1 //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveInterval analysis pass which is used
11 // by the Linear Scan Register allocator. This pass linearizes the
12 // basic blocks of the function in DFS order and uses the
13 // LiveVariables pass to conservatively compute live intervals for
14 // each virtual and physical register.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "LiveRangeCalc.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/VirtRegMap.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/BlockFrequency.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetRegisterInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 #include <algorithm>
40 #include <cmath>
41 #include <limits>
42 using namespace llvm;
43
44 #define DEBUG_TYPE "regalloc"
45
46 char LiveIntervals::ID = 0;
47 char &llvm::LiveIntervalsID = LiveIntervals::ID;
48 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
49 "Live Interval Analysis", false, false)
50 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
51 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
52 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
53 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
54 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
55 "Live Interval Analysis", false, false)
56
57 #ifndef NDEBUG
58 static cl::opt<bool> EnablePrecomputePhysRegs(
59 "precompute-phys-liveness", cl::Hidden,
60 cl::desc("Eagerly compute live intervals for all physreg units."));
61 #else
62 static bool EnablePrecomputePhysRegs = false;
63 #endif // NDEBUG
64
65 static cl::opt<bool> EnableSubRegLiveness(
66 "enable-subreg-liveness", cl::Hidden, cl::init(true),
67 cl::desc("Enable subregister liveness tracking."));
68
69 namespace llvm {
70 cl::opt<bool> UseSegmentSetForPhysRegs(
71 "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
72 cl::desc(
73 "Use segment set for the computation of the live ranges of physregs."));
74 }
75
getAnalysisUsage(AnalysisUsage & AU) const76 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
77 AU.setPreservesCFG();
78 AU.addRequired<AAResultsWrapperPass>();
79 AU.addPreserved<AAResultsWrapperPass>();
80 // LiveVariables isn't really required by this analysis, it is only required
81 // here to make sure it is live during TwoAddressInstructionPass and
82 // PHIElimination. This is temporary.
83 AU.addRequired<LiveVariables>();
84 AU.addPreserved<LiveVariables>();
85 AU.addPreservedID(MachineLoopInfoID);
86 AU.addRequiredTransitiveID(MachineDominatorsID);
87 AU.addPreservedID(MachineDominatorsID);
88 AU.addPreserved<SlotIndexes>();
89 AU.addRequiredTransitive<SlotIndexes>();
90 MachineFunctionPass::getAnalysisUsage(AU);
91 }
92
LiveIntervals()93 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
94 DomTree(nullptr), LRCalc(nullptr) {
95 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
96 }
97
~LiveIntervals()98 LiveIntervals::~LiveIntervals() {
99 delete LRCalc;
100 }
101
releaseMemory()102 void LiveIntervals::releaseMemory() {
103 // Free the live intervals themselves.
104 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
105 delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
106 VirtRegIntervals.clear();
107 RegMaskSlots.clear();
108 RegMaskBits.clear();
109 RegMaskBlocks.clear();
110
111 for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
112 delete RegUnitRanges[i];
113 RegUnitRanges.clear();
114
115 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
116 VNInfoAllocator.Reset();
117 }
118
119 /// runOnMachineFunction - calculates LiveIntervals
120 ///
runOnMachineFunction(MachineFunction & fn)121 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
122 MF = &fn;
123 MRI = &MF->getRegInfo();
124 TRI = MF->getSubtarget().getRegisterInfo();
125 TII = MF->getSubtarget().getInstrInfo();
126 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
127 Indexes = &getAnalysis<SlotIndexes>();
128 DomTree = &getAnalysis<MachineDominatorTree>();
129
130 if (EnableSubRegLiveness && MF->getSubtarget().enableSubRegLiveness())
131 MRI->enableSubRegLiveness(true);
132
133 if (!LRCalc)
134 LRCalc = new LiveRangeCalc();
135
136 // Allocate space for all virtual registers.
137 VirtRegIntervals.resize(MRI->getNumVirtRegs());
138
139 computeVirtRegs();
140 computeRegMasks();
141 computeLiveInRegUnits();
142
143 if (EnablePrecomputePhysRegs) {
144 // For stress testing, precompute live ranges of all physical register
145 // units, including reserved registers.
146 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
147 getRegUnit(i);
148 }
149 DEBUG(dump());
150 return true;
151 }
152
153 /// print - Implement the dump method.
print(raw_ostream & OS,const Module *) const154 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
155 OS << "********** INTERVALS **********\n";
156
157 // Dump the regunits.
158 for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
159 if (LiveRange *LR = RegUnitRanges[i])
160 OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';
161
162 // Dump the virtregs.
163 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
164 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
165 if (hasInterval(Reg))
166 OS << getInterval(Reg) << '\n';
167 }
168
169 OS << "RegMasks:";
170 for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
171 OS << ' ' << RegMaskSlots[i];
172 OS << '\n';
173
174 printInstrs(OS);
175 }
176
printInstrs(raw_ostream & OS) const177 void LiveIntervals::printInstrs(raw_ostream &OS) const {
178 OS << "********** MACHINEINSTRS **********\n";
179 MF->print(OS, Indexes);
180 }
181
182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpInstrs() const183 void LiveIntervals::dumpInstrs() const {
184 printInstrs(dbgs());
185 }
186 #endif
187
createInterval(unsigned reg)188 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
189 float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?
190 llvm::huge_valf : 0.0F;
191 return new LiveInterval(reg, Weight);
192 }
193
194
195 /// computeVirtRegInterval - Compute the live interval of a virtual register,
196 /// based on defs and uses.
computeVirtRegInterval(LiveInterval & LI)197 void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
198 assert(LRCalc && "LRCalc not initialized.");
199 assert(LI.empty() && "Should only compute empty intervals.");
200 bool ShouldTrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(LI.reg);
201 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
202 LRCalc->calculate(LI, ShouldTrackSubRegLiveness);
203 bool SeparatedComponents = computeDeadValues(LI, nullptr);
204 if (SeparatedComponents) {
205 assert(ShouldTrackSubRegLiveness
206 && "Separated components should only occur for unused subreg defs");
207 SmallVector<LiveInterval*, 8> SplitLIs;
208 splitSeparateComponents(LI, SplitLIs);
209 }
210 }
211
computeVirtRegs()212 void LiveIntervals::computeVirtRegs() {
213 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
214 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
215 if (MRI->reg_nodbg_empty(Reg))
216 continue;
217 createAndComputeVirtRegInterval(Reg);
218 }
219 }
220
computeRegMasks()221 void LiveIntervals::computeRegMasks() {
222 RegMaskBlocks.resize(MF->getNumBlockIDs());
223
224 // Find all instructions with regmask operands.
