• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitCall and visitInvoke functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/MemoryBuiltins.h"
18 #include "llvm/IR/CallSite.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/IR/Statepoint.h"
22 #include "llvm/Transforms/Utils/BuildLibCalls.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
25 using namespace llvm;
26 using namespace PatternMatch;
27 
28 #define DEBUG_TYPE "instcombine"
29 
30 STATISTIC(NumSimplified, "Number of library calls simplified");
31 
32 /// getPromotedType - Return the specified type promoted as it would be to pass
33 /// though a va_arg area.
getPromotedType(Type * Ty)34 static Type *getPromotedType(Type *Ty) {
35   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
36     if (ITy->getBitWidth() < 32)
37       return Type::getInt32Ty(Ty->getContext());
38   }
39   return Ty;
40 }
41 
42 /// reduceToSingleValueType - Given an aggregate type which ultimately holds a
43 /// single scalar element, like {{{type}}} or [1 x type], return type.
reduceToSingleValueType(Type * T)44 static Type *reduceToSingleValueType(Type *T) {
45   while (!T->isSingleValueType()) {
46     if (StructType *STy = dyn_cast<StructType>(T)) {
47       if (STy->getNumElements() == 1)
48         T = STy->getElementType(0);
49       else
50         break;
51     } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
52       if (ATy->getNumElements() == 1)
53         T = ATy->getElementType();
54       else
55         break;
56     } else
57       break;
58   }
59 
60   return T;
61 }
62 
SimplifyMemTransfer(MemIntrinsic * MI)63 Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
64   unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, AC, DT);
65   unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, AC, DT);
66   unsigned MinAlign = std::min(DstAlign, SrcAlign);
67   unsigned CopyAlign = MI->getAlignment();
68 
69   if (CopyAlign < MinAlign) {
70     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), MinAlign, false));
71     return MI;
72   }
73 
74   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
75   // load/store.
76   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
77   if (!MemOpLength) return nullptr;
78 
79   // Source and destination pointer types are always "i8*" for intrinsic.  See
80   // if the size is something we can handle with a single primitive load/store.
81   // A single load+store correctly handles overlapping memory in the memmove
82   // case.
83   uint64_t Size = MemOpLength->getLimitedValue();
84   assert(Size && "0-sized memory transferring should be removed already.");
85 
86   if (Size > 8 || (Size&(Size-1)))
87     return nullptr;  // If not 1/2/4/8 bytes, exit.
88 
89   // Use an integer load+store unless we can find something better.
90   unsigned SrcAddrSp =
91     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
92   unsigned DstAddrSp =
93     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
94 
95   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
96   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
97   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
98 
99   // Memcpy forces the use of i8* for the source and destination.  That means
100   // that if you're using memcpy to move one double around, you'll get a cast
101   // from double* to i8*.  We'd much rather use a double load+store rather than
102   // an i64 load+store, here because this improves the odds that the source or
103   // dest address will be promotable.  See if we can find a better type than the
104   // integer datatype.
105   Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
106   MDNode *CopyMD = nullptr;
107   if (StrippedDest != MI->getArgOperand(0)) {
108     Type *SrcETy = cast<PointerType>(StrippedDest->getType())
109                                     ->getElementType();
110     if (SrcETy->isSized() && DL.getTypeStoreSize(SrcETy) == Size) {
111       // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
112       // down through these levels if so.
113       SrcETy = reduceToSingleValueType(SrcETy);
114 
115       if (SrcETy->isSingleValueType()) {
116         NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
117         NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
118 
119         // If the memcpy has metadata describing the members, see if we can
120         // get the TBAA tag describing our copy.
121         if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
122           if (M->getNumOperands() == 3 && M->getOperand(0) &&
123               mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
124               mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() &&
125               M->getOperand(1) &&
126               mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
127               mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
128                   Size &&
129               M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
130             CopyMD = cast<MDNode>(M->getOperand(2));
131         }
132       }
133     }
134   }
135 
136   // If the memcpy/memmove provides better alignment info than we can
137   // infer, use it.
138   SrcAlign = std::max(SrcAlign, CopyAlign);
139   DstAlign = std::max(DstAlign, CopyAlign);
140 
141   Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
142   Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
143   LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
144   L->setAlignment(SrcAlign);
145   if (CopyMD)
146     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
147   StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
148   S->setAlignment(DstAlign);
149   if (CopyMD)
150     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
151 
152   // Set the size of the copy to 0, it will be deleted on the next iteration.
153   MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
154   return MI;
155 }
156 
SimplifyMemSet(MemSetInst * MI)157 Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
158   unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, AC, DT);
159   if (MI->getAlignment() < Alignment) {
160     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
161                                              Alignment, false));
162     return MI;
163   }
164 
165   // Extract the length and alignment and fill if they are constant.
166   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
167   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
168   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
169     return nullptr;
170   uint64_t Len = LenC->getLimitedValue();
171   Alignment = MI->getAlignment();
172   assert(Len && "0-sized memory setting should be removed already.");
173 
174   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
175   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
176     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
177 
178     Value *Dest = MI->getDest();
179     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
180     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
181     Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
182 
183     // Alignment 0 is identity for alignment 1 for memset, but not store.
184     if (Alignment == 0) Alignment = 1;
185 
186     // Extract the fill value and store.
187     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
188     StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
189                                         MI->isVolatile());
190     S->setAlignment(Alignment);
191 
192     // Set the size of the copy to 0, it will be deleted on the next iteration.
193     MI->setLength(Constant::getNullValue(LenC->getType()));
194     return MI;
195   }
196 
197   return nullptr;
198 }
199 
SimplifyX86immshift(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)200 static Value *SimplifyX86immshift(const IntrinsicInst &II,
201                                   InstCombiner::BuilderTy &Builder) {
202   bool LogicalShift = false;
203   bool ShiftLeft = false;
204 
205   switch (II.getIntrinsicID()) {
206   default:
207     return nullptr;
208   case Intrinsic::x86_sse2_psra_d:
209   case Intrinsic::x86_sse2_psra_w:
210   case Intrinsic::x86_sse2_psrai_d:
211   case Intrinsic::x86_sse2_psrai_w:
212   case Intrinsic::x86_avx2_psra_d:
213   case Intrinsic::x86_avx2_psra_w:
214   case Intrinsic::x86_avx2_psrai_d:
215   case Intrinsic::x86_avx2_psrai_w:
216     LogicalShift = false; ShiftLeft = false;
217     break;
218   case Intrinsic::x86_sse2_psrl_d:
219   case Intrinsic::x86_sse2_psrl_q:
220   case Intrinsic::x86_sse2_psrl_w:
221   case Intrinsic::x86_sse2_psrli_d:
222   case Intrinsic::x86_sse2_psrli_q:
223   case Intrinsic::x86_sse2_psrli_w:
224   case Intrinsic::x86_avx2_psrl_d:
225   case Intrinsic::x86_avx2_psrl_q:
226   case Intrinsic::x86_avx2_psrl_w:
227   case Intrinsic::x86_avx2_psrli_d:
228   case Intrinsic::x86_avx2_psrli_q:
229   case Intrinsic::x86_avx2_psrli_w:
230     LogicalShift = true; ShiftLeft = false;
231     break;
232   case Intrinsic::x86_sse2_psll_d:
233   case Intrinsic::x86_sse2_psll_q:
234   case Intrinsic::x86_sse2_psll_w:
235   case Intrinsic::x86_sse2_pslli_d:
236   case Intrinsic::x86_sse2_pslli_q:
237   case Intrinsic::x86_sse2_pslli_w:
238   case Intrinsic::x86_avx2_psll_d:
239   case Intrinsic::x86_avx2_psll_q:
240   case Intrinsic::x86_avx2_psll_w:
241   case Intrinsic::x86_avx2_pslli_d:
242   case Intrinsic::x86_avx2_pslli_q:
243   case Intrinsic::x86_avx2_pslli_w:
244     LogicalShift = true; ShiftLeft = true;
245     break;
246   }
247   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
248 
249   // Simplify if count is constant.
250   auto Arg1 = II.getArgOperand(1);
251   auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
252   auto CDV = dyn_cast<ConstantDataVector>(Arg1);
253   auto CInt = dyn_cast<ConstantInt>(Arg1);
254   if (!CAZ && !CDV && !CInt)
255     return nullptr;
256 
257   APInt Count(64, 0);
258   if (CDV) {
259     // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
260     // operand to compute the shift amount.
261     auto VT = cast<VectorType>(CDV->getType());
262     unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
263     assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
264     unsigned NumSubElts = 64 / BitWidth;
265 
266     // Concatenate the sub-elements to create the 64-bit value.
267     for (unsigned i = 0; i != NumSubElts; ++i) {
268       unsigned SubEltIdx = (NumSubElts - 1) - i;
269       auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
270       Count = Count.shl(BitWidth);
271       Count |= SubElt->getValue().zextOrTrunc(64);
272     }
273   }
274   else if (CInt)
275     Count = CInt->getValue();
276 
277   auto Vec = II.getArgOperand(0);
278   auto VT = cast<VectorType>(Vec->getType());
279   auto SVT = VT->getElementType();
280   unsigned VWidth = VT->getNumElements();
281   unsigned BitWidth = SVT->getPrimitiveSizeInBits();
282 
283   // If shift-by-zero then just return the original value.
284   if (Count == 0)
285     return Vec;
286 
287   // Handle cases when Shift >= BitWidth.
288   if (Count.uge(BitWidth)) {
289     // If LogicalShift - just return zero.
290     if (LogicalShift)
291       return ConstantAggregateZero::get(VT);
292 
293     // If ArithmeticShift - clamp Shift to (BitWidth - 1).
294     Count = APInt(64, BitWidth - 1);
295   }
296 
297   // Get a constant vector of the same type as the first operand.
298   auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
299   auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
300 
301   if (ShiftLeft)
302     return Builder.CreateShl(Vec, ShiftVec);
303 
304   if (LogicalShift)
305     return Builder.CreateLShr(Vec, ShiftVec);
306 
307   return Builder.CreateAShr(Vec, ShiftVec);
308 }
309 
SimplifyX86extend(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder,bool SignExtend)310 static Value *SimplifyX86extend(const IntrinsicInst &II,
311                                 InstCombiner::BuilderTy &Builder,
312                                 bool SignExtend) {
313   VectorType *SrcTy = cast<VectorType>(II.getArgOperand(0)->getType());
314   VectorType *DstTy = cast<VectorType>(II.getType());
315   unsigned NumDstElts = DstTy->getNumElements();
316 
317   // Extract a subvector of the first NumDstElts lanes and sign/zero extend.
318   SmallVector<int, 8> ShuffleMask;
319   for (int i = 0; i != (int)NumDstElts; ++i)
320     ShuffleMask.push_back(i);
321 
322   Value *SV = Builder.CreateShuffleVector(II.getArgOperand(0),
323                                           UndefValue::get(SrcTy), ShuffleMask);
324   return SignExtend ? Builder.CreateSExt(SV, DstTy)
325                     : Builder.CreateZExt(SV, DstTy);
326 }
327 
SimplifyX86insertps(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)328 static Value *SimplifyX86insertps(const IntrinsicInst &II,
329                                   InstCombiner::BuilderTy &Builder) {
330   if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
331     VectorType *VecTy = cast<VectorType>(II.getType());
332     assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
333 
334     // The immediate permute control byte looks like this:
335     //    [3:0] - zero mask for each 32-bit lane
336     //    [5:4] - select one 32-bit destination lane
337     //    [7:6] - select one 32-bit source lane
338 
339     uint8_t Imm = CInt->getZExtValue();
340     uint8_t ZMask = Imm & 0xf;
341     uint8_t DestLane = (Imm >> 4) & 0x3;
342     uint8_t SourceLane = (Imm >> 6) & 0x3;
343 
344     ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
345 
346     // If all zero mask bits are set, this was just a weird way to
347     // generate a zero vector.
