSELs to implement.
4014 AArch64CC::CondCode CC1, CC2;
4015 changeFPCCToAArch64CC(CC, CC1, CC2);
4016 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4017 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
4018
4019 // If we need a second CSEL, emit it, using the output of the first as the
4020 // RHS. We're effectively OR'ing the two CC's together.
4021 if (CC2 != AArch64CC::AL) {
4022 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4023 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4024 }
4025
4026 // Otherwise, return the output of the first CSEL.
4027 return CS1;
4028 }
4029
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const4030 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
4031 SelectionDAG &DAG) const {
4032 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4033 SDValue LHS = Op.getOperand(0);
4034 SDValue RHS = Op.getOperand(1);
4035 SDValue TVal = Op.getOperand(2);
4036 SDValue FVal = Op.getOperand(3);
4037 SDLoc DL(Op);
4038 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4039 }
4040
LowerSELECT(SDValue Op,SelectionDAG & DAG) const4041 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
4042 SelectionDAG &DAG) const {
4043 SDValue CCVal = Op->getOperand(0);
4044 SDValue TVal = Op->getOperand(1);
4045 SDValue FVal = Op->getOperand(2);
4046 SDLoc DL(Op);
4047
4048 unsigned Opc = CCVal.getOpcode();
4049 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
4050 // instruction.
4051 if (CCVal.getResNo() == 1 &&
4052 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4053 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
4054 // Only lower legal XALUO ops.
4055 if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
4056 return SDValue();
4057
4058 AArch64CC::CondCode OFCC;
4059 SDValue Value, Overflow;
4060 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
4061 SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
4062
4063 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
4064 CCVal, Overflow);
4065 }
4066
4067 // Lower it the same way as we would lower a SELECT_CC node.
4068 ISD::CondCode CC;
4069 SDValue LHS, RHS;
4070 if (CCVal.getOpcode() == ISD::SETCC) {
4071 LHS = CCVal.getOperand(0);
4072 RHS = CCVal.getOperand(1);
4073 CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
4074 } else {
4075 LHS = CCVal;
4076 RHS = DAG.getConstant(0, DL, CCVal.getValueType());
4077 CC = ISD::SETNE;
4078 }
4079 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4080 }
4081
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const4082 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
4083 SelectionDAG &DAG) const {
4084 // Jump table entries as PC relative offsets. No additional tweaking
4085 // is necessary here. Just get the address of the jump table.
4086 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4087 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4088 SDLoc DL(Op);
4089
4090 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4091 !Subtarget->isTargetMachO()) {
4092 const unsigned char MO_NC = AArch64II::MO_NC;
4093 return DAG.getNode(
4094 AArch64ISD::WrapperLarge, DL, PtrVT,
4095 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
4096 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
4097 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
4098 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4099 AArch64II::MO_G0 | MO_NC));
4100 }
4101
4102 SDValue Hi =
4103 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
4104 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4105 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4106 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4107 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4108 }
4109
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const4110 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
4111 SelectionDAG &DAG) const {
4112 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4113 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4114 SDLoc DL(Op);
4115
4116 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4117 // Use the GOT for the large code model on iOS.
4118 if (Subtarget->isTargetMachO()) {
4119 SDValue GotAddr = DAG.getTargetConstantPool(
4120 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4121 AArch64II::MO_GOT);
4122 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
4123 }
4124
4125 const unsigned char MO_NC = AArch64II::MO_NC;
4126 return DAG.getNode(
4127 AArch64ISD::WrapperLarge, DL, PtrVT,
4128 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4129 CP->getOffset(), AArch64II::MO_G3),
4130 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4131 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
4132 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4133 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
4134 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4135 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
4136 } else {
4137 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
4138 // ELF, the only valid one on Darwin.
4139 SDValue Hi =
4140 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4141 CP->getOffset(), AArch64II::MO_PAGE);
4142 SDValue Lo = DAG.getTargetConstantPool(
4143 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4144 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4145
4146 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4147 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4148 }
4149 }
4150
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const4151 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
4152 SelectionDAG &DAG) const {
4153 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
4154 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4155 SDLoc DL(Op);
4156 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4157 !Subtarget->isTargetMachO()) {
4158 const unsigned char MO_NC = AArch64II::MO_NC;
4159 return DAG.getNode(
4160 AArch64ISD::WrapperLarge, DL, PtrVT,
4161 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
4162 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
4163 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
4164 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
4165 } else {
4166 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
4167 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
4168 AArch64II::MO_NC);
4169 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4170 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4171 }
4172 }
4173
LowerDarwin_VASTART(SDValue Op,SelectionDAG & DAG) const4174 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
4175 SelectionDAG &DAG) const {
4176 AArch64FunctionInfo *FuncInfo =
4177 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4178
4179 SDLoc DL(Op);
4180 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
4181 getPointerTy(DAG.getDataLayout()));
4182 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4183 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
4184 MachinePointerInfo(SV), false, false, 0);
4185 }
4186
LowerAAPCS_VASTART(SDValue Op,SelectionDAG & DAG) const4187 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
4188 SelectionDAG &DAG) const {
4189 // The layout of the va_list struct is specified in the AArch64 Procedure Call
4190 // Standard, section B.3.
4191 MachineFunction &MF = DAG.getMachineFunction();
4192 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
4193 auto PtrVT = getPointerTy(DAG.getDataLayout());
4194 SDLoc DL(Op);
4195
4196 SDValue Chain = Op.getOperand(0);
4197 SDValue VAList = Op.getOperand(1);
4198 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4199 SmallVector<SDValue, 4> MemOps;
4200
4201 // void *__stack at offset 0
4202 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
4203 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
4204 MachinePointerInfo(SV), false, false, 8));
4205
4206 // void *__gr_top at offset 8
4207 int GPRSize = FuncInfo->getVarArgsGPRSize();
4208 if (GPRSize > 0) {
4209 SDValue GRTop, GRTopAddr;
4210
4211 GRTopAddr =
4212 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
4213
4214 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
4215 GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
4216 DAG.getConstant(GPRSize, DL, PtrVT));
4217
4218 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
4219 MachinePointerInfo(SV, 8), false, false, 8));
4220 }
4221
4222 // void *__vr_top at offset 16
4223 int FPRSize = FuncInfo->getVarArgsFPRSize();
4224 if (FPRSize > 0) {
4225 SDValue VRTop, VRTopAddr;
4226 VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4227 DAG.getConstant(16, DL, PtrVT));
4228
4229 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
4230 VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
4231 DAG.getConstant(FPRSize, DL, PtrVT));
4232
4233 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
4234 MachinePointerInfo(SV, 16), false, false, 8));
4235 }
4236
4237 // int __gr_offs at offset 24
4238 SDValue GROffsAddr =
4239 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
4240 MemOps.push_back(DAG.getStore(Chain, DL,
4241 DAG.getConstant(-GPRSize, DL, MVT::i32),
4242 GROffsAddr, MachinePointerInfo(SV, 24), false,
4243 false, 4));
4244
4245 // int __vr_offs at offset 28
4246 SDValue VROffsAddr =
4247 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
4248 MemOps.push_back(DAG.getStore(Chain, DL,
4249 DAG.getConstant(-FPRSize, DL, MVT::i32),
4250 VROffsAddr, MachinePointerInfo(SV, 28), false,
4251 false, 4));
4252
4253 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
4254 }
4255
LowerVASTART(SDValue Op,SelectionDAG & DAG) const4256 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
4257 SelectionDAG &DAG) const {
4258 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
4259 : LowerAAPCS_VASTART(Op, DAG);
4260 }
4261
LowerVACOPY(SDValue Op,SelectionDAG & DAG) const4262 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
4263 SelectionDAG &DAG) const {
4264 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
4265 // pointer.
4266 SDLoc DL(Op);
4267 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
4268 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
4269 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
4270
4271 return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
4272 Op.getOperand(2),
4273 DAG.getConstant(VaListSize, DL, MVT::i32),
4274 8, false, false, false, MachinePointerInfo(DestSV),
4275 MachinePointerInfo(SrcSV));
4276 }
4277
LowerVAARG(SDValue Op,SelectionDAG & DAG) const4278 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
4279 assert(Subtarget->isTargetDarwin() &&
4280 "automatic va_arg instruction only works on Darwin");
4281
4282 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4283 EVT VT = Op.getValueType();
4284 SDLoc DL(Op);
4285 SDValue Chain = Op.getOperand(0);
4286 SDValue Addr = Op.getOperand(1);
4287 unsigned Align = Op.getConstantOperandVal(3);
4288 auto PtrVT = getPointerTy(DAG.getDataLayout());
4289
4290 SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V),
4291 false, false, false, 0);
4292 Chain = VAList.getValue(1);
4293
4294 if (Align > 8) {
4295 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
4296 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4297 DAG.getConstant(Align - 1, DL, PtrVT));
4298 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
4299 DAG.getConstant(-(int64_t)Align, DL, PtrVT));
4300 }
4301
4302 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
4303 uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
4304
4305 // Scalar integer and FP values smaller than 64 bits are implicitly extended
4306 // up to 64 bits. At the very least, we have to increase the striding of the
4307 // vaargs list to match this, and for FP values we need to introduce
4308 // FP_ROUND nodes as well.
4309 if (VT.isInteger() && !VT.isVector())
4310 ArgSize = 8;
4311 bool NeedFPTrunc = false;
4312 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
4313 ArgSize = 8;
4314 NeedFPTrunc = true;
4315 }
4316
4317 // Increment the pointer, VAList, to the next vaarg
4318 SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4319 DAG.getConstant(ArgSize, DL, PtrVT));
4320 // Store the incremented VAList to the legalized pointer
4321 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
4322 false, false, 0);
4323
4324 // Load the actual argument out of the pointer VAList
4325 if (NeedFPTrunc) {
4326 // Load the value as an f64.
4327 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
4328 MachinePointerInfo(), false, false, false, 0);
4329 // Round the value down to an f32.
4330 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
4331 DAG.getIntPtrConstant(1, DL));
4332 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
4333 // Merge the rounded value with the chain output of the load.
4334 return DAG.getMergeValues(Ops, DL);
4335 }
4336
4337 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
4338 false, false, 0);
4339 }
4340
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const4341 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
4342 SelectionDAG &DAG) const {
4343 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4344 MFI->setFrameAddressIsTaken(true);
4345
4346 EVT VT = Op.getValueType();
4347 SDLoc DL(Op);
4348 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4349 SDValue FrameAddr =
4350 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
4351 while (Depth--)
4352 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
4353 MachinePointerInfo(), false, false, false, 0);
4354 return FrameAddr;
4355 }
4356
4357 // FIXME? Maybe this could be a TableGen attribute on some registers and
4358 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const4359 unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
4360 SelectionDAG &DAG) const {
4361 unsigned Reg = StringSwitch<unsigned>(RegName)
4362 .Case("sp", AArch64::SP)
4363 .Default(0);
4364 if (Reg)
4365 return Reg;
4366 report_fatal_error(Twine("Invalid register name \""
4367 + StringRef(RegName) + "\"."));
4368 }
4369
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const4370 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4371 SelectionDAG &DAG) const {
4372 MachineFunction &MF = DAG.getMachineFunction();
4373 MachineFrameInfo *MFI = MF.getFrameInfo();
4374 MFI->setReturnAddressIsTaken(true);
4375
4376 EVT VT = Op.getValueType();
4377 SDLoc DL(Op);
4378 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4379 if (Depth) {
4380 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4381 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
4382 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4383 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4384 MachinePointerInfo(), false, false, false, 0);
4385 }
4386
4387 // Return LR, which contains the return address. Mark it an implicit live-in.
4388 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4389 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4390 }
4391
4392 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4393 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const4394 SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4395 SelectionDAG &DAG) const {
4396 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4397 EVT VT = Op.getValueType();
4398 unsigned VTBits = VT.getSizeInBits();
4399 SDLoc dl(Op);
4400 SDValue ShOpLo = Op.getOperand(0);
4401 SDValue ShOpHi = Op.getOperand(1);
4402 SDValue ShAmt = Op.getOperand(2);
4403 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4404
4405 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4406
4407 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4408 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
4409 SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4410
4411 // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
4412 // is "undef". We wanted 0, so CSEL it directly.
4413 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
4414 ISD::SETEQ, dl, DAG);
4415 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
4416 HiBitsForLo =
4417 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
4418 HiBitsForLo, CCVal, Cmp);
4419
4420 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4421 DAG.getConstant(VTBits, dl, MVT::i64));
4422
4423 SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4424 SDValue LoForNormalShift =
4425 DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
4426
4427 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
4428 dl, DAG);
4429 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
4430 SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4431 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
4432 LoForNormalShift, CCVal, Cmp);
4433
4434 // AArch64 shifts larger than the register width are wrapped rather than
4435 // clamped, so we can't just emit "hi >> x".
4436 SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4437 SDValue HiForBigShift =
4438 Opc == ISD::SRA
4439 ? DAG.getNode(Opc, dl, VT, ShOpHi,
4440 DAG.getConstant(VTBits - 1, dl, MVT::i64))
4441 : DAG.getConstant(0, dl, VT);
4442 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
4443 HiForNormalShift, CCVal, Cmp);
4444
4445 SDValue Ops[2] = { Lo, Hi };
4446 return DAG.getMergeValues(Ops, dl);
4447 }
4448
4449
4450 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4451 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const4452 SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
4453 SelectionDAG &DAG) const {
4454 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4455 EVT VT = Op.getValueType();
4456 unsigned VTBits = VT.getSizeInBits();
4457 SDLoc dl(Op);
4458 SDValue ShOpLo = Op.getOperand(0);
4459 SDValue ShOpHi = Op.getOperand(1);
4460 SDValue ShAmt = Op.getOperand(2);
4461
4462 assert(Op.getOpcode() == ISD::SHL_PARTS);
4463 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4464 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
4465 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4466
4467 // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
4468 // is "undef". We wanted 0, so CSEL it directly.
4469 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
4470 ISD::SETEQ, dl, DAG);
4471 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
4472 LoBitsForHi =
4473 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
4474 LoBitsForHi, CCVal, Cmp);
4475
4476 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4477 DAG.getConstant(VTBits, dl, MVT::i64));
4478 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4479 SDValue HiForNormalShift =
4480 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
4481
4482 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4483
4484 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
4485 dl, DAG);
4486 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
4487 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
4488 HiForNormalShift, CCVal, Cmp);
4489
4490 // AArch64 shifts of larger than register sizes are wrapped rather than
4491 // clamped, so we can't just emit "lo << a" if a is too big.
4492 SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
4493 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4494 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
4495 LoForNormalShift, CCVal, Cmp);
4496
4497 SDValue Ops[2] = { Lo, Hi };
4498 return DAG.getMergeValues(Ops, dl);
4499 }
4500
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const4501 bool AArch64TargetLowering::isOffsetFoldingLegal(
4502 const GlobalAddressSDNode *GA) const {
4503 // The AArch64 target doesn't support folding offsets into global addresses.
4504 return false;
4505 }
4506
isFPImmLegal(const APFloat & Imm,EVT VT) const4507 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4508 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4509 // FIXME: We should be able to handle f128 as well with a clever lowering.
4510 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4511 return true;
4512
4513 if (VT == MVT::f64)
4514 return AArch64_AM::getFP64Imm(Imm) != -1;
4515 else if (VT == MVT::f32)
4516 return AArch64_AM::getFP32Imm(Imm) != -1;
4517 return false;
4518 }
4519
4520 //===----------------------------------------------------------------------===//
4521 // AArch64 Optimization Hooks
4522 //===----------------------------------------------------------------------===//
4523
4524 //===----------------------------------------------------------------------===//
4525 // AArch64 Inline Assembly Support
4526 //===----------------------------------------------------------------------===//
4527
4528 // Table of Constraints
4529 // TODO: This is the current set of constraints supported by ARM for the
4530 // compiler, not all of them may make sense, e.g. S may be difficult to support.
4531 //
4532 // r - A general register
4533 // w - An FP/SIMD register of some size in the range v0-v31
4534 // x - An FP/SIMD register of some size in the range v0-v15
4535 // I - Constant that can be used with an ADD instruction
4536 // J - Constant that can be used with a SUB instruction
4537 // K - Constant that can be used with a 32-bit logical instruction
4538 // L - Constant that can be used with a 64-bit logical instruction
4539 // M - Constant that can be used as a 32-bit MOV immediate
4540 // N - Constant that can be used as a 64-bit MOV immediate
4541 // Q - A memory reference with base register and no offset
4542 // S - A symbolic address
4543 // Y - Floating point constant zero
4544 // Z - Integer constant zero
4545 //
4546 // Note that general register operands will be output using their 64-bit x
4547 // register name, whatever the size of the variable, unless the asm operand
4548 // is prefixed by the %w modifier. Floating-point and SIMD register operands
4549 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4550 // %q modifier.
4551
4552 /// getConstraintType - Given a constraint letter, return the type of
4553 /// constraint it is for this target.
4554 AArch64TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const4555 AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
4556 if (Constraint.size() == 1) {
4557 switch (Constraint[0]) {
4558 default:
4559 break;
4560 case 'z':
4561 return C_Other;
4562 case 'x':
4563 case 'w':
4564 return C_RegisterClass;
4565 // An address with a single base register. Due to the way we
4566 // currently handle addresses it is the same as 'r'.
4567 case 'Q':
4568 return C_Memory;
4569 }
4570 }
4571 return TargetLowering::getConstraintType(Constraint);
4572 }
4573
4574 /// Examine constraint type and operand type and determine a weight value.
4575 /// This object must already have been set up with the operand type
4576 /// and the current alternative constraint selected.
4577 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const4578 AArch64TargetLowering::getSingleConstraintMatchWeight(
4579 AsmOperandInfo &info, const char *constraint) const {
4580 ConstraintWeight weight = CW_Invalid;
4581 Value *CallOperandVal = info.CallOperandVal;
4582 // If we don't have a value, we can't do a match,
4583 // but allow it at the lowest weight.
4584 if (!CallOperandVal)
4585 return CW_Default;
4586 Type *type = CallOperandVal->getType();
4587 // Look at the constraint type.
4588 switch (*constraint) {
4589 default:
4590 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4591 break;
4592 case 'x':
4593 case 'w':
4594 if (type->isFloatingPointTy() || type->isVectorTy())
4595 weight = CW_Register;
4596 break;
4597 case 'z':
4598 weight = CW_Constant;
4599 break;
4600 }
4601 return weight;
4602 }
4603
4604 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const4605 AArch64TargetLowering::getRegForInlineAsmConstraint(
4606 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
4607 if (Constraint.size() == 1) {
4608 switch (Constraint[0]) {
4609 case 'r':
4610 if (VT.getSizeInBits() == 64)
4611 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4612 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4613 case 'w':
4614 if (VT == MVT::f32)
4615 return std::make_pair(0U, &AArch64::FPR32RegClass);
4616 if (VT.getSizeInBits() == 64)
4617 return std::make_pair(0U, &AArch64::FPR64RegClass);
4618 if (VT.getSizeInBits() == 128)
4619 return std::make_pair(0U, &AArch64::FPR128RegClass);
4620 break;
4621 // The instructions that this constraint is designed for can
4622 // only take 128-bit registers so just use that regclass.
4623 case 'x':
4624 if (VT.getSizeInBits() == 128)
4625 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4626 break;
4627 }
4628 }
4629 if (StringRef("{cc}").equals_lower(Constraint))
4630 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4631
4632 // Use the default implementation in TargetLowering to convert the register
4633 // constraint into a member of a register class.
4634 std::pair<unsigned, const TargetRegisterClass *> Res;
4635 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4636
4637 // Not found as a standard register?
4638 if (!Res.second) {
4639 unsigned Size = Constraint.size();
4640 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4641 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
4642 int RegNo;
4643 bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
4644 if (!Failed && RegNo >= 0 && RegNo <= 31) {
4645 // v0 - v31 are aliases of q0 - q31.
4646 // By default we'll emit v0-v31 for this unless there's a modifier where
4647 // we'll emit the correct register as well.
4648 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4649 Res.second = &AArch64::FPR128RegClass;
4650 }
4651 }
4652 }
4653
4654 return Res;
4655 }
4656
4657 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4658 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const4659 void AArch64TargetLowering::LowerAsmOperandForConstraint(
4660 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4661 SelectionDAG &DAG) const {
4662 SDValue Result;
4663
4664 // Currently only support length 1 constraints.
4665 if (Constraint.length() != 1)
4666 return;
4667
4668 char ConstraintLetter = Constraint[0];
4669 switch (ConstraintLetter) {
4670 default:
4671 break;
4672
4673 // This set of constraints deal with valid constants for various instructions.
4674 // Validate and return a target constant for them if we can.
4675 case 'z': {
4676 // 'z' maps to xzr or wzr so it needs an input of 0.
4677 if (!isNullConstant(Op))
4678 return;
4679
4680 if (Op.getValueType() == MVT::i64)
4681 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4682 else
4683 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4684 break;
4685 }
4686
4687 case 'I':
4688 case 'J':
4689 case 'K':
4690 case 'L':
4691 case 'M':
4692 case 'N':
4693 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4694 if (!C)
4695 return;
4696
4697 // Grab the value and do some validation.
4698 uint64_t CVal = C->getZExtValue();
4699 switch (ConstraintLetter) {
4700 // The I constraint applies only to simple ADD or SUB immediate operands:
4701 // i.e. 0 to 4095 with optional shift by 12
4702 // The J constraint applies only to ADD or SUB immediates that would be
4703 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4704 // instruction [or vice versa], in other words -1 to -4095 with optional
4705 // left shift by 12.
4706 case 'I':
4707 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4708 break;
4709 return;
4710 case 'J': {
4711 uint64_t NVal = -C->getSExtValue();
4712 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4713 CVal = C->getSExtValue();
4714 break;
4715 }
4716 return;
4717 }
4718 // The K and L constraints apply *only* to logical immediates, including
4719 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4720 // been removed and MOV should be used). So these constraints have to
4721 // distinguish between bit patterns that are valid 32-bit or 64-bit
4722 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4723 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4724 // versa.
4725 case 'K':
4726 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4727 break;
4728 return;
4729 case 'L':
4730 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4731 break;
4732 return;
4733 // The M and N constraints are a superset of K and L respectively, for use
4734 // with the MOV (immediate) alias. As well as the logical immediates they
4735 // also match 32 or 64-bit immediates that can be loaded either using a
4736 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4737 // (M) or 64-bit 0x1234000000000000 (N) etc.
4738 // As a note some of this code is liberally stolen from the asm parser.
4739 case 'M': {
4740 if (!isUInt<32>(CVal))
4741 return;
4742 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4743 break;
4744 if ((CVal & 0xFFFF) == CVal)
4745 break;
4746 if ((CVal & 0xFFFF0000ULL) == CVal)
4747 break;
4748 uint64_t NCVal = ~(uint32_t)CVal;
4749 if ((NCVal & 0xFFFFULL) == NCVal)
4750 break;
4751 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4752 break;
4753 return;
4754 }
4755 case 'N': {
4756 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4757 break;
4758 if ((CVal & 0xFFFFULL) == CVal)
4759 break;
4760 if ((CVal & 0xFFFF0000ULL) == CVal)
4761 break;
4762 if ((CVal & 0xFFFF00000000ULL) == CVal)
4763 break;
4764 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4765 break;
4766 uint64_t NCVal = ~CVal;
4767 if ((NCVal & 0xFFFFULL) == NCVal)
4768 break;
4769 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4770 break;
4771 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4772 break;
4773 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4774 break;
4775 return;
4776 }
4777 default:
4778 return;
4779 }
4780
4781 // All assembler immediates are 64-bit integers.
4782 Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
4783 break;
4784 }
4785
4786 if (Result.getNode()) {
4787 Ops.push_back(Result);
4788 return;
4789 }
4790
4791 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4792 }
4793
4794 //===----------------------------------------------------------------------===//
4795 // AArch64 Advanced SIMD Support
4796 //===----------------------------------------------------------------------===//
4797
4798 /// WidenVector - Given a value in the V64 register class, produce the
4799 /// equivalent value in the V128 register class.
WidenVector(SDValue V64Reg,SelectionDAG & DAG)4800 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4801 EVT VT = V64Reg.getValueType();
4802 unsigned NarrowSize = VT.getVectorNumElements();
4803 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4804 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4805 SDLoc DL(V64Reg);
4806
4807 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
4808 V64Reg, DAG.getConstant(0, DL, MVT::i32));
4809 }
4810
4811 /// getExtFactor - Determine the adjustment factor for the position when
4812 /// generating an "extract from vector registers" instruction.
getExtFactor(SDValue & V)4813 static unsigned getExtFactor(SDValue &V) {
4814 EVT EltType = V.getValueType().getVectorElementType();
4815 return EltType.getSizeInBits() / 8;
4816 }
4817
4818 /// NarrowVector - Given a value in the V128 register class, produce the
4819 /// equivalent value in the V64 register class.