225 for (MachineBasicBlock &MBB : *MF) {
226 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
227 RMB.first = RegMaskSlots.size();
228
229 // Some block starts, such as EH funclets, create masks.
230 if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
231 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
232 RegMaskBits.push_back(Mask);
233 }
234
235 for (MachineInstr &MI : MBB) {
236 for (const MachineOperand &MO : MI.operands()) {
237 if (!MO.isRegMask())
238 continue;
239 RegMaskSlots.push_back(Indexes->getInstructionIndex(&MI).getRegSlot());
240 RegMaskBits.push_back(MO.getRegMask());
241 }
242 }
243
244 // Some block ends, such as funclet returns, create masks.
245 if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
246 RegMaskSlots.push_back(Indexes->getMBBEndIdx(&MBB));
247 RegMaskBits.push_back(Mask);
248 }
249
250 // Compute the number of register mask instructions in this block.
251 RMB.second = RegMaskSlots.size() - RMB.first;
252 }
253 }
254
255 //===----------------------------------------------------------------------===//
256 // Register Unit Liveness
257 //===----------------------------------------------------------------------===//
258 //
259 // Fixed interference typically comes from ABI boundaries: Function arguments
260 // and return values are passed in fixed registers, and so are exception
261 // pointers entering landing pads. Certain instructions require values to be
262 // present in specific registers. That is also represented through fixed
263 // interference.
264 //
265
266 /// computeRegUnitInterval - Compute the live range of a register unit, based
267 /// on the uses and defs of aliasing registers. The range should be empty,
268 /// or contain only dead phi-defs from ABI blocks.
computeRegUnitRange(LiveRange & LR,unsigned Unit)269 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
270 assert(LRCalc && "LRCalc not initialized.");
271 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
272
273 // The physregs aliasing Unit are the roots and their super-registers.
274 // Create all values as dead defs before extending to uses. Note that roots
275 // may share super-registers. That's OK because createDeadDefs() is
276 // idempotent. It is very rare for a register unit to have multiple roots, so
277 // uniquing super-registers is probably not worthwhile.
278 for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
279 for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
280 Supers.isValid(); ++Supers) {
281 if (!MRI->reg_empty(*Supers))
282 LRCalc->createDeadDefs(LR, *Supers);
283 }
284 }
285
286 // Now extend LR to reach all uses.
287 // Ignore uses of reserved registers. We only track defs of those.
288 for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
289 for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
290 Supers.isValid(); ++Supers) {
291 unsigned Reg = *Supers;
292 if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
293 LRCalc->extendToUses(LR, Reg);
294 }
295 }
296
297 // Flush the segment set to the segment vector.
298 if (UseSegmentSetForPhysRegs)
299 LR.flushSegmentSet();
300 }
301
302
303 /// computeLiveInRegUnits - Precompute the live ranges of any register units
304 /// that are live-in to an ABI block somewhere. Register values can appear
305 /// without a corresponding def when entering the entry block or a landing pad.
306 ///
computeLiveInRegUnits()307 void LiveIntervals::computeLiveInRegUnits() {
308 RegUnitRanges.resize(TRI->getNumRegUnits());
309 DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
310
311 // Keep track of the live range sets allocated.
312 SmallVector<unsigned, 8> NewRanges;
313
314 // Check all basic blocks for live-ins.
315 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
316 MFI != MFE; ++MFI) {
317 const MachineBasicBlock *MBB = &*MFI;
318
319 // We only care about ABI blocks: Entry + landing pads.
320 if ((MFI != MF->begin() && !MBB->isEHPad()) || MBB->livein_empty())
321 continue;
322
323 // Create phi-defs at Begin for all live-in registers.
324 SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
325 DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
326 for (const auto &LI : MBB->liveins()) {
327 for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
328 unsigned Unit = *Units;
329 LiveRange *LR = RegUnitRanges[Unit];
330 if (!LR) {
331 // Use segment set to speed-up initial computation of the live range.
332 LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
333 NewRanges.push_back(Unit);
334 }
335 VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
336 (void)VNI;
337 DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
338 }
339 }
340 DEBUG(dbgs() << '\n');
341 }
342 DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
343
344 // Compute the 'normal' part of the ranges.
345 for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) {
346 unsigned Unit = NewRanges[i];
347 computeRegUnitRange(*RegUnitRanges[Unit], Unit);
348 }
349 }
350
351
createSegmentsForValues(LiveRange & LR,iterator_range<LiveInterval::vni_iterator> VNIs)352 static void createSegmentsForValues(LiveRange &LR,
353 iterator_range<LiveInterval::vni_iterator> VNIs) {
354 for (auto VNI : VNIs) {
355 if (VNI->isUnused())
356 continue;
357 SlotIndex Def = VNI->def;
358 LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
359 }
360 }
361
362 typedef SmallVector<std::pair<SlotIndex, VNInfo*>, 16> ShrinkToUsesWorkList;
363
extendSegmentsToUses(LiveRange & LR,const SlotIndexes & Indexes,ShrinkToUsesWorkList & WorkList,const LiveRange & OldRange)364 static void extendSegmentsToUses(LiveRange &LR, const SlotIndexes &Indexes,
365 ShrinkToUsesWorkList &WorkList,
366 const LiveRange &OldRange) {
367 // Keep track of the PHIs that are in use.
368 SmallPtrSet<VNInfo*, 8> UsedPHIs;
369 // Blocks that have already been added to WorkList as live-out.
370 SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
371
372 // Extend intervals to reach all uses in WorkList.
373 while (!WorkList.empty()) {
374 SlotIndex Idx = WorkList.back().first;
375 VNInfo *VNI = WorkList.back().second;
376 WorkList.pop_back();
377 const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Idx.getPrevSlot());
378 SlotIndex BlockStart = Indexes.getMBBStartIdx(MBB);
379
380 // Extend the live range for VNI to be live at Idx.
381 if (VNInfo *ExtVNI = LR.extendInBlock(BlockStart, Idx)) {
382 assert(ExtVNI == VNI && "Unexpected existing value number");
383 (void)ExtVNI;
384 // Is this a PHIDef we haven't seen before?
385 if (!VNI->isPHIDef() || VNI->def != BlockStart ||
386 !UsedPHIs.insert(VNI).second)
387 continue;
388 // The PHI is live, make sure the predecessors are live-out.
389 for (auto &Pred : MBB->predecessors()) {
390 if (!LiveOut.insert(Pred).second)
391 continue;
392 SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
393 // A predecessor is not required to have a live-out value for a PHI.
