1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DIBuilder.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/ValueHandle.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/raw_ostream.h"
48 using namespace llvm;
49
50 #define DEBUG_TYPE "local"
51
52 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
53
54 //===----------------------------------------------------------------------===//
55 // Local constant propagation.
56 //
57
58 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
59 /// constant value, convert it into an unconditional branch to the constant
60 /// destination. This is a nontrivial operation because the successors of this
61 /// basic block must have their PHI nodes updated.
62 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
63 /// conditions and indirectbr addresses this might make dead if
64 /// DeleteDeadConditions is true.
ConstantFoldTerminator(BasicBlock * BB,bool DeleteDeadConditions,const TargetLibraryInfo * TLI)65 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
66 const TargetLibraryInfo *TLI) {
67 TerminatorInst *T = BB->getTerminator();
68 IRBuilder<> Builder(T);
69
70 // Branch - See if we are conditional jumping on constant
71 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
72 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
73 BasicBlock *Dest1 = BI->getSuccessor(0);
74 BasicBlock *Dest2 = BI->getSuccessor(1);
75
76 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
77 // Are we branching on constant?
78 // YES. Change to unconditional branch...
79 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
80 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
81
82 //cerr << "Function: " << T->getParent()->getParent()
83 // << "\nRemoving branch from " << T->getParent()
84 // << "\n\nTo: " << OldDest << endl;
85
86 // Let the basic block know that we are letting go of it. Based on this,
87 // it will adjust it's PHI nodes.
88 OldDest->removePredecessor(BB);
89
90 // Replace the conditional branch with an unconditional one.
91 Builder.CreateBr(Destination);
92 BI->eraseFromParent();
93 return true;
94 }
95
96 if (Dest2 == Dest1) { // Conditional branch to same location?
97 // This branch matches something like this:
98 // br bool %cond, label %Dest, label %Dest
99 // and changes it into: br label %Dest
100
101 // Let the basic block know that we are letting go of one copy of it.
102 assert(BI->getParent() && "Terminator not inserted in block!");
103 Dest1->removePredecessor(BI->getParent());
104
105 // Replace the conditional branch with an unconditional one.
106 Builder.CreateBr(Dest1);
107 Value *Cond = BI->getCondition();
108 BI->eraseFromParent();
109 if (DeleteDeadConditions)
110 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
111 return true;
112 }
113 return false;
114 }
115
116 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
117 // If we are switching on a constant, we can convert the switch to an
118 // unconditional branch.
119 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
120 BasicBlock *DefaultDest = SI->getDefaultDest();
121 BasicBlock *TheOnlyDest = DefaultDest;
122
123 // If the default is unreachable, ignore it when searching for TheOnlyDest.
124 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
125 SI->getNumCases() > 0) {
126 TheOnlyDest = SI->case_begin().getCaseSuccessor();
127 }
128
129 // Figure out which case it goes to.
130 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
131 i != e; ++i) {
132 // Found case matching a constant operand?
133 if (i.getCaseValue() == CI) {
134 TheOnlyDest = i.getCaseSuccessor();
135 break;
136 }
137
138 // Check to see if this branch is going to the same place as the default
139 // dest. If so, eliminate it as an explicit compare.
140 if (i.getCaseSuccessor() == DefaultDest) {
141 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
142 unsigned NCases = SI->getNumCases();
143 // Fold the case metadata into the default if there will be any branches
144 // left, unless the metadata doesn't match the switch.
145 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
146 // Collect branch weights into a vector.
147 SmallVector<uint32_t, 8> Weights;
148 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
149 ++MD_i) {
150 ConstantInt *CI =
151 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i));
152 assert(CI);
153 Weights.push_back(CI->getValue().getZExtValue());
154 }
155 // Merge weight of this case to the default weight.
156 unsigned idx = i.getCaseIndex();
157 Weights[0] += Weights[idx+1];
158 // Remove weight for this case.
159 std::swap(Weights[idx+1], Weights.back());
160 Weights.pop_back();
161 SI->setMetadata(LLVMContext::MD_prof,
162 MDBuilder(BB->getContext()).
163 createBranchWeights(Weights));
164 }
165 // Remove this entry.
166 DefaultDest->removePredecessor(SI->getParent());
167 SI->removeCase(i);
168 --i; --e;
169 continue;
170 }
171
172 // Otherwise, check to see if the switch only branches to one destination.
173 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
174 // destinations.
175 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr;
176 }
177
178 if (CI && !TheOnlyDest) {
179 // Branching on a constant, but not any of the cases, go to the default
180 // successor.
181 TheOnlyDest = SI->getDefaultDest();
182 }
183
184 // If we found a single destination that we can fold the switch into, do so
185 // now.
186 if (TheOnlyDest) {
187 // Insert the new branch.
188 Builder.CreateBr(TheOnlyDest);
189 BasicBlock *BB = SI->getParent();
190
191 // Remove entries from PHI nodes which we no longer branch to...
192 for (BasicBlock *Succ : SI->successors()) {
193 // Found case matching a constant operand?
194 if (Succ == TheOnlyDest)
195 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
196 else
197 Succ->removePredecessor(BB);
198 }
199
200 // Delete the old switch.
201 Value *Cond = SI->getCondition();
202 SI->eraseFromParent();
203 if (DeleteDeadConditions)
204 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
205 return true;
206 }
207
208 if (SI->getNumCases() == 1) {
209 // Otherwise, we can fold this switch into a conditional branch
210 // instruction if it has only one non-default destination.
211 SwitchInst::CaseIt FirstCase = SI->case_begin();
212 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
213 FirstCase.getCaseValue(), "cond");
214
215 // Insert the new branch.
216 BranchInst *NewBr = Builder.CreateCondBr(Cond,
217 FirstCase.getCaseSuccessor(),
218 SI->getDefaultDest());
219 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
220 if (MD && MD->getNumOperands() == 3) {
221 ConstantInt *SICase =
222 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
223 ConstantInt *SIDef =
224 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
225 assert(SICase && SIDef);
226 // The TrueWeight should be the weight for the single case of SI.
227 NewBr->setMetadata(LLVMContext::MD_prof,
228 MDBuilder(BB->getContext()).
229 createBranchWeights(SICase->getValue().getZExtValue(),
230 SIDef->getValue().getZExtValue()));
231 }
232
233 // Update make.implicit metadata to the newly-created conditional branch.
234 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
235 if (MakeImplicitMD)
236 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
237
238 // Delete the old switch.
239 SI->eraseFromParent();
240 return true;
241 }
242 return false;
243 }
244
245 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
246 // indirectbr blockaddress(@F, @BB) -> br label @BB
247 if (BlockAddress *BA =
248 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
249 BasicBlock *TheOnlyDest = BA->getBasicBlock();
250 // Insert the new branch.