NarrowVector(SDValue V128Reg,SelectionDAG & DAG)4820 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4821 EVT VT = V128Reg.getValueType();
4822 unsigned WideSize = VT.getVectorNumElements();
4823 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4824 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4825 SDLoc DL(V128Reg);
4826
4827 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4828 }
4829
4830 // Gather data to see if the operation can be modelled as a
4831 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const4832 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4833 SelectionDAG &DAG) const {
4834 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
4835 SDLoc dl(Op);
4836 EVT VT = Op.getValueType();
4837 unsigned NumElts = VT.getVectorNumElements();
4838
4839 struct ShuffleSourceInfo {
4840 SDValue Vec;
4841 unsigned MinElt;
4842 unsigned MaxElt;
4843
4844 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4845 // be compatible with the shuffle we intend to construct. As a result
4846 // ShuffleVec will be some sliding window into the original Vec.
4847 SDValue ShuffleVec;
4848
4849 // Code should guarantee that element i in Vec starts at element "WindowBase
4850 // + i * WindowScale in ShuffleVec".
4851 int WindowBase;
4852 int WindowScale;
4853
4854 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4855 ShuffleSourceInfo(SDValue Vec)
4856 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4857 WindowScale(1) {}
4858 };
4859
4860 // First gather all vectors used as an immediate source for this BUILD_VECTOR
4861 // node.
4862 SmallVector<ShuffleSourceInfo, 2> Sources;
4863 for (unsigned i = 0; i < NumElts; ++i) {
4864 SDValue V = Op.getOperand(i);
4865 if (V.getOpcode() == ISD::UNDEF)
4866 continue;
4867 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4868 // A shuffle can only come from building a vector from various
4869 // elements of other vectors.
4870 return SDValue();
4871 }
4872
4873 // Add this element source to the list if it's not already there.
4874 SDValue SourceVec = V.getOperand(0);
4875 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4876 if (Source == Sources.end())
4877 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
4878
4879 // Update the minimum and maximum lane number seen.
4880 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4881 Source->MinElt = std::min(Source->MinElt, EltNo);
4882 Source->MaxElt = std::max(Source->MaxElt, EltNo);
4883 }
4884
4885 // Currently only do something sane when at most two source vectors
4886 // are involved.
4887 if (Sources.size() > 2)
4888 return SDValue();
4889
4890 // Find out the smallest element size among result and two sources, and use
4891 // it as element size to build the shuffle_vector.
4892 EVT SmallestEltTy = VT.getVectorElementType();
4893 for (auto &Source : Sources) {
4894 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
4895 if (SrcEltTy.bitsLT(SmallestEltTy)) {
4896 SmallestEltTy = SrcEltTy;
4897 }
4898 }
4899 unsigned ResMultiplier =
4900 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
4901 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4902 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
4903
4904 // If the source vector is too wide or too narrow, we may nevertheless be able
4905 // to construct a compatible shuffle either by concatenating it with UNDEF or
4906 // extracting a suitable range of elements.
4907 for (auto &Src : Sources) {
4908 EVT SrcVT = Src.ShuffleVec.getValueType();
4909
4910 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
4911 continue;
4912
4913 // This stage of the search produces a source with the same element type as
4914 // the original, but with a total width matching the BUILD_VECTOR output.
4915 EVT EltVT = SrcVT.getVectorElementType();
4916 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
4917 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
4918
4919 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
4920 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
4921 // We can pad out the smaller vector for free, so if it's part of a
4922 // shuffle...
4923 Src.ShuffleVec =
4924 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
4925 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
4926 continue;
4927 }
4928
4929 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
4930
4931 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
4932 // Span too large for a VEXT to cope
4933 return SDValue();
4934 }
4935
4936 if (Src.MinElt >= NumSrcElts) {
4937 // The extraction can just take the second half
4938 Src.ShuffleVec =
4939 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4940 DAG.getConstant(NumSrcElts, dl, MVT::i64));
4941 Src.WindowBase = -NumSrcElts;
4942 } else if (Src.MaxElt < NumSrcElts) {
4943 // The extraction can just take the first half
4944 Src.ShuffleVec =
4945 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4946 DAG.getConstant(0, dl, MVT::i64));
4947 } else {
4948 // An actual VEXT is needed
4949 SDValue VEXTSrc1 =
4950 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4951 DAG.getConstant(0, dl, MVT::i64));
4952 SDValue VEXTSrc2 =
4953 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4954 DAG.getConstant(NumSrcElts, dl, MVT::i64));
4955 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
4956
4957 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
4958 VEXTSrc2,
4959 DAG.getConstant(Imm, dl, MVT::i32));
4960 Src.WindowBase = -Src.MinElt;
4961 }
4962 }
4963
4964 // Another possible incompatibility occurs from the vector element types. We
4965 // can fix this by bitcasting the source vectors to the same type we intend
4966 // for the shuffle.
4967 for (auto &Src : Sources) {
4968 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
4969 if (SrcEltTy == SmallestEltTy)
4970 continue;
4971 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
4972 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
4973 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
4974 Src.WindowBase *= Src.WindowScale;
4975 }
4976
4977 // Final sanity check before we try to actually produce a shuffle.
4978 DEBUG(
4979 for (auto Src : Sources)
4980 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
4981 );
4982
4983 // The stars all align, our next step is to produce the mask for the shuffle.
4984 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
4985 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
4986 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
4987 SDValue Entry = Op.getOperand(i);
4988 if (Entry.getOpcode() == ISD::UNDEF)
4989 continue;
4990
4991 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
4992 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
4993
4994 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
4995 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
4996 // segment.
4997 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
4998 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
4999 VT.getVectorElementType().getSizeInBits());
5000 int LanesDefined = BitsDefined / BitsPerShuffleLane;
5001
5002 // This source is expected to fill ResMultiplier lanes of the final shuffle,
5003 // starting at the appropriate offset.
5004 int *LaneMask = &Mask[i * ResMultiplier];
5005
5006 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
5007 ExtractBase += NumElts * (Src - Sources.begin());
5008 for (int j = 0; j < LanesDefined; ++j)
5009 LaneMask[j] = ExtractBase + j;
5010 }
5011
5012 // Final check before we try to produce nonsense...
5013 if (!isShuffleMaskLegal(Mask, ShuffleVT))
5014 return SDValue();
5015
5016 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
5017 for (unsigned i = 0; i < Sources.size(); ++i)
5018 ShuffleOps[i] = Sources[i].ShuffleVec;
5019
5020 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
5021 ShuffleOps[1], &Mask[0]);
5022 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
5023 }
5024
5025 // check if an EXT instruction can handle the shuffle mask when the
5026 // vector sources of the shuffle are the same.
isSingletonEXTMask(ArrayRef<int> M,EVT VT,unsigned & Imm)5027 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
5028 unsigned NumElts = VT.getVectorNumElements();
5029
5030 // Assume that the first shuffle index is not UNDEF. Fail if it is.
5031 if (M[0] < 0)
5032 return false;
5033
5034 Imm = M[0];
5035
5036 // If this is a VEXT shuffle, the immediate value is the index of the first
5037 // element. The other shuffle indices must be the successive elements after
5038 // the first one.
5039 unsigned ExpectedElt = Imm;
5040 for (unsigned i = 1; i < NumElts; ++i) {
5041 // Increment the expected index. If it wraps around, just follow it
5042 // back to index zero and keep going.
5043 ++ExpectedElt;
5044 if (ExpectedElt == NumElts)
5045 ExpectedElt = 0;
5046
5047 if (M[i] < 0)
5048 continue; // ignore UNDEF indices
5049 if (ExpectedElt != static_cast<unsigned>(M[i]))
5050 return false;
5051 }
5052
5053 return true;
5054 }
5055
5056 // check if an EXT instruction can handle the shuffle mask when the
5057 // vector sources of the shuffle are different.
isEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseEXT,unsigned & Imm)5058 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
5059 unsigned &Imm) {
5060 // Look for the first non-undef element.
5061 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
5062 [](int Elt) {return Elt >= 0;});
5063
5064 // Benefit form APInt to handle overflow when calculating expected element.
5065 unsigned NumElts = VT.getVectorNumElements();
5066 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
5067 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
5068 // The following shuffle indices must be the successive elements after the
5069 // first real element.
5070 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
5071 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
5072 if (FirstWrongElt != M.end())
5073 return false;
5074
5075 // The index of an EXT is the first element if it is not UNDEF.
5076 // Watch out for the beginning UNDEFs. The EXT index should be the expected
5077 // value of the first element. E.g.
5078 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
5079 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
5080 // ExpectedElt is the last mask index plus 1.
5081 Imm = ExpectedElt.getZExtValue();
5082
5083 // There are two difference cases requiring to reverse input vectors.
5084 // For example, for vector <4 x i32> we have the following cases,
5085 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
5086 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
5087 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
5088 // to reverse two input vectors.
5089 if (Imm < NumElts)
5090 ReverseEXT = true;
5091 else
5092 Imm -= NumElts;
5093
5094 return true;
5095 }
5096
5097 /// isREVMask - Check if a vector shuffle corresponds to a REV
5098 /// instruction with the specified blocksize. (The order of the elements
5099 /// within each block of the vector is reversed.)
isREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)5100 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
5101 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
5102 "Only possible block sizes for REV are: 16, 32, 64");
5103
5104 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5105 if (EltSz == 64)
5106 return false;
5107
5108 unsigned NumElts = VT.getVectorNumElements();
5109 unsigned BlockElts = M[0] + 1;
5110 // If the first shuffle index is UNDEF, be optimistic.
5111 if (M[0] < 0)
5112 BlockElts = BlockSize / EltSz;
5113
5114 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
5115 return false;
5116
5117 for (unsigned i = 0; i < NumElts; ++i) {
5118 if (M[i] < 0)
5119 continue; // ignore UNDEF indices
5120 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
5121 return false;
5122 }
5123
5124 return true;
5125 }
5126
isZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5127 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5128 unsigned NumElts = VT.getVectorNumElements();
5129 WhichResult = (M[0] == 0 ? 0 : 1);
5130 unsigned Idx = WhichResult * NumElts / 2;
5131 for (unsigned i = 0; i != NumElts; i += 2) {
5132 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5133 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
5134 return false;
5135 Idx += 1;
5136 }
5137
5138 return true;
5139 }
5140
isUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5141 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5142 unsigned NumElts = VT.getVectorNumElements();
5143 WhichResult = (M[0] == 0 ? 0 : 1);
5144 for (unsigned i = 0; i != NumElts; ++i) {
5145 if (M[i] < 0)
5146 continue; // ignore UNDEF indices
5147 if ((unsigned)M[i] != 2 * i + WhichResult)
5148 return false;
5149 }
5150
5151 return true;
5152 }
5153
isTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5154 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5155 unsigned NumElts = VT.getVectorNumElements();
5156 WhichResult = (M[0] == 0 ? 0 : 1);
5157 for (unsigned i = 0; i < NumElts; i += 2) {
5158 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5159 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
5160 return false;
5161 }
5162 return true;
5163 }
5164
5165 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
5166 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5167 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5168 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5169 unsigned NumElts = VT.getVectorNumElements();
5170 WhichResult = (M[0] == 0 ? 0 : 1);
5171 unsigned Idx = WhichResult * NumElts / 2;
5172 for (unsigned i = 0; i != NumElts; i += 2) {
5173 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5174 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
5175 return false;
5176 Idx += 1;
5177 }
5178
5179 return true;
5180 }
5181
5182 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
5183 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5184 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5185 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5186 unsigned Half = VT.getVectorNumElements() / 2;
5187 WhichResult = (M[0] == 0 ? 0 : 1);
5188 for (unsigned j = 0; j != 2; ++j) {
5189 unsigned Idx = WhichResult;
5190 for (unsigned i = 0; i != Half; ++i) {
5191 int MIdx = M[i + j * Half];
5192 if (MIdx >= 0 && (unsigned)MIdx != Idx)
5193 return false;
5194 Idx += 2;
5195 }
5196 }
5197
5198 return true;
5199 }
5200
5201 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
5202 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5203 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5204 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5205 unsigned NumElts = VT.getVectorNumElements();
5206 WhichResult = (M[0] == 0 ? 0 : 1);
5207 for (unsigned i = 0; i < NumElts; i += 2) {
5208 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5209 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
5210 return false;
5211 }
5212 return true;
5213 }
5214
isINSMask(ArrayRef<int> M,int NumInputElements,bool & DstIsLeft,int & Anomaly)5215 static bool isINSMask(ArrayRef<int> M, int NumInputElements,
5216 bool &DstIsLeft, int &Anomaly) {
5217 if (M.size() != static_cast<size_t>(NumInputElements))
5218 return false;
5219
5220 int NumLHSMatch = 0, NumRHSMatch = 0;
5221 int LastLHSMismatch = -1, LastRHSMismatch = -1;
5222
5223 for (int i = 0; i < NumInputElements; ++i) {
5224 if (M[i] == -1) {
5225 ++NumLHSMatch;
5226 ++NumRHSMatch;
5227 continue;
5228 }
5229
5230 if (M[i] == i)
5231 ++NumLHSMatch;
5232 else
5233 LastLHSMismatch = i;
5234
5235 if (M[i] == i + NumInputElements)
5236 ++NumRHSMatch;
5237 else
5238 LastRHSMismatch = i;
5239 }
5240
5241 if (NumLHSMatch == NumInputElements - 1) {
5242 DstIsLeft = true;
5243 Anomaly = LastLHSMismatch;
5244 return true;
5245 } else if (NumRHSMatch == NumInputElements - 1) {
5246 DstIsLeft = false;
5247 Anomaly = LastRHSMismatch;
5248 return true;
5249 }
5250
5251 return false;
5252 }
5253
isConcatMask(ArrayRef<int> Mask,EVT VT,bool SplitLHS)5254 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
5255 if (VT.getSizeInBits() != 128)
5256 return false;
5257
5258 unsigned NumElts = VT.getVectorNumElements();
5259
5260 for (int I = 0, E = NumElts / 2; I != E; I++) {
5261 if (Mask[I] != I)
5262 return false;
5263 }
5264
5265 int Offset = NumElts / 2;
5266 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
5267 if (Mask[I] != I + SplitLHS * Offset)
5268 return false;
5269 }
5270
5271 return true;
5272 }
5273
tryFormConcatFromShuffle(SDValue Op,SelectionDAG & DAG)5274 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
5275 SDLoc DL(Op);
5276 EVT VT = Op.getValueType();
5277 SDValue V0 = Op.getOperand(0);
5278 SDValue V1 = Op.getOperand(1);
5279 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
5280
5281 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
5282 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
5283 return SDValue();
5284
5285 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
5286
5287 if (!isConcatMask(Mask, VT, SplitV0))
5288 return SDValue();
5289
5290 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
5291 VT.getVectorNumElements() / 2);
5292 if (SplitV0) {
5293 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
5294 DAG.getConstant(0, DL, MVT::i64));
5295 }
5296 if (V1.getValueType().getSizeInBits() == 128) {
5297 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
5298 DAG.getConstant(0, DL, MVT::i64));
5299 }
5300 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
5301 }
5302
5303 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5304 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,SDLoc dl)5305 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5306 SDValue RHS, SelectionDAG &DAG,
5307 SDLoc dl) {
5308 unsigned OpNum = (PFEntry >> 26) & 0x0F;
5309 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
5310 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
5311
5312 enum {
5313 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5314 OP_VREV,
5315 OP_VDUP0,
5316 OP_VDUP1,
5317 OP_VDUP2,
5318 OP_VDUP3,
5319 OP_VEXT1,
5320 OP_VEXT2,
5321 OP_VEXT3,
5322 OP_VUZPL, // VUZP, left result
5323 OP_VUZPR, // VUZP, right result
5324 OP_VZIPL, // VZIP, left result
5325 OP_VZIPR, // VZIP, right result
5326 OP_VTRNL, // VTRN, left result
5327 OP_VTRNR // VTRN, right result
5328 };
5329
5330 if (OpNum == OP_COPY) {
5331 if (LHSID == (1 * 9 + 2) * 9 + 3)
5332 return LHS;
5333 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
5334 return RHS;
5335 }
5336
5337 SDValue OpLHS, OpRHS;
5338 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5339 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5340 EVT VT = OpLHS.getValueType();
5341
5342 switch (OpNum) {
5343 default:
5344 llvm_unreachable("Unknown shuffle opcode!");
5345 case OP_VREV:
5346 // VREV divides the vector in half and swaps within the half.
5347 if (VT.getVectorElementType() == MVT::i32 ||
5348 VT.getVectorElementType() == MVT::f32)
5349 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
5350 // vrev <4 x i16> -> REV32
5351 if (VT.getVectorElementType() == MVT::i16 ||
5352 VT.getVectorElementType() == MVT::f16)
5353 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
5354 // vrev <4 x i8> -> REV16
5355 assert(VT.getVectorElementType() == MVT::i8);
5356 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
5357 case OP_VDUP0:
5358 case OP_VDUP1:
5359 case OP_VDUP2:
5360 case OP_VDUP3: {
5361 EVT EltTy = VT.getVectorElementType();
5362 unsigned Opcode;
5363 if (EltTy == MVT::i8)
5364 Opcode = AArch64ISD::DUPLANE8;
5365 else if (EltTy == MVT::i16 || EltTy == MVT::f16)
5366 Opcode = AArch64ISD::DUPLANE16;
5367 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
5368 Opcode = AArch64ISD::DUPLANE32;
5369 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
5370 Opcode = AArch64ISD::DUPLANE64;
5371 else
5372 llvm_unreachable("Invalid vector element type?");
5373
5374 if (VT.getSizeInBits() == 64)
5375 OpLHS = WidenVector(OpLHS, DAG);
5376 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
5377 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5378 }
5379 case OP_VEXT1:
5380 case OP_VEXT2:
5381 case OP_VEXT3: {
5382 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5383 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
5384 DAG.getConstant(Imm, dl, MVT::i32));
5385 }
5386 case OP_VUZPL:
5387 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5388 OpRHS);
5389 case OP_VUZPR:
5390 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5391 OpRHS);
5392 case OP_VZIPL:
5393 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5394 OpRHS);
5395 case OP_VZIPR:
5396 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5397 OpRHS);
5398 case OP_VTRNL:
5399 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5400 OpRHS);
5401 case OP_VTRNR:
5402 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5403 OpRHS);
5404 }
5405 }
5406
GenerateTBL(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)5407 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5408 SelectionDAG &DAG) {
5409 // Check to see if we can use the TBL instruction.
5410 SDValue V1 = Op.getOperand(0);
5411 SDValue V2 = Op.getOperand(1);
5412 SDLoc DL(Op);
5413
5414 EVT EltVT = Op.getValueType().getVectorElementType();
5415 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5416
5417 SmallVector<SDValue, 8> TBLMask;
5418 for (int Val : ShuffleMask) {
5419 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5420 unsigned Offset = Byte + Val * BytesPerElt;
5421 TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
5422 }
5423 }
5424
5425 MVT IndexVT = MVT::v8i8;
5426 unsigned IndexLen = 8;
5427 if (Op.getValueType().getSizeInBits() == 128) {
5428 IndexVT = MVT::v16i8;
5429 IndexLen = 16;
5430 }
5431
5432 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5433 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5434
5435 SDValue Shuffle;
5436 if (V2.getNode()->getOpcode() == ISD::UNDEF) {
5437 if (IndexLen == 8)
5438 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5439 Shuffle = DAG.getNode(
5440 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5441 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
5442 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5443 makeArrayRef(TBLMask.data(), IndexLen)));
5444 } else {
5445 if (IndexLen == 8) {
5446 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5447 Shuffle = DAG.getNode(
5448 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5449 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
5450 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5451 makeArrayRef(TBLMask.data(), IndexLen)));
5452 } else {
5453 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5454 // cannot currently represent the register constraints on the input
5455 // table registers.
5456 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5457 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5458 // &TBLMask[0], IndexLen));
5459 Shuffle = DAG.getNode(
5460 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5461 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32),
5462 V1Cst, V2Cst,
5463 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5464 makeArrayRef(TBLMask.data(), IndexLen)));
5465 }
5466 }
5467 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5468 }
5469
getDUPLANEOp(EVT EltType)5470 static unsigned getDUPLANEOp(EVT EltType) {
5471 if (EltType == MVT::i8)
5472 return AArch64ISD::DUPLANE8;
5473 if (EltType == MVT::i16 || EltType == MVT::f16)
5474 return AArch64ISD::DUPLANE16;
5475 if (EltType == MVT::i32 || EltType == MVT::f32)
5476 return AArch64ISD::DUPLANE32;
5477 if (EltType == MVT::i64 || EltType == MVT::f64)
5478 return AArch64ISD::DUPLANE64;
5479
5480 llvm_unreachable("Invalid vector element type?");
5481 }
5482
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const5483 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5484 SelectionDAG &DAG) const {
5485 SDLoc dl(Op);
5486 EVT VT = Op.getValueType();
5487
5488 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5489
5490 // Convert shuffles that are directly supported on NEON to target-specific
5491 // DAG nodes, instead of keeping them as shuffles and matching them again
5492 // during code selection. This is more efficient and avoids the possibility
5493 // of inconsistencies between legalization and selection.
5494 ArrayRef<int> ShuffleMask = SVN->getMask();
5495
5496 SDValue V1 = Op.getOperand(0);
5497 SDValue V2 = Op.getOperand(1);
5498
5499 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
5500 V1.getValueType().getSimpleVT())) {
5501 int Lane = SVN->getSplatIndex();
5502 // If this is undef splat, generate it via "just" vdup, if possible.
5503 if (Lane == -1)
5504 Lane = 0;
5505
5506 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5507 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5508 V1.getOperand(0));
5509 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5510 // constant. If so, we can just reference the lane's definition directly.
5511 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5512 !isa<ConstantSDNode>(V1.getOperand(Lane)))
5513 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5514
5515 // Otherwise, duplicate from the lane of the input vector.
5516 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5517
5518 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5519 // to make a vector of the same size as this SHUFFLE. We can ignore the
5520 // extract entirely, and canonicalise the concat using WidenVector.
5521 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5522 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5523 V1 = V1.getOperand(0);
5524 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5525 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5526 Lane -= Idx * VT.getVectorNumElements() / 2;
5527 V1 = WidenVector(V1.getOperand(Idx), DAG);
5528 } else if (VT.getSizeInBits() == 64)
5529 V1 = WidenVector(V1, DAG);
5530
5531 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
5532 }
5533
5534 if (isREVMask(ShuffleMask, VT, 64))
5535 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5536 if (isREVMask(ShuffleMask, VT, 32))
5537 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5538 if (isREVMask(ShuffleMask, VT, 16))
5539 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5540
5541 bool ReverseEXT = false;
5542 unsigned Imm;
5543 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5544 if (ReverseEXT)
5545 std::swap(V1, V2);
5546 Imm *= getExtFactor(V1);
5547 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
5548 DAG.getConstant(Imm, dl, MVT::i32));
5549 } else if (V2->getOpcode() == ISD::UNDEF &&
5550 isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5551 Imm *= getExtFactor(V1);
5552 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
5553 DAG.getConstant(Imm, dl, MVT::i32));
5554 }
5555
5556 unsigned WhichResult;
5557 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5558 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5559 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5560 }
5561 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5562 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5563 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5564 }
5565 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5566 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5567 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5568 }
5569
5570 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5571 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5572 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5573 }
5574 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5575 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5576 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5577 }
5578 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5579 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5580 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5581 }
5582
5583 SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
5584 if (Concat.getNode())
5585 return Concat;
5586
5587 bool DstIsLeft;
5588 int Anomaly;
5589 int NumInputElements = V1.getValueType().getVectorNumElements();
5590 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5591 SDValue DstVec = DstIsLeft ? V1 : V2;
5592 SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
5593
5594 SDValue SrcVec = V1;
5595 int SrcLane = ShuffleMask[Anomaly];
5596 if (SrcLane >= NumInputElements) {
5597 SrcVec = V2;
5598 SrcLane -= VT.getVectorNumElements();
5599 }
5600 SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
5601
5602 EVT ScalarVT = VT.getVectorElementType();
5603
5604 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
5605 ScalarVT = MVT::i32;
5606
5607 return DAG.getNode(
5608 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5609 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5610 DstLaneV);
5611 }
5612
5613 // If the shuffle is not directly supported and it has 4 elements, use
5614 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5615 unsigned NumElts = VT.getVectorNumElements();
5616 if (NumElts == 4) {
5617 unsigned PFIndexes[4];
5618 for (unsigned i = 0; i != 4; ++i) {
5619 if (ShuffleMask[i] < 0)
5620 PFIndexes[i] = 8;
5621 else
5622 PFIndexes[i] = ShuffleMask[i];
5623 }
5624
5625 // Compute the index in the perfect shuffle table.