394 if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
395 WorkList.push_back(std::make_pair(Stop, PVNI));
396 }
397 continue;
398 }
399
400 // VNI is live-in to MBB.
401 DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
402 LR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
403
404 // Make sure VNI is live-out from the predecessors.
405 for (auto &Pred : MBB->predecessors()) {
406 if (!LiveOut.insert(Pred).second)
407 continue;
408 SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
409 assert(OldRange.getVNInfoBefore(Stop) == VNI &&
410 "Wrong value out of predecessor");
411 WorkList.push_back(std::make_pair(Stop, VNI));
412 }
413 }
414 }
415
shrinkToUses(LiveInterval * li,SmallVectorImpl<MachineInstr * > * dead)416 bool LiveIntervals::shrinkToUses(LiveInterval *li,
417 SmallVectorImpl<MachineInstr*> *dead) {
418 DEBUG(dbgs() << "Shrink: " << *li << '\n');
419 assert(TargetRegisterInfo::isVirtualRegister(li->reg)
420 && "Can only shrink virtual registers");
421
422 // Shrink subregister live ranges.
423 bool NeedsCleanup = false;
424 for (LiveInterval::SubRange &S : li->subranges()) {
425 shrinkToUses(S, li->reg);
426 if (S.empty())
427 NeedsCleanup = true;
428 }
429 if (NeedsCleanup)
430 li->removeEmptySubRanges();
431
432 // Find all the values used, including PHI kills.
433 ShrinkToUsesWorkList WorkList;
434
435 // Visit all instructions reading li->reg.
436 for (MachineRegisterInfo::reg_instr_iterator
437 I = MRI->reg_instr_begin(li->reg), E = MRI->reg_instr_end();
438 I != E; ) {
439 MachineInstr *UseMI = &*(I++);
440 if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
441 continue;
442 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
443 LiveQueryResult LRQ = li->Query(Idx);
444 VNInfo *VNI = LRQ.valueIn();
445 if (!VNI) {
446 // This shouldn't happen: readsVirtualRegister returns true, but there is
447 // no live value. It is likely caused by a target getting <undef> flags
448 // wrong.
449 DEBUG(dbgs() << Idx << '\t' << *UseMI
450 << "Warning: Instr claims to read non-existent value in "
451 << *li << '\n');
452 continue;
453 }
454 // Special case: An early-clobber tied operand reads and writes the
455 // register one slot early.
456 if (VNInfo *DefVNI = LRQ.valueDefined())
457 Idx = DefVNI->def;
458
459 WorkList.push_back(std::make_pair(Idx, VNI));
460 }
461
462 // Create new live ranges with only minimal live segments per def.
463 LiveRange NewLR;
464 createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
465 extendSegmentsToUses(NewLR, *Indexes, WorkList, *li);
466
467 // Move the trimmed segments back.
468 li->segments.swap(NewLR.segments);
469
470 // Handle dead values.
471 bool CanSeparate = computeDeadValues(*li, dead);
472 DEBUG(dbgs() << "Shrunk: " << *li << '\n');
473 return CanSeparate;
474 }
475
computeDeadValues(LiveInterval & LI,SmallVectorImpl<MachineInstr * > * dead)476 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
477 SmallVectorImpl<MachineInstr*> *dead) {
478 bool MayHaveSplitComponents = false;
479 for (auto VNI : LI.valnos) {
480 if (VNI->isUnused())
481 continue;
482 SlotIndex Def = VNI->def;
483 LiveRange::iterator I = LI.FindSegmentContaining(Def);
484 assert(I != LI.end() && "Missing segment for VNI");
485
486 // Is the register live before? Otherwise we may have to add a read-undef
487 // flag for subregister defs.
488 bool DeadBeforeDef = false;
489 unsigned VReg = LI.reg;
490 if (MRI->shouldTrackSubRegLiveness(VReg)) {
491 if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
492 MachineInstr *MI = getInstructionFromIndex(Def);
493 MI->setRegisterDefReadUndef(VReg);
494 DeadBeforeDef = true;
495 }
496 }
497
498 if (I->end != Def.getDeadSlot())
499 continue;
500 if (VNI->isPHIDef()) {
501 // This is a dead PHI. Remove it.
502 VNI->markUnused();
503 LI.removeSegment(I);
504 DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
505 MayHaveSplitComponents = true;
506 } else {
507 // This is a dead def. Make sure the instruction knows.
508 MachineInstr *MI = getInstructionFromIndex(Def);
509 assert(MI && "No instruction defining live value");
510 MI->addRegisterDead(VReg, TRI);
511
512 // If we have a dead def that is completely separate from the rest of
513 // the liverange then we rewrite it to use a different VReg to not violate
514 // the rule that the liveness of a virtual register forms a connected
515 // component. This should only happen if subregister liveness is tracked.
516 if (DeadBeforeDef)
517 MayHaveSplitComponents = true;
518
519 if (dead && MI->allDefsAreDead()) {
520 DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
521 dead->push_back(MI);
522 }
523 }
524 }
525 return MayHaveSplitComponents;
526 }
527
shrinkToUses(LiveInterval::SubRange & SR,unsigned Reg)528 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg)
529 {
530 DEBUG(dbgs() << "Shrink: " << SR << '\n');
531 assert(TargetRegisterInfo::isVirtualRegister(Reg)
532 && "Can only shrink virtual registers");
533 // Find all the values used, including PHI kills.
534 ShrinkToUsesWorkList WorkList;
535
536 // Visit all instructions reading Reg.
537 SlotIndex LastIdx;
538 for (MachineOperand &MO : MRI->reg_operands(Reg)) {
539 MachineInstr *UseMI = MO.getParent();
540 if (UseMI->isDebugValue())
541 continue;
542 // Maybe the operand is for a subregister we don't care about.
543 unsigned SubReg = MO.getSubReg();
544 if (SubReg != 0) {
545 LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
546 if ((LaneMask & SR.LaneMask) == 0)
547 continue;
548 }
549 // We only need to visit each instruction once.
550 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
551 if (Idx == LastIdx)
552 continue;
553 LastIdx = Idx;
554
555 LiveQueryResult LRQ = SR.Query(Idx);
556 VNInfo *VNI = LRQ.valueIn();
557 // For Subranges it is possible that only undef values are left in that
558 // part of the subregister, so there is no real liverange at the use
559 if (!VNI)
560 continue;
561
562 // Special case: An early-clobber tied operand reads and writes the
563 // register one slot early.
