• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_FACTORY_H_
6 #define V8_FACTORY_H_
7 
8 #include "src/isolate.h"
9 #include "src/messages.h"
10 #include "src/type-feedback-vector.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 // Interface for handle based allocation.
16 class Factory final {
17  public:
18   Handle<Oddball> NewOddball(Handle<Map> map, const char* to_string,
19                              Handle<Object> to_number, const char* type_of,
20                              byte kind);
21 
22   // Allocates a fixed array initialized with undefined values.
23   Handle<FixedArray> NewFixedArray(
24       int size,
25       PretenureFlag pretenure = NOT_TENURED);
26 
27   // Allocate a new fixed array with non-existing entries (the hole).
28   Handle<FixedArray> NewFixedArrayWithHoles(
29       int size,
30       PretenureFlag pretenure = NOT_TENURED);
31 
32   // Allocates an uninitialized fixed array. It must be filled by the caller.
33   Handle<FixedArray> NewUninitializedFixedArray(int size);
34 
35   // Allocate a new uninitialized fixed double array.
36   // The function returns a pre-allocated empty fixed array for capacity = 0,
37   // so the return type must be the general fixed array class.
38   Handle<FixedArrayBase> NewFixedDoubleArray(
39       int size,
40       PretenureFlag pretenure = NOT_TENURED);
41 
42   // Allocate a new fixed double array with hole values.
43   Handle<FixedArrayBase> NewFixedDoubleArrayWithHoles(
44       int size,
45       PretenureFlag pretenure = NOT_TENURED);
46 
47   Handle<OrderedHashSet> NewOrderedHashSet();
48   Handle<OrderedHashMap> NewOrderedHashMap();
49 
50   // Create a new boxed value.
51   Handle<Box> NewBox(Handle<Object> value);
52 
53   // Create a new PrototypeInfo struct.
54   Handle<PrototypeInfo> NewPrototypeInfo();
55 
56   // Create a new SloppyBlockWithEvalContextExtension struct.
57   Handle<SloppyBlockWithEvalContextExtension>
58   NewSloppyBlockWithEvalContextExtension(Handle<ScopeInfo> scope_info,
59                                          Handle<JSObject> extension);
60 
61   // Create a pre-tenured empty AccessorPair.
62   Handle<AccessorPair> NewAccessorPair();
63 
64   // Create an empty TypeFeedbackInfo.
65   Handle<TypeFeedbackInfo> NewTypeFeedbackInfo();
66 
67   // Finds the internalized copy for string in the string table.
68   // If not found, a new string is added to the table and returned.
69   Handle<String> InternalizeUtf8String(Vector<const char> str);
InternalizeUtf8String(const char * str)70   Handle<String> InternalizeUtf8String(const char* str) {
71     return InternalizeUtf8String(CStrVector(str));
72   }
73   Handle<String> InternalizeString(Handle<String> str);
74   Handle<String> InternalizeOneByteString(Vector<const uint8_t> str);
75   Handle<String> InternalizeOneByteString(
76       Handle<SeqOneByteString>, int from, int length);
77 
78   Handle<String> InternalizeTwoByteString(Vector<const uc16> str);
79 
80   template<class StringTableKey>
81   Handle<String> InternalizeStringWithKey(StringTableKey* key);
82 
83   Handle<Name> InternalizeName(Handle<Name> name);
84 
85 
86   // String creation functions.  Most of the string creation functions take
87   // a Heap::PretenureFlag argument to optionally request that they be
88   // allocated in the old generation.  The pretenure flag defaults to
89   // DONT_TENURE.
90   //
91   // Creates a new String object.  There are two String encodings: one-byte and
92   // two-byte.  One should choose between the three string factory functions
93   // based on the encoding of the string buffer that the string is
94   // initialized from.
95   //   - ...FromOneByte initializes the string from a buffer that is Latin1
96   //     encoded (it does not check that the buffer is Latin1 encoded) and
97   //     the result will be Latin1 encoded.