251 Builder.CreateBr(TheOnlyDest);
252
253 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
254 if (IBI->getDestination(i) == TheOnlyDest)
255 TheOnlyDest = nullptr;
256 else
257 IBI->getDestination(i)->removePredecessor(IBI->getParent());
258 }
259 Value *Address = IBI->getAddress();
260 IBI->eraseFromParent();
261 if (DeleteDeadConditions)
262 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
263
264 // If we didn't find our destination in the IBI successor list, then we
265 // have undefined behavior. Replace the unconditional branch with an
266 // 'unreachable' instruction.
267 if (TheOnlyDest) {
268 BB->getTerminator()->eraseFromParent();
269 new UnreachableInst(BB->getContext(), BB);
270 }
271
272 return true;
273 }
274 }
275
276 return false;
277 }
278
279
280 //===----------------------------------------------------------------------===//
281 // Local dead code elimination.
282 //
283
284 /// isInstructionTriviallyDead - Return true if the result produced by the
285 /// instruction is not used, and the instruction has no side effects.
286 ///
isInstructionTriviallyDead(Instruction * I,const TargetLibraryInfo * TLI)287 bool llvm::isInstructionTriviallyDead(Instruction *I,
288 const TargetLibraryInfo *TLI) {
289 if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
290
291 // We don't want the landingpad-like instructions removed by anything this
292 // general.
293 if (I->isEHPad())
294 return false;
295
296 // We don't want debug info removed by anything this general, unless
297 // debug info is empty.
298 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
299 if (DDI->getAddress())
300 return false;
301 return true;
302 }
303 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
304 if (DVI->getValue())
305 return false;
306 return true;
307 }
308
309 if (!I->mayHaveSideEffects()) return true;
310
311 // Special case intrinsics that "may have side effects" but can be deleted
312 // when dead.
313 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
314 // Safe to delete llvm.stacksave if dead.
315 if (II->getIntrinsicID() == Intrinsic::stacksave)
316 return true;
317
318 // Lifetime intrinsics are dead when their right-hand is undef.
319 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
320 II->getIntrinsicID() == Intrinsic::lifetime_end)
321 return isa<UndefValue>(II->getArgOperand(1));
322
323 // Assumptions are dead if their condition is trivially true.
324 if (II->getIntrinsicID() == Intrinsic::assume) {
325 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
326 return !Cond->isZero();
327
328 return false;
329 }
330 }
331
332 if (isAllocLikeFn(I, TLI)) return true;
333
334 if (CallInst *CI = isFreeCall(I, TLI))
335 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
336 return C->isNullValue() || isa<UndefValue>(C);
337
338 return false;
339 }
340
341 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
342 /// trivially dead instruction, delete it. If that makes any of its operands
343 /// trivially dead, delete them too, recursively. Return true if any
344 /// instructions were deleted.
345 bool
RecursivelyDeleteTriviallyDeadInstructions(Value * V,const TargetLibraryInfo * TLI)346 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
347 const TargetLibraryInfo *TLI) {
348 Instruction *I = dyn_cast<Instruction>(V);
349 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
350 return false;
351
352 SmallVector<Instruction*, 16> DeadInsts;
353 DeadInsts.push_back(I);
354
355 do {
356 I = DeadInsts.pop_back_val();
357
358 // Null out all of the instruction's operands to see if any operand becomes
359 // dead as we go.
360 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
361 Value *OpV = I->getOperand(i);
362 I->setOperand(i, nullptr);
363
364 if (!OpV->use_empty()) continue;
365
366 // If the operand is an instruction that became dead as we nulled out the
367 // operand, and if it is 'trivially' dead, delete it in a future loop
368 // iteration.
369 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
370 if (isInstructionTriviallyDead(OpI, TLI))
371 DeadInsts.push_back(OpI);
372 }
373
374 I->eraseFromParent();
375 } while (!DeadInsts.empty());
376
377 return true;
378 }
379
380 /// areAllUsesEqual - Check whether the uses of a value are all the same.
381 /// This is similar to Instruction::hasOneUse() except this will also return
382 /// true when there are no uses or multiple uses that all refer to the same
383 /// value.
areAllUsesEqual(Instruction * I)384 static bool areAllUsesEqual(Instruction *I) {
385 Value::user_iterator UI = I->user_begin();
386 Value::user_iterator UE = I->user_end();
387 if (UI == UE)
388 return true;
389
390 User *TheUse = *UI;
391 for (++UI; UI != UE; ++UI) {
392 if (*UI != TheUse)
393 return false;
394 }
395 return true;
396 }
397
398 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
399 /// dead PHI node, due to being a def-use chain of single-use nodes that
400 /// either forms a cycle or is terminated by a trivially dead instruction,
401 /// delete it. If that makes any of its operands trivially dead, delete them
402 /// too, recursively. Return true if a change was made.
RecursivelyDeleteDeadPHINode(PHINode * PN,const TargetLibraryInfo * TLI)403 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
404 const TargetLibraryInfo *TLI) {
405 SmallPtrSet<Instruction*, 4> Visited;
406 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
407 I = cast<Instruction>(*I->user_begin())) {
408 if (I->use_empty())
409 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
410
411 // If we find an instruction more than once, we're on a cycle that
412 // won't prove fruitful.
413 if (!Visited.insert(I).second) {
414 // Break the cycle and delete the instruction and its operands.
415 I->replaceAllUsesWith(UndefValue::get(I->getType()));
416 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
417 return true;
418 }
419 }
420 return false;
421 }
422
423 static bool
simplifyAndDCEInstruction(Instruction * I,SmallSetVector<Instruction *,16> & WorkList,const DataLayout & DL,const TargetLibraryInfo * TLI)424 simplifyAndDCEInstruction(Instruction *I,
425 SmallSetVector<Instruction *, 16> &WorkList,
426 const DataLayout &DL,
427 const TargetLibraryInfo *TLI) {
428 if (isInstructionTriviallyDead(I, TLI)) {
429 // Null out all of the instruction's operands to see if any operand becomes
430 // dead as we go.
431 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
432 Value *OpV = I->getOperand(i);
433 I->setOperand(i, nullptr);
434
435 if (!OpV->use_empty() || I == OpV)
436 continue;
437
438 // If the operand is an instruction that became dead as we nulled out the
439 // operand, and if it is 'trivially' dead, delete it in a future loop
440 // iteration.
441 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
442 if (isInstructionTriviallyDead(OpI, TLI))
443 WorkList.insert(OpI);
444 }
445
446 I->eraseFromParent();
447
448 return true;
449 }
450
451 if (Value *SimpleV = SimplifyInstruction(I, DL)) {
452 // Add the users to the worklist. CAREFUL: an instruction can use itself,
453 // in the case of a phi node.
