1 //===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the declarations of classes that represent "derived 11 // types". These are things like "arrays of x" or "structure of x, y, z" or 12 // "function returning x taking (y,z) as parameters", etc... 13 // 14 // The implementations of these classes live in the Type.cpp file. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #ifndef LLVM_IR_DERIVEDTYPES_H 19 #define LLVM_IR_DERIVEDTYPES_H 20 21 #include "llvm/IR/Type.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Support/DataTypes.h" 24 25 namespace llvm { 26 27 class Value; 28 class APInt; 29 class LLVMContext; 30 template<typename T> class ArrayRef; 31 class StringRef; 32 33 /// Class to represent integer types. Note that this class is also used to 34 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and 35 /// Int64Ty. 36 /// @brief Integer representation type 37 class IntegerType : public Type { 38 friend class LLVMContextImpl; 39 40 protected: IntegerType(LLVMContext & C,unsigned NumBits)41 explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){ 42 setSubclassData(NumBits); 43 } 44 45 public: 46 /// This enum is just used to hold constants we need for IntegerType. 47 enum { 48 MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified 49 MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified 50 ///< Note that bit width is stored in the Type classes SubclassData field 51 ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits. 52 }; 53 54 /// This static method is the primary way of constructing an IntegerType. 55 /// If an IntegerType with the same NumBits value was previously instantiated, 56 /// that instance will be returned. Otherwise a new one will be created. Only 57 /// one instance with a given NumBits value is ever created. 58 /// @brief Get or create an IntegerType instance. 59 static IntegerType *get(LLVMContext &C, unsigned NumBits); 60 61 /// @brief Get the number of bits in this IntegerType getBitWidth()62 unsigned getBitWidth() const { return getSubclassData(); } 63 64 /// getBitMask - Return a bitmask with ones set for all of the bits 65 /// that can be set by an unsigned version of this type. This is 0xFF for 66 /// i8, 0xFFFF for i16, etc. getBitMask()67 uint64_t getBitMask() const { 68 return ~uint64_t(0UL) >> (64-getBitWidth()); 69 } 70 71 /// getSignBit - Return a uint64_t with just the most significant bit set (the 72 /// sign bit, if the value is treated as a signed number). getSignBit()73 uint64_t getSignBit() const { 74 return 1ULL << (getBitWidth()-1); 75 } 76 77 /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc. 78 /// @returns a bit mask with ones set for all the bits of this type. 79 /// @brief Get a bit mask for this type. 80 APInt getMask() const; 81 82 /// This method determines if the width of this IntegerType is a power-of-2 83 /// in terms of 8 bit bytes. 84 /// @returns true if this is a power-of-2 byte width. 85 /// @brief Is this a power-of-2 byte-width IntegerType ? 86 bool isPowerOf2ByteWidth() const; 87 88 /// Methods for support type inquiry through isa, cast, and dyn_cast. classof(const Type * T)89 static inline bool classof(const Type *T) { 90 return T->getTypeID() == IntegerTyID; 91 } 92 }; 93 94 /// FunctionType - Class to represent function types 95 /// 96 class FunctionType : public Type { 97 FunctionType(const FunctionType &) = delete; 98 const FunctionType &operator=(const FunctionType &) = delete; 99 FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs); 100 101 public: 102 /// FunctionType::get - This static method is the primary way of constructing 103 /// a FunctionType. 104 /// 105 static FunctionType *get(Type *Result, 106 ArrayRef<Type*> Params, bool isVarArg); 107 108 /// FunctionType::get - Create a FunctionType taking no parameters. 109 /// 110 static FunctionType *get(Type *Result, bool isVarArg); 111 112 /// isValidReturnType - Return true if the specified type is valid as a return 113 /// type. 114 static bool isValidReturnType(Type *RetTy); 115 116 /// isValidArgumentType - Return true if the specified type is valid as an 117 /// argument type. 118 static bool isValidArgumentType(Type *ArgTy); 119 isVarArg()120 bool isVarArg() const { return getSubclassData()!=0; } getReturnType()121 Type *getReturnType() const { return ContainedTys[0]; } 122 123 typedef Type::subtype_iterator param_iterator; param_begin()124 param_iterator param_begin() const { return ContainedTys + 1; } param_end()125 param_iterator param_end() const { return &ContainedTys[NumContainedTys]; } params()126 ArrayRef<Type *> params() const { 127 return makeArrayRef(param_begin(), param_end()); 128 } 129 130 /// Parameter type accessors. getParamType(unsigned i)131 Type *getParamType(unsigned i) const { return ContainedTys[i+1]; } 132 133 /// getNumParams - Return the number of fixed parameters this function type 134 /// requires. This does not consider varargs. 