348     if (ZMask == 0xf)
349       return ZeroVector;
350 
351     // Initialize by passing all of the first source bits through.
352     int ShuffleMask[4] = { 0, 1, 2, 3 };
353 
354     // We may replace the second operand with the zero vector.
355     Value *V1 = II.getArgOperand(1);
356 
357     if (ZMask) {
358       // If the zero mask is being used with a single input or the zero mask
359       // overrides the destination lane, this is a shuffle with the zero vector.
360       if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
361           (ZMask & (1 << DestLane))) {
362         V1 = ZeroVector;
363         // We may still move 32-bits of the first source vector from one lane
364         // to another.
365         ShuffleMask[DestLane] = SourceLane;
366         // The zero mask may override the previous insert operation.
367         for (unsigned i = 0; i < 4; ++i)
368           if ((ZMask >> i) & 0x1)
369             ShuffleMask[i] = i + 4;
370       } else {
371         // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
372         return nullptr;
373       }
374     } else {
375       // Replace the selected destination lane with the selected source lane.
376       ShuffleMask[DestLane] = SourceLane + 4;
377     }
378 
379     return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
380   }
381   return nullptr;
382 }
383 
384 /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
385 /// or conversion to a shuffle vector.
SimplifyX86extrq(IntrinsicInst & II,Value * Op0,ConstantInt * CILength,ConstantInt * CIIndex,InstCombiner::BuilderTy & Builder)386 static Value *SimplifyX86extrq(IntrinsicInst &II, Value *Op0,
387                                ConstantInt *CILength, ConstantInt *CIIndex,
388                                InstCombiner::BuilderTy &Builder) {
389   auto LowConstantHighUndef = [&](uint64_t Val) {
390     Type *IntTy64 = Type::getInt64Ty(II.getContext());
391     Constant *Args[] = {ConstantInt::get(IntTy64, Val),
392                         UndefValue::get(IntTy64)};
393     return ConstantVector::get(Args);
394   };
395 
396   // See if we're dealing with constant values.
397   Constant *C0 = dyn_cast<Constant>(Op0);
398   ConstantInt *CI0 =
399       C0 ? dyn_cast<ConstantInt>(C0->getAggregateElement((unsigned)0))
400          : nullptr;
401 
402   // Attempt to constant fold.
403   if (CILength && CIIndex) {
404     // From AMD documentation: "The bit index and field length are each six
405     // bits in length other bits of the field are ignored."
406     APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
407     APInt APLength = CILength->getValue().zextOrTrunc(6);
408 
409     unsigned Index = APIndex.getZExtValue();
410 
411     // From AMD documentation: "a value of zero in the field length is
412     // defined as length of 64".
413     unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
414 
415     // From AMD documentation: "If the sum of the bit index + length field
416     // is greater than 64, the results are undefined".
417     unsigned End = Index + Length;
418 
419     // Note that both field index and field length are 8-bit quantities.
420     // Since variables 'Index' and 'Length' are unsigned values
421     // obtained from zero-extending field index and field length
422     // respectively, their sum should never wrap around.
423     if (End > 64)
424       return UndefValue::get(II.getType());
425 
426     // If we are inserting whole bytes, we can convert this to a shuffle.
427     // Lowering can recognize EXTRQI shuffle masks.
428     if ((Length % 8) == 0 && (Index % 8) == 0) {
429       // Convert bit indices to byte indices.
430       Length /= 8;
431       Index /= 8;
432 
433       Type *IntTy8 = Type::getInt8Ty(II.getContext());
434       Type *IntTy32 = Type::getInt32Ty(II.getContext());
435       VectorType *ShufTy = VectorType::get(IntTy8, 16);
436 
437       SmallVector<Constant *, 16> ShuffleMask;
438       for (int i = 0; i != (int)Length; ++i)
439         ShuffleMask.push_back(
440             Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
441       for (int i = Length; i != 8; ++i)
442         ShuffleMask.push_back(
443             Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
444       for (int i = 8; i != 16; ++i)
445         ShuffleMask.push_back(UndefValue::get(IntTy32));
446 
447       Value *SV = Builder.CreateShuffleVector(
448           Builder.CreateBitCast(Op0, ShufTy),
449           ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
450       return Builder.CreateBitCast(SV, II.getType());
451     }
452 
453     // Constant Fold - shift Index'th bit to lowest position and mask off
454     // Length bits.
455     if (CI0) {
456       APInt Elt = CI0->getValue();
457       Elt = Elt.lshr(Index).zextOrTrunc(Length);
458       return LowConstantHighUndef(Elt.getZExtValue());
459     }
460 
461     // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
462     if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
463       Value *Args[] = {Op0, CILength, CIIndex};
464       Module *M = II.getModule();
465       Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
466       return Builder.CreateCall(F, Args);
467     }
468   }
469 
470   // Constant Fold - extraction from zero is always {zero, undef}.
471   if (CI0 && CI0->equalsInt(0))
472     return LowConstantHighUndef(0);
473 
474   return nullptr;
475 }
476 
477 /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
478 /// folding or conversion to a shuffle vector.
SimplifyX86insertq(IntrinsicInst & II,Value * Op0,Value * Op1,APInt APLength,APInt APIndex,InstCombiner::BuilderTy & Builder)479 static Value *SimplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
480                                  APInt APLength, APInt APIndex,
481                                  InstCombiner::BuilderTy &Builder) {
482 
483   // From AMD documentation: "The bit index and field length are each six bits
484   // in length other bits of the field are ignored."
485   APIndex = APIndex.zextOrTrunc(6);
486   APLength = APLength.zextOrTrunc(6);
487 
488   // Attempt to constant fold.
489   unsigned Index = APIndex.getZExtValue();
490 
491   // From AMD documentation: "a value of zero in the field length is
492   // defined as length of 64".
493   unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
494 
495   // From AMD documentation: "If the sum of the bit index + length field
496   // is greater than 64, the results are undefined".
497   unsigned End = Index + Length;
498 
499   // Note that both field index and field length are 8-bit quantities.
500   // Since variables 'Index' and 'Length' are unsigned values
501   // obtained from zero-extending field index and field length
502   // respectively, their sum should never wrap around.
503   if (End > 64)
504     return UndefValue::get(II.getType());
505 
506   // If we are inserting whole bytes, we can convert this to a shuffle.
507   // Lowering can recognize INSERTQI shuffle masks.
508   if ((Length % 8) == 0 && (Index % 8) == 0) {
509     // Convert bit indices to byte indices.
510     Length /= 8;
511     Index /= 8;
512 
513     Type *IntTy8 = Type::getInt8Ty(II.getContext());
514     Type *IntTy32 = Type::getInt32Ty(II.getContext());
515     VectorType *ShufTy = VectorType::get(IntTy8, 16);
516 
517     SmallVector<Constant *, 16> ShuffleMask;
518     for (int i = 0; i != (int)Index; ++i)
519       ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
520     for (int i = 0; i != (int)Length; ++i)
521       ShuffleMask.push_back(
522           Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
523     for (int i = Index + Length; i != 8; ++i)
524       ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
525     for (int i = 8; i != 16; ++i)
526       ShuffleMask.push_back(UndefValue::get(IntTy32));
527 
528     Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
529                                             Builder.CreateBitCast(Op1, ShufTy),
530                                             ConstantVector::get(ShuffleMask));
531     return Builder.CreateBitCast(SV, II.getType());
532   }
533 
534   // See if we're dealing with constant values.
535   Constant *C0 = dyn_cast<Constant>(Op0);
536   Constant *C1 = dyn_cast<Constant>(Op1);
537   ConstantInt *CI00 =
538       C0 ? dyn_cast<ConstantInt>(C0->getAggregateElement((unsigned)0))
539          : nullptr;
540   ConstantInt *CI10 =
541       C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)0))
542          : nullptr;
543 
544   // Constant Fold - insert bottom Length bits starting at the Index'th bit.
545   if (CI00 && CI10) {
546     APInt V00 = CI00->getValue();
547     APInt V10 = CI10->getValue();
548     APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
549     V00 = V00 & ~Mask;
550     V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
551     APInt Val = V00 | V10;
552     Type *IntTy64 = Type::getInt64Ty(II.getContext());
553     Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
554                         UndefValue::get(IntTy64)};
555     return ConstantVector::get(Args);
556   }
557 
558   // If we were an INSERTQ call, we'll save demanded elements if we convert to
559   // INSERTQI.
560   if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
561     Type *IntTy8 = Type::getInt8Ty(II.getContext());
562     Constant *CILength = ConstantInt::get(IntTy8, Length, false);
563     Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
564 
565     Value *Args[] = {Op0, Op1, CILength, CIIndex};
566     Module *M = II.getModule();
567     Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
568     return Builder.CreateCall(F, Args);
569   }
570 
571   return nullptr;
572 }
573 
574 /// The shuffle mask for a perm2*128 selects any two halves of two 256-bit
575 /// source vectors, unless a zero bit is set. If a zero bit is set,
576 /// then ignore that half of the mask and clear that half of the vector.
SimplifyX86vperm2(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)577 static Value *SimplifyX86vperm2(const IntrinsicInst &II,
578                                 InstCombiner::BuilderTy &Builder) {
579   if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
580     VectorType *VecTy = cast<VectorType>(II.getType());
581     ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
582 
583     // The immediate permute control byte looks like this:
584     //    [1:0] - select 128 bits from sources for low half of destination
585     //    [2]   - ignore
586     //    [3]   - zero low half of destination
587     //    [5:4] - select 128 bits from sources for high half of destination
588     //    [6]   - ignore
589     //    [7]   - zero high half of destination
590 
591     uint8_t Imm = CInt->getZExtValue();
592 
593     bool LowHalfZero = Imm & 0x08;
594     bool HighHalfZero = Imm & 0x80;
595 
596     // If both zero mask bits are set, this was just a weird way to
597     // generate a zero vector.
598     if (LowHalfZero && HighHalfZero)
599       return ZeroVector;
600 
601     // If 0 or 1 zero mask bits are set, this is a simple shuffle.
602     unsigned NumElts = VecTy->getNumElements();
603     unsigned HalfSize = NumElts / 2;
604     SmallVector<int, 8> ShuffleMask(NumElts);
605 
606     // The high bit of the selection field chooses the 1st or 2nd operand.
607     bool LowInputSelect = Imm & 0x02;
608     bool HighInputSelect = Imm & 0x20;
609 
610     // The low bit of the selection field chooses the low or high half
611     // of the selected operand.
612     bool LowHalfSelect = Imm & 0x01;
613     bool HighHalfSelect = Imm & 0x10;
614 
615     // Determine which operand(s) are actually in use for this instruction.
616     Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
617     Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
618 
619     // If needed, replace operands based on zero mask.
620     V0 = LowHalfZero ? ZeroVector : V0;
621     V1 = HighHalfZero ? ZeroVector : V1;
622 
623     // Permute low half of result.
624     unsigned StartIndex = LowHalfSelect ? HalfSize : 0;
625     for (unsigned i = 0; i < HalfSize; ++i)
626       ShuffleMask[i] = StartIndex + i;
627 
628     // Permute high half of result.
629     StartIndex = HighHalfSelect ? HalfSize : 0;
630     StartIndex += NumElts;
631     for (unsigned i = 0; i < HalfSize; ++i)
632       ShuffleMask[i + HalfSize] = StartIndex + i;
633 
634     return Builder.CreateShuffleVector(V0, V1, ShuffleMask);
635   }
636   return nullptr;
637 }
638 
639 /// Decode XOP integer vector comparison intrinsics.