454 for (User *U : I->users())
455 if (U != I)
456 WorkList.insert(cast<Instruction>(U));
457
458 // Replace the instruction with its simplified value.
459 I->replaceAllUsesWith(SimpleV);
460 I->eraseFromParent();
461 return true;
462 }
463 return false;
464 }
465
466 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
467 /// simplify any instructions in it and recursively delete dead instructions.
468 ///
469 /// This returns true if it changed the code, note that it can delete
470 /// instructions in other blocks as well in this block.
SimplifyInstructionsInBlock(BasicBlock * BB,const TargetLibraryInfo * TLI)471 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
472 const TargetLibraryInfo *TLI) {
473 bool MadeChange = false;
474 const DataLayout &DL = BB->getModule()->getDataLayout();
475
476 #ifndef NDEBUG
477 // In debug builds, ensure that the terminator of the block is never replaced
478 // or deleted by these simplifications. The idea of simplification is that it
479 // cannot introduce new instructions, and there is no way to replace the
480 // terminator of a block without introducing a new instruction.
481 AssertingVH<Instruction> TerminatorVH(&BB->back());
482 #endif
483
484 SmallSetVector<Instruction *, 16> WorkList;
485 // Iterate over the original function, only adding insts to the worklist
486 // if they actually need to be revisited. This avoids having to pre-init
487 // the worklist with the entire function's worth of instructions.
488 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); BI != E;) {
489 assert(!BI->isTerminator());
490 Instruction *I = &*BI;
491 ++BI;
492
493 // We're visiting this instruction now, so make sure it's not in the
494 // worklist from an earlier visit.
495 if (!WorkList.count(I))
496 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
497 }
498
499 while (!WorkList.empty()) {
500 Instruction *I = WorkList.pop_back_val();
501 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
502 }
503 return MadeChange;
504 }
505
506 //===----------------------------------------------------------------------===//
507 // Control Flow Graph Restructuring.
508 //
509
510
511 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
512 /// method is called when we're about to delete Pred as a predecessor of BB. If
513 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
514 ///
515 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
516 /// nodes that collapse into identity values. For example, if we have:
517 /// x = phi(1, 0, 0, 0)
518 /// y = and x, z
519 ///
520 /// .. and delete the predecessor corresponding to the '1', this will attempt to
521 /// recursively fold the and to 0.
RemovePredecessorAndSimplify(BasicBlock * BB,BasicBlock * Pred)522 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
523 // This only adjusts blocks with PHI nodes.
524 if (!isa<PHINode>(BB->begin()))
525 return;
526
527 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
528 // them down. This will leave us with single entry phi nodes and other phis
529 // that can be removed.
530 BB->removePredecessor(Pred, true);
531
532 WeakVH PhiIt = &BB->front();
533 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
534 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
535 Value *OldPhiIt = PhiIt;
536
537 if (!recursivelySimplifyInstruction(PN))
538 continue;
539
540 // If recursive simplification ended up deleting the next PHI node we would
541 // iterate to, then our iterator is invalid, restart scanning from the top
542 // of the block.
543 if (PhiIt != OldPhiIt) PhiIt = &BB->front();
544 }
545 }
546
547
548 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
549 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
550 /// between them, moving the instructions in the predecessor into DestBB and
551 /// deleting the predecessor block.
552 ///
MergeBasicBlockIntoOnlyPred(BasicBlock * DestBB,DominatorTree * DT)553 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
554 // If BB has single-entry PHI nodes, fold them.
555 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
556 Value *NewVal = PN->getIncomingValue(0);
557 // Replace self referencing PHI with undef, it must be dead.
558 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
559 PN->replaceAllUsesWith(NewVal);
560 PN->eraseFromParent();
561 }
562
563 BasicBlock *PredBB = DestBB->getSinglePredecessor();
564 assert(PredBB && "Block doesn't have a single predecessor!");
565
566 // Zap anything that took the address of DestBB. Not doing this will give the
567 // address an invalid value.
568 if (DestBB->hasAddressTaken()) {
569 BlockAddress *BA = BlockAddress::get(DestBB);
570 Constant *Replacement =
571 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
572 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
573 BA->getType()));
574 BA->destroyConstant();
575 }
576
577 // Anything that branched to PredBB now branches to DestBB.
578 PredBB->replaceAllUsesWith(DestBB);
579
580 // Splice all the instructions from PredBB to DestBB.
581 PredBB->getTerminator()->eraseFromParent();
582 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
583
584 // If the PredBB is the entry block of the function, move DestBB up to
585 // become the entry block after we erase PredBB.
586 if (PredBB == &DestBB->getParent()->getEntryBlock())
587 DestBB->moveAfter(PredBB);
588
589 if (DT) {
590 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
591 DT->changeImmediateDominator(DestBB, PredBBIDom);
592 DT->eraseNode(PredBB);
593 }
594 // Nuke BB.
595 PredBB->eraseFromParent();
596 }
597
598 /// CanMergeValues - Return true if we can choose one of these values to use
599 /// in place of the other. Note that we will always choose the non-undef
600 /// value to keep.
CanMergeValues(Value * First,Value * Second)601 static bool CanMergeValues(Value *First, Value *Second) {
602 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
603 }
604
605 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
606 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
607 ///
608 /// Assumption: Succ is the single successor for BB.
609 ///
CanPropagatePredecessorsForPHIs(BasicBlock * BB,BasicBlock * Succ)610 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
611 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
612
613 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
614 << Succ->getName() << "\n");
615 // Shortcut, if there is only a single predecessor it must be BB and merging
616 // is always safe
617 if (Succ->getSinglePredecessor()) return true;
618
619 // Make a list of the predecessors of BB
620 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
621
622 // Look at all the phi nodes in Succ, to see if they present a conflict when
623 // merging these blocks
624 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
625 PHINode *PN = cast<PHINode>(I);
626
627 // If the incoming value from BB is again a PHINode in
628 // BB which has the same incoming value for *PI as PN does, we can
629 // merge the phi nodes and then the blocks can still be merged
630 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
631 if (BBPN && BBPN->getParent() == BB) {
632 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
633 BasicBlock *IBB = PN->getIncomingBlock(PI);
634 if (BBPreds.count(IBB) &&
635 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
636 PN->getIncomingValue(PI))) {
637 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
638 << Succ->getName() << " is conflicting with "
639 << BBPN->getName() << " with regard to common predecessor "
640 << IBB->getName() << "\n");
641 return false;
642 }
643 }
644 } else {
645 Value* Val = PN->getIncomingValueForBlock(BB);
646 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
647 // See if the incoming value for the common predecessor is equal to the
648 // one for BB, in which case this phi node will not prevent the merging
649 // of the block.