98   //   - ...FromUtf8 initializes the string from a buffer that is UTF-8
99   //     encoded.  If the characters are all ASCII characters, the result
100   //     will be Latin1 encoded, otherwise it will converted to two-byte.
101   //   - ...FromTwoByte initializes the string from a buffer that is two-byte
102   //     encoded.  If the characters are all Latin1 characters, the result
103   //     will be converted to Latin1, otherwise it will be left as two-byte.
104   //
105   // One-byte strings are pretenured when used as keys in the SourceCodeCache.
106   MUST_USE_RESULT MaybeHandle<String> NewStringFromOneByte(
107       Vector<const uint8_t> str,
108       PretenureFlag pretenure = NOT_TENURED);
109 
110   template <size_t N>
111   inline Handle<String> NewStringFromStaticChars(
112       const char (&str)[N], PretenureFlag pretenure = NOT_TENURED) {
113     DCHECK(N == StrLength(str) + 1);
114     return NewStringFromOneByte(STATIC_CHAR_VECTOR(str), pretenure)
115         .ToHandleChecked();
116   }
117 
118   inline Handle<String> NewStringFromAsciiChecked(
119       const char* str,
120       PretenureFlag pretenure = NOT_TENURED) {
121     return NewStringFromOneByte(
122         OneByteVector(str), pretenure).ToHandleChecked();
123   }
124 
125 
126   // Allocates and fully initializes a String.  There are two String encodings:
127   // one-byte and two-byte. One should choose between the threestring
128   // allocation functions based on the encoding of the string buffer used to
129   // initialized the string.
130   //   - ...FromOneByte initializes the string from a buffer that is Latin1
131   //     encoded (it does not check that the buffer is Latin1 encoded) and the
132   //     result will be Latin1 encoded.
133   //   - ...FromUTF8 initializes the string from a buffer that is UTF-8
134   //     encoded.  If the characters are all ASCII characters, the result
135   //     will be Latin1 encoded, otherwise it will converted to two-byte.
136   //   - ...FromTwoByte initializes the string from a buffer that is two-byte
137   //     encoded.  If the characters are all Latin1 characters, the
138   //     result will be converted to Latin1, otherwise it will be left as
139   //     two-byte.
140 
141   // TODO(dcarney): remove this function.
142   MUST_USE_RESULT inline MaybeHandle<String> NewStringFromAscii(
143       Vector<const char> str,
144       PretenureFlag pretenure = NOT_TENURED) {
145     return NewStringFromOneByte(Vector<const uint8_t>::cast(str), pretenure);
146   }
147 
148   // UTF8 strings are pretenured when used for regexp literal patterns and
149   // flags in the parser.
150   MUST_USE_RESULT MaybeHandle<String> NewStringFromUtf8(
151       Vector<const char> str,
152       PretenureFlag pretenure = NOT_TENURED);
153 
154   MUST_USE_RESULT MaybeHandle<String> NewStringFromTwoByte(
155       Vector<const uc16> str,
156       PretenureFlag pretenure = NOT_TENURED);
157 
158   // Allocates an internalized string in old space based on the character
159   // stream.
160   Handle<String> NewInternalizedStringFromUtf8(Vector<const char> str,
161                                                int chars, uint32_t hash_field);
162 
163   Handle<String> NewOneByteInternalizedString(Vector<const uint8_t> str,
164                                               uint32_t hash_field);
165 
166   Handle<String> NewOneByteInternalizedSubString(
167       Handle<SeqOneByteString> string, int offset, int length,
168       uint32_t hash_field);
169 
170   Handle<String> NewTwoByteInternalizedString(Vector<const uc16> str,
171                                               uint32_t hash_field);
172 
173   Handle<String> NewInternalizedStringImpl(Handle<String> string, int chars,
174                                            uint32_t hash_field);
175 
176   // Compute the matching internalized string map for a string if possible.
177   // Empty handle is returned if string is in new space or not flattened.