564 if (VNInfo *DefVNI = LRQ.valueDefined())
565 Idx = DefVNI->def;
566
567 WorkList.push_back(std::make_pair(Idx, VNI));
568 }
569
570 // Create a new live ranges with only minimal live segments per def.
571 LiveRange NewLR;
572 createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
573 extendSegmentsToUses(NewLR, *Indexes, WorkList, SR);
574
575 // Move the trimmed ranges back.
576 SR.segments.swap(NewLR.segments);
577
578 // Remove dead PHI value numbers
579 for (auto VNI : SR.valnos) {
580 if (VNI->isUnused())
581 continue;
582 const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
583 assert(Segment != nullptr && "Missing segment for VNI");
584 if (Segment->end != VNI->def.getDeadSlot())
585 continue;
586 if (VNI->isPHIDef()) {
587 // This is a dead PHI. Remove it.
588 VNI->markUnused();
589 SR.removeSegment(*Segment);
590 DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
591 }
592 }
593
594 DEBUG(dbgs() << "Shrunk: " << SR << '\n');
595 }
596
extendToIndices(LiveRange & LR,ArrayRef<SlotIndex> Indices)597 void LiveIntervals::extendToIndices(LiveRange &LR,
598 ArrayRef<SlotIndex> Indices) {
599 assert(LRCalc && "LRCalc not initialized.");
600 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
601 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
602 LRCalc->extend(LR, Indices[i]);
603 }
604
pruneValue(LiveRange & LR,SlotIndex Kill,SmallVectorImpl<SlotIndex> * EndPoints)605 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
606 SmallVectorImpl<SlotIndex> *EndPoints) {
607 LiveQueryResult LRQ = LR.Query(Kill);
608 VNInfo *VNI = LRQ.valueOutOrDead();
609 if (!VNI)
610 return;
611
612 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
613 SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
614
615 // If VNI isn't live out from KillMBB, the value is trivially pruned.
616 if (LRQ.endPoint() < MBBEnd) {
617 LR.removeSegment(Kill, LRQ.endPoint());
618 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
619 return;
620 }
621
622 // VNI is live out of KillMBB.
623 LR.removeSegment(Kill, MBBEnd);
624 if (EndPoints) EndPoints->push_back(MBBEnd);
625
626 // Find all blocks that are reachable from KillMBB without leaving VNI's live
627 // range. It is possible that KillMBB itself is reachable, so start a DFS
628 // from each successor.
629 typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
630 VisitedTy Visited;
631 for (MachineBasicBlock::succ_iterator
632 SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
633 SuccI != SuccE; ++SuccI) {
634 for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
635 I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
636 I != E;) {
637 MachineBasicBlock *MBB = *I;
638
639 // Check if VNI is live in to MBB.
640 SlotIndex MBBStart, MBBEnd;
641 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
642 LiveQueryResult LRQ = LR.Query(MBBStart);
643 if (LRQ.valueIn() != VNI) {
644 // This block isn't part of the VNI segment. Prune the search.
645 I.skipChildren();
646 continue;
647 }
648
649 // Prune the search if VNI is killed in MBB.
650 if (LRQ.endPoint() < MBBEnd) {
651 LR.removeSegment(MBBStart, LRQ.endPoint());
652 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
653 I.skipChildren();
654 continue;
655 }
656
657 // VNI is live through MBB.
658 LR.removeSegment(MBBStart, MBBEnd);
659 if (EndPoints) EndPoints->push_back(MBBEnd);
660 ++I;
661 }
662 }
663 }
664
665 //===----------------------------------------------------------------------===//
666 // Register allocator hooks.
667 //
668
addKillFlags(const VirtRegMap * VRM)669 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
670 // Keep track of regunit ranges.
671 SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
672 // Keep track of subregister ranges.
673 SmallVector<std::pair<const LiveInterval::SubRange*,
674 LiveRange::const_iterator>, 4> SRs;
675
676 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
677 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
678 if (MRI->reg_nodbg_empty(Reg))
679 continue;
680 const LiveInterval &LI = getInterval(Reg);
681 if (LI.empty())
682 continue;
683
684 // Find the regunit intervals for the assigned register. They may overlap
685 // the virtual register live range, cancelling any kills.
686 RU.clear();
687 for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
688 ++Units) {
689 const LiveRange &RURange = getRegUnit(*Units);
690 if (RURange.empty())
691 continue;
692 RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
693 }
694
695 if (MRI->subRegLivenessEnabled()) {
696 SRs.clear();
697 for (const LiveInterval::SubRange &SR : LI.subranges()) {
698 SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
699 }
700 }
701
702 // Every instruction that kills Reg corresponds to a segment range end
703 // point.
704 for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
705 ++RI) {
706 // A block index indicates an MBB edge.
707 if (RI->end.isBlock())
708 continue;
709 MachineInstr *MI = getInstructionFromIndex(RI->end);
710 if (!MI)
711 continue;
712
713 // Check if any of the regunits are live beyond the end of RI. That could
714 // happen when a physreg is defined as a copy of a virtreg:
715 //
716 // %EAX = COPY %vreg5
717 // FOO %vreg5 <--- MI, cancel kill because %EAX is live.
718 // BAR %EAX<kill>
719 //
720 // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
721 for (auto &RUP : RU) {
722 const LiveRange &RURange = *RUP.first;
723 LiveRange::const_iterator &I = RUP.second;
724 if (I == RURange.end())
725 continue;
726 I = RURange.advanceTo(I, RI->end);
727 if (I == RURange.end() || I->start >= RI->end)
728 continue;
729 // I is overlapping RI.
730 goto CancelKill;
731 }
732
733 if (MRI->subRegLivenessEnabled()) {
734 // When reading a partial undefined value we must not add a kill flag.
735 // The regalloc might have used the undef lane for something else.
736 // Example:
737 // %vreg1 = ... ; R32: %vreg1
738 // %vreg2:high16 = ... ; R64: %vreg2
739 // = read %vreg2<kill> ; R64: %vreg2
740 // = read %vreg1 ; R32: %vreg1
741 // The <kill> flag is correct for %vreg2, but the register allocator may
742 // assign R0L to %vreg1, and R0 to %vreg2 because the low 32bits of R0
743 // are actually never written by %vreg2. After assignment the <kill>
744 // flag at the read instruction is invalid.
745 LaneBitmask DefinedLanesMask;
746 if (!SRs.empty()) {
747 // Compute a mask of lanes that are defined.