5626 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5627 PFIndexes[2] * 9 + PFIndexes[3];
5628 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5629 unsigned Cost = (PFEntry >> 30);
5630
5631 if (Cost <= 4)
5632 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5633 }
5634
5635 return GenerateTBL(Op, ShuffleMask, DAG);
5636 }
5637
resolveBuildVector(BuildVectorSDNode * BVN,APInt & CnstBits,APInt & UndefBits)5638 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5639 APInt &UndefBits) {
5640 EVT VT = BVN->getValueType(0);
5641 APInt SplatBits, SplatUndef;
5642 unsigned SplatBitSize;
5643 bool HasAnyUndefs;
5644 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5645 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5646
5647 for (unsigned i = 0; i < NumSplats; ++i) {
5648 CnstBits <<= SplatBitSize;
5649 UndefBits <<= SplatBitSize;
5650 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5651 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5652 }
5653
5654 return true;
5655 }
5656
5657 return false;
5658 }
5659
LowerVectorAND(SDValue Op,SelectionDAG & DAG) const5660 SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5661 SelectionDAG &DAG) const {
5662 BuildVectorSDNode *BVN =
5663 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5664 SDValue LHS = Op.getOperand(0);
5665 SDLoc dl(Op);
5666 EVT VT = Op.getValueType();
5667
5668 if (!BVN)
5669 return Op;
5670
5671 APInt CnstBits(VT.getSizeInBits(), 0);
5672 APInt UndefBits(VT.getSizeInBits(), 0);
5673 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5674 // We only have BIC vector immediate instruction, which is and-not.
5675 CnstBits = ~CnstBits;
5676
5677 // We make use of a little bit of goto ickiness in order to avoid having to
5678 // duplicate the immediate matching logic for the undef toggled case.
5679 bool SecondTry = false;
5680 AttemptModImm:
5681
5682 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5683 CnstBits = CnstBits.zextOrTrunc(64);
5684 uint64_t CnstVal = CnstBits.getZExtValue();
5685
5686 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5687 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5688 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5689 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5690 DAG.getConstant(CnstVal, dl, MVT::i32),
5691 DAG.getConstant(0, dl, MVT::i32));
5692 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5693 }
5694
5695 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5696 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5697 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5698 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5699 DAG.getConstant(CnstVal, dl, MVT::i32),
5700 DAG.getConstant(8, dl, MVT::i32));
5701 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5702 }
5703
5704 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5705 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5706 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5707 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5708 DAG.getConstant(CnstVal, dl, MVT::i32),
5709 DAG.getConstant(16, dl, MVT::i32));
5710 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5711 }
5712
5713 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5714 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5715 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5716 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5717 DAG.getConstant(CnstVal, dl, MVT::i32),
5718 DAG.getConstant(24, dl, MVT::i32));
5719 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5720 }
5721
5722 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5723 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5724 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5725 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5726 DAG.getConstant(CnstVal, dl, MVT::i32),
5727 DAG.getConstant(0, dl, MVT::i32));
5728 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5729 }
5730
5731 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5732 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5733 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5734 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5735 DAG.getConstant(CnstVal, dl, MVT::i32),
5736 DAG.getConstant(8, dl, MVT::i32));
5737 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5738 }
5739 }
5740
5741 if (SecondTry)
5742 goto FailedModImm;
5743 SecondTry = true;
5744 CnstBits = ~UndefBits;
5745 goto AttemptModImm;
5746 }
5747
5748 // We can always fall back to a non-immediate AND.
5749 FailedModImm:
5750 return Op;
5751 }
5752
5753 // Specialized code to quickly find if PotentialBVec is a BuildVector that
5754 // consists of only the same constant int value, returned in reference arg
5755 // ConstVal
isAllConstantBuildVector(const SDValue & PotentialBVec,uint64_t & ConstVal)5756 static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5757 uint64_t &ConstVal) {
5758 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5759 if (!Bvec)
5760 return false;
5761 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5762 if (!FirstElt)
5763 return false;
5764 EVT VT = Bvec->getValueType(0);
5765 unsigned NumElts = VT.getVectorNumElements();
5766 for (unsigned i = 1; i < NumElts; ++i)
5767 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5768 return false;
5769 ConstVal = FirstElt->getZExtValue();
5770 return true;
5771 }
5772
getIntrinsicID(const SDNode * N)5773 static unsigned getIntrinsicID(const SDNode *N) {
5774 unsigned Opcode = N->getOpcode();
5775 switch (Opcode) {
5776 default:
5777 return Intrinsic::not_intrinsic;
5778 case ISD::INTRINSIC_WO_CHAIN: {
5779 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5780 if (IID < Intrinsic::num_intrinsics)
5781 return IID;
5782 return Intrinsic::not_intrinsic;
5783 }
5784 }
5785 }
5786
5787 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5788 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5789 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5790 // Also, logical shift right -> sri, with the same structure.
tryLowerToSLI(SDNode * N,SelectionDAG & DAG)5791 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5792 EVT VT = N->getValueType(0);
5793
5794 if (!VT.isVector())
5795 return SDValue();
5796
5797 SDLoc DL(N);
5798
5799 // Is the first op an AND?
5800 const SDValue And = N->getOperand(0);
5801 if (And.getOpcode() != ISD::AND)
5802 return SDValue();
5803
5804 // Is the second op an shl or lshr?
5805 SDValue Shift = N->getOperand(1);
5806 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5807 // or AArch64ISD::VLSHR vector, #shift
5808 unsigned ShiftOpc = Shift.getOpcode();
5809 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5810 return SDValue();
5811 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5812
5813 // Is the shift amount constant?
5814 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5815 if (!C2node)
5816 return SDValue();
5817
5818 // Is the and mask vector all constant?
5819 uint64_t C1;
5820 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5821 return SDValue();
5822
5823 // Is C1 == ~C2, taking into account how much one can shift elements of a
5824 // particular size?
5825 uint64_t C2 = C2node->getZExtValue();
5826 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5827 if (C2 > ElemSizeInBits)
5828 return SDValue();
5829 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5830 if ((C1 & ElemMask) != (~C2 & ElemMask))
5831 return SDValue();
5832
5833 SDValue X = And.getOperand(0);
5834 SDValue Y = Shift.getOperand(0);
5835
5836 unsigned Intrin =
5837 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5838 SDValue ResultSLI =
5839 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5840 DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
5841 Shift.getOperand(1));
5842
5843 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5844 DEBUG(N->dump(&DAG));
5845 DEBUG(dbgs() << "into: \n");
5846 DEBUG(ResultSLI->dump(&DAG));
5847
5848 ++NumShiftInserts;
5849 return ResultSLI;
5850 }
5851
LowerVectorOR(SDValue Op,SelectionDAG & DAG) const5852 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5853 SelectionDAG &DAG) const {
5854 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5855 if (EnableAArch64SlrGeneration) {
5856 SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5857 if (Res.getNode())
5858 return Res;
5859 }
5860
5861 BuildVectorSDNode *BVN =
5862 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5863 SDValue LHS = Op.getOperand(1);
5864 SDLoc dl(Op);
5865 EVT VT = Op.getValueType();
5866
5867 // OR commutes, so try swapping the operands.
5868 if (!BVN) {
5869 LHS = Op.getOperand(0);
5870 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5871 }
5872 if (!BVN)
5873 return Op;
5874
5875 APInt CnstBits(VT.getSizeInBits(), 0);
5876 APInt UndefBits(VT.getSizeInBits(), 0);
5877 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5878 // We make use of a little bit of goto ickiness in order to avoid having to
5879 // duplicate the immediate matching logic for the undef toggled case.
5880 bool SecondTry = false;
5881 AttemptModImm:
5882
5883 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5884 CnstBits = CnstBits.zextOrTrunc(64);
5885 uint64_t CnstVal = CnstBits.getZExtValue();
5886
5887 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5888 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5889 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5890 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5891 DAG.getConstant(CnstVal, dl, MVT::i32),
5892 DAG.getConstant(0, dl, MVT::i32));
5893 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5894 }
5895
5896 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5897 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5898 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5899 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5900 DAG.getConstant(CnstVal, dl, MVT::i32),
5901 DAG.getConstant(8, dl, MVT::i32));
5902 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5903 }
5904
5905 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5906 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5907 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5908 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5909 DAG.getConstant(CnstVal, dl, MVT::i32),
5910 DAG.getConstant(16, dl, MVT::i32));
5911 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5912 }
5913
5914 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5915 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5916 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5917 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5918 DAG.getConstant(CnstVal, dl, MVT::i32),
5919 DAG.getConstant(24, dl, MVT::i32));
5920 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5921 }
5922
5923 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5924 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5925 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5926 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5927 DAG.getConstant(CnstVal, dl, MVT::i32),
5928 DAG.getConstant(0, dl, MVT::i32));
5929 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5930 }
5931
5932 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5933 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5934 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5935 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5936 DAG.getConstant(CnstVal, dl, MVT::i32),
5937 DAG.getConstant(8, dl, MVT::i32));
5938 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5939 }
5940 }
5941
5942 if (SecondTry)
5943 goto FailedModImm;
5944 SecondTry = true;
5945 CnstBits = UndefBits;
5946 goto AttemptModImm;
5947 }
5948
5949 // We can always fall back to a non-immediate OR.
5950 FailedModImm:
5951 return Op;
5952 }
5953
5954 // Normalize the operands of BUILD_VECTOR. The value of constant operands will
5955 // be truncated to fit element width.
NormalizeBuildVector(SDValue Op,SelectionDAG & DAG)5956 static SDValue NormalizeBuildVector(SDValue Op,
5957 SelectionDAG &DAG) {
5958 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
5959 SDLoc dl(Op);
5960 EVT VT = Op.getValueType();
5961 EVT EltTy= VT.getVectorElementType();
5962
5963 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
5964 return Op;
5965
5966 SmallVector<SDValue, 16> Ops;
5967 for (SDValue Lane : Op->ops()) {
5968 if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
5969 APInt LowBits(EltTy.getSizeInBits(),
5970 CstLane->getZExtValue());
5971 Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
5972 }
5973 Ops.push_back(Lane);
5974 }
5975 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5976 }
5977
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const5978 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5979 SelectionDAG &DAG) const {
5980 SDLoc dl(Op);
5981 EVT VT = Op.getValueType();
5982 Op = NormalizeBuildVector(Op, DAG);
5983 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
5984
5985 APInt CnstBits(VT.getSizeInBits(), 0);
5986 APInt UndefBits(VT.getSizeInBits(), 0);
5987 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5988 // We make use of a little bit of goto ickiness in order to avoid having to
5989 // duplicate the immediate matching logic for the undef toggled case.
5990 bool SecondTry = false;
5991 AttemptModImm:
5992
5993 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5994 CnstBits = CnstBits.zextOrTrunc(64);
5995 uint64_t CnstVal = CnstBits.getZExtValue();
5996
5997 // Certain magic vector constants (used to express things like NOT
5998 // and NEG) are passed through unmodified. This allows codegen patterns
5999 // for these operations to match. Special-purpose patterns will lower
6000 // these immediates to MOVIs if it proves necessary.
6001 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
6002 return Op;
6003
6004 // The many faces of MOVI...
6005 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
6006 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
6007 if (VT.getSizeInBits() == 128) {
6008 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
6009 DAG.getConstant(CnstVal, dl, MVT::i32));
6010 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6011 }
6012
6013 // Support the V64 version via subregister insertion.
6014 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
6015 DAG.getConstant(CnstVal, dl, MVT::i32));
6016 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6017 }
6018
6019 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6020 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6021 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6022 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6023 DAG.getConstant(CnstVal, dl, MVT::i32),
6024 DAG.getConstant(0, dl, MVT::i32));
6025 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6026 }
6027
6028 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6029 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6030 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6031 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6032 DAG.getConstant(CnstVal, dl, MVT::i32),
6033 DAG.getConstant(8, dl, MVT::i32));
6034 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6035 }
6036
6037 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6038 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6039 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6040 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6041 DAG.getConstant(CnstVal, dl, MVT::i32),
6042 DAG.getConstant(16, dl, MVT::i32));
6043 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6044 }
6045
6046 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6047 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6048 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6049 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6050 DAG.getConstant(CnstVal, dl, MVT::i32),
6051 DAG.getConstant(24, dl, MVT::i32));
6052 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6053 }
6054
6055 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6056 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6057 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6058 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6059 DAG.getConstant(CnstVal, dl, MVT::i32),
6060 DAG.getConstant(0, dl, MVT::i32));
6061 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6062 }
6063
6064 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6065 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6066 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6067 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6068 DAG.getConstant(CnstVal, dl, MVT::i32),
6069 DAG.getConstant(8, dl, MVT::i32));
6070 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6071 }
6072
6073 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6074 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6075 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6076 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
6077 DAG.getConstant(CnstVal, dl, MVT::i32),
6078 DAG.getConstant(264, dl, MVT::i32));
6079 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6080 }
6081
6082 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6083 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6084 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6085 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
6086 DAG.getConstant(CnstVal, dl, MVT::i32),
6087 DAG.getConstant(272, dl, MVT::i32));
6088 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6089 }
6090
6091 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
6092 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
6093 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
6094 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
6095 DAG.getConstant(CnstVal, dl, MVT::i32));
6096 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6097 }
6098
6099 // The few faces of FMOV...
6100 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
6101 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
6102 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
6103 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
6104 DAG.getConstant(CnstVal, dl, MVT::i32));
6105 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6106 }
6107
6108 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
6109 VT.getSizeInBits() == 128) {
6110 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
6111 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
6112 DAG.getConstant(CnstVal, dl, MVT::i32));
6113 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6114 }
6115
6116 // The many faces of MVNI...
6117 CnstVal = ~CnstVal;
6118 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6119 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6120 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6121 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6122 DAG.getConstant(CnstVal, dl, MVT::i32),
6123 DAG.getConstant(0, dl, MVT::i32));
6124 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6125 }
6126
6127 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6128 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6129 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6130 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6131 DAG.getConstant(CnstVal, dl, MVT::i32),
6132 DAG.getConstant(8, dl, MVT::i32));
6133 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6134 }
6135
6136 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6137 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6138 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6139 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6140 DAG.getConstant(CnstVal, dl, MVT::i32),
6141 DAG.getConstant(16, dl, MVT::i32));
6142 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6143 }
6144
6145 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6146 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6147 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6148 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6149 DAG.getConstant(CnstVal, dl, MVT::i32),
6150 DAG.getConstant(24, dl, MVT::i32));
6151 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6152 }
6153
6154 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6155 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6156 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6157 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6158 DAG.getConstant(CnstVal, dl, MVT::i32),
6159 DAG.getConstant(0, dl, MVT::i32));
6160 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6161 }
6162
6163 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6164 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6165 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6166 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6167 DAG.getConstant(CnstVal, dl, MVT::i32),
6168 DAG.getConstant(8, dl, MVT::i32));
6169 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6170 }
6171
6172 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6173 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6174 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6175 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
6176 DAG.getConstant(CnstVal, dl, MVT::i32),
6177 DAG.getConstant(264, dl, MVT::i32));
6178 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6179 }
6180
6181 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6182 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6183 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6184 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
6185 DAG.getConstant(CnstVal, dl, MVT::i32),
6186 DAG.getConstant(272, dl, MVT::i32));
6187 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6188 }
6189 }
6190
6191 if (SecondTry)
6192 goto FailedModImm;
6193 SecondTry = true;
6194 CnstBits = UndefBits;
6195 goto AttemptModImm;
6196 }
6197 FailedModImm:
6198
6199 // Scan through the operands to find some interesting properties we can
6200 // exploit:
6201 // 1) If only one value is used, we can use a DUP, or
6202 // 2) if only the low element is not undef, we can just insert that, or
6203 // 3) if only one constant value is used (w/ some non-constant lanes),
6204 // we can splat the constant value into the whole vector then fill
6205 // in the non-constant lanes.
6206 // 4) FIXME: If different constant values are used, but we can intelligently
6207 // select the values we'll be overwriting for the non-constant
6208 // lanes such that we can directly materialize the vector
6209 // some other way (MOVI, e.g.), we can be sneaky.
6210 unsigned NumElts = VT.getVectorNumElements();
6211 bool isOnlyLowElement = true;
6212 bool usesOnlyOneValue = true;
6213 bool usesOnlyOneConstantValue = true;
6214 bool isConstant = true;
6215 unsigned NumConstantLanes = 0;
6216 SDValue Value;
6217 SDValue ConstantValue;
6218 for (unsigned i = 0; i < NumElts; ++i) {
6219 SDValue V = Op.getOperand(i);
6220 if (V.getOpcode() == ISD::UNDEF)
6221 continue;
6222 if (i > 0)
6223 isOnlyLowElement = false;
6224 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6225 isConstant = false;
6226
6227 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
6228 ++NumConstantLanes;
6229 if (!ConstantValue.getNode())
6230 ConstantValue = V;
6231 else if (ConstantValue != V)
6232 usesOnlyOneConstantValue = false;
6233 }
6234
6235 if (!Value.getNode())
6236 Value = V;
6237 else if (V != Value)
6238 usesOnlyOneValue = false;
6239 }
6240
6241 if (!Value.getNode())
6242 return DAG.getUNDEF(VT);
6243
6244 if (isOnlyLowElement)
6245 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6246
6247 // Use DUP for non-constant splats. For f32 constant splats, reduce to
6248 // i32 and try again.
6249 if (usesOnlyOneValue) {
6250 if (!isConstant) {
6251 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6252 Value.getValueType() != VT)
6253 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
6254
6255 // This is actually a DUPLANExx operation, which keeps everything vectory.
6256
6257 // DUPLANE works on 128-bit vectors, widen it if necessary.
6258 SDValue Lane = Value.getOperand(1);
6259 Value = Value.getOperand(0);
6260 if (Value.getValueType().getSizeInBits() == 64)
6261 Value = WidenVector(Value, DAG);
6262
6263 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
6264 return DAG.getNode(Opcode, dl, VT, Value, Lane);
6265 }
6266
6267 if (VT.getVectorElementType().isFloatingPoint()) {
6268 SmallVector<SDValue, 8> Ops;
6269 EVT EltTy = VT.getVectorElementType();
6270 assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
6271 "Unsupported floating-point vector type");
6272 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
6273 for (unsigned i = 0; i < NumElts; ++i)
6274 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
6275 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
6276 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
6277 Val = LowerBUILD_VECTOR(Val, DAG);
6278 if (Val.getNode())
6279 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6280 }
6281 }
6282
6283 // If there was only one constant value used and for more than one lane,
6284 // start by splatting that value, then replace the non-constant lanes. This
6285 // is better than the default, which will perform a separate initialization
6286 // for each lane.
6287 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
6288 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
6289 // Now insert the non-constant lanes.
6290 for (unsigned i = 0; i < NumElts; ++i) {
6291 SDValue V = Op.getOperand(i);
6292 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
6293 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
6294 // Note that type legalization likely mucked about with the VT of the
6295 // source operand, so we may have to convert it here before inserting.
6296 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
6297 }
6298 }
6299 return Val;
6300 }
6301
6302 // If all elements are constants and the case above didn't get hit, fall back
6303 // to the default expansion, which will generate a load from the constant
6304 // pool.
6305 if (isConstant)
6306 return SDValue();
6307
6308 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6309 if (NumElts >= 4) {
6310 if (SDValue shuffle = ReconstructShuffle(Op, DAG))
6311 return shuffle;
6312 }
6313
6314 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6315 // know the default expansion would otherwise fall back on something even
6316 // worse. For a vector with one or two non-undef values, that's
6317 // scalar_to_vector for the elements followed by a shuffle (provided the
6318 // shuffle is valid for the target) and materialization element by element
6319 // on the stack followed by a load for everything else.
6320 if (!isConstant && !usesOnlyOneValue) {
6321 SDValue Vec = DAG.getUNDEF(VT);
6322 SDValue Op0 = Op.getOperand(0);
6323 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
6324 unsigned i = 0;
6325 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
6326 // a) Avoid a RMW dependency on the full vector register, and
6327 // b) Allow the register coalescer to fold away the copy if the
6328 // value is already in an S or D register.
6329 // Do not do this for UNDEF/LOAD nodes because we have better patterns
6330 // for those avoiding the SCALAR_TO_VECTOR/BUILD_VECTOR.
6331 if (Op0.getOpcode() != ISD::UNDEF && Op0.getOpcode() != ISD::LOAD &&
6332 (ElemSize == 32 || ElemSize == 64)) {
6333 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
6334 MachineSDNode *N =
6335 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
6336 DAG.getTargetConstant(SubIdx, dl, MVT::i32));
6337 Vec = SDValue(N, 0);
6338 ++i;
6339 }
6340 for (; i < NumElts; ++i) {
6341 SDValue V = Op.getOperand(i);
6342 if (V.getOpcode() == ISD::UNDEF)
6343 continue;
6344 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
6345 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6346 }
6347 return Vec;
6348 }
6349
6350 // Just use the default expansion. We failed to find a better alternative.
6351 return SDValue();
6352 }
6353
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const6354 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
6355 SelectionDAG &DAG) const {
6356 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
6357
6358 // Check for non-constant or out of range lane.
6359 EVT VT = Op.getOperand(0).getValueType();
6360 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
6361 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
6362 return SDValue();
6363
6364
6365 // Insertion/extraction are legal for V128 types.
6366 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
6367 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6368 VT == MVT::v8f16)
6369 return Op;
6370
6371 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
6372 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
6373 return SDValue();
6374
6375 // For V64 types, we perform insertion by expanding the value
6376 // to a V128 type and perform the insertion on that.
6377 SDLoc DL(Op);
6378 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6379 EVT WideTy = WideVec.getValueType();
6380
6381 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6382 Op.getOperand(1), Op.getOperand(2));
6383 // Re-narrow the resultant vector.
6384 return NarrowVector(Node, DAG);
6385 }
6386
6387 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const6388 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6389 SelectionDAG &DAG) const {
6390 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6391
6392 // Check for non-constant or out of range lane.
6393 EVT VT = Op.getOperand(0).getValueType();
6394 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6395 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
6396 return SDValue();
6397
6398
6399 // Insertion/extraction are legal for V128 types.
6400 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
6401 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6402 VT == MVT::v8f16)
6403 return Op;
6404
6405 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
6406 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
6407 return SDValue();
6408
6409 // For V64 types, we perform extraction by expanding the value
6410 // to a V128 type and perform the extraction on that.
6411 SDLoc DL(Op);
6412 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6413 EVT WideTy = WideVec.getValueType();
6414
6415 EVT ExtrTy = WideTy.getVectorElementType();
6416 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6417 ExtrTy = MVT::i32;
6418
6419 // For extractions, we just return the result directly.
6420 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6421 Op.getOperand(1));
6422 }
6423
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const6424 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6425 SelectionDAG &DAG) const {
6426 EVT VT = Op.getOperand(0).getValueType();
6427 SDLoc dl(Op);
6428 // Just in case...
6429 if (!VT.isVector())
6430 return SDValue();
6431
6432 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6433 if (!Cst)
6434 return SDValue();
6435 unsigned Val = Cst->getZExtValue();
6436
6437 unsigned Size = Op.getValueType().getSizeInBits();
6438
6439 // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
6440 if (Val == 0)
6441 return Op;
6442
6443 // If this is extracting the upper 64-bits of a 128-bit vector, we match
6444 // that directly.
6445 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6446 return Op;
6447
6448 return SDValue();
6449 }
6450
isShuffleMaskLegal(const SmallVectorImpl<int> & M,EVT VT) const6451 bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6452 EVT VT) const {
6453 if (VT.getVectorNumElements() == 4 &&
6454 (VT.is128BitVector() || VT.is64BitVector())) {
6455 unsigned PFIndexes[4];
6456 for (unsigned i = 0; i != 4; ++i) {
6457 if (M[i] < 0)
6458 PFIndexes[i] = 8;
6459 else
6460 PFIndexes[i] = M[i];
6461 }
6462
6463 // Compute the index in the perfect shuffle table.
6464 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6465 PFIndexes[2] * 9 + PFIndexes[3];
6466 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6467 unsigned Cost = (PFEntry >> 30);
6468
6469 if (Cost <= 4)
6470 return true;
6471 }
6472
6473 bool DummyBool;
6474 int DummyInt;
6475 unsigned DummyUnsigned;
6476
6477 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6478 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6479 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6480 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6481 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6482 isZIPMask(M, VT, DummyUnsigned) ||
6483 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6484 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6485 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6486 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6487 isConcatMask(M, VT, VT.getSizeInBits() == 128));
6488 }
6489
6490 /// getVShiftImm - Check if this is a valid build_vector for the immediate
6491 /// operand of a vector shift operation, where all the elements of the
6492 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)6493 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6494 // Ignore bit_converts.