178   MUST_USE_RESULT MaybeHandle<Map> InternalizedStringMapForString(
179       Handle<String> string);
180 
181   // Allocates and partially initializes an one-byte or two-byte String. The
182   // characters of the string are uninitialized. Currently used in regexp code
183   // only, where they are pretenured.
184   MUST_USE_RESULT MaybeHandle<SeqOneByteString> NewRawOneByteString(
185       int length,
186       PretenureFlag pretenure = NOT_TENURED);
187   MUST_USE_RESULT MaybeHandle<SeqTwoByteString> NewRawTwoByteString(
188       int length,
189       PretenureFlag pretenure = NOT_TENURED);
190 
191   // Creates a single character string where the character has given code.
192   // A cache is used for Latin1 codes.
193   Handle<String> LookupSingleCharacterStringFromCode(uint32_t code);
194 
195   // Create a new cons string object which consists of a pair of strings.
196   MUST_USE_RESULT MaybeHandle<String> NewConsString(Handle<String> left,
197                                                     Handle<String> right);
198 
199   // Create a new string object which holds a proper substring of a string.
200   Handle<String> NewProperSubString(Handle<String> str,
201                                     int begin,
202                                     int end);
203 
204   // Create a new string object which holds a substring of a string.
NewSubString(Handle<String> str,int begin,int end)205   Handle<String> NewSubString(Handle<String> str, int begin, int end) {
206     if (begin == 0 && end == str->length()) return str;
207     return NewProperSubString(str, begin, end);
208   }
209 
210   // Creates a new external String object.  There are two String encodings
211   // in the system: one-byte and two-byte.  Unlike other String types, it does
212   // not make sense to have a UTF-8 factory function for external strings,
213   // because we cannot change the underlying buffer.  Note that these strings
214   // are backed by a string resource that resides outside the V8 heap.
215   MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromOneByte(
216       const ExternalOneByteString::Resource* resource);
217   MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromTwoByte(
218       const ExternalTwoByteString::Resource* resource);
219 
220   // Create a symbol.
221   Handle<Symbol> NewSymbol();
222   Handle<Symbol> NewPrivateSymbol();
223 
224   // Create a global (but otherwise uninitialized) context.
225   Handle<Context> NewNativeContext();
226 
227   // Create a script context.
228   Handle<Context> NewScriptContext(Handle<JSFunction> function,
229                                    Handle<ScopeInfo> scope_info);
230 
231   // Create an empty script context table.
232   Handle<ScriptContextTable> NewScriptContextTable();
233 
234   // Create a module context.
235   Handle<Context> NewModuleContext(Handle<ScopeInfo> scope_info);
236 
237   // Create a function context.
238   Handle<Context> NewFunctionContext(int length, Handle<JSFunction> function);
239 
240   // Create a catch context.
241   Handle<Context> NewCatchContext(Handle<JSFunction> function,
242                                   Handle<Context> previous,
243                                   Handle<String> name,
244                                   Handle<Object> thrown_object);
245 
246   // Create a 'with' context.
247   Handle<Context> NewWithContext(Handle<JSFunction> function,
248                                  Handle<Context> previous,
249                                  Handle<JSReceiver> extension);
250 
251   // Create a block context.
252   Handle<Context> NewBlockContext(Handle<JSFunction> function,
253                                   Handle<Context> previous,
254                                   Handle<ScopeInfo> scope_info);
255 
256   // Allocate a new struct.  The struct is pretenured (allocated directly in
257   // the old generation).
258   Handle<Struct> NewStruct(InstanceType type);
259 
260   Handle<CodeCache> NewCodeCache();
261 
262   Handle<AliasedArgumentsEntry> NewAliasedArgumentsEntry(
263       int aliased_context_slot);
264 
265   Handle<ExecutableAccessorInfo> NewExecutableAccessorInfo();
266 
267   Handle<Script> NewScript(Handle<String> source);
268 
269   // Foreign objects are pretenured when allocated by the bootstrapper.
