• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/process/launch.h"
6 
7 #include <dirent.h>
8 #include <errno.h>
9 #include <fcntl.h>
10 #include <sched.h>
11 #include <setjmp.h>
12 #include <signal.h>
13 #include <stddef.h>
14 #include <stdint.h>
15 #include <stdlib.h>
16 #include <sys/resource.h>
17 #include <sys/syscall.h>
18 #include <sys/time.h>
19 #include <sys/types.h>
20 #include <sys/wait.h>
21 #include <unistd.h>
22 
23 #include <iterator>
24 #include <limits>
25 #include <set>
26 
27 #include "base/command_line.h"
28 #include "base/compiler_specific.h"
29 #include "base/debug/debugger.h"
30 #include "base/debug/stack_trace.h"
31 #include "base/files/dir_reader_posix.h"
32 #include "base/files/file_util.h"
33 #include "base/files/scoped_file.h"
34 #include "base/logging.h"
35 #include "base/memory/scoped_ptr.h"
36 #include "base/posix/eintr_wrapper.h"
37 #include "base/process/process.h"
38 #include "base/process/process_metrics.h"
39 #include "base/strings/stringprintf.h"
40 #include "base/synchronization/waitable_event.h"
41 #include "base/threading/platform_thread.h"
42 #include "base/threading/thread_restrictions.h"
43 #include "build/build_config.h"
44 #include "third_party/valgrind/valgrind.h"
45 
46 #if defined(OS_LINUX)
47 #include <sys/prctl.h>
48 #endif
49 
50 #if defined(OS_CHROMEOS)
51 #include <sys/ioctl.h>
52 #endif
53 
54 #if defined(OS_FREEBSD)
55 #include <sys/event.h>
56 #include <sys/ucontext.h>
57 #endif
58 
59 #if defined(OS_MACOSX)
60 #include <crt_externs.h>
61 #include <sys/event.h>
62 #else
63 extern char** environ;
64 #endif
65 
66 namespace base {
67 
68 #if !defined(OS_NACL_NONSFI)
69 
70 namespace {
71 
72 // Get the process's "environment" (i.e. the thing that setenv/getenv
73 // work with).
GetEnvironment()74 char** GetEnvironment() {
75 #if defined(OS_MACOSX)
76   return *_NSGetEnviron();
77 #else
78   return environ;
79 #endif
80 }
81 
82 // Set the process's "environment" (i.e. the thing that setenv/getenv
83 // work with).
SetEnvironment(char ** env)84 void SetEnvironment(char** env) {
85 #if defined(OS_MACOSX)
86   *_NSGetEnviron() = env;
87 #else
88   environ = env;
89 #endif
90 }
91 
92 // Set the calling thread's signal mask to new_sigmask and return
93 // the previous signal mask.
SetSignalMask(const sigset_t & new_sigmask)94 sigset_t SetSignalMask(const sigset_t& new_sigmask) {
95   sigset_t old_sigmask;
96 #if defined(OS_ANDROID)
97   // POSIX says pthread_sigmask() must be used in multi-threaded processes,
98   // but Android's pthread_sigmask() was broken until 4.1:
99   // https://code.google.com/p/android/issues/detail?id=15337
100   // http://stackoverflow.com/questions/13777109/pthread-sigmask-on-android-not-working
101   RAW_CHECK(sigprocmask(SIG_SETMASK, &new_sigmask, &old_sigmask) == 0);
102 #else
103   RAW_CHECK(pthread_sigmask(SIG_SETMASK, &new_sigmask, &old_sigmask) == 0);
104 #endif
105   return old_sigmask;
106 }
107 
108 #if !defined(OS_LINUX) || \
109     (!defined(__i386__) && !defined(__x86_64__) && !defined(__arm__))
ResetChildSignalHandlersToDefaults()110 void ResetChildSignalHandlersToDefaults() {
111   // The previous signal handlers are likely to be meaningless in the child's
112   // context so we reset them to the defaults for now. http://crbug.com/44953
113   // These signal handlers are set up at least in browser_main_posix.cc:
114   // BrowserMainPartsPosix::PreEarlyInitialization and stack_trace_posix.cc:
115   // EnableInProcessStackDumping.