748 DefinedLanesMask = 0;
749 for (auto &SRP : SRs) {
750 const LiveInterval::SubRange &SR = *SRP.first;
751 LiveRange::const_iterator &I = SRP.second;
752 if (I == SR.end())
753 continue;
754 I = SR.advanceTo(I, RI->end);
755 if (I == SR.end() || I->start >= RI->end)
756 continue;
757 // I is overlapping RI
758 DefinedLanesMask |= SR.LaneMask;
759 }
760 } else
761 DefinedLanesMask = ~0u;
762
763 bool IsFullWrite = false;
764 for (const MachineOperand &MO : MI->operands()) {
765 if (!MO.isReg() || MO.getReg() != Reg)
766 continue;
767 if (MO.isUse()) {
768 // Reading any undefined lanes?
769 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
770 if ((UseMask & ~DefinedLanesMask) != 0)
771 goto CancelKill;
772 } else if (MO.getSubReg() == 0) {
773 // Writing to the full register?
774 assert(MO.isDef());
775 IsFullWrite = true;
776 }
777 }
778
779 // If an instruction writes to a subregister, a new segment starts in
780 // the LiveInterval. But as this is only overriding part of the register
781 // adding kill-flags is not correct here after registers have been
782 // assigned.
783 if (!IsFullWrite) {
784 // Next segment has to be adjacent in the subregister write case.
785 LiveRange::const_iterator N = std::next(RI);
786 if (N != LI.end() && N->start == RI->end)
787 goto CancelKill;
788 }
789 }
790
791 MI->addRegisterKilled(Reg, nullptr);
792 continue;
793 CancelKill:
794 MI->clearRegisterKills(Reg, nullptr);
795 }
796 }
797 }
798
799 MachineBasicBlock*
intervalIsInOneMBB(const LiveInterval & LI) const800 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
801 // A local live range must be fully contained inside the block, meaning it is
802 // defined and killed at instructions, not at block boundaries. It is not
803 // live in or or out of any block.
804 //
805 // It is technically possible to have a PHI-defined live range identical to a
806 // single block, but we are going to return false in that case.
807
808 SlotIndex Start = LI.beginIndex();
809 if (Start.isBlock())
810 return nullptr;
811
812 SlotIndex Stop = LI.endIndex();
813 if (Stop.isBlock())
814 return nullptr;
815
816 // getMBBFromIndex doesn't need to search the MBB table when both indexes
817 // belong to proper instructions.
818 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
819 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
820 return MBB1 == MBB2 ? MBB1 : nullptr;
821 }
822
823 bool
hasPHIKill(const LiveInterval & LI,const VNInfo * VNI) const824 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
825 for (const VNInfo *PHI : LI.valnos) {
826 if (PHI->isUnused() || !PHI->isPHIDef())
827 continue;
828 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
829 // Conservatively return true instead of scanning huge predecessor lists.
830 if (PHIMBB->pred_size() > 100)
831 return true;
832 for (MachineBasicBlock::const_pred_iterator
833 PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
834 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
835 return true;
836 }
837 return false;
838 }
839
840 float
getSpillWeight(bool isDef,bool isUse,const MachineBlockFrequencyInfo * MBFI,const MachineInstr * MI)841 LiveIntervals::getSpillWeight(bool isDef, bool isUse,
842 const MachineBlockFrequencyInfo *MBFI,
843 const MachineInstr *MI) {
844 BlockFrequency Freq = MBFI->getBlockFreq(MI->getParent());
845 const float Scale = 1.0f / MBFI->getEntryFreq();
846 return (isDef + isUse) * (Freq.getFrequency() * Scale);
847 }
848
849 LiveRange::Segment
addSegmentToEndOfBlock(unsigned reg,MachineInstr * startInst)850 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) {
851 LiveInterval& Interval = createEmptyInterval(reg);
852 VNInfo* VN = Interval.getNextValue(
853 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
854 getVNInfoAllocator());
855 LiveRange::Segment S(
856 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
857 getMBBEndIdx(startInst->getParent()), VN);
858 Interval.addSegment(S);
859
860 return S;
861 }
862
863
864 //===----------------------------------------------------------------------===//
865 // Register mask functions
866 //===----------------------------------------------------------------------===//
867
checkRegMaskInterference(LiveInterval & LI,BitVector & UsableRegs)868 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
869 BitVector &UsableRegs) {
870 if (LI.empty())
871 return false;
872 LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
873
874 // Use a smaller arrays for local live ranges.
875 ArrayRef<SlotIndex> Slots;
876 ArrayRef<const uint32_t*> Bits;
877 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
878 Slots = getRegMaskSlotsInBlock(MBB->getNumber());
879 Bits = getRegMaskBitsInBlock(MBB->getNumber());
880 } else {
881 Slots = getRegMaskSlots();
882 Bits = getRegMaskBits();
883 }
884
885 // We are going to enumerate all the register mask slots contained in LI.
886 // Start with a binary search of RegMaskSlots to find a starting point.
887 ArrayRef<SlotIndex>::iterator SlotI =
888 std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
889 ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
890
891 // No slots in range, LI begins after the last call.
892 if (SlotI == SlotE)
893 return false;
894
895 bool Found = false;
896 for (;;) {
897 assert(*SlotI >= LiveI->start);
898 // Loop over all slots overlapping this segment.
899 while (*SlotI < LiveI->end) {
900 // *SlotI overlaps LI. Collect mask bits.
901 if (!Found) {
902 // This is the first overlap. Initialize UsableRegs to all ones.
903 UsableRegs.clear();
904 UsableRegs.resize(TRI->getNumRegs(), true);
905 Found = true;
906 }
907 // Remove usable registers clobbered by this mask.
908 UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
909 if (++SlotI == SlotE)
910 return Found;
911 }
912 // *SlotI is beyond the current LI segment.
913 LiveI = LI.advanceTo(LiveI, *SlotI);
914 if (LiveI == LiveE)
915 return Found;
916 // Advance SlotI until it overlaps.
917 while (*SlotI < LiveI->start)
918 if (++SlotI == SlotE)
919 return Found;
920 }
921 }
922
923 //===----------------------------------------------------------------------===//
924 // IntervalUpdate class.
925 //===----------------------------------------------------------------------===//
926
927 // HMEditor is a toolkit used by handleMove to trim or extend live intervals.