6495 while (Op.getOpcode() == ISD::BITCAST)
6496 Op = Op.getOperand(0);
6497 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6498 APInt SplatBits, SplatUndef;
6499 unsigned SplatBitSize;
6500 bool HasAnyUndefs;
6501 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6502 HasAnyUndefs, ElementBits) ||
6503 SplatBitSize > ElementBits)
6504 return false;
6505 Cnt = SplatBits.getSExtValue();
6506 return true;
6507 }
6508
6509 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
6510 /// operand of a vector shift left operation. That value must be in the range:
6511 /// 0 <= Value < ElementBits for a left shift; or
6512 /// 0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)6513 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6514 assert(VT.isVector() && "vector shift count is not a vector type");
6515 int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
6516 if (!getVShiftImm(Op, ElementBits, Cnt))
6517 return false;
6518 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6519 }
6520
6521 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
6522 /// operand of a vector shift right operation. The value must be in the range:
6523 /// 1 <= Value <= ElementBits for a right shift; or
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,int64_t & Cnt)6524 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
6525 assert(VT.isVector() && "vector shift count is not a vector type");
6526 int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
6527 if (!getVShiftImm(Op, ElementBits, Cnt))
6528 return false;
6529 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6530 }
6531
LowerVectorSRA_SRL_SHL(SDValue Op,SelectionDAG & DAG) const6532 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6533 SelectionDAG &DAG) const {
6534 EVT VT = Op.getValueType();
6535 SDLoc DL(Op);
6536 int64_t Cnt;
6537
6538 if (!Op.getOperand(1).getValueType().isVector())
6539 return Op;
6540 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6541
6542 switch (Op.getOpcode()) {
6543 default:
6544 llvm_unreachable("unexpected shift opcode");
6545
6546 case ISD::SHL:
6547 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
6548 return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
6549 DAG.getConstant(Cnt, DL, MVT::i32));
6550 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6551 DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
6552 MVT::i32),
6553 Op.getOperand(0), Op.getOperand(1));
6554 case ISD::SRA:
6555 case ISD::SRL:
6556 // Right shift immediate
6557 if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
6558 unsigned Opc =
6559 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
6560 return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
6561 DAG.getConstant(Cnt, DL, MVT::i32));
6562 }
6563
6564 // Right shift register. Note, there is not a shift right register
6565 // instruction, but the shift left register instruction takes a signed
6566 // value, where negative numbers specify a right shift.
6567 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6568 : Intrinsic::aarch64_neon_ushl;
6569 // negate the shift amount
6570 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6571 SDValue NegShiftLeft =
6572 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6573 DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
6574 NegShift);
6575 return NegShiftLeft;
6576 }
6577
6578 return SDValue();
6579 }
6580
EmitVectorComparison(SDValue LHS,SDValue RHS,AArch64CC::CondCode CC,bool NoNans,EVT VT,SDLoc dl,SelectionDAG & DAG)6581 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6582 AArch64CC::CondCode CC, bool NoNans, EVT VT,
6583 SDLoc dl, SelectionDAG &DAG) {
6584 EVT SrcVT = LHS.getValueType();
6585 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
6586 "function only supposed to emit natural comparisons");
6587
6588 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6589 APInt CnstBits(VT.getSizeInBits(), 0);
6590 APInt UndefBits(VT.getSizeInBits(), 0);
6591 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6592 bool IsZero = IsCnst && (CnstBits == 0);
6593
6594 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6595 switch (CC) {
6596 default:
6597 return SDValue();
6598 case AArch64CC::NE: {
6599 SDValue Fcmeq;
6600 if (IsZero)
6601 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6602 else
6603 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6604 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6605 }
6606 case AArch64CC::EQ:
6607 if (IsZero)
6608 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6609 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6610 case AArch64CC::GE:
6611 if (IsZero)
6612 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6613 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6614 case AArch64CC::GT:
6615 if (IsZero)
6616 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6617 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6618 case AArch64CC::LS:
6619 if (IsZero)
6620 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6621 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6622 case AArch64CC::LT:
6623 if (!NoNans)
6624 return SDValue();
6625 // If we ignore NaNs then we can use to the MI implementation.
6626 // Fallthrough.
6627 case AArch64CC::MI:
6628 if (IsZero)
6629 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6630 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6631 }
6632 }
6633
6634 switch (CC) {
6635 default:
6636 return SDValue();
6637 case AArch64CC::NE: {
6638 SDValue Cmeq;
6639 if (IsZero)
6640 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6641 else
6642 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6643 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6644 }
6645 case AArch64CC::EQ:
6646 if (IsZero)
6647 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6648 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6649 case AArch64CC::GE:
6650 if (IsZero)
6651 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6652 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6653 case AArch64CC::GT:
6654 if (IsZero)
6655 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6656 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6657 case AArch64CC::LE:
6658 if (IsZero)
6659 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6660 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6661 case AArch64CC::LS:
6662 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6663 case AArch64CC::LO:
6664 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6665 case AArch64CC::LT:
6666 if (IsZero)
6667 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6668 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6669 case AArch64CC::HI:
6670 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6671 case AArch64CC::HS:
6672 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6673 }
6674 }
6675
LowerVSETCC(SDValue Op,SelectionDAG & DAG) const6676 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6677 SelectionDAG &DAG) const {
6678 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6679 SDValue LHS = Op.getOperand(0);
6680 SDValue RHS = Op.getOperand(1);
6681 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
6682 SDLoc dl(Op);
6683
6684 if (LHS.getValueType().getVectorElementType().isInteger()) {
6685 assert(LHS.getValueType() == RHS.getValueType());
6686 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
6687 SDValue Cmp =
6688 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
6689 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6690 }
6691
6692 if (LHS.getValueType().getVectorElementType() == MVT::f16)
6693 return SDValue();
6694
6695 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6696 LHS.getValueType().getVectorElementType() == MVT::f64);
6697
6698 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6699 // clean. Some of them require two branches to implement.
6700 AArch64CC::CondCode CC1, CC2;
6701 bool ShouldInvert;
6702 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6703
6704 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6705 SDValue Cmp =
6706 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
6707 if (!Cmp.getNode())
6708 return SDValue();
6709
6710 if (CC2 != AArch64CC::AL) {
6711 SDValue Cmp2 =
6712 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
6713 if (!Cmp2.getNode())
6714 return SDValue();
6715
6716 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
6717 }
6718
6719 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6720
6721 if (ShouldInvert)
6722 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6723
6724 return Cmp;
6725 }
6726
6727 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6728 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6729 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,unsigned Intrinsic) const6730 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6731 const CallInst &I,
6732 unsigned Intrinsic) const {
6733 auto &DL = I.getModule()->getDataLayout();
6734 switch (Intrinsic) {
6735 case Intrinsic::aarch64_neon_ld2:
6736 case Intrinsic::aarch64_neon_ld3:
6737 case Intrinsic::aarch64_neon_ld4:
6738 case Intrinsic::aarch64_neon_ld1x2:
6739 case Intrinsic::aarch64_neon_ld1x3:
6740 case Intrinsic::aarch64_neon_ld1x4:
6741 case Intrinsic::aarch64_neon_ld2lane:
6742 case Intrinsic::aarch64_neon_ld3lane:
6743 case Intrinsic::aarch64_neon_ld4lane:
6744 case Intrinsic::aarch64_neon_ld2r:
6745 case Intrinsic::aarch64_neon_ld3r:
6746 case Intrinsic::aarch64_neon_ld4r: {
6747 Info.opc = ISD::INTRINSIC_W_CHAIN;
6748 // Conservatively set memVT to the entire set of vectors loaded.
6749 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
6750 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6751 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6752 Info.offset = 0;
6753 Info.align = 0;
6754 Info.vol = false; // volatile loads with NEON intrinsics not supported
6755 Info.readMem = true;
6756 Info.writeMem = false;
6757 return true;
6758 }
6759 case Intrinsic::aarch64_neon_st2:
6760 case Intrinsic::aarch64_neon_st3:
6761 case Intrinsic::aarch64_neon_st4:
6762 case Intrinsic::aarch64_neon_st1x2:
6763 case Intrinsic::aarch64_neon_st1x3:
6764 case Intrinsic::aarch64_neon_st1x4:
6765 case Intrinsic::aarch64_neon_st2lane:
6766 case Intrinsic::aarch64_neon_st3lane:
6767 case Intrinsic::aarch64_neon_st4lane: {
6768 Info.opc = ISD::INTRINSIC_VOID;
6769 // Conservatively set memVT to the entire set of vectors stored.
6770 unsigned NumElts = 0;
6771 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6772 Type *ArgTy = I.getArgOperand(ArgI)->getType();
6773 if (!ArgTy->isVectorTy())
6774 break;
6775 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
6776 }
6777 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6778 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6779 Info.offset = 0;
6780 Info.align = 0;
6781 Info.vol = false; // volatile stores with NEON intrinsics not supported
6782 Info.readMem = false;
6783 Info.writeMem = true;
6784 return true;
6785 }
6786 case Intrinsic::aarch64_ldaxr:
6787 case Intrinsic::aarch64_ldxr: {
6788 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6789 Info.opc = ISD::INTRINSIC_W_CHAIN;
6790 Info.memVT = MVT::getVT(PtrTy->getElementType());
6791 Info.ptrVal = I.getArgOperand(0);
6792 Info.offset = 0;
6793 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
6794 Info.vol = true;
6795 Info.readMem = true;
6796 Info.writeMem = false;
6797 return true;
6798 }
6799 case Intrinsic::aarch64_stlxr:
6800 case Intrinsic::aarch64_stxr: {
6801 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6802 Info.opc = ISD::INTRINSIC_W_CHAIN;
6803 Info.memVT = MVT::getVT(PtrTy->getElementType());
6804 Info.ptrVal = I.getArgOperand(1);
6805 Info.offset = 0;
6806 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
6807 Info.vol = true;
6808 Info.readMem = false;
6809 Info.writeMem = true;
6810 return true;
6811 }
6812 case Intrinsic::aarch64_ldaxp:
6813 case Intrinsic::aarch64_ldxp: {
6814 Info.opc = ISD::INTRINSIC_W_CHAIN;
6815 Info.memVT = MVT::i128;
6816 Info.ptrVal = I.getArgOperand(0);
6817 Info.offset = 0;
6818 Info.align = 16;
6819 Info.vol = true;
6820 Info.readMem = true;
6821 Info.writeMem = false;
6822 return true;
6823 }
6824 case Intrinsic::aarch64_stlxp:
6825 case Intrinsic::aarch64_stxp: {
6826 Info.opc = ISD::INTRINSIC_W_CHAIN;
6827 Info.memVT = MVT::i128;
6828 Info.ptrVal = I.getArgOperand(2);
6829 Info.offset = 0;
6830 Info.align = 16;
6831 Info.vol = true;
6832 Info.readMem = false;
6833 Info.writeMem = true;
6834 return true;
6835 }
6836 default:
6837 break;
6838 }
6839
6840 return false;
6841 }
6842
6843 // Truncations from 64-bit GPR to 32-bit GPR is free.
isTruncateFree(Type * Ty1,Type * Ty2) const6844 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6845 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6846 return false;
6847 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6848 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6849 return NumBits1 > NumBits2;
6850 }
isTruncateFree(EVT VT1,EVT VT2) const6851 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
6852 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
6853 return false;
6854 unsigned NumBits1 = VT1.getSizeInBits();
6855 unsigned NumBits2 = VT2.getSizeInBits();
6856 return NumBits1 > NumBits2;
6857 }
6858
6859 /// Check if it is profitable to hoist instruction in then/else to if.
6860 /// Not profitable if I and it's user can form a FMA instruction
6861 /// because we prefer FMSUB/FMADD.
isProfitableToHoist(Instruction * I) const6862 bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
6863 if (I->getOpcode() != Instruction::FMul)
6864 return true;
6865
6866 if (I->getNumUses() != 1)
6867 return true;
6868
6869 Instruction *User = I->user_back();
6870
6871 if (User &&
6872 !(User->getOpcode() == Instruction::FSub ||
6873 User->getOpcode() == Instruction::FAdd))
6874 return true;
6875
6876 const TargetOptions &Options = getTargetMachine().Options;
6877 const DataLayout &DL = I->getModule()->getDataLayout();
6878 EVT VT = getValueType(DL, User->getOperand(0)->getType());
6879
6880 if (isFMAFasterThanFMulAndFAdd(VT) &&
6881 isOperationLegalOrCustom(ISD::FMA, VT) &&
6882 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath))
6883 return false;
6884
6885 return true;
6886 }
6887
6888 // All 32-bit GPR operations implicitly zero the high-half of the corresponding
6889 // 64-bit GPR.
isZExtFree(Type * Ty1,Type * Ty2) const6890 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6891 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6892 return false;
6893 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6894 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6895 return NumBits1 == 32 && NumBits2 == 64;
6896 }
isZExtFree(EVT VT1,EVT VT2) const6897 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
6898 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
6899 return false;
6900 unsigned NumBits1 = VT1.getSizeInBits();
6901 unsigned NumBits2 = VT2.getSizeInBits();
6902 return NumBits1 == 32 && NumBits2 == 64;
6903 }
6904
isZExtFree(SDValue Val,EVT VT2) const6905 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6906 EVT VT1 = Val.getValueType();
6907 if (isZExtFree(VT1, VT2)) {
6908 return true;
6909 }
6910
6911 if (Val.getOpcode() != ISD::LOAD)
6912 return false;
6913
6914 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
6915 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6916 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6917 VT1.getSizeInBits() <= 32);
6918 }
6919
isExtFreeImpl(const Instruction * Ext) const6920 bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
6921 if (isa<FPExtInst>(Ext))
6922 return false;
6923
6924 // Vector types are next free.
6925 if (Ext->getType()->isVectorTy())
6926 return false;
6927
6928 for (const Use &U : Ext->uses()) {
6929 // The extension is free if we can fold it with a left shift in an
6930 // addressing mode or an arithmetic operation: add, sub, and cmp.
6931
6932 // Is there a shift?
6933 const Instruction *Instr = cast<Instruction>(U.getUser());
6934
6935 // Is this a constant shift?
6936 switch (Instr->getOpcode()) {
6937 case Instruction::Shl:
6938 if (!isa<ConstantInt>(Instr->getOperand(1)))
6939 return false;
6940 break;
6941 case Instruction::GetElementPtr: {
6942 gep_type_iterator GTI = gep_type_begin(Instr);
6943 auto &DL = Ext->getModule()->getDataLayout();
6944 std::advance(GTI, U.getOperandNo());
6945 Type *IdxTy = *GTI;
6946 // This extension will end up with a shift because of the scaling factor.
6947 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
6948 // Get the shift amount based on the scaling factor:
6949 // log2(sizeof(IdxTy)) - log2(8).
6950 uint64_t ShiftAmt =
6951 countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
6952 // Is the constant foldable in the shift of the addressing mode?
6953 // I.e., shift amount is between 1 and 4 inclusive.
6954 if (ShiftAmt == 0 || ShiftAmt > 4)
6955 return false;
6956 break;
6957 }
6958 case Instruction::Trunc:
6959 // Check if this is a noop.
6960 // trunc(sext ty1 to ty2) to ty1.
6961 if (Instr->getType() == Ext->getOperand(0)->getType())
6962 continue;
6963 // FALL THROUGH.
6964 default:
6965 return false;
6966 }
6967
6968 // At this point we can use the bfm family, so this extension is free
6969 // for that use.
6970 }
6971 return true;
6972 }
6973
hasPairedLoad(Type * LoadedType,unsigned & RequiredAligment) const6974 bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6975 unsigned &RequiredAligment) const {
6976 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6977 return false;
6978 // Cyclone supports unaligned accesses.
6979 RequiredAligment = 0;
6980 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6981 return NumBits == 32 || NumBits == 64;
6982 }
6983
hasPairedLoad(EVT LoadedType,unsigned & RequiredAligment) const6984 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6985 unsigned &RequiredAligment) const {
6986 if (!LoadedType.isSimple() ||
6987 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6988 return false;
6989 // Cyclone supports unaligned accesses.
6990 RequiredAligment = 0;
6991 unsigned NumBits = LoadedType.getSizeInBits();
6992 return NumBits == 32 || NumBits == 64;
6993 }
6994
6995 /// \brief Lower an interleaved load into a ldN intrinsic.
6996 ///
6997 /// E.g. Lower an interleaved load (Factor = 2):
6998 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
6999 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
7000 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
7001 ///
7002 /// Into:
7003 /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
7004 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
7005 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor) const7006 bool AArch64TargetLowering::lowerInterleavedLoad(
7007 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
7008 ArrayRef<unsigned> Indices, unsigned Factor) const {
7009 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
7010 "Invalid interleave factor");
7011 assert(!Shuffles.empty() && "Empty shufflevector input");
7012 assert(Shuffles.size() == Indices.size() &&
7013 "Unmatched number of shufflevectors and indices");
7014
7015 const DataLayout &DL = LI->getModule()->getDataLayout();
7016
7017 VectorType *VecTy = Shuffles[0]->getType();
7018 unsigned VecSize = DL.getTypeSizeInBits(VecTy);
7019
7020 // Skip if we do not have NEON and skip illegal vector types.
7021 if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128))
7022 return false;
7023
7024 // A pointer vector can not be the return type of the ldN intrinsics. Need to
7025 // load integer vectors first and then convert to pointer vectors.
7026 Type *EltTy = VecTy->getVectorElementType();
7027 if (EltTy->isPointerTy())
7028 VecTy =
7029 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
7030
7031 Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
7032 Type *Tys[2] = {VecTy, PtrTy};
7033 static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
7034 Intrinsic::aarch64_neon_ld3,
7035 Intrinsic::aarch64_neon_ld4};
7036 Function *LdNFunc =
7037 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
7038
7039 IRBuilder<> Builder(LI);
7040 Value *Ptr = Builder.CreateBitCast(LI->getPointerOperand(), PtrTy);
7041
7042 CallInst *LdN = Builder.CreateCall(LdNFunc, Ptr, "ldN");
7043
7044 // Replace uses of each shufflevector with the corresponding vector loaded
7045 // by ldN.
7046 for (unsigned i = 0; i < Shuffles.size(); i++) {
7047 ShuffleVectorInst *SVI = Shuffles[i];
7048 unsigned Index = Indices[i];
7049
7050 Value *SubVec = Builder.CreateExtractValue(LdN, Index);
7051
7052 // Convert the integer vector to pointer vector if the element is pointer.
7053 if (EltTy->isPointerTy())
7054 SubVec = Builder.CreateIntToPtr(SubVec, SVI->getType());
7055
7056 SVI->replaceAllUsesWith(SubVec);
7057 }
7058
7059 return true;
7060 }
7061
7062 /// \brief Get a mask consisting of sequential integers starting from \p Start.
7063 ///
7064 /// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
getSequentialMask(IRBuilder<> & Builder,unsigned Start,unsigned NumElts)7065 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
7066 unsigned NumElts) {
7067 SmallVector<Constant *, 16> Mask;
7068 for (unsigned i = 0; i < NumElts; i++)
7069 Mask.push_back(Builder.getInt32(Start + i));
7070
7071 return ConstantVector::get(Mask);
7072 }
7073
7074 /// \brief Lower an interleaved store into a stN intrinsic.
7075 ///
7076 /// E.g. Lower an interleaved store (Factor = 3):
7077 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
7078 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
7079 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
7080 ///
7081 /// Into:
7082 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
7083 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
7084 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
7085 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
7086 ///
7087 /// Note that the new shufflevectors will be removed and we'll only generate one
7088 /// st3 instruction in CodeGen.
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor) const7089 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
7090 ShuffleVectorInst *SVI,
7091 unsigned Factor) const {
7092 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
7093 "Invalid interleave factor");
7094
7095 VectorType *VecTy = SVI->getType();
7096 assert(VecTy->getVectorNumElements() % Factor == 0 &&
7097 "Invalid interleaved store");
7098
7099 unsigned NumSubElts = VecTy->getVectorNumElements() / Factor;
7100 Type *EltTy = VecTy->getVectorElementType();
7101 VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts);
7102
7103 const DataLayout &DL = SI->getModule()->getDataLayout();
7104 unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
7105
7106 // Skip if we do not have NEON and skip illegal vector types.
7107 if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128))
7108 return false;
7109
7110 Value *Op0 = SVI->getOperand(0);
7111 Value *Op1 = SVI->getOperand(1);
7112 IRBuilder<> Builder(SI);
7113
7114 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
7115 // vectors to integer vectors.
7116 if (EltTy->isPointerTy()) {
7117 Type *IntTy = DL.getIntPtrType(EltTy);
7118 unsigned NumOpElts =
7119 dyn_cast<VectorType>(Op0->getType())->getVectorNumElements();
7120
7121 // Convert to the corresponding integer vector.
7122 Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
7123 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
7124 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
7125
7126 SubVecTy = VectorType::get(IntTy, NumSubElts);
7127 }
7128
7129 Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
7130 Type *Tys[2] = {SubVecTy, PtrTy};
7131 static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
7132 Intrinsic::aarch64_neon_st3,
7133 Intrinsic::aarch64_neon_st4};
7134 Function *StNFunc =
7135 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
7136
7137 SmallVector<Value *, 5> Ops;
7138
7139 // Split the shufflevector operands into sub vectors for the new stN call.
7140 for (unsigned i = 0; i < Factor; i++)
7141 Ops.push_back(Builder.CreateShuffleVector(
7142 Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts)));
7143
7144 Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), PtrTy));
7145 Builder.CreateCall(StNFunc, Ops);
7146 return true;
7147 }
7148
memOpAlign(unsigned DstAlign,unsigned SrcAlign,unsigned AlignCheck)7149 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
7150 unsigned AlignCheck) {
7151 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
7152 (DstAlign == 0 || DstAlign % AlignCheck == 0));
7153 }
7154
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const7155 EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
7156 unsigned SrcAlign, bool IsMemset,
7157 bool ZeroMemset,
7158 bool MemcpyStrSrc,
7159 MachineFunction &MF) const {
7160 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
7161 // instruction to materialize the v2i64 zero and one store (with restrictive
7162 // addressing mode). Just do two i64 store of zero-registers.
7163 bool Fast;
7164 const Function *F = MF.getFunction();
7165 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
7166 !F->hasFnAttribute(Attribute::NoImplicitFloat) &&
7167 (memOpAlign(SrcAlign, DstAlign, 16) ||
7168 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
7169 return MVT::f128;
7170
7171 if (Size >= 8 &&
7172 (memOpAlign(SrcAlign, DstAlign, 8) ||
7173 (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast)))
7174 return MVT::i64;
7175
7176 if (Size >= 4 &&
7177 (memOpAlign(SrcAlign, DstAlign, 4) ||
7178 (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast)))
7179 return MVT::i32;
7180
7181 return MVT::Other;
7182 }
7183
7184 // 12-bit optionally shifted immediates are legal for adds.
isLegalAddImmediate(int64_t Immed) const7185 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
7186 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
7187 return true;
7188 return false;
7189 }
7190
7191 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
7192 // immediates is the same as for an add or a sub.
isLegalICmpImmediate(int64_t Immed) const7193 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
7194 if (Immed < 0)
7195 Immed *= -1;
7196 return isLegalAddImmediate(Immed);
7197 }
7198
7199 /// isLegalAddressingMode - Return true if the addressing mode represented
7200 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const7201 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
7202 const AddrMode &AM, Type *Ty,
7203 unsigned AS) const {
7204 // AArch64 has five basic addressing modes:
7205 // reg
7206 // reg + 9-bit signed offset
7207 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
7208 // reg1 + reg2
7209 // reg + SIZE_IN_BYTES * reg
7210
7211 // No global is ever allowed as a base.
7212 if (AM.BaseGV)
7213 return false;
7214
7215 // No reg+reg+imm addressing.
7216 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
7217 return false;
7218
7219 // check reg + imm case:
7220 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
7221 uint64_t NumBytes = 0;
7222 if (Ty->isSized()) {
7223 uint64_t NumBits = DL.getTypeSizeInBits(Ty);
7224 NumBytes = NumBits / 8;
7225 if (!isPowerOf2_64(NumBits))
7226 NumBytes = 0;
7227 }
7228
7229 if (!AM.Scale) {
7230 int64_t Offset = AM.BaseOffs;
7231
7232 // 9-bit signed offset
7233 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
7234 return true;
7235
7236 // 12-bit unsigned offset
7237 unsigned shift = Log2_64(NumBytes);
7238 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
7239 // Must be a multiple of NumBytes (NumBytes is a power of 2)
7240 (Offset >> shift) << shift == Offset)
7241 return true;
7242 return false;
7243 }
7244
7245 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
7246
7247 if (!AM.Scale || AM.Scale == 1 ||
7248 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
7249 return true;
7250 return false;
7251 }
7252
getScalingFactorCost(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const7253 int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
7254 const AddrMode &AM, Type *Ty,
7255 unsigned AS) const {
7256 // Scaling factors are not free at all.