SimplifyX86vpcom(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder,bool IsSigned)640 static Value *SimplifyX86vpcom(const IntrinsicInst &II,
641                                InstCombiner::BuilderTy &Builder, bool IsSigned) {
642   if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
643     uint64_t Imm = CInt->getZExtValue() & 0x7;
644     VectorType *VecTy = cast<VectorType>(II.getType());
645     CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
646 
647     switch (Imm) {
648     case 0x0:
649       Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
650       break;
651     case 0x1:
652       Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
653       break;
654     case 0x2:
655       Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
656       break;
657     case 0x3:
658       Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
659       break;
660     case 0x4:
661       Pred = ICmpInst::ICMP_EQ; break;
662     case 0x5:
663       Pred = ICmpInst::ICMP_NE; break;
664     case 0x6:
665       return ConstantInt::getSigned(VecTy, 0); // FALSE
666     case 0x7:
667       return ConstantInt::getSigned(VecTy, -1); // TRUE
668     }
669 
670     if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0), II.getArgOperand(1)))
671       return Builder.CreateSExtOrTrunc(Cmp, VecTy);
672   }
673   return nullptr;
674 }
675 
676 /// visitCallInst - CallInst simplification.  This mostly only handles folding
677 /// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
678 /// the heavy lifting.
679 ///
visitCallInst(CallInst & CI)680 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
681   auto Args = CI.arg_operands();
682   if (Value *V = SimplifyCall(CI.getCalledValue(), Args.begin(), Args.end(), DL,
683                               TLI, DT, AC))
684     return ReplaceInstUsesWith(CI, V);
685 
686   if (isFreeCall(&CI, TLI))
687     return visitFree(CI);
688 
689   // If the caller function is nounwind, mark the call as nounwind, even if the
690   // callee isn't.
691   if (CI.getParent()->getParent()->doesNotThrow() &&
692       !CI.doesNotThrow()) {
693     CI.setDoesNotThrow();
694     return &CI;
695   }
696 
697   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
698   if (!II) return visitCallSite(&CI);
699 
700   // Intrinsics cannot occur in an invoke, so handle them here instead of in
701   // visitCallSite.
702   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
703     bool Changed = false;
704 
705     // memmove/cpy/set of zero bytes is a noop.
706     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
707       if (NumBytes->isNullValue())
708         return EraseInstFromFunction(CI);
709 
710       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
711         if (CI->getZExtValue() == 1) {
712           // Replace the instruction with just byte operations.  We would
713           // transform other cases to loads/stores, but we don't know if
714           // alignment is sufficient.
715         }
716     }
717 
718     // No other transformations apply to volatile transfers.
719     if (MI->isVolatile())
720       return nullptr;
721 
722     // If we have a memmove and the source operation is a constant global,
723     // then the source and dest pointers can't alias, so we can change this
724     // into a call to memcpy.
725     if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
726       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
727         if (GVSrc->isConstant()) {
728           Module *M = CI.getModule();
729           Intrinsic::ID MemCpyID = Intrinsic::memcpy;
730           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
731                            CI.getArgOperand(1)->getType(),
732                            CI.getArgOperand(2)->getType() };
733           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
734           Changed = true;
735         }
736     }
737 
738     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
739       // memmove(x,x,size) -> noop.
740       if (MTI->getSource() == MTI->getDest())
741         return EraseInstFromFunction(CI);
742     }
743 
744     // If we can determine a pointer alignment that is bigger than currently
745     // set, update the alignment.
746     if (isa<MemTransferInst>(MI)) {
747       if (Instruction *I = SimplifyMemTransfer(MI))
748         return I;
749     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
750       if (Instruction *I = SimplifyMemSet(MSI))
751         return I;
752     }
753 
754     if (Changed) return II;
755   }
756 
757   auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width, unsigned DemandedWidth)
758   {
759     APInt UndefElts(Width, 0);
760     APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
761     return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
762   };
763 
764   switch (II->getIntrinsicID()) {
765   default: break;
766   case Intrinsic::objectsize: {
767     uint64_t Size;
768     if (getObjectSize(II->getArgOperand(0), Size, DL, TLI))
769       return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
770     return nullptr;
771   }
772   case Intrinsic::bswap: {
773     Value *IIOperand = II->getArgOperand(0);
774     Value *X = nullptr;
775 
776     // bswap(bswap(x)) -> x
777     if (match(IIOperand, m_BSwap(m_Value(X))))
778         return ReplaceInstUsesWith(CI, X);
779 
780     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
781     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
782       unsigned C = X->getType()->getPrimitiveSizeInBits() -
783         IIOperand->getType()->getPrimitiveSizeInBits();
784       Value *CV = ConstantInt::get(X->getType(), C);
785       Value *V = Builder->CreateLShr(X, CV);
786       return new TruncInst(V, IIOperand->getType());
787     }
788     break;
789   }
790 
791   case Intrinsic::bitreverse: {
792     Value *IIOperand = II->getArgOperand(0);
793     Value *X = nullptr;
794 
795     // bitreverse(bitreverse(x)) -> x
796     if (match(IIOperand, m_Intrinsic<Intrinsic::bitreverse>(m_Value(X))))
797       return ReplaceInstUsesWith(CI, X);
798     break;
799   }
800 
801   case Intrinsic::powi:
802     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
803       // powi(x, 0) -> 1.0
804       if (Power->isZero())
805         return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
806       // powi(x, 1) -> x
807       if (Power->isOne())
808         return ReplaceInstUsesWith(CI, II->getArgOperand(0));
809       // powi(x, -1) -> 1/x
810       if (Power->isAllOnesValue())
811         return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
812                                           II->getArgOperand(0));
813     }
814     break;
815   case Intrinsic::cttz: {
816     // If all bits below the first known one are known zero,
817     // this value is constant.
818     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
819     // FIXME: Try to simplify vectors of integers.
820     if (!IT) break;
821     uint32_t BitWidth = IT->getBitWidth();
822     APInt KnownZero(BitWidth, 0);
823     APInt KnownOne(BitWidth, 0);
824     computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
825     unsigned TrailingZeros = KnownOne.countTrailingZeros();
826     APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
827     if ((Mask & KnownZero) == Mask)
828       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
829                                  APInt(BitWidth, TrailingZeros)));
830 
831     }
832     break;
833   case Intrinsic::ctlz: {
834     // If all bits above the first known one are known zero,
835     // this value is constant.
836     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
837     // FIXME: Try to simplify vectors of integers.
838     if (!IT) break;
839     uint32_t BitWidth = IT->getBitWidth();
840     APInt KnownZero(BitWidth, 0);
841     APInt KnownOne(BitWidth, 0);
842     computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
843     unsigned LeadingZeros = KnownOne.countLeadingZeros();
844     APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
845     if ((Mask & KnownZero) == Mask)
846       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
847                                  APInt(BitWidth, LeadingZeros)));
848 
849     }
850     break;
851 
852   case Intrinsic::uadd_with_overflow:
853   case Intrinsic::sadd_with_overflow:
854   case Intrinsic::umul_with_overflow:
855   case Intrinsic::smul_with_overflow:
856     if (isa<Constant>(II->getArgOperand(0)) &&
857         !isa<Constant>(II->getArgOperand(1))) {
858       // Canonicalize constants into the RHS.
859       Value *LHS = II->getArgOperand(0);
860       II->setArgOperand(0, II->getArgOperand(1));
861       II->setArgOperand(1, LHS);
862       return II;
863     }
864     // fall through
865 
866   case Intrinsic::usub_with_overflow:
867   case Intrinsic::ssub_with_overflow: {
868     OverflowCheckFlavor OCF =
869         IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
870     assert(OCF != OCF_INVALID && "unexpected!");
871 
872     Value *OperationResult = nullptr;
873     Constant *OverflowResult = nullptr;
874     if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
875                               *II, OperationResult, OverflowResult))
876       return CreateOverflowTuple(II, OperationResult, OverflowResult);
877 
878     break;
879   }
880 
881   case Intrinsic::minnum:
882   case Intrinsic::maxnum: {
883     Value *Arg0 = II->getArgOperand(0);
884     Value *Arg1 = II->getArgOperand(1);
885 
886     // fmin(x, x) -> x
887     if (Arg0 == Arg1)
888       return ReplaceInstUsesWith(CI, Arg0);
889 
890     const ConstantFP *C0 = dyn_cast<ConstantFP>(Arg0);
891     const ConstantFP *C1 = dyn_cast<ConstantFP>(Arg1);
892 
893     // Canonicalize constants into the RHS.
894     if (C0 && !C1) {
895       II->setArgOperand(0, Arg1);
896       II->setArgOperand(1, Arg0);
897       return II;
898     }
899 
900     // fmin(x, nan) -> x
901     if (C1 && C1->isNaN())
902       return ReplaceInstUsesWith(CI, Arg0);
903 
904     // This is the value because if undef were NaN, we would return the other
905     // value and cannot return a NaN unless both operands are.
906     //
907     // fmin(undef, x) -> x
908     if (isa<UndefValue>(Arg0))
909       return ReplaceInstUsesWith(CI, Arg1);
910 
911     // fmin(x, undef) -> x
912     if (isa<UndefValue>(Arg1))
913       return ReplaceInstUsesWith(CI, Arg0);
914 
915     Value *X = nullptr;
916     Value *Y = nullptr;
917     if (II->getIntrinsicID() == Intrinsic::minnum) {
918       // fmin(x, fmin(x, y)) -> fmin(x, y)
919       // fmin(y, fmin(x, y)) -> fmin(x, y)
920       if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
921         if (Arg0 == X || Arg0 == Y)
922           return ReplaceInstUsesWith(CI, Arg1);
923       }
924 
925       // fmin(fmin(x, y), x) -> fmin(x, y)
926       // fmin(fmin(x, y), y) -> fmin(x, y)
927       if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
928         if (Arg1 == X || Arg1 == Y)
929           return ReplaceInstUsesWith(CI, Arg0);
930       }
931 
932       // TODO: fmin(nnan x, inf) -> x
933       // TODO: fmin(nnan ninf x, flt_max) -> x
934       if (C1 && C1->isInfinity()) {
935         // fmin(x, -inf) -> -inf
936         if (C1->isNegative())
937           return ReplaceInstUsesWith(CI, Arg1);
938       }
939     } else {
940       assert(II->getIntrinsicID() == Intrinsic::maxnum);
941       // fmax(x, fmax(x, y)) -> fmax(x, y)
942       // fmax(y, fmax(x, y)) -> fmax(x, y)
943       if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
944         if (Arg0 == X || Arg0 == Y)
945           return ReplaceInstUsesWith(CI, Arg1);
946       }
947 
948       // fmax(fmax(x, y), x) -> fmax(x, y)
949       // fmax(fmax(x, y), y) -> fmax(x, y)
950       if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
951         if (Arg1 == X || Arg1 == Y)
952           return ReplaceInstUsesWith(CI, Arg0);
953       }
954 
955       // TODO: fmax(nnan x, -inf) -> x
956       // TODO: fmax(nnan ninf x, -flt_max) -> x
957       if (C1 && C1->isInfinity()) {
958         // fmax(x, inf) -> inf
959         if (!C1->isNegative())
960           return ReplaceInstUsesWith(CI, Arg1);
961       }
962     }
963     break;
964   }
965   case Intrinsic::ppc_altivec_lvx:
966   case Intrinsic::ppc_altivec_lvxl:
967     // Turn PPC lvx -> load if the pointer is known aligned.
968     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
969         16) {
970       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
971                                          PointerType::getUnqual(II->getType()));
972       return new LoadInst(Ptr);
973     }
974     break;
975   case Intrinsic::ppc_vsx_lxvw4x:
976   case Intrinsic::ppc_vsx_lxvd2x: {
977     // Turn PPC VSX loads into normal loads.
978     Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
979                                         PointerType::getUnqual(II->getType()));
980     return new LoadInst(Ptr, Twine(""), false, 1);
981   }
982   case Intrinsic::ppc_altivec_stvx:
983   case Intrinsic::ppc_altivec_stvxl:
984     // Turn stvx -> store if the pointer is known aligned.