650 BasicBlock *IBB = PN->getIncomingBlock(PI);
651 if (BBPreds.count(IBB) &&
652 !CanMergeValues(Val, PN->getIncomingValue(PI))) {
653 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
654 << Succ->getName() << " is conflicting with regard to common "
655 << "predecessor " << IBB->getName() << "\n");
656 return false;
657 }
658 }
659 }
660 }
661
662 return true;
663 }
664
665 typedef SmallVector<BasicBlock *, 16> PredBlockVector;
666 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
667
668 /// \brief Determines the value to use as the phi node input for a block.
669 ///
670 /// Select between \p OldVal any value that we know flows from \p BB
671 /// to a particular phi on the basis of which one (if either) is not
672 /// undef. Update IncomingValues based on the selected value.
673 ///
674 /// \param OldVal The value we are considering selecting.
675 /// \param BB The block that the value flows in from.
676 /// \param IncomingValues A map from block-to-value for other phi inputs
677 /// that we have examined.
678 ///
679 /// \returns the selected value.
selectIncomingValueForBlock(Value * OldVal,BasicBlock * BB,IncomingValueMap & IncomingValues)680 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
681 IncomingValueMap &IncomingValues) {
682 if (!isa<UndefValue>(OldVal)) {
683 assert((!IncomingValues.count(BB) ||
684 IncomingValues.find(BB)->second == OldVal) &&
685 "Expected OldVal to match incoming value from BB!");
686
687 IncomingValues.insert(std::make_pair(BB, OldVal));
688 return OldVal;
689 }
690
691 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
692 if (It != IncomingValues.end()) return It->second;
693
694 return OldVal;
695 }
696
697 /// \brief Create a map from block to value for the operands of a
698 /// given phi.
699 ///
700 /// Create a map from block to value for each non-undef value flowing
701 /// into \p PN.
702 ///
703 /// \param PN The phi we are collecting the map for.
704 /// \param IncomingValues [out] The map from block to value for this phi.
gatherIncomingValuesToPhi(PHINode * PN,IncomingValueMap & IncomingValues)705 static void gatherIncomingValuesToPhi(PHINode *PN,
706 IncomingValueMap &IncomingValues) {
707 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
708 BasicBlock *BB = PN->getIncomingBlock(i);
709 Value *V = PN->getIncomingValue(i);
710
711 if (!isa<UndefValue>(V))
712 IncomingValues.insert(std::make_pair(BB, V));
713 }
714 }
715
716 /// \brief Replace the incoming undef values to a phi with the values
717 /// from a block-to-value map.
718 ///
719 /// \param PN The phi we are replacing the undefs in.
720 /// \param IncomingValues A map from block to value.
replaceUndefValuesInPhi(PHINode * PN,const IncomingValueMap & IncomingValues)721 static void replaceUndefValuesInPhi(PHINode *PN,
722 const IncomingValueMap &IncomingValues) {
723 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
724 Value *V = PN->getIncomingValue(i);
725
726 if (!isa<UndefValue>(V)) continue;
727
728 BasicBlock *BB = PN->getIncomingBlock(i);
729 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
730 if (It == IncomingValues.end()) continue;
731
732 PN->setIncomingValue(i, It->second);
733 }
734 }
735
736 /// \brief Replace a value flowing from a block to a phi with
737 /// potentially multiple instances of that value flowing from the
738 /// block's predecessors to the phi.
739 ///
740 /// \param BB The block with the value flowing into the phi.
741 /// \param BBPreds The predecessors of BB.
742 /// \param PN The phi that we are updating.
redirectValuesFromPredecessorsToPhi(BasicBlock * BB,const PredBlockVector & BBPreds,PHINode * PN)743 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
744 const PredBlockVector &BBPreds,
745 PHINode *PN) {
746 Value *OldVal = PN->removeIncomingValue(BB, false);
747 assert(OldVal && "No entry in PHI for Pred BB!");
748
749 IncomingValueMap IncomingValues;
750
751 // We are merging two blocks - BB, and the block containing PN - and
752 // as a result we need to redirect edges from the predecessors of BB
753 // to go to the block containing PN, and update PN
754 // accordingly. Since we allow merging blocks in the case where the
755 // predecessor and successor blocks both share some predecessors,
756 // and where some of those common predecessors might have undef
757 // values flowing into PN, we want to rewrite those values to be
758 // consistent with the non-undef values.
759
760 gatherIncomingValuesToPhi(PN, IncomingValues);
761
762 // If this incoming value is one of the PHI nodes in BB, the new entries
763 // in the PHI node are the entries from the old PHI.
764 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
765 PHINode *OldValPN = cast<PHINode>(OldVal);
766 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
767 // Note that, since we are merging phi nodes and BB and Succ might
768 // have common predecessors, we could end up with a phi node with
769 // identical incoming branches. This will be cleaned up later (and
770 // will trigger asserts if we try to clean it up now, without also
771 // simplifying the corresponding conditional branch).
772 BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
773 Value *PredVal = OldValPN->getIncomingValue(i);
774 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
775 IncomingValues);
776
777 // And add a new incoming value for this predecessor for the
778 // newly retargeted branch.
779 PN->addIncoming(Selected, PredBB);
780 }
781 } else {
782 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
783 // Update existing incoming values in PN for this
784 // predecessor of BB.
785 BasicBlock *PredBB = BBPreds[i];
786 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
787 IncomingValues);
788
789 // And add a new incoming value for this predecessor for the
790 // newly retargeted branch.
791 PN->addIncoming(Selected, PredBB);
792 }
793 }
794
795 replaceUndefValuesInPhi(PN, IncomingValues);
796 }
797
798 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
799 /// unconditional branch, and contains no instructions other than PHI nodes,
800 /// potential side-effect free intrinsics and the branch. If possible,
801 /// eliminate BB by rewriting all the predecessors to branch to the successor
802 /// block and return true. If we can't transform, return false.
TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock * BB)803 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
804 assert(BB != &BB->getParent()->getEntryBlock() &&
805 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
806
807 // We can't eliminate infinite loops.
808 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
809 if (BB == Succ) return false;
810
811 // Check to see if merging these blocks would cause conflicts for any of the
812 // phi nodes in BB or Succ. If not, we can safely merge.
813 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
814
815 // Check for cases where Succ has multiple predecessors and a PHI node in BB
816 // has uses which will not disappear when the PHI nodes are merged. It is
817 // possible to handle such cases, but difficult: it requires checking whether
818 // BB dominates Succ, which is non-trivial to calculate in the case where
819 // Succ has multiple predecessors. Also, it requires checking whether
820 // constructing the necessary self-referential PHI node doesn't introduce any
821 // conflicts; this isn't too difficult, but the previous code for doing this
822 // was incorrect.