116   signal(SIGHUP, SIG_DFL);
117   signal(SIGINT, SIG_DFL);
118   signal(SIGILL, SIG_DFL);
119   signal(SIGABRT, SIG_DFL);
120   signal(SIGFPE, SIG_DFL);
121   signal(SIGBUS, SIG_DFL);
122   signal(SIGSEGV, SIG_DFL);
123   signal(SIGSYS, SIG_DFL);
124   signal(SIGTERM, SIG_DFL);
125 }
126 
127 #else
128 
129 // TODO(jln): remove the Linux special case once kernels are fixed.
130 
131 // Internally the kernel makes sigset_t an array of long large enough to have
132 // one bit per signal.
133 typedef uint64_t kernel_sigset_t;
134 
135 // This is what struct sigaction looks like to the kernel at least on X86 and
136 // ARM. MIPS, for instance, is very different.
137 struct kernel_sigaction {
138   void* k_sa_handler;  // For this usage it only needs to be a generic pointer.
139   unsigned long k_sa_flags;
140   void* k_sa_restorer;  // For this usage it only needs to be a generic pointer.
141   kernel_sigset_t k_sa_mask;
142 };
143 
144 // glibc's sigaction() will prevent access to sa_restorer, so we need to roll
145 // our own.
sys_rt_sigaction(int sig,const struct kernel_sigaction * act,struct kernel_sigaction * oact)146 int sys_rt_sigaction(int sig, const struct kernel_sigaction* act,
147                      struct kernel_sigaction* oact) {
148   return syscall(SYS_rt_sigaction, sig, act, oact, sizeof(kernel_sigset_t));
149 }
150 
151 // This function is intended to be used in between fork() and execve() and will
152 // reset all signal handlers to the default.
153 // The motivation for going through all of them is that sa_restorer can leak
154 // from parents and help defeat ASLR on buggy kernels.  We reset it to NULL.
155 // See crbug.com/177956.
ResetChildSignalHandlersToDefaults(void)156 void ResetChildSignalHandlersToDefaults(void) {
157   for (int signum = 1; ; ++signum) {
158     struct kernel_sigaction act;
159     memset(&act, 0, sizeof(act));
160     int sigaction_get_ret = sys_rt_sigaction(signum, NULL, &act);
161     if (sigaction_get_ret && errno == EINVAL) {
162 #if !defined(NDEBUG)
163       // Linux supports 32 real-time signals from 33 to 64.
164       // If the number of signals in the Linux kernel changes, someone should
165       // look at this code.
166       const int kNumberOfSignals = 64;
167       RAW_CHECK(signum == kNumberOfSignals + 1);
168 #endif  // !defined(NDEBUG)
169       break;
170     }
171     // All other failures are fatal.
172     if (sigaction_get_ret) {
173       RAW_LOG(FATAL, "sigaction (get) failed.");
174     }
175 
176     // The kernel won't allow to re-set SIGKILL or SIGSTOP.
177     if (signum != SIGSTOP && signum != SIGKILL) {
178       act.k_sa_handler = reinterpret_cast<void*>(SIG_DFL);
179       act.k_sa_restorer = NULL;
180       if (sys_rt_sigaction(signum, &act, NULL)) {
181         RAW_LOG(FATAL, "sigaction (set) failed.");
182       }
183     }
184 #if !defined(NDEBUG)
185     // Now ask the kernel again and check that no restorer will leak.
186     if (sys_rt_sigaction(signum, NULL, &act) || act.k_sa_restorer) {
187       RAW_LOG(FATAL, "Cound not fix sa_restorer.");
188     }
189 #endif  // !defined(NDEBUG)
190   }
191 }
192 #endif  // !defined(OS_LINUX) ||
193         // (!defined(__i386__) && !defined(__x86_64__) && !defined(__arm__))
194 }  // anonymous namespace
195 
196 // Functor for |ScopedDIR| (below).
197 struct ScopedDIRClose {
operator ()base::ScopedDIRClose198   inline void operator()(DIR* x) const {
199     if (x)
200       closedir(x);
201   }
202 };
203 
204 // Automatically closes |DIR*|s.