270   Handle<Foreign> NewForeign(Address addr,
271                              PretenureFlag pretenure = NOT_TENURED);
272 
273   // Allocate a new foreign object.  The foreign is pretenured (allocated
274   // directly in the old generation).
275   Handle<Foreign> NewForeign(const AccessorDescriptor* foreign);
276 
277   Handle<ByteArray> NewByteArray(int length,
278                                  PretenureFlag pretenure = NOT_TENURED);
279 
280   Handle<BytecodeArray> NewBytecodeArray(int length, const byte* raw_bytecodes,
281                                          int frame_size, int parameter_count,
282                                          Handle<FixedArray> constant_pool);
283 
284   Handle<FixedTypedArrayBase> NewFixedTypedArrayWithExternalPointer(
285       int length, ExternalArrayType array_type, void* external_pointer,
286       PretenureFlag pretenure = NOT_TENURED);
287 
288   Handle<FixedTypedArrayBase> NewFixedTypedArray(
289       int length, ExternalArrayType array_type, bool initialize,
290       PretenureFlag pretenure = NOT_TENURED);
291 
292   Handle<Cell> NewCell(Handle<Object> value);
293 
294   Handle<PropertyCell> NewPropertyCell();
295 
296   Handle<WeakCell> NewWeakCell(Handle<HeapObject> value);
297 
298   Handle<TransitionArray> NewTransitionArray(int capacity);
299 
300   // Allocate a tenured AllocationSite. It's payload is null.
301   Handle<AllocationSite> NewAllocationSite();
302 
303   Handle<Map> NewMap(
304       InstanceType type,
305       int instance_size,
306       ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
307 
308   Handle<HeapObject> NewFillerObject(int size,
309                                      bool double_align,
310                                      AllocationSpace space);
311 
312   Handle<JSObject> NewFunctionPrototype(Handle<JSFunction> function);
313 
314   Handle<JSObject> CopyJSObject(Handle<JSObject> object);
315 
316   Handle<JSObject> CopyJSObjectWithAllocationSite(Handle<JSObject> object,
317                                                   Handle<AllocationSite> site);
318 
319   Handle<FixedArray> CopyFixedArrayWithMap(Handle<FixedArray> array,
320                                            Handle<Map> map);
321 
322   Handle<FixedArray> CopyFixedArrayAndGrow(
323       Handle<FixedArray> array, int grow_by,
324       PretenureFlag pretenure = NOT_TENURED);
325 
326   Handle<FixedArray> CopyFixedArray(Handle<FixedArray> array);
327 
328   // This method expects a COW array in new space, and creates a copy
329   // of it in old space.
330   Handle<FixedArray> CopyAndTenureFixedCOWArray(Handle<FixedArray> array);
331 
332   Handle<FixedDoubleArray> CopyFixedDoubleArray(
333       Handle<FixedDoubleArray> array);
334 
335   // Numbers (e.g. literals) are pretenured by the parser.
336   // The return value may be a smi or a heap number.
337   Handle<Object> NewNumber(double value,
338                            PretenureFlag pretenure = NOT_TENURED);
339 
340   Handle<Object> NewNumberFromInt(int32_t value,
341                                   PretenureFlag pretenure = NOT_TENURED);
342   Handle<Object> NewNumberFromUint(uint32_t value,
343                                   PretenureFlag pretenure = NOT_TENURED);
344   Handle<Object> NewNumberFromSize(size_t value,
345                                    PretenureFlag pretenure = NOT_TENURED) {
346     // We can't use Smi::IsValid() here because that operates on a signed
347     // intptr_t, and casting from size_t could create a bogus sign bit.