135 /// getNumParams()136 unsigned getNumParams() const { return NumContainedTys - 1; } 137 138 /// Methods for support type inquiry through isa, cast, and dyn_cast. classof(const Type * T)139 static inline bool classof(const Type *T) { 140 return T->getTypeID() == FunctionTyID; 141 } 142 }; 143 static_assert(AlignOf<FunctionType>::Alignment >= AlignOf<Type *>::Alignment, 144 "Alignment sufficient for objects appended to FunctionType"); 145 146 /// CompositeType - Common super class of ArrayType, StructType, PointerType 147 /// and VectorType. 148 class CompositeType : public Type { 149 protected: CompositeType(LLVMContext & C,TypeID tid)150 explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {} 151 152 public: 153 /// getTypeAtIndex - Given an index value into the type, return the type of 154 /// the element. 155 /// 156 Type *getTypeAtIndex(const Value *V) const; 157 Type *getTypeAtIndex(unsigned Idx) const; 158 bool indexValid(const Value *V) const; 159 bool indexValid(unsigned Idx) const; 160 161 /// Methods for support type inquiry through isa, cast, and dyn_cast. classof(const Type * T)162 static inline bool classof(const Type *T) { 163 return T->getTypeID() == ArrayTyID || 164 T->getTypeID() == StructTyID || 165 T->getTypeID() == PointerTyID || 166 T->getTypeID() == VectorTyID; 167 } 168 }; 169 170 /// StructType - Class to represent struct types. There are two different kinds 171 /// of struct types: Literal structs and Identified structs. 172 /// 173 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must 174 /// always have a body when created. You can get one of these by using one of 175 /// the StructType::get() forms. 176 /// 177 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not 178 /// uniqued. The names for identified structs are managed at the LLVMContext 179 /// level, so there can only be a single identified struct with a given name in 180 /// a particular LLVMContext. Identified structs may also optionally be opaque 181 /// (have no body specified). You get one of these by using one of the 182 /// StructType::create() forms. 183 /// 184 /// Independent of what kind of struct you have, the body of a struct type are 185 /// laid out in memory consequtively with the elements directly one after the 186 /// other (if the struct is packed) or (if not packed) with padding between the 187 /// elements as defined by DataLayout (which is required to match what the code 188 /// generator for a target expects). 189 /// 190 class StructType : public CompositeType { 191 StructType(const StructType &) = delete; 192 const StructType &operator=(const StructType &) = delete; StructType(LLVMContext & C)193 StructType(LLVMContext &C) 194 : CompositeType(C, StructTyID), SymbolTableEntry(nullptr) {} 195 enum { 196 /// This is the contents of the SubClassData field. 197 SCDB_HasBody = 1, 198 SCDB_Packed = 2, 199 SCDB_IsLiteral = 4, 200 SCDB_IsSized = 8 201 }; 202 203 /// SymbolTableEntry - For a named struct that actually has a name, this is a 204 /// pointer to the symbol table entry (maintained by LLVMContext) for the 205 /// struct. This is null if the type is an literal struct or if it is 206 /// a identified type that has an empty name. 207 /// 208 void *SymbolTableEntry; 209 210 public: 211 /// StructType::create - This creates an identified struct. 212 static StructType *create(LLVMContext &Context, StringRef Name); 213 static StructType *create(LLVMContext &Context); 214 215 static StructType *create(ArrayRef<Type *> Elements, StringRef Name, 216 bool isPacked = false); 217 static StructType *create(ArrayRef<Type *> Elements); 218 static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements, 219 StringRef Name, bool isPacked = false); 220 static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements); 221 static StructType *create(StringRef Name, Type *elt1, ...) LLVM_END_WITH_NULL; 222 223 /// StructType::get - This static method is the primary way to create a 224 /// literal StructType. 225 static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements, 226 bool isPacked = false); 227 228 /// StructType::get - Create an empty structure type. 229 /// 230 static StructType *get(LLVMContext &Context, bool isPacked = false); 231 232 /// StructType::get - This static method is a convenience method for creating 233 /// structure types by specifying the elements as arguments. Note that this 234 /// method always returns a non-packed struct, and requires at least one 235 /// element type. 236 static StructType *get(Type *elt1, ...) LLVM_END_WITH_NULL; 237 isPacked()238 bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; } 239 240 /// isLiteral - Return true if this type is uniqued by structural 241 /// equivalence, false if it is a struct definition. isLiteral()242 bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; } 243 244 /// isOpaque - Return true if this is a type with an identity that has no body 245 /// specified yet. These prints as 'opaque' in .ll files. isOpaque()246 bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; } 247 248 /// isSized - Return true if this is a sized type. 249 bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const; 250 251 /// hasName - Return true if this is a named struct that has a non-empty name. hasName()252 bool hasName() const { return SymbolTableEntry != nullptr; } 253 254 /// getName - Return the name for this struct type if it has an identity. 