823 //
824 // Note that if this check finds a live use, BB dominates Succ, so BB is
825 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
826 // folding the branch isn't profitable in that case anyway.
827 if (!Succ->getSinglePredecessor()) {
828 BasicBlock::iterator BBI = BB->begin();
829 while (isa<PHINode>(*BBI)) {
830 for (Use &U : BBI->uses()) {
831 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
832 if (PN->getIncomingBlock(U) != BB)
833 return false;
834 } else {
835 return false;
836 }
837 }
838 ++BBI;
839 }
840 }
841
842 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
843
844 if (isa<PHINode>(Succ->begin())) {
845 // If there is more than one pred of succ, and there are PHI nodes in
846 // the successor, then we need to add incoming edges for the PHI nodes
847 //
848 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
849
850 // Loop over all of the PHI nodes in the successor of BB.
851 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
852 PHINode *PN = cast<PHINode>(I);
853
854 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
855 }
856 }
857
858 if (Succ->getSinglePredecessor()) {
859 // BB is the only predecessor of Succ, so Succ will end up with exactly
860 // the same predecessors BB had.
861
862 // Copy over any phi, debug or lifetime instruction.
863 BB->getTerminator()->eraseFromParent();
864 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
865 BB->getInstList());
866 } else {
867 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
868 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
869 assert(PN->use_empty() && "There shouldn't be any uses here!");
870 PN->eraseFromParent();
871 }
872 }
873
874 // Everything that jumped to BB now goes to Succ.
875 BB->replaceAllUsesWith(Succ);
876 if (!Succ->hasName()) Succ->takeName(BB);
877 BB->eraseFromParent(); // Delete the old basic block.
878 return true;
879 }
880
881 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
882 /// nodes in this block. This doesn't try to be clever about PHI nodes
883 /// which differ only in the order of the incoming values, but instcombine
884 /// orders them so it usually won't matter.
885 ///
EliminateDuplicatePHINodes(BasicBlock * BB)886 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
887 // This implementation doesn't currently consider undef operands
888 // specially. Theoretically, two phis which are identical except for
889 // one having an undef where the other doesn't could be collapsed.
890
891 struct PHIDenseMapInfo {
892 static PHINode *getEmptyKey() {
893 return DenseMapInfo<PHINode *>::getEmptyKey();
894 }
895 static PHINode *getTombstoneKey() {
896 return DenseMapInfo<PHINode *>::getTombstoneKey();
897 }
898 static unsigned getHashValue(PHINode *PN) {
899 // Compute a hash value on the operands. Instcombine will likely have
900 // sorted them, which helps expose duplicates, but we have to check all
901 // the operands to be safe in case instcombine hasn't run.
902 return static_cast<unsigned>(hash_combine(
903 hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
904 hash_combine_range(PN->block_begin(), PN->block_end())));
905 }
906 static bool isEqual(PHINode *LHS, PHINode *RHS) {
907 if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
908 RHS == getEmptyKey() || RHS == getTombstoneKey())
909 return LHS == RHS;
910 return LHS->isIdenticalTo(RHS);
911 }
912 };
913
914 // Set of unique PHINodes.
915 DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
916
917 // Examine each PHI.
918 bool Changed = false;
919 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
920 auto Inserted = PHISet.insert(PN);
921 if (!Inserted.second) {
922 // A duplicate. Replace this PHI with its duplicate.
923 PN->replaceAllUsesWith(*Inserted.first);
924 PN->eraseFromParent();
925 Changed = true;
926
927 // The RAUW can change PHIs that we already visited. Start over from the
928 // beginning.
929 PHISet.clear();
930 I = BB->begin();
931 }
932 }
933
934 return Changed;
935 }
936
937 /// enforceKnownAlignment - If the specified pointer points to an object that
938 /// we control, modify the object's alignment to PrefAlign. This isn't
939 /// often possible though. If alignment is important, a more reliable approach
940 /// is to simply align all global variables and allocation instructions to
941 /// their preferred alignment from the beginning.
942 ///
enforceKnownAlignment(Value * V,unsigned Align,unsigned PrefAlign,const DataLayout & DL)943 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
944 unsigned PrefAlign,
945 const DataLayout &DL) {
946 V = V->stripPointerCasts();
947
948 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
949 // If the preferred alignment is greater than the natural stack alignment
950 // then don't round up. This avoids dynamic stack realignment.
951 if (DL.exceedsNaturalStackAlignment(PrefAlign))
952 return Align;
953 // If there is a requested alignment and if this is an alloca, round up.
954 if (AI->getAlignment() >= PrefAlign)
955 return AI->getAlignment();
956 AI->setAlignment(PrefAlign);
957 return PrefAlign;
958 }
959
960 if (auto *GO = dyn_cast<GlobalObject>(V)) {
961 // If there is a large requested alignment and we can, bump up the alignment
962 // of the global. If the memory we set aside for the global may not be the
963 // memory used by the final program then it is impossible for us to reliably
964 // enforce the preferred alignment.
965 if (!GO->isStrongDefinitionForLinker())
966 return Align;
967
968 if (GO->getAlignment() >= PrefAlign)
969 return GO->getAlignment();
970 // We can only increase the alignment of the global if it has no alignment
971 // specified or if it is not assigned a section. If it is assigned a
972 // section, the global could be densely packed with other objects in the
973 // section, increasing the alignment could cause padding issues.
974 if (!GO->hasSection() || GO->getAlignment() == 0)
975 GO->setAlignment(PrefAlign);
976 return GO->getAlignment();
977 }
978
979 return Align;
980 }
981
982 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
983 /// we can determine, return it, otherwise return 0. If PrefAlign is specified,
984 /// and it is more than the alignment of the ultimate object, see if we can
985 /// increase the alignment of the ultimate object, making this check succeed.
getOrEnforceKnownAlignment(Value * V,unsigned PrefAlign,const DataLayout & DL,const Instruction * CxtI,AssumptionCache * AC,const DominatorTree * DT)986 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
987 const DataLayout &DL,
988 const Instruction *CxtI,
989 AssumptionCache *AC,
990 const DominatorTree *DT) {
991 assert(V->getType()->isPointerTy() &&
992 "getOrEnforceKnownAlignment expects a pointer!");
993 unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
994
995 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
996 computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
997 unsigned TrailZ = KnownZero.countTrailingOnes();
998
999 // Avoid trouble with ridiculously large TrailZ values, such as
1000 // those computed from a null pointer.