985     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
986         16) {
987       Type *OpPtrTy =
988         PointerType::getUnqual(II->getArgOperand(0)->getType());
989       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
990       return new StoreInst(II->getArgOperand(0), Ptr);
991     }
992     break;
993   case Intrinsic::ppc_vsx_stxvw4x:
994   case Intrinsic::ppc_vsx_stxvd2x: {
995     // Turn PPC VSX stores into normal stores.
996     Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
997     Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
998     return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
999   }
1000   case Intrinsic::ppc_qpx_qvlfs:
1001     // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
1002     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
1003         16) {
1004       Type *VTy = VectorType::get(Builder->getFloatTy(),
1005                                   II->getType()->getVectorNumElements());
1006       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
1007                                          PointerType::getUnqual(VTy));
1008       Value *Load = Builder->CreateLoad(Ptr);
1009       return new FPExtInst(Load, II->getType());
1010     }
1011     break;
1012   case Intrinsic::ppc_qpx_qvlfd:
1013     // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
1014     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, AC, DT) >=
1015         32) {
1016       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
1017                                          PointerType::getUnqual(II->getType()));
1018       return new LoadInst(Ptr);
1019     }
1020     break;
1021   case Intrinsic::ppc_qpx_qvstfs:
1022     // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
1023     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
1024         16) {
1025       Type *VTy = VectorType::get(Builder->getFloatTy(),
1026           II->getArgOperand(0)->getType()->getVectorNumElements());
1027       Value *TOp = Builder->CreateFPTrunc(II->getArgOperand(0), VTy);
1028       Type *OpPtrTy = PointerType::getUnqual(VTy);
1029       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
1030       return new StoreInst(TOp, Ptr);
1031     }
1032     break;
1033   case Intrinsic::ppc_qpx_qvstfd:
1034     // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
1035     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, AC, DT) >=
1036         32) {
1037       Type *OpPtrTy =
1038         PointerType::getUnqual(II->getArgOperand(0)->getType());
1039       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
1040       return new StoreInst(II->getArgOperand(0), Ptr);
1041     }
1042     break;
1043 
1044   case Intrinsic::x86_sse_storeu_ps:
1045   case Intrinsic::x86_sse2_storeu_pd:
1046   case Intrinsic::x86_sse2_storeu_dq:
1047     // Turn X86 storeu -> store if the pointer is known aligned.
1048     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
1049         16) {
1050       Type *OpPtrTy =
1051         PointerType::getUnqual(II->getArgOperand(1)->getType());
1052       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
1053       return new StoreInst(II->getArgOperand(1), Ptr);
1054     }
1055     break;
1056 
1057   case Intrinsic::x86_vcvtph2ps_128:
1058   case Intrinsic::x86_vcvtph2ps_256: {
1059     auto Arg = II->getArgOperand(0);
1060     auto ArgType = cast<VectorType>(Arg->getType());
1061     auto RetType = cast<VectorType>(II->getType());
1062     unsigned ArgWidth = ArgType->getNumElements();
1063     unsigned RetWidth = RetType->getNumElements();
1064     assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
1065     assert(ArgType->isIntOrIntVectorTy() &&
1066            ArgType->getScalarSizeInBits() == 16 &&
1067            "CVTPH2PS input type should be 16-bit integer vector");
1068     assert(RetType->getScalarType()->isFloatTy() &&
1069            "CVTPH2PS output type should be 32-bit float vector");
1070 
1071     // Constant folding: Convert to generic half to single conversion.
1072     if (isa<ConstantAggregateZero>(Arg))
1073       return ReplaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
1074 
1075     if (isa<ConstantDataVector>(Arg)) {
1076       auto VectorHalfAsShorts = Arg;
1077       if (RetWidth < ArgWidth) {
1078         SmallVector<int, 8> SubVecMask;
1079         for (unsigned i = 0; i != RetWidth; ++i)
1080           SubVecMask.push_back((int)i);
1081         VectorHalfAsShorts = Builder->CreateShuffleVector(
1082             Arg, UndefValue::get(ArgType), SubVecMask);
1083       }
1084 
1085       auto VectorHalfType =
1086           VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
1087       auto VectorHalfs =
1088           Builder->CreateBitCast(VectorHalfAsShorts, VectorHalfType);
1089       auto VectorFloats = Builder->CreateFPExt(VectorHalfs, RetType);
1090       return ReplaceInstUsesWith(*II, VectorFloats);
1091     }
1092 
1093     // We only use the lowest lanes of the argument.
1094     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
1095       II->setArgOperand(0, V);
1096       return II;
1097     }
1098     break;
1099   }
1100 
1101   case Intrinsic::x86_sse_cvtss2si:
1102   case Intrinsic::x86_sse_cvtss2si64:
1103   case Intrinsic::x86_sse_cvttss2si:
1104   case Intrinsic::x86_sse_cvttss2si64:
1105   case Intrinsic::x86_sse2_cvtsd2si:
1106   case Intrinsic::x86_sse2_cvtsd2si64:
1107   case Intrinsic::x86_sse2_cvttsd2si:
1108   case Intrinsic::x86_sse2_cvttsd2si64: {
1109     // These intrinsics only demand the 0th element of their input vectors. If
1110     // we can simplify the input based on that, do so now.
1111     Value *Arg = II->getArgOperand(0);
1112     unsigned VWidth = Arg->getType()->getVectorNumElements();
1113     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
1114       II->setArgOperand(0, V);
1115       return II;
1116     }
1117     break;
1118   }
1119 
1120   // Constant fold ashr( <A x Bi>, Ci ).
1121   // Constant fold lshr( <A x Bi>, Ci ).
1122   // Constant fold shl( <A x Bi>, Ci ).
1123   case Intrinsic::x86_sse2_psrai_d:
1124   case Intrinsic::x86_sse2_psrai_w:
1125   case Intrinsic::x86_avx2_psrai_d:
1126   case Intrinsic::x86_avx2_psrai_w:
1127   case Intrinsic::x86_sse2_psrli_d:
1128   case Intrinsic::x86_sse2_psrli_q:
1129   case Intrinsic::x86_sse2_psrli_w:
1130   case Intrinsic::x86_avx2_psrli_d:
1131   case Intrinsic::x86_avx2_psrli_q:
1132   case Intrinsic::x86_avx2_psrli_w:
1133   case Intrinsic::x86_sse2_pslli_d:
1134   case Intrinsic::x86_sse2_pslli_q:
1135   case Intrinsic::x86_sse2_pslli_w:
1136   case Intrinsic::x86_avx2_pslli_d:
1137   case Intrinsic::x86_avx2_pslli_q:
1138   case Intrinsic::x86_avx2_pslli_w:
1139     if (Value *V = SimplifyX86immshift(*II, *Builder))
1140       return ReplaceInstUsesWith(*II, V);
1141     break;
1142 
1143   case Intrinsic::x86_sse2_psra_d:
1144   case Intrinsic::x86_sse2_psra_w:
1145   case Intrinsic::x86_avx2_psra_d:
1146   case Intrinsic::x86_avx2_psra_w:
1147   case Intrinsic::x86_sse2_psrl_d:
1148   case Intrinsic::x86_sse2_psrl_q:
1149   case Intrinsic::x86_sse2_psrl_w:
1150   case Intrinsic::x86_avx2_psrl_d:
1151   case Intrinsic::x86_avx2_psrl_q:
1152   case Intrinsic::x86_avx2_psrl_w:
1153   case Intrinsic::x86_sse2_psll_d:
1154   case Intrinsic::x86_sse2_psll_q:
1155   case Intrinsic::x86_sse2_psll_w:
1156   case Intrinsic::x86_avx2_psll_d:
1157   case Intrinsic::x86_avx2_psll_q:
1158   case Intrinsic::x86_avx2_psll_w: {
1159     if (Value *V = SimplifyX86immshift(*II, *Builder))
1160       return ReplaceInstUsesWith(*II, V);
1161 
1162     // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
1163     // operand to compute the shift amount.
1164     Value *Arg1 = II->getArgOperand(1);
1165     assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
1166            "Unexpected packed shift size");
1167     unsigned VWidth = Arg1->getType()->getVectorNumElements();
1168 
1169     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
1170       II->setArgOperand(1, V);
1171       return II;
1172     }
1173     break;
1174   }
1175 
1176   case Intrinsic::x86_avx2_pmovsxbd:
1177   case Intrinsic::x86_avx2_pmovsxbq:
1178   case Intrinsic::x86_avx2_pmovsxbw:
1179   case Intrinsic::x86_avx2_pmovsxdq:
1180   case Intrinsic::x86_avx2_pmovsxwd:
1181   case Intrinsic::x86_avx2_pmovsxwq:
1182     if (Value *V = SimplifyX86extend(*II, *Builder, true))
1183       return ReplaceInstUsesWith(*II, V);
1184     break;
1185 
1186   case Intrinsic::x86_sse41_pmovzxbd:
1187   case Intrinsic::x86_sse41_pmovzxbq:
1188   case Intrinsic::x86_sse41_pmovzxbw:
1189   case Intrinsic::x86_sse41_pmovzxdq:
1190   case Intrinsic::x86_sse41_pmovzxwd:
1191   case Intrinsic::x86_sse41_pmovzxwq:
1192   case Intrinsic::x86_avx2_pmovzxbd:
1193   case Intrinsic::x86_avx2_pmovzxbq:
1194   case Intrinsic::x86_avx2_pmovzxbw:
1195   case Intrinsic::x86_avx2_pmovzxdq:
1196   case Intrinsic::x86_avx2_pmovzxwd:
1197   case Intrinsic::x86_avx2_pmovzxwq:
1198     if (Value *V = SimplifyX86extend(*II, *Builder, false))
1199       return ReplaceInstUsesWith(*II, V);
1200     break;
1201 
1202   case Intrinsic::x86_sse41_insertps:
1203     if (Value *V = SimplifyX86insertps(*II, *Builder))
1204       return ReplaceInstUsesWith(*II, V);
1205     break;
1206 
1207   case Intrinsic::x86_sse4a_extrq: {
1208     Value *Op0 = II->getArgOperand(0);
1209     Value *Op1 = II->getArgOperand(1);
1210     unsigned VWidth0 = Op0->getType()->getVectorNumElements();
1211     unsigned VWidth1 = Op1->getType()->getVectorNumElements();
1212     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
1213            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
1214            VWidth1 == 16 && "Unexpected operand sizes");
1215 
1216     // See if we're dealing with constant values.
1217     Constant *C1 = dyn_cast<Constant>(Op1);
1218     ConstantInt *CILength =
1219         C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)0))
1220            : nullptr;
1221     ConstantInt *CIIndex =
1222         C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)1))
1223            : nullptr;
1224 
1225     // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
1226     if (Value *V = SimplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
1227       return ReplaceInstUsesWith(*II, V);
1228 
1229     // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
1230     // operands and the lowest 16-bits of the second.
1231     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
1232       II->setArgOperand(0, V);
1233       return II;
1234     }
1235     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
1236       II->setArgOperand(1, V);
1237       return II;
1238     }
1239     break;
1240   }
1241 
1242   case Intrinsic::x86_sse4a_extrqi: {
1243     // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
1244     // bits of the lower 64-bits. The upper 64-bits are undefined.
1245     Value *Op0 = II->getArgOperand(0);
1246     unsigned VWidth = Op0->getType()->getVectorNumElements();
1247     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
1248            "Unexpected operand size");
1249 
1250     // See if we're dealing with constant values.
1251     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
1252     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
1253 
1254     // Attempt to simplify to a constant or shuffle vector.
1255     if (Value *V = SimplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
1256       return ReplaceInstUsesWith(*II, V);
1257 
1258     // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
1259     // operand.