7257 // Operands | Rt Latency
7258 // -------------------------------------------
7259 // Rt, [Xn, Xm] | 4
7260 // -------------------------------------------
7261 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
7262 // Rt, [Xn, Wm, <extend> #imm] |
7263 if (isLegalAddressingMode(DL, AM, Ty, AS))
7264 // Scale represents reg2 * scale, thus account for 1 if
7265 // it is not equal to 0 or 1.
7266 return AM.Scale != 0 && AM.Scale != 1;
7267 return -1;
7268 }
7269
isFMAFasterThanFMulAndFAdd(EVT VT) const7270 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
7271 VT = VT.getScalarType();
7272
7273 if (!VT.isSimple())
7274 return false;
7275
7276 switch (VT.getSimpleVT().SimpleTy) {
7277 case MVT::f32:
7278 case MVT::f64:
7279 return true;
7280 default:
7281 break;
7282 }
7283
7284 return false;
7285 }
7286
7287 const MCPhysReg *
getScratchRegisters(CallingConv::ID) const7288 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
7289 // LR is a callee-save register, but we must treat it as clobbered by any call
7290 // site. Hence we include LR in the scratch registers, which are in turn added
7291 // as implicit-defs for stackmaps and patchpoints.
7292 static const MCPhysReg ScratchRegs[] = {
7293 AArch64::X16, AArch64::X17, AArch64::LR, 0
7294 };
7295 return ScratchRegs;
7296 }
7297
7298 bool
isDesirableToCommuteWithShift(const SDNode * N) const7299 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
7300 EVT VT = N->getValueType(0);
7301 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
7302 // it with shift to let it be lowered to UBFX.
7303 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
7304 isa<ConstantSDNode>(N->getOperand(1))) {
7305 uint64_t TruncMask = N->getConstantOperandVal(1);
7306 if (isMask_64(TruncMask) &&
7307 N->getOperand(0).getOpcode() == ISD::SRL &&
7308 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
7309 return false;
7310 }
7311 return true;
7312 }
7313
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const7314 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
7315 Type *Ty) const {
7316 assert(Ty->isIntegerTy());
7317
7318 unsigned BitSize = Ty->getPrimitiveSizeInBits();
7319 if (BitSize == 0)
7320 return false;
7321
7322 int64_t Val = Imm.getSExtValue();
7323 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
7324 return true;
7325
7326 if ((int64_t)Val < 0)
7327 Val = ~Val;
7328 if (BitSize == 32)
7329 Val &= (1LL << 32) - 1;
7330
7331 unsigned LZ = countLeadingZeros((uint64_t)Val);
7332 unsigned Shift = (63 - LZ) / 16;
7333 // MOVZ is free so return true for one or fewer MOVK.
7334 return Shift < 3;
7335 }
7336
7337 // Generate SUBS and CSEL for integer abs.
performIntegerAbsCombine(SDNode * N,SelectionDAG & DAG)7338 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
7339 EVT VT = N->getValueType(0);
7340
7341 SDValue N0 = N->getOperand(0);
7342 SDValue N1 = N->getOperand(1);
7343 SDLoc DL(N);
7344
7345 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
7346 // and change it to SUB and CSEL.
7347 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
7348 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
7349 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
7350 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
7351 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
7352 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
7353 N0.getOperand(0));
7354 // Generate SUBS & CSEL.
7355 SDValue Cmp =
7356 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
7357 N0.getOperand(0), DAG.getConstant(0, DL, VT));
7358 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
7359 DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
7360 SDValue(Cmp.getNode(), 1));
7361 }
7362 return SDValue();
7363 }
7364
7365 // performXorCombine - Attempts to handle integer ABS.
performXorCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)7366 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
7367 TargetLowering::DAGCombinerInfo &DCI,
7368 const AArch64Subtarget *Subtarget) {
7369 if (DCI.isBeforeLegalizeOps())
7370 return SDValue();
7371
7372 return performIntegerAbsCombine(N, DAG);
7373 }
7374
7375 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,std::vector<SDNode * > * Created) const7376 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
7377 SelectionDAG &DAG,
7378 std::vector<SDNode *> *Created) const {
7379 // fold (sdiv X, pow2)
7380 EVT VT = N->getValueType(0);
7381 if ((VT != MVT::i32 && VT != MVT::i64) ||
7382 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
7383 return SDValue();
7384
7385 SDLoc DL(N);
7386 SDValue N0 = N->getOperand(0);
7387 unsigned Lg2 = Divisor.countTrailingZeros();
7388 SDValue Zero = DAG.getConstant(0, DL, VT);
7389 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
7390
7391 // Add (N0 < 0) ? Pow2 - 1 : 0;
7392 SDValue CCVal;
7393 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
7394 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
7395 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
7396
7397 if (Created) {
7398 Created->push_back(Cmp.getNode());
7399 Created->push_back(Add.getNode());
7400 Created->push_back(CSel.getNode());
7401 }
7402
7403 // Divide by pow2.
7404 SDValue SRA =
7405 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
7406
7407 // If we're dividing by a positive value, we're done. Otherwise, we must
7408 // negate the result.
7409 if (Divisor.isNonNegative())
7410 return SRA;
7411
7412 if (Created)
7413 Created->push_back(SRA.getNode());
7414 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
7415 }
7416
performMulCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)7417 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
7418 TargetLowering::DAGCombinerInfo &DCI,
7419 const AArch64Subtarget *Subtarget) {
7420 if (DCI.isBeforeLegalizeOps())
7421 return SDValue();
7422
7423 // Multiplication of a power of two plus/minus one can be done more
7424 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
7425 // future CPUs have a cheaper MADD instruction, this may need to be
7426 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
7427 // 64-bit is 5 cycles, so this is always a win.
7428 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7429 APInt Value = C->getAPIntValue();
7430 EVT VT = N->getValueType(0);
7431 SDLoc DL(N);
7432 if (Value.isNonNegative()) {
7433 // (mul x, 2^N + 1) => (add (shl x, N), x)
7434 APInt VM1 = Value - 1;
7435 if (VM1.isPowerOf2()) {
7436 SDValue ShiftedVal =
7437 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7438 DAG.getConstant(VM1.logBase2(), DL, MVT::i64));
7439 return DAG.getNode(ISD::ADD, DL, VT, ShiftedVal,
7440 N->getOperand(0));
7441 }
7442 // (mul x, 2^N - 1) => (sub (shl x, N), x)
7443 APInt VP1 = Value + 1;
7444 if (VP1.isPowerOf2()) {
7445 SDValue ShiftedVal =
7446 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7447 DAG.getConstant(VP1.logBase2(), DL, MVT::i64));
7448 return DAG.getNode(ISD::SUB, DL, VT, ShiftedVal,
7449 N->getOperand(0));
7450 }
7451 } else {
7452 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
7453 APInt VNP1 = -Value + 1;
7454 if (VNP1.isPowerOf2()) {
7455 SDValue ShiftedVal =
7456 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7457 DAG.getConstant(VNP1.logBase2(), DL, MVT::i64));
7458 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0),
7459 ShiftedVal);
7460 }
7461 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7462 APInt VNM1 = -Value - 1;
7463 if (VNM1.isPowerOf2()) {
7464 SDValue ShiftedVal =
7465 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7466 DAG.getConstant(VNM1.logBase2(), DL, MVT::i64));
7467 SDValue Add =
7468 DAG.getNode(ISD::ADD, DL, VT, ShiftedVal, N->getOperand(0));
7469 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Add);
7470 }
7471 }
7472 }
7473 return SDValue();
7474 }
7475
performVectorCompareAndMaskUnaryOpCombine(SDNode * N,SelectionDAG & DAG)7476 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
7477 SelectionDAG &DAG) {
7478 // Take advantage of vector comparisons producing 0 or -1 in each lane to
7479 // optimize away operation when it's from a constant.
7480 //
7481 // The general transformation is:
7482 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
7483 // AND(VECTOR_CMP(x,y), constant2)
7484 // constant2 = UNARYOP(constant)
7485
7486 // Early exit if this isn't a vector operation, the operand of the
7487 // unary operation isn't a bitwise AND, or if the sizes of the operations
7488 // aren't the same.
7489 EVT VT = N->getValueType(0);
7490 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
7491 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
7492 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
7493 return SDValue();
7494
7495 // Now check that the other operand of the AND is a constant. We could
7496 // make the transformation for non-constant splats as well, but it's unclear
7497 // that would be a benefit as it would not eliminate any operations, just
7498 // perform one more step in scalar code before moving to the vector unit.
7499 if (BuildVectorSDNode *BV =
7500 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
7501 // Bail out if the vector isn't a constant.
7502 if (!BV->isConstant())
7503 return SDValue();
7504
7505 // Everything checks out. Build up the new and improved node.
7506 SDLoc DL(N);
7507 EVT IntVT = BV->getValueType(0);
7508 // Create a new constant of the appropriate type for the transformed
7509 // DAG.
7510 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
7511 // The AND node needs bitcasts to/from an integer vector type around it.
7512 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
7513 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
7514 N->getOperand(0)->getOperand(0), MaskConst);
7515 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
7516 return Res;
7517 }
7518
7519 return SDValue();
7520 }
7521
performIntToFpCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)7522 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
7523 const AArch64Subtarget *Subtarget) {
7524 // First try to optimize away the conversion when it's conditionally from
7525 // a constant. Vectors only.
7526 if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
7527 return Res;
7528
7529 EVT VT = N->getValueType(0);
7530 if (VT != MVT::f32 && VT != MVT::f64)
7531 return SDValue();
7532
7533 // Only optimize when the source and destination types have the same width.
7534 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
7535 return SDValue();
7536
7537 // If the result of an integer load is only used by an integer-to-float
7538 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
7539 // This eliminates an "integer-to-vector-move" UOP and improves throughput.
7540 SDValue N0 = N->getOperand(0);
7541 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7542 // Do not change the width of a volatile load.
7543 !cast<LoadSDNode>(N0)->isVolatile()) {
7544 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7545 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
7546 LN0->getPointerInfo(), LN0->isVolatile(),
7547 LN0->isNonTemporal(), LN0->isInvariant(),
7548 LN0->getAlignment());
7549
7550 // Make sure successors of the original load stay after it by updating them
7551 // to use the new Chain.
7552 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
7553
7554 unsigned Opcode =
7555 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
7556 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
7557 }
7558
7559 return SDValue();
7560 }
7561
7562 /// Fold a floating-point multiply by power of two into floating-point to
7563 /// fixed-point conversion.
performFpToIntCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)7564 static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
7565 const AArch64Subtarget *Subtarget) {
7566 if (!Subtarget->hasNEON())
7567 return SDValue();
7568
7569 SDValue Op = N->getOperand(0);
7570 if (!Op.getValueType().isVector() || Op.getOpcode() != ISD::FMUL)
7571 return SDValue();
7572
7573 SDValue ConstVec = Op->getOperand(1);
7574 if (!isa<BuildVectorSDNode>(ConstVec))
7575 return SDValue();
7576
7577 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
7578 uint32_t FloatBits = FloatTy.getSizeInBits();
7579 if (FloatBits != 32 && FloatBits != 64)
7580 return SDValue();
7581
7582 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
7583 uint32_t IntBits = IntTy.getSizeInBits();
7584 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
7585 return SDValue();
7586
7587 // Avoid conversions where iN is larger than the float (e.g., float -> i64).
7588 if (IntBits > FloatBits)
7589 return SDValue();
7590
7591 BitVector UndefElements;
7592 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
7593 int32_t Bits = IntBits == 64 ? 64 : 32;
7594 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
7595 if (C == -1 || C == 0 || C > Bits)
7596 return SDValue();
7597
7598 MVT ResTy;
7599 unsigned NumLanes = Op.getValueType().getVectorNumElements();
7600 switch (NumLanes) {
7601 default:
7602 return SDValue();
7603 case 2:
7604 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
7605 break;
7606 case 4:
7607 ResTy = MVT::v4i32;
7608 break;
7609 }
7610
7611 SDLoc DL(N);
7612 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7613 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
7614 : Intrinsic::aarch64_neon_vcvtfp2fxu;
7615 SDValue FixConv =
7616 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
7617 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
7618 Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
7619 // We can handle smaller integers by generating an extra trunc.
7620 if (IntBits < FloatBits)
7621 FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
7622
7623 return FixConv;
7624 }
7625
7626 /// Fold a floating-point divide by power of two into fixed-point to
7627 /// floating-point conversion.
performFDivCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)7628 static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
7629 const AArch64Subtarget *Subtarget) {
7630 if (!Subtarget->hasNEON())
7631 return SDValue();
7632
7633 SDValue Op = N->getOperand(0);
7634 unsigned Opc = Op->getOpcode();
7635 if (!Op.getValueType().isVector() ||
7636 (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
7637 return SDValue();
7638
7639 SDValue ConstVec = N->getOperand(1);
7640 if (!isa<BuildVectorSDNode>(ConstVec))
7641 return SDValue();
7642
7643 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
7644 int32_t IntBits = IntTy.getSizeInBits();
7645 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
7646 return SDValue();
7647
7648 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
7649 int32_t FloatBits = FloatTy.getSizeInBits();
7650 if (FloatBits != 32 && FloatBits != 64)
7651 return SDValue();
7652
7653 // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
7654 if (IntBits > FloatBits)
7655 return SDValue();
7656
7657 BitVector UndefElements;
7658 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
7659 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
7660 if (C == -1 || C == 0 || C > FloatBits)
7661 return SDValue();
7662
7663 MVT ResTy;
7664 unsigned NumLanes = Op.getValueType().getVectorNumElements();
7665 switch (NumLanes) {
7666 default:
7667 return SDValue();
7668 case 2:
7669 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
7670 break;
7671 case 4:
7672 ResTy = MVT::v4i32;
7673 break;
7674 }
7675
7676 SDLoc DL(N);
7677 SDValue ConvInput = Op.getOperand(0);
7678 bool IsSigned = Opc == ISD::SINT_TO_FP;
7679 if (IntBits < FloatBits)
7680 ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
7681 ResTy, ConvInput);
7682
7683 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
7684 : Intrinsic::aarch64_neon_vcvtfxu2fp;
7685 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
7686 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
7687 DAG.getConstant(C, DL, MVT::i32));
7688 }
7689
7690 /// An EXTR instruction is made up of two shifts, ORed together. This helper
7691 /// searches for and classifies those shifts.
findEXTRHalf(SDValue N,SDValue & Src,uint32_t & ShiftAmount,bool & FromHi)7692 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
7693 bool &FromHi) {
7694 if (N.getOpcode() == ISD::SHL)
7695 FromHi = false;
7696 else if (N.getOpcode() == ISD::SRL)
7697 FromHi = true;
7698 else
7699 return false;
7700
7701 if (!isa<ConstantSDNode>(N.getOperand(1)))
7702 return false;
7703
7704 ShiftAmount = N->getConstantOperandVal(1);
7705 Src = N->getOperand(0);
7706 return true;
7707 }
7708
7709 /// EXTR instruction extracts a contiguous chunk of bits from two existing
7710 /// registers viewed as a high/low pair. This function looks for the pattern:
7711 /// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
7712 /// EXTR. Can't quite be done in TableGen because the two immediates aren't
7713 /// independent.
tryCombineToEXTR(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7714 static SDValue tryCombineToEXTR(SDNode *N,
7715 TargetLowering::DAGCombinerInfo &DCI) {
7716 SelectionDAG &DAG = DCI.DAG;
7717 SDLoc DL(N);
7718 EVT VT = N->getValueType(0);
7719
7720 assert(N->getOpcode() == ISD::OR && "Unexpected root");
7721
7722 if (VT != MVT::i32 && VT != MVT::i64)
7723 return SDValue();
7724
7725 SDValue LHS;
7726 uint32_t ShiftLHS = 0;
7727 bool LHSFromHi = 0;
7728 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7729 return SDValue();
7730
7731 SDValue RHS;
7732 uint32_t ShiftRHS = 0;
7733 bool RHSFromHi = 0;
7734 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7735 return SDValue();
7736
7737 // If they're both trying to come from the high part of the register, they're
7738 // not really an EXTR.
7739 if (LHSFromHi == RHSFromHi)
7740 return SDValue();
7741
7742 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7743 return SDValue();
7744
7745 if (LHSFromHi) {
7746 std::swap(LHS, RHS);
7747 std::swap(ShiftLHS, ShiftRHS);
7748 }
7749
7750 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
7751 DAG.getConstant(ShiftRHS, DL, MVT::i64));
7752 }
7753
tryCombineToBSL(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7754 static SDValue tryCombineToBSL(SDNode *N,
7755 TargetLowering::DAGCombinerInfo &DCI) {
7756 EVT VT = N->getValueType(0);
7757 SelectionDAG &DAG = DCI.DAG;
7758 SDLoc DL(N);
7759
7760 if (!VT.isVector())
7761 return SDValue();
7762
7763 SDValue N0 = N->getOperand(0);
7764 if (N0.getOpcode() != ISD::AND)
7765 return SDValue();
7766
7767 SDValue N1 = N->getOperand(1);
7768 if (N1.getOpcode() != ISD::AND)
7769 return SDValue();
7770
7771 // We only have to look for constant vectors here since the general, variable
7772 // case can be handled in TableGen.
7773 unsigned Bits = VT.getVectorElementType().getSizeInBits();
7774 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7775 for (int i = 1; i >= 0; --i)
7776 for (int j = 1; j >= 0; --j) {
7777 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7778 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7779 if (!BVN0 || !BVN1)
7780 continue;
7781
7782 bool FoundMatch = true;
7783 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7784 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7785 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7786 if (!CN0 || !CN1 ||
7787 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7788 FoundMatch = false;
7789 break;
7790 }
7791 }
7792
7793 if (FoundMatch)
7794 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7795 N0->getOperand(1 - i), N1->getOperand(1 - j));
7796 }
7797
7798 return SDValue();
7799 }
7800
performORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)7801 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7802 const AArch64Subtarget *Subtarget) {
7803 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7804 if (!EnableAArch64ExtrGeneration)
7805 return SDValue();
7806 SelectionDAG &DAG = DCI.DAG;
7807 EVT VT = N->getValueType(0);
7808
7809 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7810 return SDValue();
7811
7812 SDValue Res = tryCombineToEXTR(N, DCI);
7813 if (Res.getNode())
7814 return Res;
7815
7816 Res = tryCombineToBSL(N, DCI);
7817 if (Res.getNode())
7818 return Res;
7819
7820 return SDValue();
7821 }
7822
performBitcastCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)7823 static SDValue performBitcastCombine(SDNode *N,
7824 TargetLowering::DAGCombinerInfo &DCI,
7825 SelectionDAG &DAG) {
7826 // Wait 'til after everything is legalized to try this. That way we have
7827 // legal vector types and such.
7828 if (DCI.isBeforeLegalizeOps())
7829 return SDValue();
7830
7831 // Remove extraneous bitcasts around an extract_subvector.
7832 // For example,
7833 // (v4i16 (bitconvert
7834 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7835 // becomes
7836 // (extract_subvector ((v8i16 ...), (i64 4)))
7837
7838 // Only interested in 64-bit vectors as the ultimate result.
7839 EVT VT = N->getValueType(0);
7840 if (!VT.isVector())
7841 return SDValue();
7842 if (VT.getSimpleVT().getSizeInBits() != 64)
7843 return SDValue();
7844 // Is the operand an extract_subvector starting at the beginning or halfway
7845 // point of the vector? A low half may also come through as an
7846 // EXTRACT_SUBREG, so look for that, too.
7847 SDValue Op0 = N->getOperand(0);
7848 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
7849 !(Op0->isMachineOpcode() &&
7850 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
7851 return SDValue();
7852 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
7853 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
7854 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
7855 return SDValue();
7856 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
7857 if (idx != AArch64::dsub)
7858 return SDValue();
7859 // The dsub reference is equivalent to a lane zero subvector reference.
7860 idx = 0;
7861 }
7862 // Look through the bitcast of the input to the extract.
7863 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
7864 return SDValue();
7865 SDValue Source = Op0->getOperand(0)->getOperand(0);
7866 // If the source type has twice the number of elements as our destination
7867 // type, we know this is an extract of the high or low half of the vector.
7868 EVT SVT = Source->getValueType(0);
7869 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
7870 return SDValue();
7871
7872 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
7873
7874 // Create the simplified form to just extract the low or high half of the
7875 // vector directly rather than bothering with the bitcasts.
7876 SDLoc dl(N);
7877 unsigned NumElements = VT.getVectorNumElements();
7878 if (idx) {
7879 SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
7880 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
7881 } else {
7882 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
7883 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
7884 Source, SubReg),
7885 0);
7886 }
7887 }
7888
performConcatVectorsCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)7889 static SDValue performConcatVectorsCombine(SDNode *N,
7890 TargetLowering::DAGCombinerInfo &DCI,
7891 SelectionDAG &DAG) {
7892 SDLoc dl(N);
7893 EVT VT = N->getValueType(0);
7894 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
7895
7896 // Optimize concat_vectors of truncated vectors, where the intermediate
7897 // type is illegal, to avoid said illegality, e.g.,
7898 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
7899 // (v2i16 (truncate (v2i64)))))
7900 // ->
7901 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
7902 // (v4i32 (bitcast (v2i64))),
7903 // <0, 2, 4, 6>)))
7904 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
7905 // on both input and result type, so we might generate worse code.
7906 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
7907 if (N->getNumOperands() == 2 &&
7908 N0->getOpcode() == ISD::TRUNCATE &&
7909 N1->getOpcode() == ISD::TRUNCATE) {
7910 SDValue N00 = N0->getOperand(0);
7911 SDValue N10 = N1->getOperand(0);
7912 EVT N00VT = N00.getValueType();
7913
7914 if (N00VT == N10.getValueType() &&
7915 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
7916 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
7917 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
7918 SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
7919 for (size_t i = 0; i < Mask.size(); ++i)
7920 Mask[i] = i * 2;
7921 return DAG.getNode(ISD::TRUNCATE, dl, VT,
7922 DAG.getVectorShuffle(
7923 MidVT, dl,
7924 DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
7925 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
7926 }
7927 }
7928
7929 // Wait 'til after everything is legalized to try this. That way we have
7930 // legal vector types and such.
7931 if (DCI.isBeforeLegalizeOps())
7932 return SDValue();
7933
7934 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
7935 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
7936 // canonicalise to that.
7937 if (N0 == N1 && VT.getVectorNumElements() == 2) {
7938 assert(VT.getVectorElementType().getSizeInBits() == 64);
7939 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
7940 DAG.getConstant(0, dl, MVT::i64));
7941 }
7942
7943 // Canonicalise concat_vectors so that the right-hand vector has as few
7944 // bit-casts as possible before its real operation. The primary matching
7945 // destination for these operations will be the narrowing "2" instructions,
7946 // which depend on the operation being performed on this right-hand vector.
7947 // For example,
7948 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
7949 // becomes
7950 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
7951
7952 if (N1->getOpcode() != ISD::BITCAST)
7953 return SDValue();
7954 SDValue RHS = N1->getOperand(0);
7955 MVT RHSTy = RHS.getValueType().getSimpleVT();
7956 // If the RHS is not a vector, this is not the pattern we're looking for.
7957 if (!RHSTy.isVector())
7958 return SDValue();
7959
7960 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
7961
7962 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
7963 RHSTy.getVectorNumElements() * 2);
7964 return DAG.getNode(ISD::BITCAST, dl, VT,
7965 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
7966 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
7967 RHS));
7968 }
7969
tryCombineFixedPointConvert(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)7970 static SDValue tryCombineFixedPointConvert(SDNode *N,
7971 TargetLowering::DAGCombinerInfo &DCI,
7972 SelectionDAG &DAG) {
7973 // Wait 'til after everything is legalized to try this. That way we have
7974 // legal vector types and such.
7975 if (DCI.isBeforeLegalizeOps())
7976 return SDValue();
7977 // Transform a scalar conversion of a value from a lane extract into a
7978 // lane extract of a vector conversion. E.g., from foo1 to foo2:
7979 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
7980 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
7981 //
7982 // The second form interacts better with instruction selection and the
7983 // register allocator to avoid cross-class register copies that aren't
7984 // coalescable due to a lane reference.
7985
7986 // Check the operand and see if it originates from a lane extract.
7987 SDValue Op1 = N->getOperand(1);
7988 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7989 // Yep, no additional predication needed. Perform the transform.
7990 SDValue IID = N->getOperand(0);
7991 SDValue Shift = N->getOperand(2);
7992 SDValue Vec = Op1.getOperand(0);
7993 SDValue Lane = Op1.getOperand(1);
7994 EVT ResTy = N->getValueType(0);
7995 EVT VecResTy;
7996 SDLoc DL(N);
7997
7998 // The vector width should be 128 bits by the time we get here, even
7999 // if it started as 64 bits (the extract_vector handling will have
8000 // done so).