1001 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1002
1003 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
1004
1005 // LLVM doesn't support alignments larger than this currently.
1006 Align = std::min(Align, +Value::MaximumAlignment);
1007
1008 if (PrefAlign > Align)
1009 Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1010
1011 // We don't need to make any adjustment.
1012 return Align;
1013 }
1014
1015 ///===---------------------------------------------------------------------===//
1016 /// Dbg Intrinsic utilities
1017 ///
1018
1019 /// See if there is a dbg.value intrinsic for DIVar before I.
LdStHasDebugValue(const DILocalVariable * DIVar,Instruction * I)1020 static bool LdStHasDebugValue(const DILocalVariable *DIVar, Instruction *I) {
1021 // Since we can't guarantee that the original dbg.declare instrinsic
1022 // is removed by LowerDbgDeclare(), we need to make sure that we are
1023 // not inserting the same dbg.value intrinsic over and over.
1024 llvm::BasicBlock::InstListType::iterator PrevI(I);
1025 if (PrevI != I->getParent()->getInstList().begin()) {
1026 --PrevI;
1027 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1028 if (DVI->getValue() == I->getOperand(0) &&
1029 DVI->getOffset() == 0 &&
1030 DVI->getVariable() == DIVar)
1031 return true;
1032 }
1033 return false;
1034 }
1035
1036 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1037 /// that has an associated llvm.dbg.decl intrinsic.
ConvertDebugDeclareToDebugValue(DbgDeclareInst * DDI,StoreInst * SI,DIBuilder & Builder)1038 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1039 StoreInst *SI, DIBuilder &Builder) {
1040 auto *DIVar = DDI->getVariable();
1041 auto *DIExpr = DDI->getExpression();
1042 assert(DIVar && "Missing variable");
1043
1044 if (LdStHasDebugValue(DIVar, SI))
1045 return true;
1046
1047 // If an argument is zero extended then use argument directly. The ZExt
1048 // may be zapped by an optimization pass in future.
1049 Argument *ExtendedArg = nullptr;
1050 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1051 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1052 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1053 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1054 if (ExtendedArg)
1055 Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, DIExpr,
1056 DDI->getDebugLoc(), SI);
1057 else
1058 Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr,
1059 DDI->getDebugLoc(), SI);
1060 return true;
1061 }
1062
1063 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1064 /// that has an associated llvm.dbg.decl intrinsic.
ConvertDebugDeclareToDebugValue(DbgDeclareInst * DDI,LoadInst * LI,DIBuilder & Builder)1065 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1066 LoadInst *LI, DIBuilder &Builder) {
1067 auto *DIVar = DDI->getVariable();
1068 auto *DIExpr = DDI->getExpression();
1069 assert(DIVar && "Missing variable");
1070
1071 if (LdStHasDebugValue(DIVar, LI))
1072 return true;
1073
1074 // We are now tracking the loaded value instead of the address. In the
1075 // future if multi-location support is added to the IR, it might be
1076 // preferable to keep tracking both the loaded value and the original
1077 // address in case the alloca can not be elided.
1078 Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1079 LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr);
1080 DbgValue->insertAfter(LI);
1081 return true;
1082 }
1083
1084 /// Determine whether this alloca is either a VLA or an array.
isArray(AllocaInst * AI)1085 static bool isArray(AllocaInst *AI) {
1086 return AI->isArrayAllocation() ||
1087 AI->getType()->getElementType()->isArrayTy();
1088 }
1089
1090 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1091 /// of llvm.dbg.value intrinsics.
LowerDbgDeclare(Function & F)1092 bool llvm::LowerDbgDeclare(Function &F) {
1093 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1094 SmallVector<DbgDeclareInst *, 4> Dbgs;
1095 for (auto &FI : F)
1096 for (Instruction &BI : FI)
1097 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1098 Dbgs.push_back(DDI);
1099
1100 if (Dbgs.empty())
1101 return false;
1102
1103 for (auto &I : Dbgs) {
1104 DbgDeclareInst *DDI = I;
1105 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1106 // If this is an alloca for a scalar variable, insert a dbg.value
1107 // at each load and store to the alloca and erase the dbg.declare.
1108 // The dbg.values allow tracking a variable even if it is not
1109 // stored on the stack, while the dbg.declare can only describe
1110 // the stack slot (and at a lexical-scope granularity). Later
1111 // passes will attempt to elide the stack slot.
1112 if (AI && !isArray(AI)) {
1113 for (User *U : AI->users())
1114 if (StoreInst *SI = dyn_cast<StoreInst>(U))
1115 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1116 else if (LoadInst *LI = dyn_cast<LoadInst>(U))
1117 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1118 else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1119 // This is a call by-value or some other instruction that
1120 // takes a pointer to the variable. Insert a *value*
1121 // intrinsic that describes the alloca.
1122 SmallVector<uint64_t, 1> NewDIExpr;
1123 auto *DIExpr = DDI->getExpression();
1124 NewDIExpr.push_back(dwarf::DW_OP_deref);
1125 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1126 DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(),
1127 DIB.createExpression(NewDIExpr),
1128 DDI->getDebugLoc(), CI);
1129 }
1130 DDI->eraseFromParent();
1131 }
1132 }
1133 return true;
1134 }
1135
1136 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
1137 /// alloca 'V', if any.
FindAllocaDbgDeclare(Value * V)1138 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
1139 if (auto *L = LocalAsMetadata::getIfExists(V))
1140 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1141 for (User *U : MDV->users())
1142 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
1143 return DDI;
1144
1145 return nullptr;
1146 }
1147
replaceDbgDeclare(Value * Address,Value * NewAddress,Instruction * InsertBefore,DIBuilder & Builder,bool Deref,int Offset)1148 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1149 Instruction *InsertBefore, DIBuilder &Builder,
1150 bool Deref, int Offset) {
1151 DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address);
1152 if (!DDI)
1153 return false;
1154 DebugLoc Loc = DDI->getDebugLoc();
1155 auto *DIVar = DDI->getVariable();
1156 auto *DIExpr = DDI->getExpression();
1157 assert(DIVar && "Missing variable");
1158
1159 if (Deref || Offset) {
1160 // Create a copy of the original DIDescriptor for user variable, prepending
1161 // "deref" operation to a list of address elements, as new llvm.dbg.declare
1162 // will take a value storing address of the memory for variable, not
1163 // alloca itself.