255 /// This may return an empty string for an unnamed struct type. Do not call 256 /// this on an literal type. 257 StringRef getName() const; 258 259 /// setName - Change the name of this type to the specified name, or to a name 260 /// with a suffix if there is a collision. Do not call this on an literal 261 /// type. 262 void setName(StringRef Name); 263 264 /// setBody - Specify a body for an opaque identified type. 265 void setBody(ArrayRef<Type*> Elements, bool isPacked = false); 266 void setBody(Type *elt1, ...) LLVM_END_WITH_NULL; 267 268 /// isValidElementType - Return true if the specified type is valid as a 269 /// element type. 270 static bool isValidElementType(Type *ElemTy); 271 272 // Iterator access to the elements. 273 typedef Type::subtype_iterator element_iterator; element_begin()274 element_iterator element_begin() const { return ContainedTys; } element_end()275 element_iterator element_end() const { return &ContainedTys[NumContainedTys];} elements()276 ArrayRef<Type *> const elements() const { 277 return makeArrayRef(element_begin(), element_end()); 278 } 279 280 /// isLayoutIdentical - Return true if this is layout identical to the 281 /// specified struct. 282 bool isLayoutIdentical(StructType *Other) const; 283 284 /// Random access to the elements getNumElements()285 unsigned getNumElements() const { return NumContainedTys; } getElementType(unsigned N)286 Type *getElementType(unsigned N) const { 287 assert(N < NumContainedTys && "Element number out of range!"); 288 return ContainedTys[N]; 289 } 290 291 /// Methods for support type inquiry through isa, cast, and dyn_cast. classof(const Type * T)292 static inline bool classof(const Type *T) { 293 return T->getTypeID() == StructTyID; 294 } 295 }; 296 297 /// SequentialType - This is the superclass of the array, pointer and vector 298 /// type classes. All of these represent "arrays" in memory. The array type 299 /// represents a specifically sized array, pointer types are unsized/unknown 300 /// size arrays, vector types represent specifically sized arrays that 301 /// allow for use of SIMD instructions. SequentialType holds the common 302 /// features of all, which stem from the fact that all three lay their 303 /// components out in memory identically. 304 /// 305 class SequentialType : public CompositeType { 306 Type *ContainedType; ///< Storage for the single contained type. 307 SequentialType(const SequentialType &) = delete; 308 const SequentialType &operator=(const SequentialType &) = delete; 309 310 protected: SequentialType(TypeID TID,Type * ElType)311 SequentialType(TypeID TID, Type *ElType) 312 : CompositeType(ElType->getContext(), TID), ContainedType(ElType) { 313 ContainedTys = &ContainedType; 314 NumContainedTys = 1; 315 } 316 317 public: getElementType()318 Type *getElementType() const { return ContainedTys[0]; } 319 320 /// Methods for support type inquiry through isa, cast, and dyn_cast. classof(const Type * T)321 static inline bool classof(const Type *T) { 322 return T->getTypeID() == ArrayTyID || 323 T->getTypeID() == PointerTyID || 324 T->getTypeID() == VectorTyID; 325 } 326 }; 327 328 /// ArrayType - Class to represent array types. 329 /// 330 class ArrayType : public SequentialType { 331 uint64_t NumElements; 332 333 ArrayType(const ArrayType &) = delete; 334 const ArrayType &operator=(const ArrayType &) = delete; 335 ArrayType(Type *ElType, uint64_t NumEl); 336 337 public: 338 /// ArrayType::get - This static method is the primary way to construct an 339 /// ArrayType 340 /// 341 static ArrayType *get(Type *ElementType, uint64_t NumElements); 342 343 /// isValidElementType - Return true if the specified type is valid as a 344 /// element type. 345 static bool isValidElementType(Type *ElemTy); 346 getNumElements()347 uint64_t getNumElements() const { return NumElements; } 348 349 /// Methods for support type inquiry through isa, cast, and dyn_cast. classof(const Type * T)350 static inline bool classof(const Type *T) { 351 return T->getTypeID() == ArrayTyID; 352 } 353 }; 354 355 /// VectorType - Class to represent vector types. 356 /// 357 class VectorType : public SequentialType { 358 unsigned NumElements; 359 360 VectorType(const VectorType &) = delete; 361 const VectorType &operator=(const VectorType &) = delete; 362 VectorType(Type *ElType, unsigned NumEl); 363 364 public: 365 /// VectorType::get - This static method is the primary way to construct an 366 /// VectorType. 