348     if (value <= static_cast<size_t>(Smi::kMaxValue)) {
349       return Handle<Object>(Smi::FromIntptr(static_cast<intptr_t>(value)),
350                             isolate());
351     }
352     return NewNumber(static_cast<double>(value), pretenure);
353   }
354   Handle<HeapNumber> NewHeapNumber(double value,
355                                    MutableMode mode = IMMUTABLE,
356                                    PretenureFlag pretenure = NOT_TENURED);
357 
358 #define SIMD128_NEW_DECL(TYPE, Type, type, lane_count, lane_type) \
359   Handle<Type> New##Type(lane_type lanes[lane_count],             \
360                          PretenureFlag pretenure = NOT_TENURED);
SIMD128_TYPES(SIMD128_NEW_DECL)361   SIMD128_TYPES(SIMD128_NEW_DECL)
362 #undef SIMD128_NEW_DECL
363 
364   // These objects are used by the api to create env-independent data
365   // structures in the heap.
366   inline Handle<JSObject> NewNeanderObject() {
367     return NewJSObjectFromMap(neander_map());
368   }
369 
370   Handle<JSWeakMap> NewJSWeakMap();
371 
372   Handle<JSObject> NewArgumentsObject(Handle<JSFunction> callee, int length);
373 
374   // JS objects are pretenured when allocated by the bootstrapper and
375   // runtime.
376   Handle<JSObject> NewJSObject(Handle<JSFunction> constructor,
377                                PretenureFlag pretenure = NOT_TENURED);
378   // JSObject that should have a memento pointing to the allocation site.
379   Handle<JSObject> NewJSObjectWithMemento(Handle<JSFunction> constructor,
380                                           Handle<AllocationSite> site);
381 
382   // Global objects are pretenured and initialized based on a constructor.
383   Handle<JSGlobalObject> NewJSGlobalObject(Handle<JSFunction> constructor);
384 
385   // JS objects are pretenured when allocated by the bootstrapper and
386   // runtime.
387   Handle<JSObject> NewJSObjectFromMap(
388       Handle<Map> map,
389       PretenureFlag pretenure = NOT_TENURED,
390       Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null());
391 
392   // JS modules are pretenured.
393   Handle<JSModule> NewJSModule(Handle<Context> context,
394                                Handle<ScopeInfo> scope_info);
395 
396   // JS arrays are pretenured when allocated by the parser.
397 
398   // Create a JSArray with no elements.
399   Handle<JSArray> NewJSArray(ElementsKind elements_kind,
400                              Strength strength = Strength::WEAK,
401                              PretenureFlag pretenure = NOT_TENURED);
402 
403   // Create a JSArray with a specified length and elements initialized
404   // according to the specified mode.
405   Handle<JSArray> NewJSArray(
406       ElementsKind elements_kind, int length, int capacity,
407       Strength strength = Strength::WEAK,
408       ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS,
409       PretenureFlag pretenure = NOT_TENURED);
410 
411   Handle<JSArray> NewJSArray(
412       int capacity, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
413       Strength strength = Strength::WEAK,
414       PretenureFlag pretenure = NOT_TENURED) {
415     if (capacity != 0) {
416       elements_kind = GetHoleyElementsKind(elements_kind);
417     }
418     return NewJSArray(elements_kind, 0, capacity, strength,
419                       INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE, pretenure);
420   }
421 
422   // Create a JSArray with the given elements.
423   Handle<JSArray> NewJSArrayWithElements(Handle<FixedArrayBase> elements,
424                                          ElementsKind elements_kind, int length,
425                                          Strength strength = Strength::WEAK,
426                                          PretenureFlag pretenure = NOT_TENURED);
427 
428   Handle<JSArray> NewJSArrayWithElements(
429       Handle<FixedArrayBase> elements,
430       ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
431       Strength strength = Strength::WEAK,
432       PretenureFlag pretenure = NOT_TENURED) {
433     return NewJSArrayWithElements(elements, elements_kind, elements->length(),
434                                   strength, pretenure);
435   }
436 
437   void NewJSArrayStorage(
438       Handle<JSArray> array,
439       int length,
440       int capacity,
441       ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS);
442 
443   Handle<JSGeneratorObject> NewJSGeneratorObject(Handle<JSFunction> function);
444 
445   Handle<JSArrayBuffer> NewJSArrayBuffer(
446       SharedFlag shared = SharedFlag::kNotShared,
447       PretenureFlag pretenure = NOT_TENURED);
448 
449   Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type,
450                                        PretenureFlag pretenure = NOT_TENURED);
451 
452   Handle<JSTypedArray> NewJSTypedArray(ElementsKind elements_kind,
453                                        PretenureFlag pretenure = NOT_TENURED);
454 
455   // Creates a new JSTypedArray with the specified buffer.