928 class LiveIntervals::HMEditor {
929 private:
930 LiveIntervals& LIS;
931 const MachineRegisterInfo& MRI;
932 const TargetRegisterInfo& TRI;
933 SlotIndex OldIdx;
934 SlotIndex NewIdx;
935 SmallPtrSet<LiveRange*, 8> Updated;
936 bool UpdateFlags;
937
938 public:
HMEditor(LiveIntervals & LIS,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,SlotIndex OldIdx,SlotIndex NewIdx,bool UpdateFlags)939 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
940 const TargetRegisterInfo& TRI,
941 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
942 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
943 UpdateFlags(UpdateFlags) {}
944
945 // FIXME: UpdateFlags is a workaround that creates live intervals for all
946 // physregs, even those that aren't needed for regalloc, in order to update
947 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
948 // flags, and postRA passes will use a live register utility instead.
getRegUnitLI(unsigned Unit)949 LiveRange *getRegUnitLI(unsigned Unit) {
950 if (UpdateFlags)
951 return &LIS.getRegUnit(Unit);
952 return LIS.getCachedRegUnit(Unit);
953 }
954
955 /// Update all live ranges touched by MI, assuming a move from OldIdx to
956 /// NewIdx.
updateAllRanges(MachineInstr * MI)957 void updateAllRanges(MachineInstr *MI) {
958 DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
959 bool hasRegMask = false;
960 for (MachineOperand &MO : MI->operands()) {
961 if (MO.isRegMask())
962 hasRegMask = true;
963 if (!MO.isReg())
964 continue;
965 // Aggressively clear all kill flags.
966 // They are reinserted by VirtRegRewriter.
967 if (MO.isUse())
968 MO.setIsKill(false);
969
970 unsigned Reg = MO.getReg();
971 if (!Reg)
972 continue;
973 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
974 LiveInterval &LI = LIS.getInterval(Reg);
975 if (LI.hasSubRanges()) {
976 unsigned SubReg = MO.getSubReg();
977 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
978 for (LiveInterval::SubRange &S : LI.subranges()) {
979 if ((S.LaneMask & LaneMask) == 0)
980 continue;
981 updateRange(S, Reg, S.LaneMask);
982 }
983 }
984 updateRange(LI, Reg, 0);
985 continue;
986 }
987
988 // For physregs, only update the regunits that actually have a
989 // precomputed live range.
990 for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
991 if (LiveRange *LR = getRegUnitLI(*Units))
992 updateRange(*LR, *Units, 0);
993 }
994 if (hasRegMask)
995 updateRegMaskSlots();
996 }
997
998 private:
999 /// Update a single live range, assuming an instruction has been moved from
1000 /// OldIdx to NewIdx.
updateRange(LiveRange & LR,unsigned Reg,LaneBitmask LaneMask)1001 void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1002 if (!Updated.insert(&LR).second)
1003 return;
1004 DEBUG({
1005 dbgs() << " ";
1006 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1007 dbgs() << PrintReg(Reg);
1008 if (LaneMask != 0)
1009 dbgs() << " L" << PrintLaneMask(LaneMask);
1010 } else {
1011 dbgs() << PrintRegUnit(Reg, &TRI);
1012 }
1013 dbgs() << ":\t" << LR << '\n';
1014 });
1015 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1016 handleMoveDown(LR);
1017 else
1018 handleMoveUp(LR, Reg, LaneMask);
1019 DEBUG(dbgs() << " -->\t" << LR << '\n');
1020 LR.verify();
1021 }
1022
1023 /// Update LR to reflect an instruction has been moved downwards from OldIdx
1024 /// to NewIdx.
1025 ///
1026 /// 1. Live def at OldIdx:
1027 /// Move def to NewIdx, assert endpoint after NewIdx.
1028 ///
1029 /// 2. Live def at OldIdx, killed at NewIdx:
1030 /// Change to dead def at NewIdx.
1031 /// (Happens when bundling def+kill together).
1032 ///
1033 /// 3. Dead def at OldIdx:
1034 /// Move def to NewIdx, possibly across another live value.
1035 ///
1036 /// 4. Def at OldIdx AND at NewIdx:
1037 /// Remove segment [OldIdx;NewIdx) and value defined at OldIdx.
1038 /// (Happens when bundling multiple defs together).
1039 ///
1040 /// 5. Value read at OldIdx, killed before NewIdx:
1041 /// Extend kill to NewIdx.
1042 ///
handleMoveDown(LiveRange & LR)1043 void handleMoveDown(LiveRange &LR) {
1044 // First look for a kill at OldIdx.
1045 LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
1046 LiveRange::iterator E = LR.end();
1047 // Is LR even live at OldIdx?
1048 if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
1049 return;
1050
1051 // Handle a live-in value.
1052 if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
1053 bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
1054 // If the live-in value already extends to NewIdx, there is nothing to do.
1055 if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
1056 return;
1057 // Aggressively remove all kill flags from the old kill point.
1058 // Kill flags shouldn't be used while live intervals exist, they will be
1059 // reinserted by VirtRegRewriter.
1060 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
1061 for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
1062 if (MO->isReg() && MO->isUse())
1063 MO->setIsKill(false);
1064 // Adjust I->end to reach NewIdx. This may temporarily make LR invalid by
1065 // overlapping ranges. Case 5 above.
1066 I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
1067 // If this was a kill, there may also be a def. Otherwise we're done.
1068 if (!isKill)
1069 return;
1070 ++I;
1071 }
1072
1073 // Check for a def at OldIdx.
1074 if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
1075 return;
1076 // We have a def at OldIdx.
1077 VNInfo *DefVNI = I->valno;
1078 assert(DefVNI->def == I->start && "Inconsistent def");
1079 DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
1080 // If the defined value extends beyond NewIdx, just move the def down.
1081 // This is case 1 above.
1082 if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
1083 I->start = DefVNI->def;
1084 return;
1085 }
1086 // The remaining possibilities are now:
1087 // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
1088 // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
1089 // In either case, it is possible that there is an existing def at NewIdx.
1090 assert((I->end == OldIdx.getDeadSlot() ||
1091 SlotIndex::isSameInstr(I->end, NewIdx)) &&
1092 "Cannot move def below kill");
1093 LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot());
1094 if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
1095 // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
1096 // coalesced into that value.
1097 assert(NewI->valno != DefVNI && "Multiple defs of value?");
1098 LR.removeValNo(DefVNI);
1099 return;
1100 }
1101 // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
1102 // If the def at OldIdx was dead, we allow it to be moved across other LR
1103 // values. The new range should be placed immediately before NewI, move any
1104 // intermediate ranges up.
1105 assert(NewI != I && "Inconsistent iterators");
1106 std::copy(std::next(I), NewI, I);
1107 *std::prev(NewI)
1108 = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
1109 }
1110
1111 /// Update LR to reflect an instruction has been moved upwards from OldIdx
1112 /// to NewIdx.