205 typedef scoped_ptr<DIR, ScopedDIRClose> ScopedDIR;
206 
207 #if defined(OS_LINUX)
208 static const char kFDDir[] = "/proc/self/fd";
209 #elif defined(OS_MACOSX)
210 static const char kFDDir[] = "/dev/fd";
211 #elif defined(OS_SOLARIS)
212 static const char kFDDir[] = "/dev/fd";
213 #elif defined(OS_FREEBSD)
214 static const char kFDDir[] = "/dev/fd";
215 #elif defined(OS_OPENBSD)
216 static const char kFDDir[] = "/dev/fd";
217 #elif defined(OS_ANDROID)
218 static const char kFDDir[] = "/proc/self/fd";
219 #endif
220 
CloseSuperfluousFds(const base::InjectiveMultimap & saved_mapping)221 void CloseSuperfluousFds(const base::InjectiveMultimap& saved_mapping) {
222   // DANGER: no calls to malloc or locks are allowed from now on:
223   // http://crbug.com/36678
224 
225   // Get the maximum number of FDs possible.
226   size_t max_fds = GetMaxFds();
227 
228   DirReaderPosix fd_dir(kFDDir);
229   if (!fd_dir.IsValid()) {
230     // Fallback case: Try every possible fd.
231     for (size_t i = 0; i < max_fds; ++i) {
232       const int fd = static_cast<int>(i);
233       if (fd == STDIN_FILENO || fd == STDOUT_FILENO || fd == STDERR_FILENO)
234         continue;
235       // Cannot use STL iterators here, since debug iterators use locks.
236       size_t j;
237       for (j = 0; j < saved_mapping.size(); j++) {
238         if (fd == saved_mapping[j].dest)
239           break;
240       }
241       if (j < saved_mapping.size())
242         continue;
243 
244       // Since we're just trying to close anything we can find,
245       // ignore any error return values of close().
246       close(fd);
247     }
248     return;
249   }
250 
251   const int dir_fd = fd_dir.fd();
252 
253   for ( ; fd_dir.Next(); ) {
254     // Skip . and .. entries.
255     if (fd_dir.name()[0] == '.')
256       continue;
257 
258     char *endptr;
259     errno = 0;
260     const long int fd = strtol(fd_dir.name(), &endptr, 10);
261     if (fd_dir.name()[0] == 0 || *endptr || fd < 0 || errno)
262       continue;
263     if (fd == STDIN_FILENO || fd == STDOUT_FILENO || fd == STDERR_FILENO)
264       continue;
265     // Cannot use STL iterators here, since debug iterators use locks.
266     size_t i;
267     for (i = 0; i < saved_mapping.size(); i++) {
268       if (fd == saved_mapping[i].dest)
269         break;
270     }
271     if (i < saved_mapping.size())
272       continue;
273     if (fd == dir_fd)
274       continue;
275 
276     // When running under Valgrind, Valgrind opens several FDs for its
277     // own use and will complain if we try to close them.  All of
278     // these FDs are >= |max_fds|, so we can check against that here
279     // before closing.  See https://bugs.kde.org/show_bug.cgi?id=191758
280     if (fd < static_cast<int>(max_fds)) {
281       int ret = IGNORE_EINTR(close(fd));
282       DPCHECK(ret == 0);
283     }
284   }
285 }
286 
LaunchProcess(const CommandLine & cmdline,const LaunchOptions & options)287 Process LaunchProcess(const CommandLine& cmdline,
288                       const LaunchOptions& options) {
289   return LaunchProcess(cmdline.argv(), options);
290 }
291 
LaunchProcess(const std::vector<std::string> & argv,const LaunchOptions & options)292 Process LaunchProcess(const std::vector<std::string>& argv,
293                       const LaunchOptions& options) {
294   size_t fd_shuffle_size = 0;
295   if (options.fds_to_remap) {
296     fd_shuffle_size = options.fds_to_remap->size();
297   }
298 
299   InjectiveMultimap fd_shuffle1;
300   InjectiveMultimap fd_shuffle2;
301   fd_shuffle1.reserve(fd_shuffle_size);
302   fd_shuffle2.reserve(fd_shuffle_size);
303 
304   scoped_ptr<char* []> argv_cstr(new char* [argv.size() + 1]);
305   for (size_t i = 0; i < argv.size(); i++) {
306     argv_cstr[i] = const_cast<char*>(argv[i].c_str());
307   }
308   argv_cstr[argv.size()] = NULL;
309 
310   scoped_ptr<char*[]> new_environ;
311   char* const empty_environ = NULL;
312   char* const* old_environ = GetEnvironment();
313   if (options.clear_environ)
314     old_environ = &empty_environ;
315   if (!options.environ.empty())
316     new_environ = AlterEnvironment(old_environ, options.environ);
317 
318   sigset_t full_sigset;
319   sigfillset(&full_sigset);
320   const sigset_t orig_sigmask = SetSignalMask(full_sigset);
321 
322   const char* current_directory = nullptr;
323   if (!options.current_directory.empty()) {
324     current_directory = options.current_directory.value().c_str();
325   }
326 
327   pid_t pid;
328 #if defined(OS_LINUX)
329   if (options.clone_flags) {
330     // Signal handling in this function assumes the creation of a new
331     // process, so we check that a thread is not being created by mistake
332     // and that signal handling follows the process-creation rules.