1260     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
1261       II->setArgOperand(0, V);
1262       return II;
1263     }
1264     break;
1265   }
1266 
1267   case Intrinsic::x86_sse4a_insertq: {
1268     Value *Op0 = II->getArgOperand(0);
1269     Value *Op1 = II->getArgOperand(1);
1270     unsigned VWidth = Op0->getType()->getVectorNumElements();
1271     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
1272            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
1273            Op1->getType()->getVectorNumElements() == 2 &&
1274            "Unexpected operand size");
1275 
1276     // See if we're dealing with constant values.
1277     Constant *C1 = dyn_cast<Constant>(Op1);
1278     ConstantInt *CI11 =
1279         C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)1))
1280            : nullptr;
1281 
1282     // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
1283     if (CI11) {
1284       APInt V11 = CI11->getValue();
1285       APInt Len = V11.zextOrTrunc(6);
1286       APInt Idx = V11.lshr(8).zextOrTrunc(6);
1287       if (Value *V = SimplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
1288         return ReplaceInstUsesWith(*II, V);
1289     }
1290 
1291     // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
1292     // operand.
1293     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
1294       II->setArgOperand(0, V);
1295       return II;
1296     }
1297     break;
1298   }
1299 
1300   case Intrinsic::x86_sse4a_insertqi: {
1301     // INSERTQI: Extract lowest Length bits from lower half of second source and
1302     // insert over first source starting at Index bit. The upper 64-bits are
1303     // undefined.
1304     Value *Op0 = II->getArgOperand(0);
1305     Value *Op1 = II->getArgOperand(1);
1306     unsigned VWidth0 = Op0->getType()->getVectorNumElements();
1307     unsigned VWidth1 = Op1->getType()->getVectorNumElements();
1308     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
1309            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
1310            VWidth1 == 2 && "Unexpected operand sizes");
1311 
1312     // See if we're dealing with constant values.
1313     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
1314     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
1315 
1316     // Attempt to simplify to a constant or shuffle vector.
1317     if (CILength && CIIndex) {
1318       APInt Len = CILength->getValue().zextOrTrunc(6);
1319       APInt Idx = CIIndex->getValue().zextOrTrunc(6);
1320       if (Value *V = SimplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
1321         return ReplaceInstUsesWith(*II, V);
1322     }
1323 
1324     // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
1325     // operands.
1326     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
1327       II->setArgOperand(0, V);
1328       return II;
1329     }
1330 
1331     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
1332       II->setArgOperand(1, V);
1333       return II;
1334     }
1335     break;
1336   }
1337 
1338   case Intrinsic::x86_sse41_pblendvb:
1339   case Intrinsic::x86_sse41_blendvps:
1340   case Intrinsic::x86_sse41_blendvpd:
1341   case Intrinsic::x86_avx_blendv_ps_256:
1342   case Intrinsic::x86_avx_blendv_pd_256:
1343   case Intrinsic::x86_avx2_pblendvb: {
1344     // Convert blendv* to vector selects if the mask is constant.
1345     // This optimization is convoluted because the intrinsic is defined as
1346     // getting a vector of floats or doubles for the ps and pd versions.
1347     // FIXME: That should be changed.
1348 
1349     Value *Op0 = II->getArgOperand(0);
1350     Value *Op1 = II->getArgOperand(1);
1351     Value *Mask = II->getArgOperand(2);
1352 
1353     // fold (blend A, A, Mask) -> A
1354     if (Op0 == Op1)
1355       return ReplaceInstUsesWith(CI, Op0);
1356 
1357     // Zero Mask - select 1st argument.
1358     if (isa<ConstantAggregateZero>(Mask))
1359       return ReplaceInstUsesWith(CI, Op0);
1360 
1361     // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
1362     if (auto C = dyn_cast<ConstantDataVector>(Mask)) {
1363       auto Tyi1 = Builder->getInt1Ty();
1364       auto SelectorType = cast<VectorType>(Mask->getType());
1365       auto EltTy = SelectorType->getElementType();
1366       unsigned Size = SelectorType->getNumElements();
1367       unsigned BitWidth =
1368           EltTy->isFloatTy()
1369               ? 32
1370               : (EltTy->isDoubleTy() ? 64 : EltTy->getIntegerBitWidth());
1371       assert((BitWidth == 64 || BitWidth == 32 || BitWidth == 8) &&
1372              "Wrong arguments for variable blend intrinsic");
1373       SmallVector<Constant *, 32> Selectors;
1374       for (unsigned I = 0; I < Size; ++I) {
1375         // The intrinsics only read the top bit
1376         uint64_t Selector;
1377         if (BitWidth == 8)
1378           Selector = C->getElementAsInteger(I);
1379         else
1380           Selector = C->getElementAsAPFloat(I).bitcastToAPInt().getZExtValue();
1381         Selectors.push_back(ConstantInt::get(Tyi1, Selector >> (BitWidth - 1)));
1382       }
1383       auto NewSelector = ConstantVector::get(Selectors);
1384       return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
1385     }
1386     break;
1387   }
1388 
1389   case Intrinsic::x86_ssse3_pshuf_b_128:
1390   case Intrinsic::x86_avx2_pshuf_b: {
1391     // Turn pshufb(V1,mask) -> shuffle(V1,Zero,mask) if mask is a constant.
1392     auto *V = II->getArgOperand(1);
1393     auto *VTy = cast<VectorType>(V->getType());
1394     unsigned NumElts = VTy->getNumElements();
1395     assert((NumElts == 16 || NumElts == 32) &&
1396            "Unexpected number of elements in shuffle mask!");
1397     // Initialize the resulting shuffle mask to all zeroes.
1398     uint32_t Indexes[32] = {0};
1399 
1400     if (auto *Mask = dyn_cast<ConstantDataVector>(V)) {
1401       // Each byte in the shuffle control mask forms an index to permute the
1402       // corresponding byte in the destination operand.
1403       for (unsigned I = 0; I < NumElts; ++I) {
1404         int8_t Index = Mask->getElementAsInteger(I);
1405         // If the most significant bit (bit[7]) of each byte of the shuffle
1406         // control mask is set, then zero is written in the result byte.
1407         // The zero vector is in the right-hand side of the resulting
1408         // shufflevector.
1409 
1410         // The value of each index is the least significant 4 bits of the
1411         // shuffle control byte.
1412         Indexes[I] = (Index < 0) ? NumElts : Index & 0xF;
1413       }
1414     } else if (!isa<ConstantAggregateZero>(V))
1415       break;
1416 
1417     // The value of each index for the high 128-bit lane is the least
1418     // significant 4 bits of the respective shuffle control byte.
1419     for (unsigned I = 16; I < NumElts; ++I)
1420       Indexes[I] += I & 0xF0;
1421 
1422     auto NewC = ConstantDataVector::get(V->getContext(),
1423                                         makeArrayRef(Indexes, NumElts));
1424     auto V1 = II->getArgOperand(0);
1425     auto V2 = Constant::getNullValue(II->getType());
1426     auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC);
1427     return ReplaceInstUsesWith(CI, Shuffle);
1428   }
1429 
1430   case Intrinsic::x86_avx_vpermilvar_ps:
1431   case Intrinsic::x86_avx_vpermilvar_ps_256:
1432   case Intrinsic::x86_avx_vpermilvar_pd:
1433   case Intrinsic::x86_avx_vpermilvar_pd_256: {
1434     // Convert vpermil* to shufflevector if the mask is constant.
1435     Value *V = II->getArgOperand(1);
1436     unsigned Size = cast<VectorType>(V->getType())->getNumElements();
1437     assert(Size == 8 || Size == 4 || Size == 2);
1438     uint32_t Indexes[8];
1439     if (auto C = dyn_cast<ConstantDataVector>(V)) {
1440       // The intrinsics only read one or two bits, clear the rest.
1441       for (unsigned I = 0; I < Size; ++I) {
1442         uint32_t Index = C->getElementAsInteger(I) & 0x3;
1443         if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd ||
1444             II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256)
1445           Index >>= 1;
1446         Indexes[I] = Index;
1447       }
1448     } else if (isa<ConstantAggregateZero>(V)) {
1449       for (unsigned I = 0; I < Size; ++I)
1450         Indexes[I] = 0;
1451     } else {
1452       break;
1453     }
1454     // The _256 variants are a bit trickier since the mask bits always index
1455     // into the corresponding 128 half. In order to convert to a generic
1456     // shuffle, we have to make that explicit.
1457     if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 ||
1458         II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) {
1459       for (unsigned I = Size / 2; I < Size; ++I)
1460         Indexes[I] += Size / 2;
1461     }
1462     auto NewC =
1463         ConstantDataVector::get(V->getContext(), makeArrayRef(Indexes, Size));
1464     auto V1 = II->getArgOperand(0);
1465     auto V2 = UndefValue::get(V1->getType());
1466     auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC);
1467     return ReplaceInstUsesWith(CI, Shuffle);
1468   }
1469 
1470   case Intrinsic::x86_avx_vperm2f128_pd_256:
1471   case Intrinsic::x86_avx_vperm2f128_ps_256:
1472   case Intrinsic::x86_avx_vperm2f128_si_256:
1473   case Intrinsic::x86_avx2_vperm2i128:
1474     if (Value *V = SimplifyX86vperm2(*II, *Builder))
1475       return ReplaceInstUsesWith(*II, V);
1476     break;
1477 
1478   case Intrinsic::x86_xop_vpcomb:
1479   case Intrinsic::x86_xop_vpcomd:
1480   case Intrinsic::x86_xop_vpcomq:
1481   case Intrinsic::x86_xop_vpcomw:
1482     if (Value *V = SimplifyX86vpcom(*II, *Builder, true))
1483       return ReplaceInstUsesWith(*II, V);
1484     break;
1485 
1486   case Intrinsic::x86_xop_vpcomub:
1487   case Intrinsic::x86_xop_vpcomud:
1488   case Intrinsic::x86_xop_vpcomuq:
1489   case Intrinsic::x86_xop_vpcomuw:
1490     if (Value *V = SimplifyX86vpcom(*II, *Builder, false))
1491       return ReplaceInstUsesWith(*II, V);
1492     break;
1493 
1494   case Intrinsic::ppc_altivec_vperm:
1495     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
1496     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
1497     // a vectorshuffle for little endian, we must undo the transformation
1498     // performed on vec_perm in altivec.h.  That is, we must complement
1499     // the permutation mask with respect to 31 and reverse the order of
1500     // V1 and V2.
1501     if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
1502       assert(Mask->getType()->getVectorNumElements() == 16 &&
1503              "Bad type for intrinsic!");
1504 
1505       // Check that all of the elements are integer constants or undefs.
1506       bool AllEltsOk = true;
1507       for (unsigned i = 0; i != 16; ++i) {
1508         Constant *Elt = Mask->getAggregateElement(i);
1509         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
1510           AllEltsOk = false;
1511           break;
1512         }
1513       }
1514 
1515       if (AllEltsOk) {
1516         // Cast the input vectors to byte vectors.
1517         Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
1518                                             Mask->getType());
1519         Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
1520                                             Mask->getType());
1521         Value *Result = UndefValue::get(Op0->getType());
1522 
1523         // Only extract each element once.
1524         Value *ExtractedElts[32];
1525         memset(ExtractedElts, 0, sizeof(ExtractedElts));
1526 
1527         for (unsigned i = 0; i != 16; ++i) {
1528           if (isa<UndefValue>(Mask->getAggregateElement(i)))
1529             continue;
1530           unsigned Idx =
1531             cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
1532           Idx &= 31;  // Match the hardware behavior.
1533           if (DL.isLittleEndian())
1534             Idx = 31 - Idx;
1535 
1536           if (!ExtractedElts[Idx]) {
1537             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
1538             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
1539             ExtractedElts[Idx] =
1540               Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
1541                                             Builder->getInt32(Idx&15));
1542           }
1543 
1544           // Insert this value into the result vector.