456   Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type,
457                                        Handle<JSArrayBuffer> buffer,
458                                        size_t byte_offset, size_t length,
459                                        PretenureFlag pretenure = NOT_TENURED);
460 
461   // Creates a new on-heap JSTypedArray.
462   Handle<JSTypedArray> NewJSTypedArray(ElementsKind elements_kind,
463                                        size_t number_of_elements,
464                                        PretenureFlag pretenure = NOT_TENURED);
465 
466   Handle<JSDataView> NewJSDataView();
467   Handle<JSDataView> NewJSDataView(Handle<JSArrayBuffer> buffer,
468                                    size_t byte_offset, size_t byte_length);
469 
470   Handle<JSMap> NewJSMap();
471   Handle<JSSet> NewJSSet();
472 
473   // TODO(aandrey): Maybe these should take table, index and kind arguments.
474   Handle<JSMapIterator> NewJSMapIterator();
475   Handle<JSSetIterator> NewJSSetIterator();
476 
477   // Creates a new JSIteratorResult object with the arguments {value} and
478   // {done}.  Implemented according to ES6 section 7.4.7 CreateIterResultObject.
479   Handle<JSIteratorResult> NewJSIteratorResult(Handle<Object> value,
480                                                Handle<Object> done);
481 
482   // Allocates a bound function.
483   MaybeHandle<JSBoundFunction> NewJSBoundFunction(
484       Handle<JSReceiver> target_function, Handle<Object> bound_this,
485       Vector<Handle<Object>> bound_args);
486 
487   // Allocates a Harmony proxy.
488   Handle<JSProxy> NewJSProxy(Handle<JSReceiver> target,
489                              Handle<JSReceiver> handler);
490 
491   // Reinitialize an JSGlobalProxy based on a constructor.  The object
492   // must have the same size as objects allocated using the
493   // constructor.  The object is reinitialized and behaves as an
494   // object that has been freshly allocated using the constructor.
495   void ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> global,
496                                  Handle<JSFunction> constructor);
497 
498   Handle<JSGlobalProxy> NewUninitializedJSGlobalProxy();
499 
500   Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code,
501                                  Handle<Object> prototype,
502                                  bool read_only_prototype = false,
503                                  bool is_strict = false);
504   Handle<JSFunction> NewFunction(Handle<String> name);
505   Handle<JSFunction> NewFunctionWithoutPrototype(Handle<String> name,
506                                                  Handle<Code> code,
507                                                  bool is_strict = false);
508 
509   Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
510       Handle<Map> initial_map, Handle<SharedFunctionInfo> function_info,
511       Handle<Context> context, PretenureFlag pretenure = TENURED);
512 
513   Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
514       Handle<SharedFunctionInfo> function_info, Handle<Context> context,
515       PretenureFlag pretenure = TENURED);
516 
517   Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code,
518                                  Handle<Object> prototype, InstanceType type,
519                                  int instance_size,
520                                  bool read_only_prototype = false,
521                                  bool install_constructor = false,
522                                  bool is_strict = false);
523   Handle<JSFunction> NewFunction(Handle<String> name,
524                                  Handle<Code> code,
525                                  InstanceType type,
526                                  int instance_size);
527   Handle<JSFunction> NewFunction(Handle<Map> map, Handle<String> name,
528                                  MaybeHandle<Code> maybe_code);
529 
530   // Create a serialized scope info.