333     RAW_CHECK(
334         !(options.clone_flags & (CLONE_SIGHAND | CLONE_THREAD | CLONE_VM)));
335 
336     // We specify a null ptid and ctid.
337     RAW_CHECK(
338         !(options.clone_flags &
339           (CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT_SETTID)));
340 
341     // Since we use waitpid, we do not support custom termination signals in the
342     // clone flags.
343     RAW_CHECK((options.clone_flags & 0xff) == 0);
344 
345     pid = ForkWithFlags(options.clone_flags | SIGCHLD, nullptr, nullptr);
346   } else
347 #endif
348   {
349     pid = fork();
350   }
351 
352   // Always restore the original signal mask in the parent.
353   if (pid != 0) {
354     SetSignalMask(orig_sigmask);
355   }
356 
357   if (pid < 0) {
358     DPLOG(ERROR) << "fork";
359     return Process();
360   } else if (pid == 0) {
361     // Child process
362 
363     // DANGER: no calls to malloc or locks are allowed from now on:
364     // http://crbug.com/36678
365 
366     // DANGER: fork() rule: in the child, if you don't end up doing exec*(),
367     // you call _exit() instead of exit(). This is because _exit() does not
368     // call any previously-registered (in the parent) exit handlers, which
369     // might do things like block waiting for threads that don't even exist
370     // in the child.
371 
372     // If a child process uses the readline library, the process block forever.
373     // In BSD like OSes including OS X it is safe to assign /dev/null as stdin.
374     // See http://crbug.com/56596.
375     base::ScopedFD null_fd(HANDLE_EINTR(open("/dev/null", O_RDONLY)));
376     if (!null_fd.is_valid()) {
377       RAW_LOG(ERROR, "Failed to open /dev/null");
378       _exit(127);
379     }
380 
381     int new_fd = HANDLE_EINTR(dup2(null_fd.get(), STDIN_FILENO));
382     if (new_fd != STDIN_FILENO) {
383       RAW_LOG(ERROR, "Failed to dup /dev/null for stdin");
384       _exit(127);
385     }
386 
387     if (options.new_process_group) {
388       // Instead of inheriting the process group ID of the parent, the child
389       // starts off a new process group with pgid equal to its process ID.
390       if (setpgid(0, 0) < 0) {
391         RAW_LOG(ERROR, "setpgid failed");
392         _exit(127);
393       }
394     }
395 
396     if (options.maximize_rlimits) {
397       // Some resource limits need to be maximal in this child.
398       for (size_t i = 0; i < options.maximize_rlimits->size(); ++i) {
399         const int resource = (*options.maximize_rlimits)[i];
400         struct rlimit limit;
401         if (getrlimit(resource, &limit) < 0) {
402           RAW_LOG(WARNING, "getrlimit failed");
403         } else if (limit.rlim_cur < limit.rlim_max) {
404           limit.rlim_cur = limit.rlim_max;
405           if (setrlimit(resource, &limit) < 0) {
406             RAW_LOG(WARNING, "setrlimit failed");
407           }
408         }
409       }
410     }
411 
412 #if defined(OS_MACOSX)
413     RestoreDefaultExceptionHandler();
414 #endif  // defined(OS_MACOSX)
415 
416     ResetChildSignalHandlersToDefaults();
417     SetSignalMask(orig_sigmask);
418 
419 #if 0
420     // When debugging it can be helpful to check that we really aren't making
421     // any hidden calls to malloc.