1113 ///
1114 /// 1. Live def at OldIdx:
1115 /// Hoist def to NewIdx.
1116 ///
1117 /// 2. Dead def at OldIdx:
1118 /// Hoist def+end to NewIdx, possibly move across other values.
1119 ///
1120 /// 3. Dead def at OldIdx AND existing def at NewIdx:
1121 /// Remove value defined at OldIdx, coalescing it with existing value.
1122 ///
1123 /// 4. Live def at OldIdx AND existing def at NewIdx:
1124 /// Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
1125 /// (Happens when bundling multiple defs together).
1126 ///
1127 /// 5. Value killed at OldIdx:
1128 /// Hoist kill to NewIdx, then scan for last kill between NewIdx and
1129 /// OldIdx.
1130 ///
handleMoveUp(LiveRange & LR,unsigned Reg,LaneBitmask LaneMask)1131 void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1132 // First look for a kill at OldIdx.
1133 LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
1134 LiveRange::iterator E = LR.end();
1135 // Is LR even live at OldIdx?
1136 if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
1137 return;
1138
1139 // Handle a live-in value.
1140 if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
1141 // If the live-in value isn't killed here, there is nothing to do.
1142 if (!SlotIndex::isSameInstr(OldIdx, I->end))
1143 return;
1144 // Adjust I->end to end at NewIdx. If we are hoisting a kill above
1145 // another use, we need to search for that use. Case 5 above.
1146 I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
1147 ++I;
1148 // If OldIdx also defines a value, there couldn't have been another use.
1149 if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
1150 // No def, search for the new kill.
1151 // This can never be an early clobber kill since there is no def.
1152 std::prev(I)->end = findLastUseBefore(Reg, LaneMask).getRegSlot();
1153 return;
1154 }
1155 }
1156
1157 // Now deal with the def at OldIdx.
1158 assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
1159 VNInfo *DefVNI = I->valno;
1160 assert(DefVNI->def == I->start && "Inconsistent def");
1161 DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
1162
1163 // Check for an existing def at NewIdx.
1164 LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot());
1165 if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
1166 assert(NewI->valno != DefVNI && "Same value defined more than once?");
1167 // There is an existing def at NewIdx.
1168 if (I->end.isDead()) {
1169 // Case 3: Remove the dead def at OldIdx.
1170 LR.removeValNo(DefVNI);
1171 return;
1172 }
1173 // Case 4: Replace def at NewIdx with live def at OldIdx.
1174 I->start = DefVNI->def;
1175 LR.removeValNo(NewI->valno);
1176 return;
1177 }
1178
1179 // There is no existing def at NewIdx. Hoist DefVNI.
1180 if (!I->end.isDead()) {
1181 // Leave the end point of a live def.
1182 I->start = DefVNI->def;
1183 return;
1184 }
1185
1186 // DefVNI is a dead def. It may have been moved across other values in LR,
1187 // so move I up to NewI. Slide [NewI;I) down one position.
1188 std::copy_backward(NewI, I, std::next(I));
1189 *NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
1190 }
1191
updateRegMaskSlots()1192 void updateRegMaskSlots() {
1193 SmallVectorImpl<SlotIndex>::iterator RI =
1194 std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
1195 OldIdx);
1196 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1197 "No RegMask at OldIdx.");
1198 *RI = NewIdx.getRegSlot();
1199 assert((RI == LIS.RegMaskSlots.begin() ||
1200 SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1201 "Cannot move regmask instruction above another call");
1202 assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1203 SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1204 "Cannot move regmask instruction below another call");
1205 }
1206
1207 // Return the last use of reg between NewIdx and OldIdx.
findLastUseBefore(unsigned Reg,LaneBitmask LaneMask)1208 SlotIndex findLastUseBefore(unsigned Reg, LaneBitmask LaneMask) {
1209
1210 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1211 SlotIndex LastUse = NewIdx;
1212 for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1213 unsigned SubReg = MO.getSubReg();
1214 if (SubReg != 0 && LaneMask != 0
1215 && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask) == 0)
1216 continue;
1217
1218 const MachineInstr *MI = MO.getParent();
1219 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1220 if (InstSlot > LastUse && InstSlot < OldIdx)
1221 LastUse = InstSlot;
1222 }
1223 return LastUse;
1224 }
1225
1226 // This is a regunit interval, so scanning the use list could be very
1227 // expensive. Scan upwards from OldIdx instead.
1228 assert(NewIdx < OldIdx && "Expected upwards move");
1229 SlotIndexes *Indexes = LIS.getSlotIndexes();
1230 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
1231
1232 // OldIdx may not correspond to an instruction any longer, so set MII to
1233 // point to the next instruction after OldIdx, or MBB->end().
1234 MachineBasicBlock::iterator MII = MBB->end();
1235 if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1236 Indexes->getNextNonNullIndex(OldIdx)))
1237 if (MI->getParent() == MBB)
1238 MII = MI;
1239
1240 MachineBasicBlock::iterator Begin = MBB->begin();
1241 while (MII != Begin) {
1242 if ((--MII)->isDebugValue())
1243 continue;
1244 SlotIndex Idx = Indexes->getInstructionIndex(MII);
1245
1246 // Stop searching when NewIdx is reached.
1247 if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
1248 return NewIdx;
1249
1250 // Check if MII uses Reg.
1251 for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
1252 if (MO->isReg() &&
1253 TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
1254 TRI.hasRegUnit(MO->getReg(), Reg))
1255 return Idx;
1256 }
1257 // Didn't reach NewIdx. It must be the first instruction in the block.
1258 return NewIdx;
1259 }
1260 };
1261
handleMove(MachineInstr * MI,bool UpdateFlags)1262 void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
1263 assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
1264 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1265 Indexes->removeMachineInstrFromMaps(MI);
1266 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1267 assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
1268 OldIndex < getMBBEndIdx(MI->getParent()) &&
1269 "Cannot handle moves across basic block boundaries.");
1270
1271 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1272 HME.updateAllRanges(MI);
1273 }
1274
handleMoveIntoBundle(MachineInstr * MI,MachineInstr * BundleStart,bool UpdateFlags)1275 void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
1276 MachineInstr* BundleStart,
1277 bool UpdateFlags) {
1278 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1279 SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1280 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1281 HME.updateAllRanges(MI);
1282 }
1283
repairOldRegInRange(const MachineBasicBlock::iterator Begin,const MachineBasicBlock::iterator End,const SlotIndex endIdx,LiveRange & LR,const unsigned Reg,LaneBitmask LaneMask)1284 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1285 const MachineBasicBlock::iterator End,
1286 const SlotIndex endIdx,
1287 LiveRange &LR, const unsigned Reg,
1288 LaneBitmask LaneMask) {
1289 LiveInterval::iterator LII = LR.find(endIdx);
1290 SlotIndex lastUseIdx;
1291 if (LII != LR.end() && LII->start < endIdx)
1292 lastUseIdx = LII->end;
1293 else
1294 --LII;
1295
1296 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1297 --I;
1298 MachineInstr *MI = I;
1299 if (MI->isDebugValue())
1300 continue;
1301
1302 SlotIndex instrIdx = getInstructionIndex(MI);
1303 bool isStartValid = getInstructionFromIndex(LII->start);
1304 bool isEndValid = getInstructionFromIndex(LII->end);
1305
1306 // FIXME: This doesn't currently handle early-clobber or multiple removed
1307 // defs inside of the region to repair.