1164 SmallVector<uint64_t, 4> NewDIExpr;
1165 if (Deref)
1166 NewDIExpr.push_back(dwarf::DW_OP_deref);
1167 if (Offset > 0) {
1168 NewDIExpr.push_back(dwarf::DW_OP_plus);
1169 NewDIExpr.push_back(Offset);
1170 } else if (Offset < 0) {
1171 NewDIExpr.push_back(dwarf::DW_OP_minus);
1172 NewDIExpr.push_back(-Offset);
1173 }
1174 if (DIExpr)
1175 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1176 DIExpr = Builder.createExpression(NewDIExpr);
1177 }
1178
1179 // Insert llvm.dbg.declare immediately after the original alloca, and remove
1180 // old llvm.dbg.declare.
1181 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1182 DDI->eraseFromParent();
1183 return true;
1184 }
1185
replaceDbgDeclareForAlloca(AllocaInst * AI,Value * NewAllocaAddress,DIBuilder & Builder,bool Deref,int Offset)1186 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1187 DIBuilder &Builder, bool Deref, int Offset) {
1188 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1189 Deref, Offset);
1190 }
1191
changeToUnreachable(Instruction * I,bool UseLLVMTrap)1192 void llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
1193 BasicBlock *BB = I->getParent();
1194 // Loop over all of the successors, removing BB's entry from any PHI
1195 // nodes.
1196 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1197 (*SI)->removePredecessor(BB);
1198
1199 // Insert a call to llvm.trap right before this. This turns the undefined
1200 // behavior into a hard fail instead of falling through into random code.
1201 if (UseLLVMTrap) {
1202 Function *TrapFn =
1203 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1204 CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1205 CallTrap->setDebugLoc(I->getDebugLoc());
1206 }
1207 new UnreachableInst(I->getContext(), I);
1208
1209 // All instructions after this are dead.
1210 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1211 while (BBI != BBE) {
1212 if (!BBI->use_empty())
1213 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1214 BB->getInstList().erase(BBI++);
1215 }
1216 }
1217
1218 /// changeToCall - Convert the specified invoke into a normal call.
changeToCall(InvokeInst * II)1219 static void changeToCall(InvokeInst *II) {
1220 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1221 SmallVector<OperandBundleDef, 1> OpBundles;
1222 II->getOperandBundlesAsDefs(OpBundles);
1223 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1224 "", II);
1225 NewCall->takeName(II);
1226 NewCall->setCallingConv(II->getCallingConv());
1227 NewCall->setAttributes(II->getAttributes());
1228 NewCall->setDebugLoc(II->getDebugLoc());
1229 II->replaceAllUsesWith(NewCall);
1230
1231 // Follow the call by a branch to the normal destination.
1232 BranchInst::Create(II->getNormalDest(), II);
1233
1234 // Update PHI nodes in the unwind destination
1235 II->getUnwindDest()->removePredecessor(II->getParent());
1236 II->eraseFromParent();
1237 }
1238
markAliveBlocks(Function & F,SmallPtrSetImpl<BasicBlock * > & Reachable)1239 static bool markAliveBlocks(Function &F,
1240 SmallPtrSetImpl<BasicBlock*> &Reachable) {
1241
1242 SmallVector<BasicBlock*, 128> Worklist;
1243 BasicBlock *BB = &F.front();
1244 Worklist.push_back(BB);
1245 Reachable.insert(BB);
1246 bool Changed = false;
1247 do {
1248 BB = Worklist.pop_back_val();
1249
1250 // Do a quick scan of the basic block, turning any obviously unreachable
1251 // instructions into LLVM unreachable insts. The instruction combining pass
1252 // canonicalizes unreachable insts into stores to null or undef.
1253 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
1254 // Assumptions that are known to be false are equivalent to unreachable.
1255 // Also, if the condition is undefined, then we make the choice most
1256 // beneficial to the optimizer, and choose that to also be unreachable.
1257 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
1258 if (II->getIntrinsicID() == Intrinsic::assume) {
1259 bool MakeUnreachable = false;
1260 if (isa<UndefValue>(II->getArgOperand(0)))
1261 MakeUnreachable = true;
1262 else if (ConstantInt *Cond =
1263 dyn_cast<ConstantInt>(II->getArgOperand(0)))
1264 MakeUnreachable = Cond->isZero();
1265
1266 if (MakeUnreachable) {
1267 // Don't insert a call to llvm.trap right before the unreachable.
1268 changeToUnreachable(&*BBI, false);
1269 Changed = true;
1270 break;
1271 }
1272 }
1273
1274 if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
1275 if (CI->doesNotReturn()) {
1276 // If we found a call to a no-return function, insert an unreachable
1277 // instruction after it. Make sure there isn't *already* one there
1278 // though.
1279 ++BBI;
1280 if (!isa<UnreachableInst>(BBI)) {
1281 // Don't insert a call to llvm.trap right before the unreachable.
1282 changeToUnreachable(&*BBI, false);
1283 Changed = true;
1284 }
1285 break;
1286 }
1287 }
1288
1289 // Store to undef and store to null are undefined and used to signal that
1290 // they should be changed to unreachable by passes that can't modify the
1291 // CFG.
1292 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
1293 // Don't touch volatile stores.
1294 if (SI->isVolatile()) continue;
1295
1296 Value *Ptr = SI->getOperand(1);
1297
1298 if (isa<UndefValue>(Ptr) ||
1299 (isa<ConstantPointerNull>(Ptr) &&
1300 SI->getPointerAddressSpace() == 0)) {
1301 changeToUnreachable(SI, true);
1302 Changed = true;
1303 break;
1304 }
1305 }
1306 }
1307
1308 // Turn invokes that call 'nounwind' functions into ordinary calls.
1309 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
1310 Value *Callee = II->getCalledValue();
1311 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1312 changeToUnreachable(II, true);
1313 Changed = true;
1314 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1315 if (II->use_empty() && II->onlyReadsMemory()) {
1316 // jump to the normal destination branch.
1317 BranchInst::Create(II->getNormalDest(), II);
1318 II->getUnwindDest()->removePredecessor(II->getParent());
1319 II->eraseFromParent();
1320 } else
1321 changeToCall(II);
1322 Changed = true;
1323 }
1324 }
1325
1326 Changed |= ConstantFoldTerminator(BB, true);
1327 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1328 if (Reachable.insert(*SI).second)
1329 Worklist.push_back(*SI);
1330 } while (!Worklist.empty());
1331 return Changed;
1332 }
1333
removeUnwindEdge(BasicBlock * BB)1334 void llvm::removeUnwindEdge(BasicBlock *BB) {
1335 TerminatorInst *TI = BB->getTerminator();
1336
1337 if (auto *II = dyn_cast<InvokeInst>(TI)) {
1338 changeToCall(II);
1339 return;
1340 }
1341
1342 TerminatorInst *NewTI;
1343 BasicBlock *UnwindDest;
1344
1345 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1346 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1347 UnwindDest = CRI->getUnwindDest();
1348 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1349 auto *NewCatchSwitch = CatchSwitchInst::Create(
1350 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1351 CatchSwitch->getName(), CatchSwitch);
1352 for (BasicBlock *PadBB : CatchSwitch->handlers())
1353 NewCatchSwitch->addHandler(PadBB);
1354
1355 NewTI = NewCatchSwitch;
1356 UnwindDest = CatchSwitch->getUnwindDest();
1357 } else {
1358 llvm_unreachable("Could not find unwind successor");
1359 }
1360
1361 NewTI->takeName(TI);
1362 NewTI->setDebugLoc(TI->getDebugLoc());
1363 UnwindDest->removePredecessor(BB);
1364 TI->replaceAllUsesWith(NewTI);
1365 TI->eraseFromParent();
1366 }
1367
1368 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
1369 /// if they are in a dead cycle. Return true if a change was made, false
1370 /// otherwise.