422     void *malloc_thunk =
423         reinterpret_cast<void*>(reinterpret_cast<intptr_t>(malloc) & ~4095);
424     mprotect(malloc_thunk, 4096, PROT_READ | PROT_WRITE | PROT_EXEC);
425     memset(reinterpret_cast<void*>(malloc), 0xff, 8);
426 #endif  // 0
427 
428 #if defined(OS_CHROMEOS)
429     if (options.ctrl_terminal_fd >= 0) {
430       // Set process' controlling terminal.
431       if (HANDLE_EINTR(setsid()) != -1) {
432         if (HANDLE_EINTR(
433                 ioctl(options.ctrl_terminal_fd, TIOCSCTTY, NULL)) == -1) {
434           RAW_LOG(WARNING, "ioctl(TIOCSCTTY), ctrl terminal not set");
435         }
436       } else {
437         RAW_LOG(WARNING, "setsid failed, ctrl terminal not set");
438       }
439     }
440 #endif  // defined(OS_CHROMEOS)
441 
442     if (options.fds_to_remap) {
443       // Cannot use STL iterators here, since debug iterators use locks.
444       for (size_t i = 0; i < options.fds_to_remap->size(); ++i) {
445         const FileHandleMappingVector::value_type& value =
446             (*options.fds_to_remap)[i];
447         fd_shuffle1.push_back(InjectionArc(value.first, value.second, false));
448         fd_shuffle2.push_back(InjectionArc(value.first, value.second, false));
449       }
450     }
451 
452     if (!options.environ.empty() || options.clear_environ)
453       SetEnvironment(new_environ.get());
454 
455     // fd_shuffle1 is mutated by this call because it cannot malloc.
456     if (!ShuffleFileDescriptors(&fd_shuffle1))
457       _exit(127);
458 
459     CloseSuperfluousFds(fd_shuffle2);
460 
461     // Set NO_NEW_PRIVS by default. Since NO_NEW_PRIVS only exists in kernel
462     // 3.5+, do not check the return value of prctl here.
463 #if defined(OS_LINUX)
464 #ifndef PR_SET_NO_NEW_PRIVS
465 #define PR_SET_NO_NEW_PRIVS 38
466 #endif
467     if (!options.allow_new_privs) {
468       if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) && errno != EINVAL) {
469         // Only log if the error is not EINVAL (i.e. not supported).
470         RAW_LOG(FATAL, "prctl(PR_SET_NO_NEW_PRIVS) failed");
471       }
472     }
473 
474     if (options.kill_on_parent_death) {
475       if (prctl(PR_SET_PDEATHSIG, SIGKILL) != 0) {
476         RAW_LOG(ERROR, "prctl(PR_SET_PDEATHSIG) failed");
477         _exit(127);
478       }
479     }
480 #endif
481 
482     if (current_directory != nullptr) {
483       RAW_CHECK(chdir(current_directory) == 0);
484     }
485 
486     if (options.pre_exec_delegate != nullptr) {
487       options.pre_exec_delegate->RunAsyncSafe();
488     }
489 
490     execvp(argv_cstr[0], argv_cstr.get());
491 
492     RAW_LOG(ERROR, "LaunchProcess: failed to execvp:");
493     RAW_LOG(ERROR, argv_cstr[0]);
494     _exit(127);
495   } else {
496     // Parent process
497     if (options.wait) {
498       // While this isn't strictly disk IO, waiting for another process to
499       // finish is the sort of thing ThreadRestrictions is trying to prevent.
500       base::ThreadRestrictions::AssertIOAllowed();
501       pid_t ret = HANDLE_EINTR(waitpid(pid, 0, 0));
502       DPCHECK(ret > 0);
503     }
504   }
505 
506   return Process(pid);
507 }
508 
RaiseProcessToHighPriority()509 void RaiseProcessToHighPriority() {
510   // On POSIX, we don't actually do anything here.  We could try to nice() or
511   // setpriority() or sched_getscheduler, but these all require extra rights.
512 }
513 
514 // Return value used by GetAppOutputInternal to encapsulate the various exit
515 // scenarios from the function.
516 enum GetAppOutputInternalResult {
517   EXECUTE_FAILURE,
518   EXECUTE_SUCCESS,
519   GOT_MAX_OUTPUT,
520 };
521 
522 // Executes the application specified by |argv| and wait for it to exit. Stores
523 // the output (stdout) in |output|. If |do_search_path| is set, it searches the
524 // path for the application; in that case, |envp| must be null, and it will use
525 // the current environment. If |do_search_path| is false, |argv[0]| should fully
526 // specify the path of the application, and |envp| will be used as the
527 // environment. If |include_stderr| is true, includes stderr otherwise redirects
528 // it to /dev/null.