1545           Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
1546                                                 Builder->getInt32(i));
1547         }
1548         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
1549       }
1550     }
1551     break;
1552 
1553   case Intrinsic::arm_neon_vld1:
1554   case Intrinsic::arm_neon_vld2:
1555   case Intrinsic::arm_neon_vld3:
1556   case Intrinsic::arm_neon_vld4:
1557   case Intrinsic::arm_neon_vld2lane:
1558   case Intrinsic::arm_neon_vld3lane:
1559   case Intrinsic::arm_neon_vld4lane:
1560   case Intrinsic::arm_neon_vst1:
1561   case Intrinsic::arm_neon_vst2:
1562   case Intrinsic::arm_neon_vst3:
1563   case Intrinsic::arm_neon_vst4:
1564   case Intrinsic::arm_neon_vst2lane:
1565   case Intrinsic::arm_neon_vst3lane:
1566   case Intrinsic::arm_neon_vst4lane: {
1567     unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, AC, DT);
1568     unsigned AlignArg = II->getNumArgOperands() - 1;
1569     ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
1570     if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
1571       II->setArgOperand(AlignArg,
1572                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
1573                                          MemAlign, false));
1574       return II;
1575     }
1576     break;
1577   }
1578 
1579   case Intrinsic::arm_neon_vmulls:
1580   case Intrinsic::arm_neon_vmullu:
1581   case Intrinsic::aarch64_neon_smull:
1582   case Intrinsic::aarch64_neon_umull: {
1583     Value *Arg0 = II->getArgOperand(0);
1584     Value *Arg1 = II->getArgOperand(1);
1585 
1586     // Handle mul by zero first:
1587     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
1588       return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
1589     }
1590 
1591     // Check for constant LHS & RHS - in this case we just simplify.
1592     bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
1593                  II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
1594     VectorType *NewVT = cast<VectorType>(II->getType());
1595     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
1596       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
1597         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
1598         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
1599 
1600         return ReplaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
1601       }
1602 
1603       // Couldn't simplify - canonicalize constant to the RHS.
1604       std::swap(Arg0, Arg1);
1605     }
1606 
1607     // Handle mul by one:
1608     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
1609       if (ConstantInt *Splat =
1610               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
1611         if (Splat->isOne())
1612           return CastInst::CreateIntegerCast(Arg0, II->getType(),
1613                                              /*isSigned=*/!Zext);
1614 
1615     break;
1616   }
1617 
1618   case Intrinsic::AMDGPU_rcp: {
1619     if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) {
1620       const APFloat &ArgVal = C->getValueAPF();
1621       APFloat Val(ArgVal.getSemantics(), 1.0);
1622       APFloat::opStatus Status = Val.divide(ArgVal,
1623                                             APFloat::rmNearestTiesToEven);
1624       // Only do this if it was exact and therefore not dependent on the
1625       // rounding mode.
1626       if (Status == APFloat::opOK)
1627         return ReplaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
1628     }
1629 
1630     break;
1631   }
1632   case Intrinsic::stackrestore: {
1633     // If the save is right next to the restore, remove the restore.  This can
1634     // happen when variable allocas are DCE'd.
1635     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
1636       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
1637         if (&*++SS->getIterator() == II)
1638           return EraseInstFromFunction(CI);
1639       }
1640     }
1641 
1642     // Scan down this block to see if there is another stack restore in the
1643     // same block without an intervening call/alloca.
1644     BasicBlock::iterator BI(II);
1645     TerminatorInst *TI = II->getParent()->getTerminator();
1646     bool CannotRemove = false;
1647     for (++BI; &*BI != TI; ++BI) {
1648       if (isa<AllocaInst>(BI)) {
1649         CannotRemove = true;
1650         break;
1651       }
1652       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
1653         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
1654           // If there is a stackrestore below this one, remove this one.
1655           if (II->getIntrinsicID() == Intrinsic::stackrestore)
1656             return EraseInstFromFunction(CI);
1657           // Otherwise, ignore the intrinsic.
1658         } else {
1659           // If we found a non-intrinsic call, we can't remove the stack
1660           // restore.
1661           CannotRemove = true;
1662           break;
1663         }
1664       }
1665     }
1666 
1667     // If the stack restore is in a return, resume, or unwind block and if there
1668     // are no allocas or calls between the restore and the return, nuke the
1669     // restore.
1670     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
1671       return EraseInstFromFunction(CI);
1672     break;
1673   }
1674   case Intrinsic::lifetime_start: {
1675     // Remove trivially empty lifetime_start/end ranges, i.e. a start
1676     // immediately followed by an end (ignoring debuginfo or other
1677     // lifetime markers in between).
1678     BasicBlock::iterator BI = II->getIterator(), BE = II->getParent()->end();
1679     for (++BI; BI != BE; ++BI) {
1680       if (IntrinsicInst *LTE = dyn_cast<IntrinsicInst>(BI)) {
1681         if (isa<DbgInfoIntrinsic>(LTE) ||
1682             LTE->getIntrinsicID() == Intrinsic::lifetime_start)
1683           continue;
1684         if (LTE->getIntrinsicID() == Intrinsic::lifetime_end) {
1685           if (II->getOperand(0) == LTE->getOperand(0) &&
1686               II->getOperand(1) == LTE->getOperand(1)) {
1687             EraseInstFromFunction(*LTE);
1688             return EraseInstFromFunction(*II);
1689           }
1690           continue;
1691         }
1692       }
1693       break;
1694     }
1695     break;
1696   }
1697   case Intrinsic::assume: {
1698     // Canonicalize assume(a && b) -> assume(a); assume(b);
1699     // Note: New assumption intrinsics created here are registered by
1700     // the InstCombineIRInserter object.
1701     Value *IIOperand = II->getArgOperand(0), *A, *B,
1702           *AssumeIntrinsic = II->getCalledValue();
1703     if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
1704       Builder->CreateCall(AssumeIntrinsic, A, II->getName());
1705       Builder->CreateCall(AssumeIntrinsic, B, II->getName());
1706       return EraseInstFromFunction(*II);
1707     }
1708     // assume(!(a || b)) -> assume(!a); assume(!b);
1709     if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
1710       Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
1711                           II->getName());
1712       Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
1713                           II->getName());
1714       return EraseInstFromFunction(*II);
1715     }
1716 
1717     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
1718     // (if assume is valid at the load)
1719     if (ICmpInst* ICmp = dyn_cast<ICmpInst>(IIOperand)) {
1720       Value *LHS = ICmp->getOperand(0);
1721       Value *RHS = ICmp->getOperand(1);
1722       if (ICmpInst::ICMP_NE == ICmp->getPredicate() &&
1723           isa<LoadInst>(LHS) &&
1724           isa<Constant>(RHS) &&
1725           RHS->getType()->isPointerTy() &&
1726           cast<Constant>(RHS)->isNullValue()) {
1727         LoadInst* LI = cast<LoadInst>(LHS);
1728         if (isValidAssumeForContext(II, LI, DT)) {
1729           MDNode *MD = MDNode::get(II->getContext(), None);
1730           LI->setMetadata(LLVMContext::MD_nonnull, MD);
1731           return EraseInstFromFunction(*II);
1732         }
1733       }
1734       // TODO: apply nonnull return attributes to calls and invokes
1735       // TODO: apply range metadata for range check patterns?
1736     }
1737     // If there is a dominating assume with the same condition as this one,
1738     // then this one is redundant, and should be removed.
1739     APInt KnownZero(1, 0), KnownOne(1, 0);
1740     computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II);
1741     if (KnownOne.isAllOnesValue())
1742       return EraseInstFromFunction(*II);
1743 
1744     break;
1745   }
1746   case Intrinsic::experimental_gc_relocate: {
1747     // Translate facts known about a pointer before relocating into
1748     // facts about the relocate value, while being careful to
1749     // preserve relocation semantics.
1750     GCRelocateOperands Operands(II);
1751     Value *DerivedPtr = Operands.getDerivedPtr();
1752     auto *GCRelocateType = cast<PointerType>(II->getType());
1753 
1754     // Remove the relocation if unused, note that this check is required
1755     // to prevent the cases below from looping forever.
1756     if (II->use_empty())
1757       return EraseInstFromFunction(*II);
1758 
1759     // Undef is undef, even after relocation.
1760     // TODO: provide a hook for this in GCStrategy.  This is clearly legal for
1761     // most practical collectors, but there was discussion in the review thread
1762     // about whether it was legal for all possible collectors.
1763     if (isa<UndefValue>(DerivedPtr)) {
1764       // gc_relocate is uncasted. Use undef of gc_relocate's type to replace it.
1765       return ReplaceInstUsesWith(*II, UndefValue::get(GCRelocateType));
1766     }
1767 
1768     // The relocation of null will be null for most any collector.
1769     // TODO: provide a hook for this in GCStrategy.  There might be some weird
1770     // collector this property does not hold for.
1771     if (isa<ConstantPointerNull>(DerivedPtr)) {
1772       // gc_relocate is uncasted. Use null-pointer of gc_relocate's type to replace it.
1773       return ReplaceInstUsesWith(*II, ConstantPointerNull::get(GCRelocateType));
1774     }
1775 
1776     // isKnownNonNull -> nonnull attribute
1777     if (isKnownNonNullAt(DerivedPtr, II, DT, TLI))
1778       II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
1779 
1780     // isDereferenceablePointer -> deref attribute
1781     if (isDereferenceablePointer(DerivedPtr, DL)) {
1782       if (Argument *A = dyn_cast<Argument>(DerivedPtr)) {
1783         uint64_t Bytes = A->getDereferenceableBytes();
1784         II->addDereferenceableAttr(AttributeSet::ReturnIndex, Bytes);
1785       }
1786     }
1787 
1788     // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
1789     // Canonicalize on the type from the uses to the defs
1790 
1791     // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
1792   }
1793   }
1794 
1795   return visitCallSite(II);
1796 }
1797 
1798 // InvokeInst simplification
1799 //
visitInvokeInst(InvokeInst & II)1800 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
1801   return visitCallSite(&II);
1802 }
1803 
1804 /// isSafeToEliminateVarargsCast - If this cast does not affect the value
1805 /// passed through the varargs area, we can eliminate the use of the cast.
isSafeToEliminateVarargsCast(const CallSite CS,const DataLayout & DL,const CastInst * const CI,const int ix)1806 static bool isSafeToEliminateVarargsCast(const CallSite CS,
1807                                          const DataLayout &DL,
1808                                          const CastInst *const CI,
1809                                          const int ix) {
1810   if (!CI->isLosslessCast())
1811     return false;
1812 
1813   // If this is a GC intrinsic, avoid munging types.  We need types for
1814   // statepoint reconstruction in SelectionDAG.
1815   // TODO: This is probably something which should be expanded to all
1816   // intrinsics since the entire point of intrinsics is that
1817   // they are understandable by the optimizer.
1818   if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
1819     return false;
1820 
1821   // The size of ByVal or InAlloca arguments is derived from the type, so we
1822   // can't change to a type with a different size.  If the size were
1823   // passed explicitly we could avoid this check.
1824   if (!CS.isByValOrInAllocaArgument(ix))
1825     return true;
1826 
1827   Type* SrcTy =
1828             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
1829   Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
1830   if (!SrcTy->isSized() || !DstTy->isSized())
1831     return false;
1832   if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
1833     return false;
1834   return true;
1835 }
1836 
1837 // Try to fold some different type of calls here.