8001 assert(Vec.getValueType().getSizeInBits() == 128 &&
8002 "unexpected vector size on extract_vector_elt!");
8003 if (Vec.getValueType() == MVT::v4i32)
8004 VecResTy = MVT::v4f32;
8005 else if (Vec.getValueType() == MVT::v2i64)
8006 VecResTy = MVT::v2f64;
8007 else
8008 llvm_unreachable("unexpected vector type!");
8009
8010 SDValue Convert =
8011 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
8012 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
8013 }
8014 return SDValue();
8015 }
8016
8017 // AArch64 high-vector "long" operations are formed by performing the non-high
8018 // version on an extract_subvector of each operand which gets the high half:
8019 //
8020 // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
8021 //
8022 // However, there are cases which don't have an extract_high explicitly, but
8023 // have another operation that can be made compatible with one for free. For
8024 // example:
8025 //
8026 // (dupv64 scalar) --> (extract_high (dup128 scalar))
8027 //
8028 // This routine does the actual conversion of such DUPs, once outer routines
8029 // have determined that everything else is in order.
8030 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
8031 // similarly here.
tryExtendDUPToExtractHigh(SDValue N,SelectionDAG & DAG)8032 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
8033 switch (N.getOpcode()) {
8034 case AArch64ISD::DUP:
8035 case AArch64ISD::DUPLANE8:
8036 case AArch64ISD::DUPLANE16:
8037 case AArch64ISD::DUPLANE32:
8038 case AArch64ISD::DUPLANE64:
8039 case AArch64ISD::MOVI:
8040 case AArch64ISD::MOVIshift:
8041 case AArch64ISD::MOVIedit:
8042 case AArch64ISD::MOVImsl:
8043 case AArch64ISD::MVNIshift:
8044 case AArch64ISD::MVNImsl:
8045 break;
8046 default:
8047 // FMOV could be supported, but isn't very useful, as it would only occur
8048 // if you passed a bitcast' floating point immediate to an eligible long
8049 // integer op (addl, smull, ...).
8050 return SDValue();
8051 }
8052
8053 MVT NarrowTy = N.getSimpleValueType();
8054 if (!NarrowTy.is64BitVector())
8055 return SDValue();
8056
8057 MVT ElementTy = NarrowTy.getVectorElementType();
8058 unsigned NumElems = NarrowTy.getVectorNumElements();
8059 MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
8060
8061 SDLoc dl(N);
8062 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
8063 DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
8064 DAG.getConstant(NumElems, dl, MVT::i64));
8065 }
8066
isEssentiallyExtractSubvector(SDValue N)8067 static bool isEssentiallyExtractSubvector(SDValue N) {
8068 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8069 return true;
8070
8071 return N.getOpcode() == ISD::BITCAST &&
8072 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
8073 }
8074
8075 /// \brief Helper structure to keep track of ISD::SET_CC operands.
8076 struct GenericSetCCInfo {
8077 const SDValue *Opnd0;
8078 const SDValue *Opnd1;
8079 ISD::CondCode CC;
8080 };
8081
8082 /// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
8083 struct AArch64SetCCInfo {
8084 const SDValue *Cmp;
8085 AArch64CC::CondCode CC;
8086 };
8087
8088 /// \brief Helper structure to keep track of SetCC information.
8089 union SetCCInfo {
8090 GenericSetCCInfo Generic;
8091 AArch64SetCCInfo AArch64;
8092 };
8093
8094 /// \brief Helper structure to be able to read SetCC information. If set to
8095 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
8096 /// GenericSetCCInfo.
8097 struct SetCCInfoAndKind {
8098 SetCCInfo Info;
8099 bool IsAArch64;
8100 };
8101
8102 /// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
8103 /// an
8104 /// AArch64 lowered one.
8105 /// \p SetCCInfo is filled accordingly.
8106 /// \post SetCCInfo is meanginfull only when this function returns true.
8107 /// \return True when Op is a kind of SET_CC operation.
isSetCC(SDValue Op,SetCCInfoAndKind & SetCCInfo)8108 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
8109 // If this is a setcc, this is straight forward.
8110 if (Op.getOpcode() == ISD::SETCC) {
8111 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
8112 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
8113 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8114 SetCCInfo.IsAArch64 = false;
8115 return true;
8116 }
8117 // Otherwise, check if this is a matching csel instruction.
8118 // In other words:
8119 // - csel 1, 0, cc
8120 // - csel 0, 1, !cc
8121 if (Op.getOpcode() != AArch64ISD::CSEL)
8122 return false;
8123 // Set the information about the operands.
8124 // TODO: we want the operands of the Cmp not the csel
8125 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
8126 SetCCInfo.IsAArch64 = true;
8127 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
8128 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
8129
8130 // Check that the operands matches the constraints:
8131 // (1) Both operands must be constants.
8132 // (2) One must be 1 and the other must be 0.
8133 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
8134 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8135
8136 // Check (1).
8137 if (!TValue || !FValue)
8138 return false;
8139
8140 // Check (2).
8141 if (!TValue->isOne()) {
8142 // Update the comparison when we are interested in !cc.
8143 std::swap(TValue, FValue);
8144 SetCCInfo.Info.AArch64.CC =
8145 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
8146 }
8147 return TValue->isOne() && FValue->isNullValue();
8148 }
8149
8150 // Returns true if Op is setcc or zext of setcc.
isSetCCOrZExtSetCC(const SDValue & Op,SetCCInfoAndKind & Info)8151 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
8152 if (isSetCC(Op, Info))
8153 return true;
8154 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
8155 isSetCC(Op->getOperand(0), Info));
8156 }
8157
8158 // The folding we want to perform is:
8159 // (add x, [zext] (setcc cc ...) )
8160 // -->
8161 // (csel x, (add x, 1), !cc ...)
8162 //
8163 // The latter will get matched to a CSINC instruction.
performSetccAddFolding(SDNode * Op,SelectionDAG & DAG)8164 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
8165 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
8166 SDValue LHS = Op->getOperand(0);
8167 SDValue RHS = Op->getOperand(1);
8168 SetCCInfoAndKind InfoAndKind;
8169
8170 // If neither operand is a SET_CC, give up.
8171 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
8172 std::swap(LHS, RHS);
8173 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
8174 return SDValue();
8175 }
8176
8177 // FIXME: This could be generatized to work for FP comparisons.
8178 EVT CmpVT = InfoAndKind.IsAArch64
8179 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
8180 : InfoAndKind.Info.Generic.Opnd0->getValueType();
8181 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
8182 return SDValue();
8183
8184 SDValue CCVal;
8185 SDValue Cmp;
8186 SDLoc dl(Op);
8187 if (InfoAndKind.IsAArch64) {
8188 CCVal = DAG.getConstant(
8189 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
8190 MVT::i32);
8191 Cmp = *InfoAndKind.Info.AArch64.Cmp;
8192 } else
8193 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
8194 *InfoAndKind.Info.Generic.Opnd1,
8195 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
8196 CCVal, DAG, dl);
8197
8198 EVT VT = Op->getValueType(0);
8199 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
8200 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
8201 }
8202
8203 // The basic add/sub long vector instructions have variants with "2" on the end
8204 // which act on the high-half of their inputs. They are normally matched by
8205 // patterns like:
8206 //
8207 // (add (zeroext (extract_high LHS)),
8208 // (zeroext (extract_high RHS)))
8209 // -> uaddl2 vD, vN, vM
8210 //
8211 // However, if one of the extracts is something like a duplicate, this
8212 // instruction can still be used profitably. This function puts the DAG into a
8213 // more appropriate form for those patterns to trigger.
performAddSubLongCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)8214 static SDValue performAddSubLongCombine(SDNode *N,
8215 TargetLowering::DAGCombinerInfo &DCI,
8216 SelectionDAG &DAG) {
8217 if (DCI.isBeforeLegalizeOps())
8218 return SDValue();
8219
8220 MVT VT = N->getSimpleValueType(0);
8221 if (!VT.is128BitVector()) {
8222 if (N->getOpcode() == ISD::ADD)
8223 return performSetccAddFolding(N, DAG);
8224 return SDValue();
8225 }
8226
8227 // Make sure both branches are extended in the same way.
8228 SDValue LHS = N->getOperand(0);
8229 SDValue RHS = N->getOperand(1);
8230 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
8231 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
8232 LHS.getOpcode() != RHS.getOpcode())
8233 return SDValue();
8234
8235 unsigned ExtType = LHS.getOpcode();
8236
8237 // It's not worth doing if at least one of the inputs isn't already an
8238 // extract, but we don't know which it'll be so we have to try both.
8239 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
8240 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
8241 if (!RHS.getNode())
8242 return SDValue();
8243
8244 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
8245 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
8246 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
8247 if (!LHS.getNode())
8248 return SDValue();
8249
8250 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
8251 }
8252
8253 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
8254 }
8255
8256 // Massage DAGs which we can use the high-half "long" operations on into
8257 // something isel will recognize better. E.g.
8258 //
8259 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
8260 // (aarch64_neon_umull (extract_high (v2i64 vec)))
8261 // (extract_high (v2i64 (dup128 scalar)))))
8262 //
tryCombineLongOpWithDup(unsigned IID,SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)8263 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
8264 TargetLowering::DAGCombinerInfo &DCI,
8265 SelectionDAG &DAG) {
8266 if (DCI.isBeforeLegalizeOps())
8267 return SDValue();
8268
8269 SDValue LHS = N->getOperand(1);
8270 SDValue RHS = N->getOperand(2);
8271 assert(LHS.getValueType().is64BitVector() &&
8272 RHS.getValueType().is64BitVector() &&
8273 "unexpected shape for long operation");
8274
8275 // Either node could be a DUP, but it's not worth doing both of them (you'd
8276 // just as well use the non-high version) so look for a corresponding extract
8277 // operation on the other "wing".
8278 if (isEssentiallyExtractSubvector(LHS)) {
8279 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
8280 if (!RHS.getNode())
8281 return SDValue();
8282 } else if (isEssentiallyExtractSubvector(RHS)) {
8283 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
8284 if (!LHS.getNode())
8285 return SDValue();
8286 }
8287
8288 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
8289 N->getOperand(0), LHS, RHS);
8290 }
8291
tryCombineShiftImm(unsigned IID,SDNode * N,SelectionDAG & DAG)8292 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
8293 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
8294 unsigned ElemBits = ElemTy.getSizeInBits();
8295
8296 int64_t ShiftAmount;
8297 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
8298 APInt SplatValue, SplatUndef;
8299 unsigned SplatBitSize;
8300 bool HasAnyUndefs;
8301 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
8302 HasAnyUndefs, ElemBits) ||
8303 SplatBitSize != ElemBits)
8304 return SDValue();
8305
8306 ShiftAmount = SplatValue.getSExtValue();
8307 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
8308 ShiftAmount = CVN->getSExtValue();
8309 } else
8310 return SDValue();
8311
8312 unsigned Opcode;
8313 bool IsRightShift;
8314 switch (IID) {
8315 default:
8316 llvm_unreachable("Unknown shift intrinsic");
8317 case Intrinsic::aarch64_neon_sqshl:
8318 Opcode = AArch64ISD::SQSHL_I;
8319 IsRightShift = false;
8320 break;
8321 case Intrinsic::aarch64_neon_uqshl:
8322 Opcode = AArch64ISD::UQSHL_I;
8323 IsRightShift = false;
8324 break;
8325 case Intrinsic::aarch64_neon_srshl:
8326 Opcode = AArch64ISD::SRSHR_I;
8327 IsRightShift = true;
8328 break;
8329 case Intrinsic::aarch64_neon_urshl:
8330 Opcode = AArch64ISD::URSHR_I;
8331 IsRightShift = true;
8332 break;
8333 case Intrinsic::aarch64_neon_sqshlu:
8334 Opcode = AArch64ISD::SQSHLU_I;
8335 IsRightShift = false;
8336 break;
8337 }
8338
8339 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
8340 SDLoc dl(N);
8341 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8342 DAG.getConstant(-ShiftAmount, dl, MVT::i32));
8343 } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
8344 SDLoc dl(N);
8345 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8346 DAG.getConstant(ShiftAmount, dl, MVT::i32));
8347 }
8348
8349 return SDValue();
8350 }
8351
8352 // The CRC32[BH] instructions ignore the high bits of their data operand. Since
8353 // the intrinsics must be legal and take an i32, this means there's almost
8354 // certainly going to be a zext in the DAG which we can eliminate.
tryCombineCRC32(unsigned Mask,SDNode * N,SelectionDAG & DAG)8355 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
8356 SDValue AndN = N->getOperand(2);
8357 if (AndN.getOpcode() != ISD::AND)
8358 return SDValue();
8359
8360 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
8361 if (!CMask || CMask->getZExtValue() != Mask)
8362 return SDValue();
8363
8364 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
8365 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
8366 }
8367
combineAcrossLanesIntrinsic(unsigned Opc,SDNode * N,SelectionDAG & DAG)8368 static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
8369 SelectionDAG &DAG) {
8370 SDLoc dl(N);
8371 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
8372 DAG.getNode(Opc, dl,
8373 N->getOperand(1).getSimpleValueType(),
8374 N->getOperand(1)),
8375 DAG.getConstant(0, dl, MVT::i64));
8376 }
8377
performIntrinsicCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)8378 static SDValue performIntrinsicCombine(SDNode *N,
8379 TargetLowering::DAGCombinerInfo &DCI,
8380 const AArch64Subtarget *Subtarget) {
8381 SelectionDAG &DAG = DCI.DAG;
8382 unsigned IID = getIntrinsicID(N);
8383 switch (IID) {
8384 default:
8385 break;
8386 case Intrinsic::aarch64_neon_vcvtfxs2fp:
8387 case Intrinsic::aarch64_neon_vcvtfxu2fp:
8388 return tryCombineFixedPointConvert(N, DCI, DAG);
8389 case Intrinsic::aarch64_neon_saddv:
8390 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
8391 case Intrinsic::aarch64_neon_uaddv:
8392 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
8393 case Intrinsic::aarch64_neon_sminv:
8394 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
8395 case Intrinsic::aarch64_neon_uminv:
8396 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
8397 case Intrinsic::aarch64_neon_smaxv:
8398 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
8399 case Intrinsic::aarch64_neon_umaxv:
8400 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
8401 case Intrinsic::aarch64_neon_fmax:
8402 return DAG.getNode(ISD::FMAXNAN, SDLoc(N), N->getValueType(0),
8403 N->getOperand(1), N->getOperand(2));
8404 case Intrinsic::aarch64_neon_fmin:
8405 return DAG.getNode(ISD::FMINNAN, SDLoc(N), N->getValueType(0),
8406 N->getOperand(1), N->getOperand(2));
8407 case Intrinsic::aarch64_neon_fmaxnm:
8408 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
8409 N->getOperand(1), N->getOperand(2));
8410 case Intrinsic::aarch64_neon_fminnm:
8411 return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
8412 N->getOperand(1), N->getOperand(2));
8413 case Intrinsic::aarch64_neon_smull:
8414 case Intrinsic::aarch64_neon_umull:
8415 case Intrinsic::aarch64_neon_pmull:
8416 case Intrinsic::aarch64_neon_sqdmull:
8417 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
8418 case Intrinsic::aarch64_neon_sqshl:
8419 case Intrinsic::aarch64_neon_uqshl:
8420 case Intrinsic::aarch64_neon_sqshlu:
8421 case Intrinsic::aarch64_neon_srshl:
8422 case Intrinsic::aarch64_neon_urshl:
8423 return tryCombineShiftImm(IID, N, DAG);
8424 case Intrinsic::aarch64_crc32b:
8425 case Intrinsic::aarch64_crc32cb:
8426 return tryCombineCRC32(0xff, N, DAG);
8427 case Intrinsic::aarch64_crc32h:
8428 case Intrinsic::aarch64_crc32ch:
8429 return tryCombineCRC32(0xffff, N, DAG);
8430 }
8431 return SDValue();
8432 }
8433
performExtendCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)8434 static SDValue performExtendCombine(SDNode *N,
8435 TargetLowering::DAGCombinerInfo &DCI,
8436 SelectionDAG &DAG) {
8437 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
8438 // we can convert that DUP into another extract_high (of a bigger DUP), which
8439 // helps the backend to decide that an sabdl2 would be useful, saving a real
8440 // extract_high operation.
8441 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
8442 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
8443 SDNode *ABDNode = N->getOperand(0).getNode();
8444 unsigned IID = getIntrinsicID(ABDNode);
8445 if (IID == Intrinsic::aarch64_neon_sabd ||
8446 IID == Intrinsic::aarch64_neon_uabd) {
8447 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
8448 if (!NewABD.getNode())
8449 return SDValue();
8450
8451 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
8452 NewABD);
8453 }
8454 }
8455
8456 // This is effectively a custom type legalization for AArch64.
8457 //
8458 // Type legalization will split an extend of a small, legal, type to a larger
8459 // illegal type by first splitting the destination type, often creating
8460 // illegal source types, which then get legalized in isel-confusing ways,
8461 // leading to really terrible codegen. E.g.,
8462 // %result = v8i32 sext v8i8 %value
8463 // becomes
8464 // %losrc = extract_subreg %value, ...
8465 // %hisrc = extract_subreg %value, ...
8466 // %lo = v4i32 sext v4i8 %losrc
8467 // %hi = v4i32 sext v4i8 %hisrc
8468 // Things go rapidly downhill from there.
8469 //
8470 // For AArch64, the [sz]ext vector instructions can only go up one element
8471 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
8472 // take two instructions.
8473 //
8474 // This implies that the most efficient way to do the extend from v8i8
8475 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
8476 // the normal splitting to happen for the v8i16->v8i32.
8477
8478 // This is pre-legalization to catch some cases where the default
8479 // type legalization will create ill-tempered code.
8480 if (!DCI.isBeforeLegalizeOps())
8481 return SDValue();
8482
8483 // We're only interested in cleaning things up for non-legal vector types
8484 // here. If both the source and destination are legal, things will just
8485 // work naturally without any fiddling.
8486 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8487 EVT ResVT = N->getValueType(0);
8488 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
8489 return SDValue();
8490 // If the vector type isn't a simple VT, it's beyond the scope of what
8491 // we're worried about here. Let legalization do its thing and hope for
8492 // the best.
8493 SDValue Src = N->getOperand(0);
8494 EVT SrcVT = Src->getValueType(0);
8495 if (!ResVT.isSimple() || !SrcVT.isSimple())
8496 return SDValue();
8497
8498 // If the source VT is a 64-bit vector, we can play games and get the
8499 // better results we want.
8500 if (SrcVT.getSizeInBits() != 64)
8501 return SDValue();
8502
8503 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
8504 unsigned ElementCount = SrcVT.getVectorNumElements();
8505 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
8506 SDLoc DL(N);
8507 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
8508
8509 // Now split the rest of the operation into two halves, each with a 64
8510 // bit source.
8511 EVT LoVT, HiVT;
8512 SDValue Lo, Hi;
8513 unsigned NumElements = ResVT.getVectorNumElements();
8514 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
8515 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
8516 ResVT.getVectorElementType(), NumElements / 2);
8517
8518 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
8519 LoVT.getVectorNumElements());
8520 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
8521 DAG.getConstant(0, DL, MVT::i64));
8522 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
8523 DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
8524 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
8525 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
8526
8527 // Now combine the parts back together so we still have a single result
8528 // like the combiner expects.
8529 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
8530 }
8531
8532 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
8533 /// value. The load store optimizer pass will merge them to store pair stores.
8534 /// This has better performance than a splat of the scalar followed by a split
8535 /// vector store. Even if the stores are not merged it is four stores vs a dup,
8536 /// followed by an ext.b and two stores.
replaceSplatVectorStore(SelectionDAG & DAG,StoreSDNode * St)8537 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
8538 SDValue StVal = St->getValue();
8539 EVT VT = StVal.getValueType();
8540
8541 // Don't replace floating point stores, they possibly won't be transformed to
8542 // stp because of the store pair suppress pass.
8543 if (VT.isFloatingPoint())
8544 return SDValue();
8545
8546 // Check for insert vector elements.
8547 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
8548 return SDValue();
8549
8550 // We can express a splat as store pair(s) for 2 or 4 elements.
8551 unsigned NumVecElts = VT.getVectorNumElements();
8552 if (NumVecElts != 4 && NumVecElts != 2)
8553 return SDValue();
8554 SDValue SplatVal = StVal.getOperand(1);
8555 unsigned RemainInsertElts = NumVecElts - 1;
8556
8557 // Check that this is a splat.
8558 while (--RemainInsertElts) {
8559 SDValue NextInsertElt = StVal.getOperand(0);
8560 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
8561 return SDValue();
8562 if (NextInsertElt.getOperand(1) != SplatVal)
8563 return SDValue();
8564 StVal = NextInsertElt;
8565 }
8566 unsigned OrigAlignment = St->getAlignment();
8567 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
8568 unsigned Alignment = std::min(OrigAlignment, EltOffset);
8569
8570 // Create scalar stores. This is at least as good as the code sequence for a
8571 // split unaligned store which is a dup.s, ext.b, and two stores.
8572 // Most of the time the three stores should be replaced by store pair
8573 // instructions (stp).
8574 SDLoc DL(St);
8575 SDValue BasePtr = St->getBasePtr();
8576 SDValue NewST1 =
8577 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
8578 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
8579
8580 unsigned Offset = EltOffset;
8581 while (--NumVecElts) {
8582 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
8583 DAG.getConstant(Offset, DL, MVT::i64));
8584 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
8585 St->getPointerInfo(), St->isVolatile(),
8586 St->isNonTemporal(), Alignment);
8587 Offset += EltOffset;
8588 }
8589 return NewST1;
8590 }
8591
split16BStores(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)8592 static SDValue split16BStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
8593 SelectionDAG &DAG,
8594 const AArch64Subtarget *Subtarget) {
8595 if (!DCI.isBeforeLegalize())
8596 return SDValue();
8597
8598 StoreSDNode *S = cast<StoreSDNode>(N);
8599 if (S->isVolatile())
8600 return SDValue();
8601
8602 // FIXME: The logic for deciding if an unaligned store should be split should
8603 // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
8604 // a call to that function here.
8605
8606 // Cyclone has bad performance on unaligned 16B stores when crossing line and
8607 // page boundaries. We want to split such stores.
8608 if (!Subtarget->isCyclone())
8609 return SDValue();
8610
8611 // Don't split at -Oz.
8612 if (DAG.getMachineFunction().getFunction()->optForMinSize())
8613 return SDValue();
8614
8615 SDValue StVal = S->getValue();
8616 EVT VT = StVal.getValueType();
8617
8618 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
8619 // those up regresses performance on micro-benchmarks and olden/bh.
8620 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
8621 return SDValue();
8622
8623 // Split unaligned 16B stores. They are terrible for performance.
8624 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
8625 // extensions can use this to mark that it does not want splitting to happen
8626 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
8627 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
8628 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
8629 S->getAlignment() <= 2)
8630 return SDValue();
8631
8632 // If we get a splat of a scalar convert this vector store to a store of
8633 // scalars. They will be merged into store pairs thereby removing two
8634 // instructions.
8635 if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S))
8636 return ReplacedSplat;
8637
8638 SDLoc DL(S);
8639 unsigned NumElts = VT.getVectorNumElements() / 2;
8640 // Split VT into two.
8641 EVT HalfVT =
8642 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
8643 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
8644 DAG.getConstant(0, DL, MVT::i64));
8645 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
8646 DAG.getConstant(NumElts, DL, MVT::i64));
8647 SDValue BasePtr = S->getBasePtr();
8648 SDValue NewST1 =
8649 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
8650 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
8651 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
8652 DAG.getConstant(8, DL, MVT::i64));
8653 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
8654 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
8655 S->getAlignment());
8656 }
8657
8658 /// Target-specific DAG combine function for post-increment LD1 (lane) and
8659 /// post-increment LD1R.
performPostLD1Combine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,bool IsLaneOp)8660 static SDValue performPostLD1Combine(SDNode *N,
8661 TargetLowering::DAGCombinerInfo &DCI,
8662 bool IsLaneOp) {
8663 if (DCI.isBeforeLegalizeOps())
8664 return SDValue();
8665
8666 SelectionDAG &DAG = DCI.DAG;
8667 EVT VT = N->getValueType(0);
8668
8669 unsigned LoadIdx = IsLaneOp ? 1 : 0;
8670 SDNode *LD = N->getOperand(LoadIdx).getNode();
8671 // If it is not LOAD, can not do such combine.
8672 if (LD->getOpcode() != ISD::LOAD)
8673 return SDValue();
8674
8675 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
8676 EVT MemVT = LoadSDN->getMemoryVT();
8677 // Check if memory operand is the same type as the vector element.
8678 if (MemVT != VT.getVectorElementType())
8679 return SDValue();
8680
8681 // Check if there are other uses. If so, do not combine as it will introduce
8682 // an extra load.