1308 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1309 OE = MI->operands_end(); OI != OE; ++OI) {
1310 const MachineOperand &MO = *OI;
1311 if (!MO.isReg() || MO.getReg() != Reg)
1312 continue;
1313
1314 unsigned SubReg = MO.getSubReg();
1315 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1316 if ((Mask & LaneMask) == 0)
1317 continue;
1318
1319 if (MO.isDef()) {
1320 if (!isStartValid) {
1321 if (LII->end.isDead()) {
1322 SlotIndex prevStart;
1323 if (LII != LR.begin())
1324 prevStart = std::prev(LII)->start;
1325
1326 // FIXME: This could be more efficient if there was a
1327 // removeSegment method that returned an iterator.
1328 LR.removeSegment(*LII, true);
1329 if (prevStart.isValid())
1330 LII = LR.find(prevStart);
1331 else
1332 LII = LR.begin();
1333 } else {
1334 LII->start = instrIdx.getRegSlot();
1335 LII->valno->def = instrIdx.getRegSlot();
1336 if (MO.getSubReg() && !MO.isUndef())
1337 lastUseIdx = instrIdx.getRegSlot();
1338 else
1339 lastUseIdx = SlotIndex();
1340 continue;
1341 }
1342 }
1343
1344 if (!lastUseIdx.isValid()) {
1345 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1346 LiveRange::Segment S(instrIdx.getRegSlot(),
1347 instrIdx.getDeadSlot(), VNI);
1348 LII = LR.addSegment(S);
1349 } else if (LII->start != instrIdx.getRegSlot()) {
1350 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1351 LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1352 LII = LR.addSegment(S);
1353 }
1354
1355 if (MO.getSubReg() && !MO.isUndef())
1356 lastUseIdx = instrIdx.getRegSlot();
1357 else
1358 lastUseIdx = SlotIndex();
1359 } else if (MO.isUse()) {
1360 // FIXME: This should probably be handled outside of this branch,
1361 // either as part of the def case (for defs inside of the region) or
1362 // after the loop over the region.
1363 if (!isEndValid && !LII->end.isBlock())
1364 LII->end = instrIdx.getRegSlot();
1365 if (!lastUseIdx.isValid())
1366 lastUseIdx = instrIdx.getRegSlot();
1367 }
1368 }
1369 }
1370 }
1371
1372 void
repairIntervalsInRange(MachineBasicBlock * MBB,MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,ArrayRef<unsigned> OrigRegs)1373 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1374 MachineBasicBlock::iterator Begin,
1375 MachineBasicBlock::iterator End,
1376 ArrayRef<unsigned> OrigRegs) {
1377 // Find anchor points, which are at the beginning/end of blocks or at
1378 // instructions that already have indexes.
1379 while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
1380 --Begin;
1381 while (End != MBB->end() && !Indexes->hasIndex(End))
1382 ++End;
1383
1384 SlotIndex endIdx;
1385 if (End == MBB->end())
1386 endIdx = getMBBEndIdx(MBB).getPrevSlot();
1387 else
1388 endIdx = getInstructionIndex(End);
1389
1390 Indexes->repairIndexesInRange(MBB, Begin, End);
1391
1392 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1393 --I;
1394 MachineInstr *MI = I;
1395 if (MI->isDebugValue())
1396 continue;
1397 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
1398 MOE = MI->operands_end(); MOI != MOE; ++MOI) {
1399 if (MOI->isReg() &&
1400 TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
1401 !hasInterval(MOI->getReg())) {
1402 createAndComputeVirtRegInterval(MOI->getReg());
1403 }
1404 }
1405 }
1406
1407 for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
1408 unsigned Reg = OrigRegs[i];
1409 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1410 continue;
1411
1412 LiveInterval &LI = getInterval(Reg);
1413 // FIXME: Should we support undefs that gain defs?
1414 if (!LI.hasAtLeastOneValue())
1415 continue;
1416
1417 for (LiveInterval::SubRange &S : LI.subranges()) {
1418 repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
1419 }
1420 repairOldRegInRange(Begin, End, endIdx, LI, Reg);
1421 }
1422 }
1423
removePhysRegDefAt(unsigned Reg,SlotIndex Pos)1424 void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
1425 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1426 if (LiveRange *LR = getCachedRegUnit(*Units))
1427 if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1428 LR->removeValNo(VNI);
1429 }
1430 }
1431
removeVRegDefAt(LiveInterval & LI,SlotIndex Pos)1432 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1433 VNInfo *VNI = LI.getVNInfoAt(Pos);
1434 if (VNI == nullptr)
1435 return;
1436 LI.removeValNo(VNI);
1437
1438 // Also remove the value in subranges.
1439 for (LiveInterval::SubRange &S : LI.subranges()) {
1440 if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1441 S.removeValNo(SVNI);
1442 }
1443 LI.removeEmptySubRanges();
1444 }
1445
splitSeparateComponents(LiveInterval & LI,SmallVectorImpl<LiveInterval * > & SplitLIs)1446 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1447 SmallVectorImpl<LiveInterval*> &SplitLIs) {
1448 ConnectedVNInfoEqClasses ConEQ(*this);
1449 unsigned NumComp = ConEQ.Classify(&LI);
1450 if (NumComp <= 1)
1451 return;
1452 DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n');
1453 unsigned Reg = LI.reg;
1454 const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
1455 for (unsigned I = 1; I < NumComp; ++I) {
1456 unsigned NewVReg = MRI->createVirtualRegister(RegClass);
1457 LiveInterval &NewLI = createEmptyInterval(NewVReg);
1458 SplitLIs.push_back(&NewLI);
1459 }
1460 ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1461 }
1462