removeUnreachableBlocks(Function & F)1371 bool llvm::removeUnreachableBlocks(Function &F) {
1372 SmallPtrSet<BasicBlock*, 128> Reachable;
1373 bool Changed = markAliveBlocks(F, Reachable);
1374
1375 // If there are unreachable blocks in the CFG...
1376 if (Reachable.size() == F.size())
1377 return Changed;
1378
1379 assert(Reachable.size() < F.size());
1380 NumRemoved += F.size()-Reachable.size();
1381
1382 // Loop over all of the basic blocks that are not reachable, dropping all of
1383 // their internal references...
1384 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
1385 if (Reachable.count(&*BB))
1386 continue;
1387
1388 for (succ_iterator SI = succ_begin(&*BB), SE = succ_end(&*BB); SI != SE;
1389 ++SI)
1390 if (Reachable.count(*SI))
1391 (*SI)->removePredecessor(&*BB);
1392 BB->dropAllReferences();
1393 }
1394
1395 for (Function::iterator I = ++F.begin(); I != F.end();)
1396 if (!Reachable.count(&*I))
1397 I = F.getBasicBlockList().erase(I);
1398 else
1399 ++I;
1400
1401 return true;
1402 }
1403
combineMetadata(Instruction * K,const Instruction * J,ArrayRef<unsigned> KnownIDs)1404 void llvm::combineMetadata(Instruction *K, const Instruction *J,
1405 ArrayRef<unsigned> KnownIDs) {
1406 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
1407 K->dropUnknownNonDebugMetadata(KnownIDs);
1408 K->getAllMetadataOtherThanDebugLoc(Metadata);
1409 for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
1410 unsigned Kind = Metadata[i].first;
1411 MDNode *JMD = J->getMetadata(Kind);
1412 MDNode *KMD = Metadata[i].second;
1413
1414 switch (Kind) {
1415 default:
1416 K->setMetadata(Kind, nullptr); // Remove unknown metadata
1417 break;
1418 case LLVMContext::MD_dbg:
1419 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1420 case LLVMContext::MD_tbaa:
1421 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1422 break;
1423 case LLVMContext::MD_alias_scope:
1424 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
1425 break;
1426 case LLVMContext::MD_noalias:
1427 K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
1428 break;
1429 case LLVMContext::MD_range:
1430 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
1431 break;
1432 case LLVMContext::MD_fpmath:
1433 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1434 break;
1435 case LLVMContext::MD_invariant_load:
1436 // Only set the !invariant.load if it is present in both instructions.
1437 K->setMetadata(Kind, JMD);
1438 break;
1439 case LLVMContext::MD_nonnull:
1440 // Only set the !nonnull if it is present in both instructions.
1441 K->setMetadata(Kind, JMD);
1442 break;
1443 case LLVMContext::MD_invariant_group:
1444 // Preserve !invariant.group in K.
1445 break;
1446 case LLVMContext::MD_align:
1447 K->setMetadata(Kind,
1448 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1449 break;
1450 case LLVMContext::MD_dereferenceable:
1451 case LLVMContext::MD_dereferenceable_or_null:
1452 K->setMetadata(Kind,
1453 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1454 break;
1455 }
1456 }
1457 // Set !invariant.group from J if J has it. If both instructions have it
1458 // then we will just pick it from J - even when they are different.
1459 // Also make sure that K is load or store - f.e. combining bitcast with load
1460 // could produce bitcast with invariant.group metadata, which is invalid.
1461 // FIXME: we should try to preserve both invariant.group md if they are
1462 // different, but right now instruction can only have one invariant.group.
1463 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
1464 if (isa<LoadInst>(K) || isa<StoreInst>(K))
1465 K->setMetadata(LLVMContext::MD_invariant_group, JMD);
1466 }
1467
replaceDominatedUsesWith(Value * From,Value * To,DominatorTree & DT,const BasicBlockEdge & Root)1468 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1469 DominatorTree &DT,
1470 const BasicBlockEdge &Root) {
1471 assert(From->getType() == To->getType());
1472
1473 unsigned Count = 0;
1474 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1475 UI != UE; ) {
1476 Use &U = *UI++;
1477 if (DT.dominates(Root, U)) {
1478 U.set(To);
1479 DEBUG(dbgs() << "Replace dominated use of '"
1480 << From->getName() << "' as "
1481 << *To << " in " << *U << "\n");
1482 ++Count;
1483 }
1484 }
1485 return Count;
1486 }
1487
replaceDominatedUsesWith(Value * From,Value * To,DominatorTree & DT,const BasicBlock * BB)1488 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1489 DominatorTree &DT,
1490 const BasicBlock *BB) {
1491 assert(From->getType() == To->getType());
1492
1493 unsigned Count = 0;
1494 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1495 UI != UE;) {
1496 Use &U = *UI++;
1497 auto *I = cast<Instruction>(U.getUser());
1498 if (DT.dominates(BB, I->getParent())) {
1499 U.set(To);
1500 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
1501 << *To << " in " << *U << "\n");
1502 ++Count;
1503 }
1504 }
1505 return Count;
1506 }
1507
callsGCLeafFunction(ImmutableCallSite CS)1508 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) {
1509 if (isa<IntrinsicInst>(CS.getInstruction()))
1510 // Most LLVM intrinsics are things which can never take a safepoint.
1511 // As a result, we don't need to have the stack parsable at the
1512 // callsite. This is a highly useful optimization since intrinsic
1513 // calls are fairly prevalent, particularly in debug builds.
1514 return true;
1515
1516 // Check if the function is specifically marked as a gc leaf function.
1517 //
1518 // TODO: we should be checking the attributes on the call site as well.
1519 if (const Function *F = CS.getCalledFunction())
1520 return F->hasFnAttribute("gc-leaf-function");
1521
1522 return false;
1523 }
1524