1838 // Currently we're only working with the checking functions, memcpy_chk,
1839 // mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
1840 // strcat_chk and strncat_chk.
tryOptimizeCall(CallInst * CI)1841 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
1842   if (!CI->getCalledFunction()) return nullptr;
1843 
1844   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
1845     ReplaceInstUsesWith(*From, With);
1846   };
1847   LibCallSimplifier Simplifier(DL, TLI, InstCombineRAUW);
1848   if (Value *With = Simplifier.optimizeCall(CI)) {
1849     ++NumSimplified;
1850     return CI->use_empty() ? CI : ReplaceInstUsesWith(*CI, With);
1851   }
1852 
1853   return nullptr;
1854 }
1855 
FindInitTrampolineFromAlloca(Value * TrampMem)1856 static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
1857   // Strip off at most one level of pointer casts, looking for an alloca.  This
1858   // is good enough in practice and simpler than handling any number of casts.
1859   Value *Underlying = TrampMem->stripPointerCasts();
1860   if (Underlying != TrampMem &&
1861       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
1862     return nullptr;
1863   if (!isa<AllocaInst>(Underlying))
1864     return nullptr;
1865 
1866   IntrinsicInst *InitTrampoline = nullptr;
1867   for (User *U : TrampMem->users()) {
1868     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1869     if (!II)
1870       return nullptr;
1871     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
1872       if (InitTrampoline)
1873         // More than one init_trampoline writes to this value.  Give up.
1874         return nullptr;
1875       InitTrampoline = II;
1876       continue;
1877     }
1878     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
1879       // Allow any number of calls to adjust.trampoline.
1880       continue;
1881     return nullptr;
1882   }
1883 
1884   // No call to init.trampoline found.
1885   if (!InitTrampoline)
1886     return nullptr;
1887 
1888   // Check that the alloca is being used in the expected way.
1889   if (InitTrampoline->getOperand(0) != TrampMem)
1890     return nullptr;
1891 
1892   return InitTrampoline;
1893 }
1894 
FindInitTrampolineFromBB(IntrinsicInst * AdjustTramp,Value * TrampMem)1895 static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
1896                                                Value *TrampMem) {
1897   // Visit all the previous instructions in the basic block, and try to find a
1898   // init.trampoline which has a direct path to the adjust.trampoline.
1899   for (BasicBlock::iterator I = AdjustTramp->getIterator(),
1900                             E = AdjustTramp->getParent()->begin();
1901        I != E;) {
1902     Instruction *Inst = &*--I;
1903     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1904       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
1905           II->getOperand(0) == TrampMem)
1906         return II;
1907     if (Inst->mayWriteToMemory())
1908       return nullptr;
1909   }
1910   return nullptr;
1911 }
1912 
1913 // Given a call to llvm.adjust.trampoline, find and return the corresponding
1914 // call to llvm.init.trampoline if the call to the trampoline can be optimized
1915 // to a direct call to a function.  Otherwise return NULL.
1916 //
FindInitTrampoline(Value * Callee)1917 static IntrinsicInst *FindInitTrampoline(Value *Callee) {
1918   Callee = Callee->stripPointerCasts();
1919   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
1920   if (!AdjustTramp ||
1921       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
1922     return nullptr;
1923 
1924   Value *TrampMem = AdjustTramp->getOperand(0);
1925 
1926   if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
1927     return IT;
1928   if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
1929     return IT;
1930   return nullptr;
1931 }
1932 
1933 // visitCallSite - Improvements for call and invoke instructions.
1934 //
visitCallSite(CallSite CS)1935 Instruction *InstCombiner::visitCallSite(CallSite CS) {
1936 
1937   if (isAllocLikeFn(CS.getInstruction(), TLI))
1938     return visitAllocSite(*CS.getInstruction());
1939 
1940   bool Changed = false;
1941 
1942   // Mark any parameters that are known to be non-null with the nonnull
1943   // attribute.  This is helpful for inlining calls to functions with null
1944   // checks on their arguments.
1945   SmallVector<unsigned, 4> Indices;
1946   unsigned ArgNo = 0;
1947 
1948   for (Value *V : CS.args()) {
1949     if (V->getType()->isPointerTy() && !CS.paramHasAttr(ArgNo+1, Attribute::NonNull) &&
1950         isKnownNonNullAt(V, CS.getInstruction(), DT, TLI))
1951       Indices.push_back(ArgNo + 1);
1952     ArgNo++;
1953   }
1954 
1955   assert(ArgNo == CS.arg_size() && "sanity check");
1956 
1957   if (!Indices.empty()) {
1958     AttributeSet AS = CS.getAttributes();
1959     LLVMContext &Ctx = CS.getInstruction()->getContext();
1960     AS = AS.addAttribute(Ctx, Indices,
1961                          Attribute::get(Ctx, Attribute::NonNull));
1962     CS.setAttributes(AS);
1963     Changed = true;
1964   }
1965 
1966   // If the callee is a pointer to a function, attempt to move any casts to the
1967   // arguments of the call/invoke.
1968   Value *Callee = CS.getCalledValue();
1969   if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
1970     return nullptr;
1971 
1972   if (Function *CalleeF = dyn_cast<Function>(Callee))
1973     // If the call and callee calling conventions don't match, this call must
1974     // be unreachable, as the call is undefined.
1975     if (CalleeF->getCallingConv() != CS.getCallingConv() &&
1976         // Only do this for calls to a function with a body.  A prototype may
1977         // not actually end up matching the implementation's calling conv for a
1978         // variety of reasons (e.g. it may be written in assembly).
1979         !CalleeF->isDeclaration()) {
1980       Instruction *OldCall = CS.getInstruction();
1981       new StoreInst(ConstantInt::getTrue(Callee->getContext()),
1982                 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
1983                                   OldCall);
1984       // If OldCall does not return void then replaceAllUsesWith undef.
1985       // This allows ValueHandlers and custom metadata to adjust itself.
1986       if (!OldCall->getType()->isVoidTy())
1987         ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
1988       if (isa<CallInst>(OldCall))
1989         return EraseInstFromFunction(*OldCall);
1990 
1991       // We cannot remove an invoke, because it would change the CFG, just
1992       // change the callee to a null pointer.
1993       cast<InvokeInst>(OldCall)->setCalledFunction(
1994                                     Constant::getNullValue(CalleeF->getType()));
1995       return nullptr;
1996     }
1997 
1998   if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1999     // If CS does not return void then replaceAllUsesWith undef.
2000     // This allows ValueHandlers and custom metadata to adjust itself.
2001     if (!CS.getInstruction()->getType()->isVoidTy())
2002       ReplaceInstUsesWith(*CS.getInstruction(),
2003                           UndefValue::get(CS.getInstruction()->getType()));
2004 
2005     if (isa<InvokeInst>(CS.getInstruction())) {
2006       // Can't remove an invoke because we cannot change the CFG.
2007       return nullptr;
2008     }
2009 
2010     // This instruction is not reachable, just remove it.  We insert a store to
2011     // undef so that we know that this code is not reachable, despite the fact
2012     // that we can't modify the CFG here.
2013     new StoreInst(ConstantInt::getTrue(Callee->getContext()),
2014                   UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
2015                   CS.getInstruction());
2016 
2017     return EraseInstFromFunction(*CS.getInstruction());
2018   }
2019 
2020   if (IntrinsicInst *II = FindInitTrampoline(Callee))
2021     return transformCallThroughTrampoline(CS, II);
2022 
2023   PointerType *PTy = cast<PointerType>(Callee->getType());
2024   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2025   if (FTy->isVarArg()) {
2026     int ix = FTy->getNumParams();
2027     // See if we can optimize any arguments passed through the varargs area of
2028     // the call.
2029     for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
2030            E = CS.arg_end(); I != E; ++I, ++ix) {
2031       CastInst *CI = dyn_cast<CastInst>(*I);
2032       if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
2033         *I = CI->getOperand(0);
2034         Changed = true;
2035       }
2036     }
2037   }
2038 
2039   if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
2040     // Inline asm calls cannot throw - mark them 'nounwind'.
2041     CS.setDoesNotThrow();
2042     Changed = true;
2043   }
2044 
2045   // Try to optimize the call if possible, we require DataLayout for most of
2046   // this.  None of these calls are seen as possibly dead so go ahead and
2047   // delete the instruction now.
2048   if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
2049     Instruction *I = tryOptimizeCall(CI);
2050     // If we changed something return the result, etc. Otherwise let
2051     // the fallthrough check.
2052     if (I) return EraseInstFromFunction(*I);
2053   }
2054 
2055   return Changed ? CS.getInstruction() : nullptr;
2056 }
2057 
2058 // transformConstExprCastCall - If the callee is a constexpr cast of a function,
2059 // attempt to move the cast to the arguments of the call/invoke.
2060 //
transformConstExprCastCall(CallSite CS)2061 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
2062   Function *Callee =
2063     dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2064   if (!Callee)
2065     return false;
2066   // The prototype of thunks are a lie, don't try to directly call such
2067   // functions.
2068   if (Callee->hasFnAttribute("thunk"))
2069     return false;
2070   Instruction *Caller = CS.getInstruction();
2071   const AttributeSet &CallerPAL = CS.getAttributes();
2072 
2073   // Okay, this is a cast from a function to a different type.  Unless doing so
2074   // would cause a type conversion of one of our arguments, change this call to
2075   // be a direct call with arguments casted to the appropriate types.
2076   //
2077   FunctionType *FT = Callee->getFunctionType();
2078   Type *OldRetTy = Caller->getType();
2079   Type *NewRetTy = FT->getReturnType();
2080 
2081   // Check to see if we are changing the return type...
2082   if (OldRetTy != NewRetTy) {
2083 
2084     if (NewRetTy->isStructTy())
2085       return false; // TODO: Handle multiple return values.
2086 
2087     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
2088       if (Callee->isDeclaration())
2089         return false;   // Cannot transform this return value.
2090 
2091       if (!Caller->use_empty() &&
2092           // void -> non-void is handled specially
2093           !NewRetTy->isVoidTy())
2094         return false;   // Cannot transform this return value.
2095     }
2096 
2097     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
2098       AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
2099       if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
2100         return false;   // Attribute not compatible with transformed value.
2101     }
2102 
2103     // If the callsite is an invoke instruction, and the return value is used by
2104     // a PHI node in a successor, we cannot change the return type of the call
2105     // because there is no place to put the cast instruction (without breaking
2106     // the critical edge).  Bail out in this case.
2107     if (!Caller->use_empty())
2108       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
2109         for (User *U : II->users())
2110           if (PHINode *PN = dyn_cast<PHINode>(U))
2111             if (PN->getParent() == II->getNormalDest() ||
2112                 PN->getParent() == II->getUnwindDest())
2113               return false;
2114   }
2115 
2116   unsigned NumActualArgs = CS.arg_size();
2117   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
2118 
2119   // Prevent us turning:
2120   // declare void @takes_i32_inalloca(i32* inalloca)
2121   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
2122   //
2123   // into:
2124   //  call void @takes_i32_inalloca(i32* null)
2125   //
2126   //  Similarly, avoid folding away bitcasts of byval calls.
2127   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
2128       Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
2129     return false;
2130 
2131   CallSite::arg_iterator AI = CS.arg_begin();
2132   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
2133     Type *ParamTy = FT->getParamType(i);
2134     Type *ActTy = (*AI)->getType();
2135 
2136     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
2137       return false;   // Cannot transform this parameter value.
2138 
2139     if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
2140           overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
2141       return false;   // Attribute not compatible with transformed value.
2142 
2143     if (CS.isInAllocaArgument(i))
2144       return false;   // Cannot transform to and from inalloca.
2145 
2146     // If the parameter is passed as a byval argument, then we have to have a
2147     // sized type and the sized type has to have the same size as the old type.
2148     if (ParamTy != ActTy &&
2149         CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
2150                                                          Attribute::ByVal)) {
2151       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
2152       if (!ParamPTy || !ParamPTy->getElementType()->isSized())
2153         return false;
2154 
2155       Type *CurElTy = ActTy->getPointerElementType();
2156       if (DL.getTypeAllocSize(CurElTy) !=
2157           DL.getTypeAllocSize(ParamPTy->getElementType()))
2158         return false;
2159     }
2160   }
2161 
2162   if (Callee->isDeclaration()) {
2163     // Do not delete arguments unless we have a function body.