529 // If we successfully start the application and get all requested output, we
530 // return GOT_MAX_OUTPUT, or if there is a problem starting or exiting
531 // the application we return RUN_FAILURE. Otherwise we return EXECUTE_SUCCESS.
532 // The GOT_MAX_OUTPUT return value exists so a caller that asks for limited
533 // output can treat this as a success, despite having an exit code of SIG_PIPE
534 // due to us closing the output pipe.
535 // In the case of EXECUTE_SUCCESS, the application exit code will be returned
536 // in |*exit_code|, which should be checked to determine if the application
537 // ran successfully.
GetAppOutputInternal(const std::vector<std::string> & argv,char * const envp[],bool include_stderr,std::string * output,size_t max_output,bool do_search_path,int * exit_code)538 static GetAppOutputInternalResult GetAppOutputInternal(
539     const std::vector<std::string>& argv,
540     char* const envp[],
541     bool include_stderr,
542     std::string* output,
543     size_t max_output,
544     bool do_search_path,
545     int* exit_code) {
546   // Doing a blocking wait for another command to finish counts as IO.
547   base::ThreadRestrictions::AssertIOAllowed();
548   // exit_code must be supplied so calling function can determine success.
549   DCHECK(exit_code);
550   *exit_code = EXIT_FAILURE;
551 
552   int pipe_fd[2];
553   pid_t pid;
554   InjectiveMultimap fd_shuffle1, fd_shuffle2;
555   scoped_ptr<char*[]> argv_cstr(new char*[argv.size() + 1]);
556 
557   fd_shuffle1.reserve(3);
558   fd_shuffle2.reserve(3);
559 
560   // Either |do_search_path| should be false or |envp| should be null, but not
561   // both.
562   DCHECK(!do_search_path ^ !envp);
563 
564   if (pipe(pipe_fd) < 0)
565     return EXECUTE_FAILURE;
566 
567   switch (pid = fork()) {
568     case -1:  // error
569       close(pipe_fd[0]);
570       close(pipe_fd[1]);
571       return EXECUTE_FAILURE;
572     case 0:  // child
573       {
574         // DANGER: no calls to malloc or locks are allowed from now on:
575         // http://crbug.com/36678
576 
577 #if defined(OS_MACOSX)
578         RestoreDefaultExceptionHandler();
579 #endif
580 
581         // Obscure fork() rule: in the child, if you don't end up doing exec*(),
582         // you call _exit() instead of exit(). This is because _exit() does not
583         // call any previously-registered (in the parent) exit handlers, which
584         // might do things like block waiting for threads that don't even exist
585         // in the child.
586         int dev_null = open("/dev/null", O_WRONLY);
587         if (dev_null < 0)
588           _exit(127);
589 
590         fd_shuffle1.push_back(InjectionArc(pipe_fd[1], STDOUT_FILENO, true));
591         fd_shuffle1.push_back(InjectionArc(
592             include_stderr ? pipe_fd[1] : dev_null,
593             STDERR_FILENO, true));
594         fd_shuffle1.push_back(InjectionArc(dev_null, STDIN_FILENO, true));
595         // Adding another element here? Remeber to increase the argument to
596         // reserve(), above.
597 
598         for (size_t i = 0; i < fd_shuffle1.size(); ++i)
599           fd_shuffle2.push_back(fd_shuffle1[i]);
600 
601         if (!ShuffleFileDescriptors(&fd_shuffle1))
602           _exit(127);
603 
604         CloseSuperfluousFds(fd_shuffle2);
605 
606         for (size_t i = 0; i < argv.size(); i++)
607           argv_cstr[i] = const_cast<char*>(argv[i].c_str());
608         argv_cstr[argv.size()] = NULL;
609         if (do_search_path)
610           execvp(argv_cstr[0], argv_cstr.get());
611         else
612           execve(argv_cstr[0], argv_cstr.get(), envp);
613         _exit(127);
614       }
615     default:  // parent
616       {
617         // Close our writing end of pipe now. Otherwise later read would not
618         // be able to detect end of child's output (in theory we could still
619         // write to the pipe).