8683 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
8684 ++UI) {
8685 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
8686 continue;
8687 if (*UI != N)
8688 return SDValue();
8689 }
8690
8691 SDValue Addr = LD->getOperand(1);
8692 SDValue Vector = N->getOperand(0);
8693 // Search for a use of the address operand that is an increment.
8694 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
8695 Addr.getNode()->use_end(); UI != UE; ++UI) {
8696 SDNode *User = *UI;
8697 if (User->getOpcode() != ISD::ADD
8698 || UI.getUse().getResNo() != Addr.getResNo())
8699 continue;
8700
8701 // Check that the add is independent of the load. Otherwise, folding it
8702 // would create a cycle.
8703 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
8704 continue;
8705 // Also check that add is not used in the vector operand. This would also
8706 // create a cycle.
8707 if (User->isPredecessorOf(Vector.getNode()))
8708 continue;
8709
8710 // If the increment is a constant, it must match the memory ref size.
8711 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8712 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8713 uint32_t IncVal = CInc->getZExtValue();
8714 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
8715 if (IncVal != NumBytes)
8716 continue;
8717 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8718 }
8719
8720 // Finally, check that the vector doesn't depend on the load.
8721 // Again, this would create a cycle.
8722 // The load depending on the vector is fine, as that's the case for the
8723 // LD1*post we'll eventually generate anyway.
8724 if (LoadSDN->isPredecessorOf(Vector.getNode()))
8725 continue;
8726
8727 SmallVector<SDValue, 8> Ops;
8728 Ops.push_back(LD->getOperand(0)); // Chain
8729 if (IsLaneOp) {
8730 Ops.push_back(Vector); // The vector to be inserted
8731 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
8732 }
8733 Ops.push_back(Addr);
8734 Ops.push_back(Inc);
8735
8736 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
8737 SDVTList SDTys = DAG.getVTList(Tys);
8738 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
8739 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
8740 MemVT,
8741 LoadSDN->getMemOperand());
8742
8743 // Update the uses.
8744 SmallVector<SDValue, 2> NewResults;
8745 NewResults.push_back(SDValue(LD, 0)); // The result of load
8746 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
8747 DCI.CombineTo(LD, NewResults);
8748 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
8749 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
8750
8751 break;
8752 }
8753 return SDValue();
8754 }
8755
8756 /// Simplify \Addr given that the top byte of it is ignored by HW during
8757 /// address translation.
performTBISimplification(SDValue Addr,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)8758 static bool performTBISimplification(SDValue Addr,
8759 TargetLowering::DAGCombinerInfo &DCI,
8760 SelectionDAG &DAG) {
8761 APInt DemandedMask = APInt::getLowBitsSet(64, 56);
8762 APInt KnownZero, KnownOne;
8763 TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
8764 DCI.isBeforeLegalizeOps());
8765 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8766 if (TLI.SimplifyDemandedBits(Addr, DemandedMask, KnownZero, KnownOne, TLO)) {
8767 DCI.CommitTargetLoweringOpt(TLO);
8768 return true;
8769 }
8770 return false;
8771 }
8772
performSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)8773 static SDValue performSTORECombine(SDNode *N,
8774 TargetLowering::DAGCombinerInfo &DCI,
8775 SelectionDAG &DAG,
8776 const AArch64Subtarget *Subtarget) {
8777 SDValue Split = split16BStores(N, DCI, DAG, Subtarget);
8778 if (Split.getNode())
8779 return Split;
8780
8781 if (Subtarget->supportsAddressTopByteIgnored() &&
8782 performTBISimplification(N->getOperand(2), DCI, DAG))
8783 return SDValue(N, 0);
8784
8785 return SDValue();
8786 }
8787
8788 /// This function handles the log2-shuffle pattern produced by the
8789 /// LoopVectorizer for the across vector reduction. It consists of
8790 /// log2(NumVectorElements) steps and, in each step, 2^(s) elements
8791 /// are reduced, where s is an induction variable from 0 to
8792 /// log2(NumVectorElements).
tryMatchAcrossLaneShuffleForReduction(SDNode * N,SDValue OpV,unsigned Op,SelectionDAG & DAG)8793 static SDValue tryMatchAcrossLaneShuffleForReduction(SDNode *N, SDValue OpV,
8794 unsigned Op,
8795 SelectionDAG &DAG) {
8796 EVT VTy = OpV->getOperand(0).getValueType();
8797 if (!VTy.isVector())
8798 return SDValue();
8799
8800 int NumVecElts = VTy.getVectorNumElements();
8801 if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) {
8802 if (NumVecElts != 4)
8803 return SDValue();
8804 } else {
8805 if (NumVecElts != 4 && NumVecElts != 8 && NumVecElts != 16)
8806 return SDValue();
8807 }
8808
8809 int NumExpectedSteps = APInt(8, NumVecElts).logBase2();
8810 SDValue PreOp = OpV;
8811 // Iterate over each step of the across vector reduction.
8812 for (int CurStep = 0; CurStep != NumExpectedSteps; ++CurStep) {
8813 SDValue CurOp = PreOp.getOperand(0);
8814 SDValue Shuffle = PreOp.getOperand(1);
8815 if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE) {
8816 // Try to swap the 1st and 2nd operand as add and min/max instructions
8817 // are commutative.
8818 CurOp = PreOp.getOperand(1);
8819 Shuffle = PreOp.getOperand(0);
8820 if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE)
8821 return SDValue();
8822 }
8823
8824 // Check if the input vector is fed by the operator we want to handle,
8825 // except the last step; the very first input vector is not necessarily
8826 // the same operator we are handling.
8827 if (CurOp.getOpcode() != Op && (CurStep != (NumExpectedSteps - 1)))
8828 return SDValue();
8829
8830 // Check if it forms one step of the across vector reduction.
8831 // E.g.,
8832 // %cur = add %1, %0
8833 // %shuffle = vector_shuffle %cur, <2, 3, u, u>
8834 // %pre = add %cur, %shuffle
8835 if (Shuffle.getOperand(0) != CurOp)
8836 return SDValue();
8837
8838 int NumMaskElts = 1 << CurStep;
8839 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Shuffle)->getMask();
8840 // Check mask values in each step.
8841 // We expect the shuffle mask in each step follows a specific pattern
8842 // denoted here by the <M, U> form, where M is a sequence of integers
8843 // starting from NumMaskElts, increasing by 1, and the number integers
8844 // in M should be NumMaskElts. U is a sequence of UNDEFs and the number
8845 // of undef in U should be NumVecElts - NumMaskElts.
8846 // E.g., for <8 x i16>, mask values in each step should be :
8847 // step 0 : <1,u,u,u,u,u,u,u>
8848 // step 1 : <2,3,u,u,u,u,u,u>
8849 // step 2 : <4,5,6,7,u,u,u,u>
8850 for (int i = 0; i < NumVecElts; ++i)
8851 if ((i < NumMaskElts && Mask[i] != (NumMaskElts + i)) ||
8852 (i >= NumMaskElts && !(Mask[i] < 0)))
8853 return SDValue();
8854
8855 PreOp = CurOp;
8856 }
8857 unsigned Opcode;
8858 bool IsIntrinsic = false;
8859
8860 switch (Op) {
8861 default:
8862 llvm_unreachable("Unexpected operator for across vector reduction");
8863 case ISD::ADD:
8864 Opcode = AArch64ISD::UADDV;
8865 break;
8866 case ISD::SMAX:
8867 Opcode = AArch64ISD::SMAXV;
8868 break;
8869 case ISD::UMAX:
8870 Opcode = AArch64ISD::UMAXV;
8871 break;
8872 case ISD::SMIN:
8873 Opcode = AArch64ISD::SMINV;
8874 break;
8875 case ISD::UMIN:
8876 Opcode = AArch64ISD::UMINV;
8877 break;
8878 case ISD::FMAXNUM:
8879 Opcode = Intrinsic::aarch64_neon_fmaxnmv;
8880 IsIntrinsic = true;
8881 break;
8882 case ISD::FMINNUM:
8883 Opcode = Intrinsic::aarch64_neon_fminnmv;
8884 IsIntrinsic = true;
8885 break;
8886 }
8887 SDLoc DL(N);
8888
8889 return IsIntrinsic
8890 ? DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, N->getValueType(0),
8891 DAG.getConstant(Opcode, DL, MVT::i32), PreOp)
8892 : DAG.getNode(
8893 ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0),
8894 DAG.getNode(Opcode, DL, PreOp.getSimpleValueType(), PreOp),
8895 DAG.getConstant(0, DL, MVT::i64));
8896 }
8897
8898 /// Target-specific DAG combine for the across vector min/max reductions.
8899 /// This function specifically handles the final clean-up step of the vector
8900 /// min/max reductions produced by the LoopVectorizer. It is the log2-shuffle
8901 /// pattern, which narrows down and finds the final min/max value from all
8902 /// elements of the vector.
8903 /// For example, for a <16 x i8> vector :
8904 /// svn0 = vector_shuffle %0, undef<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u>
8905 /// %smax0 = smax %arr, svn0
8906 /// %svn1 = vector_shuffle %smax0, undef<4,5,6,7,u,u,u,u,u,u,u,u,u,u,u,u>
8907 /// %smax1 = smax %smax0, %svn1
8908 /// %svn2 = vector_shuffle %smax1, undef<2,3,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
8909 /// %smax2 = smax %smax1, svn2
8910 /// %svn3 = vector_shuffle %smax2, undef<1,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
8911 /// %sc = setcc %smax2, %svn3, gt
8912 /// %n0 = extract_vector_elt %sc, #0
8913 /// %n1 = extract_vector_elt %smax2, #0
8914 /// %n2 = extract_vector_elt $smax2, #1
8915 /// %result = select %n0, %n1, n2
8916 /// becomes :
8917 /// %1 = smaxv %0
8918 /// %result = extract_vector_elt %1, 0
8919 static SDValue
performAcrossLaneMinMaxReductionCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)8920 performAcrossLaneMinMaxReductionCombine(SDNode *N, SelectionDAG &DAG,
8921 const AArch64Subtarget *Subtarget) {
8922 if (!Subtarget->hasNEON())
8923 return SDValue();
8924
8925 SDValue N0 = N->getOperand(0);
8926 SDValue IfTrue = N->getOperand(1);
8927 SDValue IfFalse = N->getOperand(2);
8928
8929 // Check if the SELECT merges up the final result of the min/max
8930 // from a vector.
8931 if (N0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8932 IfTrue.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8933 IfFalse.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8934 return SDValue();
8935
8936 // Expect N0 is fed by SETCC.
8937 SDValue SetCC = N0.getOperand(0);
8938 EVT SetCCVT = SetCC.getValueType();
8939 if (SetCC.getOpcode() != ISD::SETCC || !SetCCVT.isVector() ||
8940 SetCCVT.getVectorElementType() != MVT::i1)
8941 return SDValue();
8942
8943 SDValue VectorOp = SetCC.getOperand(0);
8944 unsigned Op = VectorOp->getOpcode();
8945 // Check if the input vector is fed by the operator we want to handle.
8946 if (Op != ISD::SMAX && Op != ISD::UMAX && Op != ISD::SMIN &&
8947 Op != ISD::UMIN && Op != ISD::FMAXNUM && Op != ISD::FMINNUM)
8948 return SDValue();
8949
8950 EVT VTy = VectorOp.getValueType();
8951 if (!VTy.isVector())
8952 return SDValue();
8953
8954 if (VTy.getSizeInBits() < 64)
8955 return SDValue();
8956
8957 EVT EltTy = VTy.getVectorElementType();
8958 if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) {
8959 if (EltTy != MVT::f32)
8960 return SDValue();
8961 } else {
8962 if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8)
8963 return SDValue();
8964 }
8965
8966 // Check if extracting from the same vector.
8967 // For example,
8968 // %sc = setcc %vector, %svn1, gt
8969 // %n0 = extract_vector_elt %sc, #0
8970 // %n1 = extract_vector_elt %vector, #0
8971 // %n2 = extract_vector_elt $vector, #1
8972 if (!(VectorOp == IfTrue->getOperand(0) &&
8973 VectorOp == IfFalse->getOperand(0)))
8974 return SDValue();
8975
8976 // Check if the condition code is matched with the operator type.
8977 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
8978 if ((Op == ISD::SMAX && CC != ISD::SETGT && CC != ISD::SETGE) ||
8979 (Op == ISD::UMAX && CC != ISD::SETUGT && CC != ISD::SETUGE) ||
8980 (Op == ISD::SMIN && CC != ISD::SETLT && CC != ISD::SETLE) ||
8981 (Op == ISD::UMIN && CC != ISD::SETULT && CC != ISD::SETULE) ||
8982 (Op == ISD::FMAXNUM && CC != ISD::SETOGT && CC != ISD::SETOGE &&
8983 CC != ISD::SETUGT && CC != ISD::SETUGE && CC != ISD::SETGT &&
8984 CC != ISD::SETGE) ||
8985 (Op == ISD::FMINNUM && CC != ISD::SETOLT && CC != ISD::SETOLE &&
8986 CC != ISD::SETULT && CC != ISD::SETULE && CC != ISD::SETLT &&
8987 CC != ISD::SETLE))
8988 return SDValue();
8989
8990 // Expect to check only lane 0 from the vector SETCC.
8991 if (!isNullConstant(N0.getOperand(1)))
8992 return SDValue();
8993
8994 // Expect to extract the true value from lane 0.
8995 if (!isNullConstant(IfTrue.getOperand(1)))
8996 return SDValue();
8997
8998 // Expect to extract the false value from lane 1.
8999 if (!isOneConstant(IfFalse.getOperand(1)))
9000 return SDValue();
9001
9002 return tryMatchAcrossLaneShuffleForReduction(N, SetCC, Op, DAG);
9003 }
9004
9005 /// Target-specific DAG combine for the across vector add reduction.
9006 /// This function specifically handles the final clean-up step of the vector
9007 /// add reduction produced by the LoopVectorizer. It is the log2-shuffle
9008 /// pattern, which adds all elements of a vector together.
9009 /// For example, for a <4 x i32> vector :
9010 /// %1 = vector_shuffle %0, <2,3,u,u>
9011 /// %2 = add %0, %1
9012 /// %3 = vector_shuffle %2, <1,u,u,u>
9013 /// %4 = add %2, %3
9014 /// %result = extract_vector_elt %4, 0
9015 /// becomes :
9016 /// %0 = uaddv %0
9017 /// %result = extract_vector_elt %0, 0
9018 static SDValue
performAcrossLaneAddReductionCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)9019 performAcrossLaneAddReductionCombine(SDNode *N, SelectionDAG &DAG,
9020 const AArch64Subtarget *Subtarget) {
9021 if (!Subtarget->hasNEON())
9022 return SDValue();
9023 SDValue N0 = N->getOperand(0);
9024 SDValue N1 = N->getOperand(1);
9025
9026 // Check if the input vector is fed by the ADD.
9027 if (N0->getOpcode() != ISD::ADD)
9028 return SDValue();
9029
9030 // The vector extract idx must constant zero because we only expect the final
9031 // result of the reduction is placed in lane 0.
9032 if (!isNullConstant(N1))
9033 return SDValue();
9034
9035 EVT VTy = N0.getValueType();
9036 if (!VTy.isVector())
9037 return SDValue();
9038
9039 EVT EltTy = VTy.getVectorElementType();
9040 if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8)
9041 return SDValue();
9042
9043 if (VTy.getSizeInBits() < 64)
9044 return SDValue();
9045
9046 return tryMatchAcrossLaneShuffleForReduction(N, N0, ISD::ADD, DAG);
9047 }
9048
9049 /// Target-specific DAG combine function for NEON load/store intrinsics
9050 /// to merge base address updates.
performNEONPostLDSTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9051 static SDValue performNEONPostLDSTCombine(SDNode *N,
9052 TargetLowering::DAGCombinerInfo &DCI,
9053 SelectionDAG &DAG) {
9054 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9055 return SDValue();
9056
9057 unsigned AddrOpIdx = N->getNumOperands() - 1;
9058 SDValue Addr = N->getOperand(AddrOpIdx);
9059
9060 // Search for a use of the address operand that is an increment.
9061 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
9062 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
9063 SDNode *User = *UI;
9064 if (User->getOpcode() != ISD::ADD ||
9065 UI.getUse().getResNo() != Addr.getResNo())
9066 continue;
9067
9068 // Check that the add is independent of the load/store. Otherwise, folding
9069 // it would create a cycle.
9070 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
9071 continue;
9072
9073 // Find the new opcode for the updating load/store.
9074 bool IsStore = false;
9075 bool IsLaneOp = false;
9076 bool IsDupOp = false;
9077 unsigned NewOpc = 0;
9078 unsigned NumVecs = 0;
9079 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9080 switch (IntNo) {
9081 default: llvm_unreachable("unexpected intrinsic for Neon base update");
9082 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
9083 NumVecs = 2; break;
9084 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
9085 NumVecs = 3; break;
9086 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
9087 NumVecs = 4; break;
9088 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
9089 NumVecs = 2; IsStore = true; break;
9090 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
9091 NumVecs = 3; IsStore = true; break;
9092 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
9093 NumVecs = 4; IsStore = true; break;
9094 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
9095 NumVecs = 2; break;
9096 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
9097 NumVecs = 3; break;
9098 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
9099 NumVecs = 4; break;
9100 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
9101 NumVecs = 2; IsStore = true; break;
9102 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
9103 NumVecs = 3; IsStore = true; break;
9104 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
9105 NumVecs = 4; IsStore = true; break;
9106 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
9107 NumVecs = 2; IsDupOp = true; break;
9108 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
9109 NumVecs = 3; IsDupOp = true; break;
9110 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
9111 NumVecs = 4; IsDupOp = true; break;
9112 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
9113 NumVecs = 2; IsLaneOp = true; break;
9114 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
9115 NumVecs = 3; IsLaneOp = true; break;
9116 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
9117 NumVecs = 4; IsLaneOp = true; break;
9118 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
9119 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
9120 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
9121 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
9122 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
9123 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
9124 }
9125
9126 EVT VecTy;
9127 if (IsStore)
9128 VecTy = N->getOperand(2).getValueType();
9129 else
9130 VecTy = N->getValueType(0);
9131
9132 // If the increment is a constant, it must match the memory ref size.
9133 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
9134 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
9135 uint32_t IncVal = CInc->getZExtValue();
9136 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
9137 if (IsLaneOp || IsDupOp)
9138 NumBytes /= VecTy.getVectorNumElements();
9139 if (IncVal != NumBytes)
9140 continue;
9141 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
9142 }
9143 SmallVector<SDValue, 8> Ops;
9144 Ops.push_back(N->getOperand(0)); // Incoming chain
9145 // Load lane and store have vector list as input.
9146 if (IsLaneOp || IsStore)
9147 for (unsigned i = 2; i < AddrOpIdx; ++i)
9148 Ops.push_back(N->getOperand(i));
9149 Ops.push_back(Addr); // Base register
9150 Ops.push_back(Inc);
9151
9152 // Return Types.
9153 EVT Tys[6];
9154 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
9155 unsigned n;
9156 for (n = 0; n < NumResultVecs; ++n)
9157 Tys[n] = VecTy;
9158 Tys[n++] = MVT::i64; // Type of write back register
9159 Tys[n] = MVT::Other; // Type of the chain
9160 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
9161
9162 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
9163 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
9164 MemInt->getMemoryVT(),
9165 MemInt->getMemOperand());
9166
9167 // Update the uses.
9168 std::vector<SDValue> NewResults;
9169 for (unsigned i = 0; i < NumResultVecs; ++i) {
9170 NewResults.push_back(SDValue(UpdN.getNode(), i));
9171 }
9172 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
9173 DCI.CombineTo(N, NewResults);
9174 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
9175
9176 break;
9177 }
9178 return SDValue();
9179 }
9180
9181 // Checks to see if the value is the prescribed width and returns information
9182 // about its extension mode.
9183 static
checkValueWidth(SDValue V,unsigned width,ISD::LoadExtType & ExtType)9184 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
9185 ExtType = ISD::NON_EXTLOAD;
9186 switch(V.getNode()->getOpcode()) {
9187 default:
9188 return false;
9189 case ISD::LOAD: {
9190 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
9191 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
9192 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
9193 ExtType = LoadNode->getExtensionType();
9194 return true;
9195 }
9196 return false;
9197 }
9198 case ISD::AssertSext: {
9199 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
9200 if ((TypeNode->getVT() == MVT::i8 && width == 8)
9201 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
9202 ExtType = ISD::SEXTLOAD;
9203 return true;
9204 }
9205 return false;
9206 }
9207 case ISD::AssertZext: {
9208 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
9209 if ((TypeNode->getVT() == MVT::i8 && width == 8)
9210 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
9211 ExtType = ISD::ZEXTLOAD;
9212 return true;
9213 }
9214 return false;
9215 }
9216 case ISD::Constant:
9217 case ISD::TargetConstant: {
9218 if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
9219 1LL << (width - 1))
9220 return true;
9221 return false;
9222 }
9223 }
9224
9225 return true;
9226 }
9227
9228 // This function does a whole lot of voodoo to determine if the tests are
9229 // equivalent without and with a mask. Essentially what happens is that given a
9230 // DAG resembling:
9231 //
9232 // +-------------+ +-------------+ +-------------+ +-------------+
9233 // | Input | | AddConstant | | CompConstant| | CC |
9234 // +-------------+ +-------------+ +-------------+ +-------------+
9235 // | | | |
9236 // V V | +----------+
9237 // +-------------+ +----+ | |
9238 // | ADD | |0xff| | |
9239 // +-------------+ +----+ | |
9240 // | | | |
9241 // V V | |
9242 // +-------------+ | |
9243 // | AND | | |
9244 // +-------------+ | |
9245 // | | |
9246 // +-----+ | |
9247 // | | |
9248 // V V V
9249 // +-------------+
9250 // | CMP |
9251 // +-------------+
9252 //
9253 // The AND node may be safely removed for some combinations of inputs. In
9254 // particular we need to take into account the extension type of the Input,
9255 // the exact values of AddConstant, CompConstant, and CC, along with the nominal
9256 // width of the input (this can work for any width inputs, the above graph is
9257 // specific to 8 bits.
9258 //
9259 // The specific equations were worked out by generating output tables for each
9260 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
9261 // problem was simplified by working with 4 bit inputs, which means we only
9262 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
9263 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
9264 // patterns present in both extensions (0,7). For every distinct set of
9265 // AddConstant and CompConstants bit patterns we can consider the masked and
9266 // unmasked versions to be equivalent if the result of this function is true for
9267 // all 16 distinct bit patterns of for the current extension type of Input (w0).
9268 //
9269 // sub w8, w0, w1
9270 // and w10, w8, #0x0f
9271 // cmp w8, w2
9272 // cset w9, AArch64CC
9273 // cmp w10, w2
9274 // cset w11, AArch64CC
9275 // cmp w9, w11
9276 // cset w0, eq
9277 // ret
9278 //
9279 // Since the above function shows when the outputs are equivalent it defines
9280 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
9281 // would be expensive to run during compiles. The equations below were written
9282 // in a test harness that confirmed they gave equivalent outputs to the above
9283 // for all inputs function, so they can be used determine if the removal is
9284 // legal instead.
9285 //
9286 // isEquivalentMaskless() is the code for testing if the AND can be removed
9287 // factored out of the DAG recognition as the DAG can take several forms.
9288
9289 static
isEquivalentMaskless(unsigned CC,unsigned width,ISD::LoadExtType ExtType,signed AddConstant,signed CompConstant)9290 bool isEquivalentMaskless(unsigned CC, unsigned width,
9291 ISD::LoadExtType ExtType, signed AddConstant,
9292 signed CompConstant) {
9293 // By being careful about our equations and only writing the in term
9294 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
9295 // make them generally applicable to all bit widths.
9296 signed MaxUInt = (1 << width);
9297
9298 // For the purposes of these comparisons sign extending the type is
9299 // equivalent to zero extending the add and displacing it by half the integer
9300 // width. Provided we are careful and make sure our equations are valid over
9301 // the whole range we can just adjust the input and avoid writing equations
9302 // for sign extended inputs.