2164     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
2165       return false;
2166 
2167     // If the callee is just a declaration, don't change the varargsness of the
2168     // call.  We don't want to introduce a varargs call where one doesn't
2169     // already exist.
2170     PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
2171     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
2172       return false;
2173 
2174     // If both the callee and the cast type are varargs, we still have to make
2175     // sure the number of fixed parameters are the same or we have the same
2176     // ABI issues as if we introduce a varargs call.
2177     if (FT->isVarArg() &&
2178         cast<FunctionType>(APTy->getElementType())->isVarArg() &&
2179         FT->getNumParams() !=
2180         cast<FunctionType>(APTy->getElementType())->getNumParams())
2181       return false;
2182   }
2183 
2184   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
2185       !CallerPAL.isEmpty())
2186     // In this case we have more arguments than the new function type, but we
2187     // won't be dropping them.  Check that these extra arguments have attributes
2188     // that are compatible with being a vararg call argument.
2189     for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
2190       unsigned Index = CallerPAL.getSlotIndex(i - 1);
2191       if (Index <= FT->getNumParams())
2192         break;
2193 
2194       // Check if it has an attribute that's incompatible with varargs.
2195       AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1);
2196       if (PAttrs.hasAttribute(Index, Attribute::StructRet))
2197         return false;
2198     }
2199 
2200 
2201   // Okay, we decided that this is a safe thing to do: go ahead and start
2202   // inserting cast instructions as necessary.
2203   std::vector<Value*> Args;
2204   Args.reserve(NumActualArgs);
2205   SmallVector<AttributeSet, 8> attrVec;
2206   attrVec.reserve(NumCommonArgs);
2207 
2208   // Get any return attributes.
2209   AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
2210 
2211   // If the return value is not being used, the type may not be compatible
2212   // with the existing attributes.  Wipe out any problematic attributes.
2213   RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
2214 
2215   // Add the new return attributes.
2216   if (RAttrs.hasAttributes())
2217     attrVec.push_back(AttributeSet::get(Caller->getContext(),
2218                                         AttributeSet::ReturnIndex, RAttrs));
2219 
2220   AI = CS.arg_begin();
2221   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
2222     Type *ParamTy = FT->getParamType(i);
2223 
2224     if ((*AI)->getType() == ParamTy) {
2225       Args.push_back(*AI);
2226     } else {
2227       Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy));
2228     }
2229 
2230     // Add any parameter attributes.
2231     AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
2232     if (PAttrs.hasAttributes())
2233       attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1,
2234                                           PAttrs));
2235   }
2236 
2237   // If the function takes more arguments than the call was taking, add them
2238   // now.
2239   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
2240     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
2241 
2242   // If we are removing arguments to the function, emit an obnoxious warning.
2243   if (FT->getNumParams() < NumActualArgs) {
2244     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
2245     if (FT->isVarArg()) {
2246       // Add all of the arguments in their promoted form to the arg list.
2247       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
2248         Type *PTy = getPromotedType((*AI)->getType());
2249         if (PTy != (*AI)->getType()) {
2250           // Must promote to pass through va_arg area!
2251           Instruction::CastOps opcode =
2252             CastInst::getCastOpcode(*AI, false, PTy, false);
2253           Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
2254         } else {
2255           Args.push_back(*AI);
2256         }
2257 
2258         // Add any parameter attributes.
2259         AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
2260         if (PAttrs.hasAttributes())
2261           attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1,
2262                                               PAttrs));
2263       }
2264     }
2265   }
2266 
2267   AttributeSet FnAttrs = CallerPAL.getFnAttributes();
2268   if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex))
2269     attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs));
2270 
2271   if (NewRetTy->isVoidTy())
2272     Caller->setName("");   // Void type should not have a name.
2273 
2274   const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
2275                                                        attrVec);
2276 
2277   SmallVector<OperandBundleDef, 1> OpBundles;
2278   CS.getOperandBundlesAsDefs(OpBundles);
2279 
2280   Instruction *NC;
2281   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
2282     NC = Builder->CreateInvoke(Callee, II->getNormalDest(), II->getUnwindDest(),
2283                                Args, OpBundles);
2284     NC->takeName(II);
2285     cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
2286     cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
2287   } else {
2288     CallInst *CI = cast<CallInst>(Caller);
2289     NC = Builder->CreateCall(Callee, Args, OpBundles);
2290     NC->takeName(CI);
2291     if (CI->isTailCall())
2292       cast<CallInst>(NC)->setTailCall();
2293     cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
2294     cast<CallInst>(NC)->setAttributes(NewCallerPAL);
2295   }
2296 
2297   // Insert a cast of the return type as necessary.
2298   Value *NV = NC;
2299   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
2300     if (!NV->getType()->isVoidTy()) {
2301       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
2302       NC->setDebugLoc(Caller->getDebugLoc());
2303 
2304       // If this is an invoke instruction, we should insert it after the first
2305       // non-phi, instruction in the normal successor block.
2306       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
2307         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
2308         InsertNewInstBefore(NC, *I);
2309       } else {
2310         // Otherwise, it's a call, just insert cast right after the call.
2311         InsertNewInstBefore(NC, *Caller);
2312       }
2313       Worklist.AddUsersToWorkList(*Caller);
2314     } else {
2315       NV = UndefValue::get(Caller->getType());
2316     }
2317   }
2318 
2319   if (!Caller->use_empty())
2320     ReplaceInstUsesWith(*Caller, NV);
2321   else if (Caller->hasValueHandle()) {
2322     if (OldRetTy == NV->getType())
2323       ValueHandleBase::ValueIsRAUWd(Caller, NV);
2324     else
2325       // We cannot call ValueIsRAUWd with a different type, and the
2326       // actual tracked value will disappear.
2327       ValueHandleBase::ValueIsDeleted(Caller);
2328   }
2329 
2330   EraseInstFromFunction(*Caller);
2331   return true;
2332 }
2333 
2334 // transformCallThroughTrampoline - Turn a call to a function created by
2335 // init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
2336 // underlying function.
2337 //
2338 Instruction *
transformCallThroughTrampoline(CallSite CS,IntrinsicInst * Tramp)2339 InstCombiner::transformCallThroughTrampoline(CallSite CS,
2340                                              IntrinsicInst *Tramp) {
2341   Value *Callee = CS.getCalledValue();
2342   PointerType *PTy = cast<PointerType>(Callee->getType());
2343   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2344   const AttributeSet &Attrs = CS.getAttributes();
2345 
2346   // If the call already has the 'nest' attribute somewhere then give up -
2347   // otherwise 'nest' would occur twice after splicing in the chain.
2348   if (Attrs.hasAttrSomewhere(Attribute::Nest))
2349     return nullptr;
2350 
2351   assert(Tramp &&
2352          "transformCallThroughTrampoline called with incorrect CallSite.");
2353 
2354   Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
2355   PointerType *NestFPTy = cast<PointerType>(NestF->getType());
2356   FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
2357 
2358   const AttributeSet &NestAttrs = NestF->getAttributes();
2359   if (!NestAttrs.isEmpty()) {
2360     unsigned NestIdx = 1;
2361     Type *NestTy = nullptr;
2362     AttributeSet NestAttr;
2363 
2364     // Look for a parameter marked with the 'nest' attribute.
2365     for (FunctionType::param_iterator I = NestFTy->param_begin(),
2366          E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
2367       if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
2368         // Record the parameter type and any other attributes.
2369         NestTy = *I;
2370         NestAttr = NestAttrs.getParamAttributes(NestIdx);
2371         break;
2372       }
2373 
2374     if (NestTy) {
2375       Instruction *Caller = CS.getInstruction();
2376       std::vector<Value*> NewArgs;
2377       NewArgs.reserve(CS.arg_size() + 1);
2378 
2379       SmallVector<AttributeSet, 8> NewAttrs;
2380       NewAttrs.reserve(Attrs.getNumSlots() + 1);
2381 
2382       // Insert the nest argument into the call argument list, which may
2383       // mean appending it.  Likewise for attributes.
2384 
2385       // Add any result attributes.
2386       if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
2387         NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
2388                                              Attrs.getRetAttributes()));
2389 
2390       {
2391         unsigned Idx = 1;
2392         CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
2393         do {
2394           if (Idx == NestIdx) {
2395             // Add the chain argument and attributes.
2396             Value *NestVal = Tramp->getArgOperand(2);
2397             if (NestVal->getType() != NestTy)
2398               NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
2399             NewArgs.push_back(NestVal);
2400             NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
2401                                                  NestAttr));
2402           }
2403 
2404           if (I == E)
2405             break;
2406 
2407           // Add the original argument and attributes.
2408           NewArgs.push_back(*I);
2409           AttributeSet Attr = Attrs.getParamAttributes(Idx);
2410           if (Attr.hasAttributes(Idx)) {
2411             AttrBuilder B(Attr, Idx);
2412             NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
2413                                                  Idx + (Idx >= NestIdx), B));
2414           }
2415 
2416           ++Idx, ++I;
2417         } while (1);
2418       }
2419 
2420       // Add any function attributes.
2421       if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
2422         NewAttrs.push_back(AttributeSet::get(FTy->getContext(),
2423                                              Attrs.getFnAttributes()));
2424 
2425       // The trampoline may have been bitcast to a bogus type (FTy).
2426       // Handle this by synthesizing a new function type, equal to FTy
2427       // with the chain parameter inserted.
2428 
2429       std::vector<Type*> NewTypes;
2430       NewTypes.reserve(FTy->getNumParams()+1);
2431 
2432       // Insert the chain's type into the list of parameter types, which may
2433       // mean appending it.
2434       {
2435         unsigned Idx = 1;
2436         FunctionType::param_iterator I = FTy->param_begin(),
2437           E = FTy->param_end();
2438 
2439         do {
2440           if (Idx == NestIdx)
2441             // Add the chain's type.
2442             NewTypes.push_back(NestTy);
2443 
2444           if (I == E)
2445             break;
2446 
2447           // Add the original type.
2448           NewTypes.push_back(*I);
2449 
2450           ++Idx, ++I;
2451         } while (1);
2452       }
2453 
2454       // Replace the trampoline call with a direct call.  Let the generic
2455       // code sort out any function type mismatches.
2456       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
2457                                                 FTy->isVarArg());
2458       Constant *NewCallee =
2459         NestF->getType() == PointerType::getUnqual(NewFTy) ?
2460         NestF : ConstantExpr::getBitCast(NestF,
2461                                          PointerType::getUnqual(NewFTy));
2462       const AttributeSet &NewPAL =
2463           AttributeSet::get(FTy->getContext(), NewAttrs);
2464 
2465       Instruction *NewCaller;
2466       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
2467         NewCaller = InvokeInst::Create(NewCallee,
2468                                        II->getNormalDest(), II->getUnwindDest(),
2469                                        NewArgs);
2470         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
2471         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
2472       } else {
2473         NewCaller = CallInst::Create(NewCallee, NewArgs);
2474         if (cast<CallInst>(Caller)->isTailCall())
2475           cast<CallInst>(NewCaller)->setTailCall();
2476         cast<CallInst>(NewCaller)->
2477           setCallingConv(cast<CallInst>(Caller)->getCallingConv());
2478         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
2479       }
2480 
2481       return NewCaller;
2482     }
2483   }
2484 
2485   // Replace the trampoline call with a direct call.  Since there is no 'nest'
2486   // parameter, there is no need to adjust the argument list.  Let the generic
2487   // code sort out any function type mismatches.
2488   Constant *NewCallee =
2489     NestF->getType() == PTy ? NestF :
2490                               ConstantExpr::getBitCast(NestF, PTy);
2491   CS.setCalledFunction(NewCallee);
2492   return CS.getInstruction();
2493 }
2494