531   Handle<ScopeInfo> NewScopeInfo(int length);
532 
533   // Create an External object for V8's external API.
534   Handle<JSObject> NewExternal(void* value);
535 
536   // The reference to the Code object is stored in self_reference.
537   // This allows generated code to reference its own Code object
538   // by containing this handle.
539   Handle<Code> NewCode(const CodeDesc& desc,
540                        Code::Flags flags,
541                        Handle<Object> self_reference,
542                        bool immovable = false,
543                        bool crankshafted = false,
544                        int prologue_offset = Code::kPrologueOffsetNotSet,
545                        bool is_debug = false);
546 
547   Handle<Code> CopyCode(Handle<Code> code);
548 
549   Handle<Code> CopyCode(Handle<Code> code, Vector<byte> reloc_info);
550 
551   // Interface for creating error objects.
552   Handle<Object> NewError(Handle<JSFunction> constructor,
553                           Handle<String> message);
554 
NewInvalidStringLengthError()555   Handle<Object> NewInvalidStringLengthError() {
556     return NewRangeError(MessageTemplate::kInvalidStringLength);
557   }
558 
559   Handle<Object> NewError(Handle<JSFunction> constructor,
560                           MessageTemplate::Template template_index,
561                           Handle<Object> arg0 = Handle<Object>(),
562                           Handle<Object> arg1 = Handle<Object>(),
563                           Handle<Object> arg2 = Handle<Object>());
564 
565 #define DECLARE_ERROR(NAME)                                          \
566   Handle<Object> New##NAME(MessageTemplate::Template template_index, \
567                            Handle<Object> arg0 = Handle<Object>(),   \
568                            Handle<Object> arg1 = Handle<Object>(),   \
569                            Handle<Object> arg2 = Handle<Object>());
570   DECLARE_ERROR(Error)
571   DECLARE_ERROR(EvalError)
572   DECLARE_ERROR(RangeError)
573   DECLARE_ERROR(ReferenceError)
574   DECLARE_ERROR(SyntaxError)
575   DECLARE_ERROR(TypeError)
576 #undef DEFINE_ERROR
577 
578   Handle<String> NumberToString(Handle<Object> number,
579                                 bool check_number_string_cache = true);
580 
Uint32ToString(uint32_t value)581   Handle<String> Uint32ToString(uint32_t value) {
582     return NumberToString(NewNumberFromUint(value));
583   }
584 
585   Handle<JSFunction> InstallMembers(Handle<JSFunction> function);
586 
587 #define ROOT_ACCESSOR(type, name, camel_name)                         \
588   inline Handle<type> name() {                                        \
589     return Handle<type>(bit_cast<type**>(                             \
590         &isolate()->heap()->roots_[Heap::k##camel_name##RootIndex])); \
591   }
592   ROOT_LIST(ROOT_ACCESSOR)
593 #undef ROOT_ACCESSOR
594 
595 #define STRUCT_MAP_ACCESSOR(NAME, Name, name)                      \
596   inline Handle<Map> name##_map() {                                \
597     return Handle<Map>(bit_cast<Map**>(                            \
598         &isolate()->heap()->roots_[Heap::k##Name##MapRootIndex])); \
599   }
600   STRUCT_LIST(STRUCT_MAP_ACCESSOR)
601 #undef STRUCT_MAP_ACCESSOR
602 
603 #define STRING_ACCESSOR(name, str)                              \
604   inline Handle<String> name() {                                \
605     return Handle<String>(bit_cast<String**>(                   \
606         &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
607   }
608   INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
609 #undef STRING_ACCESSOR
610 
611 #define SYMBOL_ACCESSOR(name)                                   \
612   inline Handle<Symbol> name() {                                \
613     return Handle<Symbol>(bit_cast<Symbol**>(                   \
614         &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
615   }
616   PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
617 #undef SYMBOL_ACCESSOR
618 
619 #define SYMBOL_ACCESSOR(name, description)                      \
620   inline Handle<Symbol> name() {                                \
621     return Handle<Symbol>(bit_cast<Symbol**>(                   \
622         &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
623   }
624   PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
625   WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
626 #undef SYMBOL_ACCESSOR
627 
628   // Allocates a new SharedFunctionInfo object.