9303 if (ExtType == ISD::SEXTLOAD)
9304 AddConstant -= (1 << (width-1));
9305
9306 switch(CC) {
9307 case AArch64CC::LE:
9308 case AArch64CC::GT: {
9309 if ((AddConstant == 0) ||
9310 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
9311 (AddConstant >= 0 && CompConstant < 0) ||
9312 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
9313 return true;
9314 } break;
9315 case AArch64CC::LT:
9316 case AArch64CC::GE: {
9317 if ((AddConstant == 0) ||
9318 (AddConstant >= 0 && CompConstant <= 0) ||
9319 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
9320 return true;
9321 } break;
9322 case AArch64CC::HI:
9323 case AArch64CC::LS: {
9324 if ((AddConstant >= 0 && CompConstant < 0) ||
9325 (AddConstant <= 0 && CompConstant >= -1 &&
9326 CompConstant < AddConstant + MaxUInt))
9327 return true;
9328 } break;
9329 case AArch64CC::PL:
9330 case AArch64CC::MI: {
9331 if ((AddConstant == 0) ||
9332 (AddConstant > 0 && CompConstant <= 0) ||
9333 (AddConstant < 0 && CompConstant <= AddConstant))
9334 return true;
9335 } break;
9336 case AArch64CC::LO:
9337 case AArch64CC::HS: {
9338 if ((AddConstant >= 0 && CompConstant <= 0) ||
9339 (AddConstant <= 0 && CompConstant >= 0 &&
9340 CompConstant <= AddConstant + MaxUInt))
9341 return true;
9342 } break;
9343 case AArch64CC::EQ:
9344 case AArch64CC::NE: {
9345 if ((AddConstant > 0 && CompConstant < 0) ||
9346 (AddConstant < 0 && CompConstant >= 0 &&
9347 CompConstant < AddConstant + MaxUInt) ||
9348 (AddConstant >= 0 && CompConstant >= 0 &&
9349 CompConstant >= AddConstant) ||
9350 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
9351
9352 return true;
9353 } break;
9354 case AArch64CC::VS:
9355 case AArch64CC::VC:
9356 case AArch64CC::AL:
9357 case AArch64CC::NV:
9358 return true;
9359 case AArch64CC::Invalid:
9360 break;
9361 }
9362
9363 return false;
9364 }
9365
9366 static
performCONDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,unsigned CCIndex,unsigned CmpIndex)9367 SDValue performCONDCombine(SDNode *N,
9368 TargetLowering::DAGCombinerInfo &DCI,
9369 SelectionDAG &DAG, unsigned CCIndex,
9370 unsigned CmpIndex) {
9371 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
9372 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
9373 unsigned CondOpcode = SubsNode->getOpcode();
9374
9375 if (CondOpcode != AArch64ISD::SUBS)
9376 return SDValue();
9377
9378 // There is a SUBS feeding this condition. Is it fed by a mask we can
9379 // use?
9380
9381 SDNode *AndNode = SubsNode->getOperand(0).getNode();
9382 unsigned MaskBits = 0;
9383
9384 if (AndNode->getOpcode() != ISD::AND)
9385 return SDValue();
9386
9387 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
9388 uint32_t CNV = CN->getZExtValue();
9389 if (CNV == 255)
9390 MaskBits = 8;
9391 else if (CNV == 65535)
9392 MaskBits = 16;
9393 }
9394
9395 if (!MaskBits)
9396 return SDValue();
9397
9398 SDValue AddValue = AndNode->getOperand(0);
9399
9400 if (AddValue.getOpcode() != ISD::ADD)
9401 return SDValue();
9402
9403 // The basic dag structure is correct, grab the inputs and validate them.
9404
9405 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
9406 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
9407 SDValue SubsInputValue = SubsNode->getOperand(1);
9408
9409 // The mask is present and the provenance of all the values is a smaller type,
9410 // lets see if the mask is superfluous.
9411
9412 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
9413 !isa<ConstantSDNode>(SubsInputValue.getNode()))
9414 return SDValue();
9415
9416 ISD::LoadExtType ExtType;
9417
9418 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
9419 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
9420 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
9421 return SDValue();
9422
9423 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
9424 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
9425 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
9426 return SDValue();
9427
9428 // The AND is not necessary, remove it.
9429
9430 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
9431 SubsNode->getValueType(1));
9432 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
9433
9434 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
9435 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
9436
9437 return SDValue(N, 0);
9438 }
9439
9440 // Optimize compare with zero and branch.
performBRCONDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9441 static SDValue performBRCONDCombine(SDNode *N,
9442 TargetLowering::DAGCombinerInfo &DCI,
9443 SelectionDAG &DAG) {
9444 SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
9445 if (NV.getNode())
9446 N = NV.getNode();
9447 SDValue Chain = N->getOperand(0);
9448 SDValue Dest = N->getOperand(1);
9449 SDValue CCVal = N->getOperand(2);
9450 SDValue Cmp = N->getOperand(3);
9451
9452 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
9453 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
9454 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
9455 return SDValue();
9456
9457 unsigned CmpOpc = Cmp.getOpcode();
9458 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
9459 return SDValue();
9460
9461 // Only attempt folding if there is only one use of the flag and no use of the
9462 // value.
9463 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
9464 return SDValue();
9465
9466 SDValue LHS = Cmp.getOperand(0);
9467 SDValue RHS = Cmp.getOperand(1);
9468
9469 assert(LHS.getValueType() == RHS.getValueType() &&
9470 "Expected the value type to be the same for both operands!");
9471 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
9472 return SDValue();
9473
9474 if (isNullConstant(LHS))
9475 std::swap(LHS, RHS);
9476
9477 if (!isNullConstant(RHS))
9478 return SDValue();
9479
9480 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
9481 LHS.getOpcode() == ISD::SRL)
9482 return SDValue();
9483
9484 // Fold the compare into the branch instruction.
9485 SDValue BR;
9486 if (CC == AArch64CC::EQ)
9487 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
9488 else
9489 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
9490
9491 // Do not add new nodes to DAG combiner worklist.
9492 DCI.CombineTo(N, BR, false);
9493
9494 return SDValue();
9495 }
9496
9497 // vselect (v1i1 setcc) ->
9498 // vselect (v1iXX setcc) (XX is the size of the compared operand type)
9499 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
9500 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
9501 // such VSELECT.
performVSelectCombine(SDNode * N,SelectionDAG & DAG)9502 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
9503 SDValue N0 = N->getOperand(0);
9504 EVT CCVT = N0.getValueType();
9505
9506 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
9507 CCVT.getVectorElementType() != MVT::i1)
9508 return SDValue();
9509
9510 EVT ResVT = N->getValueType(0);
9511 EVT CmpVT = N0.getOperand(0).getValueType();
9512 // Only combine when the result type is of the same size as the compared
9513 // operands.
9514 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
9515 return SDValue();
9516
9517 SDValue IfTrue = N->getOperand(1);
9518 SDValue IfFalse = N->getOperand(2);
9519 SDValue SetCC =
9520 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
9521 N0.getOperand(0), N0.getOperand(1),
9522 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9523 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
9524 IfTrue, IfFalse);
9525 }
9526
9527 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
9528 /// the compare-mask instructions rather than going via NZCV, even if LHS and
9529 /// RHS are really scalar. This replaces any scalar setcc in the above pattern
9530 /// with a vector one followed by a DUP shuffle on the result.
performSelectCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9531 static SDValue performSelectCombine(SDNode *N,
9532 TargetLowering::DAGCombinerInfo &DCI) {
9533 SelectionDAG &DAG = DCI.DAG;
9534 SDValue N0 = N->getOperand(0);
9535 EVT ResVT = N->getValueType(0);
9536
9537 if (N0.getOpcode() != ISD::SETCC)
9538 return SDValue();
9539
9540 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
9541 // scalar SetCCResultType. We also don't expect vectors, because we assume
9542 // that selects fed by vector SETCCs are canonicalized to VSELECT.
9543 assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
9544 "Scalar-SETCC feeding SELECT has unexpected result type!");
9545
9546 // If NumMaskElts == 0, the comparison is larger than select result. The
9547 // largest real NEON comparison is 64-bits per lane, which means the result is
9548 // at most 32-bits and an illegal vector. Just bail out for now.
9549 EVT SrcVT = N0.getOperand(0).getValueType();
9550
9551 // Don't try to do this optimization when the setcc itself has i1 operands.
9552 // There are no legal vectors of i1, so this would be pointless.
9553 if (SrcVT == MVT::i1)
9554 return SDValue();
9555
9556 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
9557 if (!ResVT.isVector() || NumMaskElts == 0)
9558 return SDValue();
9559
9560 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
9561 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
9562
9563 // Also bail out if the vector CCVT isn't the same size as ResVT.
9564 // This can happen if the SETCC operand size doesn't divide the ResVT size
9565 // (e.g., f64 vs v3f32).
9566 if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
9567 return SDValue();
9568
9569 // Make sure we didn't create illegal types, if we're not supposed to.
9570 assert(DCI.isBeforeLegalize() ||
9571 DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
9572
9573 // First perform a vector comparison, where lane 0 is the one we're interested
9574 // in.
9575 SDLoc DL(N0);
9576 SDValue LHS =
9577 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
9578 SDValue RHS =
9579 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
9580 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
9581
9582 // Now duplicate the comparison mask we want across all other lanes.
9583 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
9584 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
9585 Mask = DAG.getNode(ISD::BITCAST, DL,
9586 ResVT.changeVectorElementTypeToInteger(), Mask);
9587
9588 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
9589 }
9590
9591 /// Get rid of unnecessary NVCASTs (that don't change the type).
performNVCASTCombine(SDNode * N)9592 static SDValue performNVCASTCombine(SDNode *N) {
9593 if (N->getValueType(0) == N->getOperand(0).getValueType())
9594 return N->getOperand(0);
9595
9596 return SDValue();
9597 }
9598
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const9599 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
9600 DAGCombinerInfo &DCI) const {
9601 SelectionDAG &DAG = DCI.DAG;
9602 switch (N->getOpcode()) {
9603 default:
9604 break;
9605 case ISD::ADD:
9606 case ISD::SUB:
9607 return performAddSubLongCombine(N, DCI, DAG);
9608 case ISD::XOR:
9609 return performXorCombine(N, DAG, DCI, Subtarget);
9610 case ISD::MUL:
9611 return performMulCombine(N, DAG, DCI, Subtarget);
9612 case ISD::SINT_TO_FP:
9613 case ISD::UINT_TO_FP:
9614 return performIntToFpCombine(N, DAG, Subtarget);
9615 case ISD::FP_TO_SINT:
9616 case ISD::FP_TO_UINT:
9617 return performFpToIntCombine(N, DAG, Subtarget);
9618 case ISD::FDIV:
9619 return performFDivCombine(N, DAG, Subtarget);
9620 case ISD::OR:
9621 return performORCombine(N, DCI, Subtarget);
9622 case ISD::INTRINSIC_WO_CHAIN:
9623 return performIntrinsicCombine(N, DCI, Subtarget);
9624 case ISD::ANY_EXTEND:
9625 case ISD::ZERO_EXTEND:
9626 case ISD::SIGN_EXTEND:
9627 return performExtendCombine(N, DCI, DAG);
9628 case ISD::BITCAST:
9629 return performBitcastCombine(N, DCI, DAG);
9630 case ISD::CONCAT_VECTORS:
9631 return performConcatVectorsCombine(N, DCI, DAG);
9632 case ISD::SELECT: {
9633 SDValue RV = performSelectCombine(N, DCI);
9634 if (!RV.getNode())
9635 RV = performAcrossLaneMinMaxReductionCombine(N, DAG, Subtarget);
9636 return RV;
9637 }
9638 case ISD::VSELECT:
9639 return performVSelectCombine(N, DCI.DAG);
9640 case ISD::LOAD:
9641 if (performTBISimplification(N->getOperand(1), DCI, DAG))
9642 return SDValue(N, 0);
9643 break;
9644 case ISD::STORE:
9645 return performSTORECombine(N, DCI, DAG, Subtarget);
9646 case AArch64ISD::BRCOND:
9647 return performBRCONDCombine(N, DCI, DAG);
9648 case AArch64ISD::CSEL:
9649 return performCONDCombine(N, DCI, DAG, 2, 3);
9650 case AArch64ISD::DUP:
9651 return performPostLD1Combine(N, DCI, false);
9652 case AArch64ISD::NVCAST:
9653 return performNVCASTCombine(N);
9654 case ISD::INSERT_VECTOR_ELT:
9655 return performPostLD1Combine(N, DCI, true);
9656 case ISD::EXTRACT_VECTOR_ELT:
9657 return performAcrossLaneAddReductionCombine(N, DAG, Subtarget);
9658 case ISD::INTRINSIC_VOID:
9659 case ISD::INTRINSIC_W_CHAIN:
9660 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9661 case Intrinsic::aarch64_neon_ld2:
9662 case Intrinsic::aarch64_neon_ld3:
9663 case Intrinsic::aarch64_neon_ld4:
9664 case Intrinsic::aarch64_neon_ld1x2:
9665 case Intrinsic::aarch64_neon_ld1x3:
9666 case Intrinsic::aarch64_neon_ld1x4:
9667 case Intrinsic::aarch64_neon_ld2lane:
9668 case Intrinsic::aarch64_neon_ld3lane:
9669 case Intrinsic::aarch64_neon_ld4lane:
9670 case Intrinsic::aarch64_neon_ld2r:
9671 case Intrinsic::aarch64_neon_ld3r:
9672 case Intrinsic::aarch64_neon_ld4r:
9673 case Intrinsic::aarch64_neon_st2:
9674 case Intrinsic::aarch64_neon_st3:
9675 case Intrinsic::aarch64_neon_st4:
9676 case Intrinsic::aarch64_neon_st1x2:
9677 case Intrinsic::aarch64_neon_st1x3:
9678 case Intrinsic::aarch64_neon_st1x4:
9679 case Intrinsic::aarch64_neon_st2lane:
9680 case Intrinsic::aarch64_neon_st3lane:
9681 case Intrinsic::aarch64_neon_st4lane:
9682 return performNEONPostLDSTCombine(N, DCI, DAG);
9683 default:
9684 break;
9685 }
9686 }
9687 return SDValue();
9688 }
9689
9690 // Check if the return value is used as only a return value, as otherwise
9691 // we can't perform a tail-call. In particular, we need to check for
9692 // target ISD nodes that are returns and any other "odd" constructs
9693 // that the generic analysis code won't necessarily catch.
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const9694 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
9695 SDValue &Chain) const {
9696 if (N->getNumValues() != 1)
9697 return false;
9698 if (!N->hasNUsesOfValue(1, 0))
9699 return false;
9700
9701 SDValue TCChain = Chain;
9702 SDNode *Copy = *N->use_begin();
9703 if (Copy->getOpcode() == ISD::CopyToReg) {
9704 // If the copy has a glue operand, we conservatively assume it isn't safe to
9705 // perform a tail call.
9706 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
9707 MVT::Glue)
9708 return false;
9709 TCChain = Copy->getOperand(0);
9710 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
9711 return false;
9712
9713 bool HasRet = false;
9714 for (SDNode *Node : Copy->uses()) {
9715 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
9716 return false;
9717 HasRet = true;
9718 }
9719
9720 if (!HasRet)
9721 return false;
9722
9723 Chain = TCChain;
9724 return true;
9725 }
9726
9727 // Return whether the an instruction can potentially be optimized to a tail
9728 // call. This will cause the optimizers to attempt to move, or duplicate,
9729 // return instructions to help enable tail call optimizations for this
9730 // instruction.
mayBeEmittedAsTailCall(CallInst * CI) const9731 bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
9732 if (!CI->isTailCall())
9733 return false;
9734
9735 return true;
9736 }
9737
getIndexedAddressParts(SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,bool & IsInc,SelectionDAG & DAG) const9738 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
9739 SDValue &Offset,
9740 ISD::MemIndexedMode &AM,
9741 bool &IsInc,
9742 SelectionDAG &DAG) const {
9743 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
9744 return false;
9745
9746 Base = Op->getOperand(0);
9747 // All of the indexed addressing mode instructions take a signed
9748 // 9 bit immediate offset.
9749 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
9750 int64_t RHSC = (int64_t)RHS->getZExtValue();
9751 if (RHSC >= 256 || RHSC <= -256)
9752 return false;
9753 IsInc = (Op->getOpcode() == ISD::ADD);
9754 Offset = Op->getOperand(1);
9755 return true;
9756 }
9757 return false;
9758 }
9759
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const9760 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
9761 SDValue &Offset,
9762 ISD::MemIndexedMode &AM,
9763 SelectionDAG &DAG) const {
9764 EVT VT;
9765 SDValue Ptr;
9766 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9767 VT = LD->getMemoryVT();
9768 Ptr = LD->getBasePtr();
9769 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9770 VT = ST->getMemoryVT();
9771 Ptr = ST->getBasePtr();
9772 } else
9773 return false;
9774
9775 bool IsInc;
9776 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
9777 return false;
9778 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
9779 return true;
9780 }
9781
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const9782 bool AArch64TargetLowering::getPostIndexedAddressParts(
9783 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
9784 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
9785 EVT VT;
9786 SDValue Ptr;
9787 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9788 VT = LD->getMemoryVT();
9789 Ptr = LD->getBasePtr();
9790 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9791 VT = ST->getMemoryVT();
9792 Ptr = ST->getBasePtr();
9793 } else
9794 return false;
9795
9796 bool IsInc;
9797 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
9798 return false;
9799 // Post-indexing updates the base, so it's not a valid transform
9800 // if that's not the same as the load's pointer.
9801 if (Ptr != Base)
9802 return false;
9803 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
9804 return true;
9805 }
9806
ReplaceBITCASTResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)9807 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
9808 SelectionDAG &DAG) {
9809 SDLoc DL(N);
9810 SDValue Op = N->getOperand(0);
9811
9812 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
9813 return;
9814
9815 Op = SDValue(
9816 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
9817 DAG.getUNDEF(MVT::i32), Op,
9818 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
9819 0);
9820 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
9821 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
9822 }
9823
ReplaceReductionResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,unsigned InterOp,unsigned AcrossOp)9824 static void ReplaceReductionResults(SDNode *N,
9825 SmallVectorImpl<SDValue> &Results,
9826 SelectionDAG &DAG, unsigned InterOp,
9827 unsigned AcrossOp) {
9828 EVT LoVT, HiVT;
9829 SDValue Lo, Hi;
9830 SDLoc dl(N);
9831 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
9832 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
9833 SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
9834 SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
9835 Results.push_back(SplitVal);
9836 }
9837
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const9838 void AArch64TargetLowering::ReplaceNodeResults(
9839 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
9840 switch (N->getOpcode()) {
9841 default:
9842 llvm_unreachable("Don't know how to custom expand this");
9843 case ISD::BITCAST:
9844 ReplaceBITCASTResults(N, Results, DAG);
9845 return;
9846 case AArch64ISD::SADDV:
9847 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
9848 return;
9849 case AArch64ISD::UADDV:
9850 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
9851 return;
9852 case AArch64ISD::SMINV:
9853 ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
9854 return;
9855 case AArch64ISD::UMINV:
9856 ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
9857 return;
9858 case AArch64ISD::SMAXV:
9859 ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
9860 return;
9861 case AArch64ISD::UMAXV:
9862 ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
9863 return;
9864 case ISD::FP_TO_UINT:
9865 case ISD::FP_TO_SINT:
9866 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
9867 // Let normal code take care of it by not adding anything to Results.
9868 return;
9869 }
9870 }
9871
useLoadStackGuardNode() const9872 bool AArch64TargetLowering::useLoadStackGuardNode() const {
9873 return true;
9874 }
9875
combineRepeatedFPDivisors() const9876 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
9877 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9878 // reciprocal if there are three or more FDIVs.
9879 return 3;
9880 }
9881
9882 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT) const9883 AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
9884 MVT SVT = VT.getSimpleVT();
9885 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
9886 // v4i16, v2i32 instead of to promote.
9887 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
9888 || SVT == MVT::v1f32)
9889 return TypeWidenVector;
9890
9891 return TargetLoweringBase::getPreferredVectorAction(VT);
9892 }
9893
9894 // Loads and stores less than 128-bits are already atomic; ones above that
9895 // are doomed anyway, so defer to the default libcall and blame the OS when
9896 // things go wrong.
shouldExpandAtomicStoreInIR(StoreInst * SI) const9897 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
9898 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
9899 return Size == 128;
9900 }
9901
9902 // Loads and stores less than 128-bits are already atomic; ones above that
9903 // are doomed anyway, so defer to the default libcall and blame the OS when
9904 // things go wrong.
9905 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const9906 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
9907 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
9908 return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
9909 }
9910
9911 // For the real atomic operations, we have ldxr/stxr up to 128 bits,
9912 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const9913 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
9914 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
9915 return Size <= 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
9916 }
9917
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const9918 bool AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
9919 AtomicCmpXchgInst *AI) const {
9920 return true;
9921 }
9922
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const9923 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
9924 AtomicOrdering Ord) const {
9925 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9926 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
9927 bool IsAcquire = isAtLeastAcquire(Ord);
9928
9929 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
9930 // intrinsic must return {i64, i64} and we have to recombine them into a
9931 // single i128 here.
9932 if (ValTy->getPrimitiveSizeInBits() == 128) {
9933 Intrinsic::ID Int =
9934 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
9935 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
9936
9937 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
9938 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
9939
9940 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
9941 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
9942 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
9943 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
9944 return Builder.CreateOr(
9945 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
9946 }
9947
9948 Type *Tys[] = { Addr->getType() };
9949 Intrinsic::ID Int =
9950 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
9951 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
9952
9953 return Builder.CreateTruncOrBitCast(
9954 Builder.CreateCall(Ldxr, Addr),
9955 cast<PointerType>(Addr->getType())->getElementType());
9956 }
9957
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder) const9958 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
9959 IRBuilder<> &Builder) const {
9960 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9961 Builder.CreateCall(
9962 llvm::Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
9963 }
9964
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const9965 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
9966 Value *Val, Value *Addr,
9967 AtomicOrdering Ord) const {
9968 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9969 bool IsRelease = isAtLeastRelease(Ord);
9970
9971 // Since the intrinsics must have legal type, the i128 intrinsics take two
9972 // parameters: "i64, i64". We must marshal Val into the appropriate form
9973 // before the call.
9974 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
9975 Intrinsic::ID Int =
9976 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
9977 Function *Stxr = Intrinsic::getDeclaration(M, Int);
9978 Type *Int64Ty = Type::getInt64Ty(M->getContext());
9979
9980 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
9981 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
9982 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
9983 return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
9984 }
9985
9986 Intrinsic::ID Int =
9987 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
9988 Type *Tys[] = { Addr->getType() };
9989 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
9990
9991 return Builder.CreateCall(Stxr,
9992 {Builder.CreateZExtOrBitCast(
9993 Val, Stxr->getFunctionType()->getParamType(0)),
9994 Addr});
9995 }
9996
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg) const9997 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
9998 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
9999 return Ty->isArrayTy();
10000 }
10001
shouldNormalizeToSelectSequence(LLVMContext &,EVT) const10002 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
10003 EVT) const {
10004 return false;
10005 }
10006
getSafeStackPointerLocation(IRBuilder<> & IRB) const10007 Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
10008 if (!Subtarget->isTargetAndroid())
10009 return TargetLowering::getSafeStackPointerLocation(IRB);
10010
10011 // Android provides a fixed TLS slot for the SafeStack pointer. See the
10012 // definition of TLS_SLOT_SAFESTACK in
10013 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
10014 const unsigned TlsOffset = 0x48;
10015 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
10016 Function *ThreadPointerFunc =
10017 Intrinsic::getDeclaration(M, Intrinsic::aarch64_thread_pointer);
10018 return IRB.CreatePointerCast(
10019 IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), TlsOffset),
10020 Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
10021 }
10022
initializeSplitCSR(MachineBasicBlock * Entry) const10023 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
10024 // Update IsSplitCSR in AArch64unctionInfo.
10025 AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
10026 AFI->setIsSplitCSR(true);
10027 }
10028
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const10029 void AArch64TargetLowering::insertCopiesSplitCSR(
10030 MachineBasicBlock *Entry,
10031 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
10032 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
10033 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
10034 if (!IStart)
10035 return;
10036
10037 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10038 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
10039 for (const MCPhysReg *I = IStart; *I; ++I) {
10040 const TargetRegisterClass *RC = nullptr;
10041 if (AArch64::GPR64RegClass.contains(*I))
10042 RC = &AArch64::GPR64RegClass;
10043 else if (AArch64::FPR64RegClass.contains(*I))
10044 RC = &AArch64::FPR64RegClass;
10045 else
10046 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
10047
10048 unsigned NewVR = MRI->createVirtualRegister(RC);
10049 // Create copy from CSR to a virtual register.
10050 // FIXME: this currently does not emit CFI pseudo-instructions, it works
10051 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
10052 // nounwind. If we want to generalize this later, we may need to emit
10053 // CFI pseudo-instructions.
10054 assert(Entry->getParent()->getFunction()->hasFnAttribute(
10055 Attribute::NoUnwind) &&
10056 "Function should be nounwind in insertCopiesSplitCSR!");
10057 Entry->addLiveIn(*I);
10058 BuildMI(*Entry, Entry->begin(), DebugLoc(), TII->get(TargetOpcode::COPY),
10059 NewVR)
10060 .addReg(*I);
10061
10062 for (auto *Exit : Exits)
10063 BuildMI(*Exit, Exit->begin(), DebugLoc(), TII->get(TargetOpcode::COPY),
10064 *I)
10065 .addReg(NewVR);
10066 }
10067 }
10068