367 /// 368 static VectorType *get(Type *ElementType, unsigned NumElements); 369 370 /// VectorType::getInteger - This static method gets a VectorType with the 371 /// same number of elements as the input type, and the element type is an 372 /// integer type of the same width as the input element type. 373 /// getInteger(VectorType * VTy)374 static VectorType *getInteger(VectorType *VTy) { 375 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 376 assert(EltBits && "Element size must be of a non-zero size"); 377 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits); 378 return VectorType::get(EltTy, VTy->getNumElements()); 379 } 380 381 /// VectorType::getExtendedElementVectorType - This static method is like 382 /// getInteger except that the element types are twice as wide as the 383 /// elements in the input type. 384 /// getExtendedElementVectorType(VectorType * VTy)385 static VectorType *getExtendedElementVectorType(VectorType *VTy) { 386 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 387 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2); 388 return VectorType::get(EltTy, VTy->getNumElements()); 389 } 390 391 /// VectorType::getTruncatedElementVectorType - This static method is like 392 /// getInteger except that the element types are half as wide as the 393 /// elements in the input type. 394 /// getTruncatedElementVectorType(VectorType * VTy)395 static VectorType *getTruncatedElementVectorType(VectorType *VTy) { 396 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 397 assert((EltBits & 1) == 0 && 398 "Cannot truncate vector element with odd bit-width"); 399 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2); 400 return VectorType::get(EltTy, VTy->getNumElements()); 401 } 402 403 /// VectorType::getHalfElementsVectorType - This static method returns 404 /// a VectorType with half as many elements as the input type and the 405 /// same element type. 406 /// getHalfElementsVectorType(VectorType * VTy)407 static VectorType *getHalfElementsVectorType(VectorType *VTy) { 408 unsigned NumElts = VTy->getNumElements(); 409 assert ((NumElts & 1) == 0 && 410 "Cannot halve vector with odd number of elements."); 411 return VectorType::get(VTy->getElementType(), NumElts/2); 412 } 413 414 /// VectorType::getDoubleElementsVectorType - This static method returns 415 /// a VectorType with twice as many elements as the input type and the 416 /// same element type. 417 /// getDoubleElementsVectorType(VectorType * VTy)418 static VectorType *getDoubleElementsVectorType(VectorType *VTy) { 419 unsigned NumElts = VTy->getNumElements(); 420 return VectorType::get(VTy->getElementType(), NumElts*2); 421 } 422 423 /// isValidElementType - Return true if the specified type is valid as a 424 /// element type. 425 static bool isValidElementType(Type *ElemTy); 426 427 /// @brief Return the number of elements in the Vector type. getNumElements()428 unsigned getNumElements() const { return NumElements; } 429 430 /// @brief Return the number of bits in the Vector type. 431 /// Returns zero when the vector is a vector of pointers. getBitWidth()432 unsigned getBitWidth() const { 433 return NumElements * getElementType()->getPrimitiveSizeInBits(); 434 } 435 436 /// Methods for support type inquiry through isa, cast, and dyn_cast. classof(const Type * T)437 static inline bool classof(const Type *T) { 438 return T->getTypeID() == VectorTyID; 439 } 440 }; 441 442 /// PointerType - Class to represent pointers. 443 /// 444 class PointerType : public SequentialType { 445 PointerType(const PointerType &) = delete; 446 const PointerType &operator=(const PointerType &) = delete; 447 explicit PointerType(Type *ElType, unsigned AddrSpace); 448 449 public: 450 /// PointerType::get - This constructs a pointer to an object of the specified 451 /// type in a numbered address space. 452 static PointerType *get(Type *ElementType, unsigned AddressSpace); 453 454 /// PointerType::getUnqual - This constructs a pointer to an object of the 455 /// specified type in the generic address space (address space zero). getUnqual(Type * ElementType)456 static PointerType *getUnqual(Type *ElementType) { 457 return PointerType::get(ElementType, 0); 458 } 459 460 /// isValidElementType - Return true if the specified type is valid as a 461 /// element type. 462 static bool isValidElementType(Type *ElemTy); 463 464 /// Return true if we can load or store from a pointer to this type. 465 static bool isLoadableOrStorableType(Type *ElemTy); 466 467 /// @brief Return the address space of the Pointer type. getAddressSpace()468 inline unsigned getAddressSpace() const { return getSubclassData(); } 469 470 /// Implement support type inquiry through isa, cast, and dyn_cast. classof(const Type * T)471 static inline bool classof(const Type *T) { 472 return T->getTypeID() == PointerTyID; 473 } 474 }; 475 476 } // End llvm namespace 477 478 #endif 479