629   Handle<SharedFunctionInfo> NewSharedFunctionInfo(
630       Handle<String> name, int number_of_literals, FunctionKind kind,
631       Handle<Code> code, Handle<ScopeInfo> scope_info,
632       Handle<TypeFeedbackVector> feedback_vector);
633   Handle<SharedFunctionInfo> NewSharedFunctionInfo(Handle<String> name,
634                                                    MaybeHandle<Code> code,
635                                                    bool is_constructor);
636 
637   // Allocates a new JSMessageObject object.
638   Handle<JSMessageObject> NewJSMessageObject(MessageTemplate::Template message,
639                                              Handle<Object> argument,
640                                              int start_position,
641                                              int end_position,
642                                              Handle<Object> script,
643                                              Handle<Object> stack_frames);
644 
645   Handle<DebugInfo> NewDebugInfo(Handle<SharedFunctionInfo> shared);
646 
647   // Return a map for given number of properties using the map cache in the
648   // native context.
649   Handle<Map> ObjectLiteralMapFromCache(Handle<Context> context,
650                                         int number_of_properties,
651                                         bool is_strong,
652                                         bool* is_result_from_cache);
653 
654   // Creates a new FixedArray that holds the data associated with the
655   // atom regexp and stores it in the regexp.
656   void SetRegExpAtomData(Handle<JSRegExp> regexp,
657                          JSRegExp::Type type,
658                          Handle<String> source,
659                          JSRegExp::Flags flags,
660                          Handle<Object> match_pattern);
661 
662   // Creates a new FixedArray that holds the data associated with the
663   // irregexp regexp and stores it in the regexp.
664   void SetRegExpIrregexpData(Handle<JSRegExp> regexp,
665                              JSRegExp::Type type,
666                              Handle<String> source,
667                              JSRegExp::Flags flags,
668                              int capture_count);
669 
670   // Returns the value for a known global constant (a property of the global
671   // object which is neither configurable nor writable) like 'undefined'.
672   // Returns a null handle when the given name is unknown.
673   Handle<Object> GlobalConstantFor(Handle<Name> name);
674 
675   // Converts the given boolean condition to JavaScript boolean value.
676   Handle<Object> ToBoolean(bool value);
677 
678  private:
isolate()679   Isolate* isolate() { return reinterpret_cast<Isolate*>(this); }
680 
681   // Creates a heap object based on the map. The fields of the heap object are
682   // not initialized by New<>() functions. It's the responsibility of the caller
683   // to do that.
684   template<typename T>
685   Handle<T> New(Handle<Map> map, AllocationSpace space);
686 
687   template<typename T>
688   Handle<T> New(Handle<Map> map,
689                 AllocationSpace space,
690                 Handle<AllocationSite> allocation_site);
691 
692   // Creates a code object that is not yet fully initialized yet.
693   inline Handle<Code> NewCodeRaw(int object_size, bool immovable);
694 
695   // Attempt to find the number in a small cache.  If we finds it, return
696   // the string representation of the number.  Otherwise return undefined.
697   Handle<Object> GetNumberStringCache(Handle<Object> number);
698 
699   // Update the cache with a new number-string pair.
700   void SetNumberStringCache(Handle<Object> number, Handle<String> string);
701 
702   // Creates a function initialized with a shared part.
703   Handle<JSFunction> NewFunction(Handle<Map> map,
704                                  Handle<SharedFunctionInfo> info,
705                                  Handle<Context> context,
706                                  PretenureFlag pretenure = TENURED);
707 };
708 
709 }  // namespace internal
710 }  // namespace v8
711 
712 #endif  // V8_FACTORY_H_
713