620         close(pipe_fd[1]);
621 
622         output->clear();
623         char buffer[256];
624         size_t output_buf_left = max_output;
625         ssize_t bytes_read = 1;  // A lie to properly handle |max_output == 0|
626                                  // case in the logic below.
627 
628         while (output_buf_left > 0) {
629           bytes_read = HANDLE_EINTR(read(pipe_fd[0], buffer,
630                                     std::min(output_buf_left, sizeof(buffer))));
631           if (bytes_read <= 0)
632             break;
633           output->append(buffer, bytes_read);
634           output_buf_left -= static_cast<size_t>(bytes_read);
635         }
636         close(pipe_fd[0]);
637 
638         // Always wait for exit code (even if we know we'll declare
639         // GOT_MAX_OUTPUT).
640         Process process(pid);
641         bool success = process.WaitForExit(exit_code);
642 
643         // If we stopped because we read as much as we wanted, we return
644         // GOT_MAX_OUTPUT (because the child may exit due to |SIGPIPE|).
645         if (!output_buf_left && bytes_read > 0)
646           return GOT_MAX_OUTPUT;
647         else if (success)
648           return EXECUTE_SUCCESS;
649         return EXECUTE_FAILURE;
650       }
651   }
652 }
653 
GetAppOutput(const CommandLine & cl,std::string * output)654 bool GetAppOutput(const CommandLine& cl, std::string* output) {
655   return GetAppOutput(cl.argv(), output);
656 }
657 
GetAppOutput(const std::vector<std::string> & argv,std::string * output)658 bool GetAppOutput(const std::vector<std::string>& argv, std::string* output) {
659   // Run |execve()| with the current environment and store "unlimited" data.
660   int exit_code;
661   GetAppOutputInternalResult result = GetAppOutputInternal(
662       argv, NULL, false, output, std::numeric_limits<std::size_t>::max(), true,
663       &exit_code);
664   return result == EXECUTE_SUCCESS && exit_code == EXIT_SUCCESS;
665 }
666 
GetAppOutputAndError(const CommandLine & cl,std::string * output)667 bool GetAppOutputAndError(const CommandLine& cl, std::string* output) {
668   // Run |execve()| with the current environment and store "unlimited" data.
669   int exit_code;
670   GetAppOutputInternalResult result = GetAppOutputInternal(
671       cl.argv(), NULL, true, output, std::numeric_limits<std::size_t>::max(),
672       true, &exit_code);
673   return result == EXECUTE_SUCCESS && exit_code == EXIT_SUCCESS;
674 }
675 
676 // TODO(viettrungluu): Conceivably, we should have a timeout as well, so we
677 // don't hang if what we're calling hangs.
GetAppOutputRestricted(const CommandLine & cl,std::string * output,size_t max_output)678 bool GetAppOutputRestricted(const CommandLine& cl,
679                             std::string* output, size_t max_output) {
680   // Run |execve()| with the empty environment.
681   char* const empty_environ = NULL;
682   int exit_code;
683   GetAppOutputInternalResult result = GetAppOutputInternal(
684       cl.argv(), &empty_environ, false, output, max_output, false, &exit_code);
685   return result == GOT_MAX_OUTPUT || (result == EXECUTE_SUCCESS &&
686                                       exit_code == EXIT_SUCCESS);
687 }
688 
GetAppOutputWithExitCode(const CommandLine & cl,std::string * output,int * exit_code)689 bool GetAppOutputWithExitCode(const CommandLine& cl,
690                               std::string* output,
691                               int* exit_code) {
692   // Run |execve()| with the current environment and store "unlimited" data.
693   GetAppOutputInternalResult result = GetAppOutputInternal(
694       cl.argv(), NULL, false, output, std::numeric_limits<std::size_t>::max(),
695       true, exit_code);
696   return result == EXECUTE_SUCCESS;
697 }
698 
699 #endif  // !defined(OS_NACL_NONSFI)
700 
701 #if defined(OS_LINUX) || defined(OS_NACL_NONSFI)
702 namespace {
703 
IsRunningOnValgrind()704 bool IsRunningOnValgrind() {
705   return RUNNING_ON_VALGRIND;
706 }
707 
708 // This function runs on the stack specified on the clone call. It uses longjmp
709 // to switch back to the original stack so the child can return from sys_clone.
CloneHelper(void * arg)710 int CloneHelper(void* arg) {
711   jmp_buf* env_ptr = reinterpret_cast<jmp_buf*>(arg);
712   longjmp(*env_ptr, 1);
713 
714   // Should not be reached.
715   RAW_CHECK(false);
716   return 1;
717 }
718 
719 // This function is noinline to ensure that stack_buf is below the stack pointer
720 // that is saved when setjmp is called below. This is needed because when
721 // compiled with FORTIFY_SOURCE, glibc's longjmp checks that the stack is moved
722 // upwards. See crbug.com/442912 for more details.
723 #if defined(ADDRESS_SANITIZER)
724 // Disable AddressSanitizer instrumentation for this function to make sure
725 // |stack_buf| is allocated on thread stack instead of ASan's fake stack.
726 // Under ASan longjmp() will attempt to clean up the area between the old and
727 // new stack pointers and print a warning that may confuse the user.
728 __attribute__((no_sanitize_address))
729 #endif
CloneAndLongjmpInChild(unsigned long flags,pid_t * ptid,pid_t * ctid,jmp_buf * env)730 NOINLINE pid_t CloneAndLongjmpInChild(unsigned long flags,
731                                       pid_t* ptid,
732                                       pid_t* ctid,
733                                       jmp_buf* env) {
734   // We use the libc clone wrapper instead of making the syscall
735   // directly because making the syscall may fail to update the libc's
736   // internal pid cache. The libc interface unfortunately requires
737   // specifying a new stack, so we use setjmp/longjmp to emulate
738   // fork-like behavior.
739   char stack_buf[PTHREAD_STACK_MIN];
740 #if defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY) || \
741     defined(ARCH_CPU_MIPS64_FAMILY) || defined(ARCH_CPU_MIPS_FAMILY)
742   // The stack grows downward.
743   void* stack = stack_buf + sizeof(stack_buf);
744 #else
745 #error "Unsupported architecture"
746 #endif
747   return clone(&CloneHelper, stack, flags, env, ptid, nullptr, ctid);
748 }
749 
750 }  // anonymous namespace
751 
ForkWithFlags(unsigned long flags,pid_t * ptid,pid_t * ctid)752 pid_t ForkWithFlags(unsigned long flags, pid_t* ptid, pid_t* ctid) {
753   const bool clone_tls_used = flags & CLONE_SETTLS;
754   const bool invalid_ctid =
755       (flags & (CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID)) && !ctid;
756   const bool invalid_ptid = (flags & CLONE_PARENT_SETTID) && !ptid;
757 
758   // We do not support CLONE_VM.
759   const bool clone_vm_used = flags & CLONE_VM;
760 
761   if (clone_tls_used || invalid_ctid || invalid_ptid || clone_vm_used) {
762     RAW_LOG(FATAL, "Invalid usage of ForkWithFlags");
763   }
764 
765   // Valgrind's clone implementation does not support specifiying a child_stack
766   // without CLONE_VM, so we cannot use libc's clone wrapper when running under
767   // Valgrind. As a result, the libc pid cache may be incorrect under Valgrind.
768   // See crbug.com/442817 for more details.
769   if (IsRunningOnValgrind()) {
770     // See kernel/fork.c in Linux. There is different ordering of sys_clone
771     // parameters depending on CONFIG_CLONE_BACKWARDS* configuration options.
772 #if defined(ARCH_CPU_X86_64)
773     return syscall(__NR_clone, flags, nullptr, ptid, ctid, nullptr);
774 #elif defined(ARCH_CPU_X86) || defined(ARCH_CPU_ARM_FAMILY) || \
775     defined(ARCH_CPU_MIPS_FAMILY) || defined(ARCH_CPU_MIPS64_FAMILY)
776     // CONFIG_CLONE_BACKWARDS defined.
777     return syscall(__NR_clone, flags, nullptr, ptid, nullptr, ctid);
778 #else
779 #error "Unsupported architecture"
780 #endif
781   }
782 
783   jmp_buf env;
784   if (setjmp(env) == 0) {
785     return CloneAndLongjmpInChild(flags, ptid, ctid, &env);
786   }
787 
788   return 0;
789 }
790 #endif  // defined(OS_LINUX) || defined(OS_NACL_NONSFI)
791 
792 }  // namespace base
793