1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // Intel License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 // * Redistribution's of source code must retain the above copyright notice,
20 // this list of conditions and the following disclaimer.
21 //
22 // * Redistribution's in binary form must reproduce the above copyright notice,
23 // this list of conditions and the following disclaimer in the documentation
24 // and/or other materials provided with the distribution.
25 //
26 // * The name of Intel Corporation may not be used to endorse or promote products
27 // derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41
42 #include "test_precomp.hpp"
43
44 using namespace cv;
45 using namespace std;
46
47 class CV_FilterBaseTest : public cvtest::ArrayTest
48 {
49 public:
50 CV_FilterBaseTest( bool _fp_kernel );
51
52 protected:
53 int prepare_test_case( int test_case_idx );
54 int read_params( CvFileStorage* fs );
55 void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
56 void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
57 CvSize aperture_size;
58 CvPoint anchor;
59 int max_aperture_size;
60 bool fp_kernel;
61 bool inplace;
62 int border;
63 };
64
65
CV_FilterBaseTest(bool _fp_kernel)66 CV_FilterBaseTest::CV_FilterBaseTest( bool _fp_kernel ) : fp_kernel(_fp_kernel)
67 {
68 test_array[INPUT].push_back(NULL);
69 test_array[INPUT].push_back(NULL);
70 test_array[OUTPUT].push_back(NULL);
71 test_array[REF_OUTPUT].push_back(NULL);
72 max_aperture_size = 13;
73 inplace = false;
74 aperture_size = cvSize(0,0);
75 anchor = cvPoint(0,0);
76 element_wise_relative_error = false;
77 }
78
79
read_params(CvFileStorage * fs)80 int CV_FilterBaseTest::read_params( CvFileStorage* fs )
81 {
82 int code = cvtest::ArrayTest::read_params( fs );
83 if( code < 0 )
84 return code;
85
86 max_aperture_size = cvReadInt( find_param( fs, "max_aperture_size" ), max_aperture_size );
87 max_aperture_size = cvtest::clipInt( max_aperture_size, 1, 100 );
88
89 return code;
90 }
91
92
get_minmax_bounds(int i,int j,int type,Scalar & low,Scalar & high)93 void CV_FilterBaseTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
94 {
95 cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
96 if( i == INPUT )
97 {
98 if( j == 1 )
99 {
100 if( fp_kernel )
101 {
102 RNG& rng = ts->get_rng();
103 double val = exp( cvtest::randReal(rng)*10 - 4 );
104 low = Scalar::all(-val);
105 high = Scalar::all(val);
106 }
107 else
108 {
109 low = Scalar::all(0);
110 high = Scalar::all(2);
111 }
112 }
113 else if( CV_MAT_DEPTH(type) == CV_16U )
114 {
115 low = Scalar::all(0.);
116 high = Scalar::all(40000.);
117 }
118 else if( CV_MAT_DEPTH(type) == CV_32F )
119 {
120 low = Scalar::all(-10.);
121 high = Scalar::all(10.);
122 }
123 }
124 }
125
126
get_test_array_types_and_sizes(int test_case_idx,vector<vector<Size>> & sizes,vector<vector<int>> & types)127 void CV_FilterBaseTest::get_test_array_types_and_sizes( int test_case_idx,
128 vector<vector<Size> >& sizes,
129 vector<vector<int> >& types )
130 {
131 RNG& rng = ts->get_rng();
132 int depth = cvtest::randInt(rng) % CV_32F;
133 int cn = cvtest::randInt(rng) % 3 + 1;
134 cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
135 depth += depth == CV_8S;
136 cn += cn == 2;
137
138 types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth, cn);
139
140 aperture_size.width = cvtest::randInt(rng) % max_aperture_size + 1;
141 aperture_size.height = cvtest::randInt(rng) % max_aperture_size + 1;
142 anchor.x = cvtest::randInt(rng) % aperture_size.width;
143 anchor.y = cvtest::randInt(rng) % aperture_size.height;
144
145 types[INPUT][1] = fp_kernel ? CV_32FC1 : CV_8UC1;
146 sizes[INPUT][1] = aperture_size;
147
148 inplace = cvtest::randInt(rng) % 2 != 0;
149 border = BORDER_REPLICATE;
150 }
151
152
prepare_test_case(int test_case_idx)153 int CV_FilterBaseTest::prepare_test_case( int test_case_idx )
154 {
155 int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
156 if( code > 0 )
157 {
158 if( inplace && test_mat[INPUT][0].type() == test_mat[OUTPUT][0].type())
159 cvtest::copy( test_mat[INPUT][0], test_mat[OUTPUT][0] );
160 else
161 inplace = false;
162 }
163 return code;
164 }
165
166
167 /////////////////////////
168
169 class CV_MorphologyBaseTest : public CV_FilterBaseTest
170 {
171 public:
172 CV_MorphologyBaseTest();
173
174 protected:
175 void prepare_to_validation( int test_case_idx );
176 int prepare_test_case( int test_case_idx );
177 void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
178 double get_success_error_level( int test_case_idx, int i, int j );
179 int optype, optype_min, optype_max;
180 int shape;
181 IplConvKernel* element;
182 };
183
184
CV_MorphologyBaseTest()185 CV_MorphologyBaseTest::CV_MorphologyBaseTest() : CV_FilterBaseTest( false )
186 {
187 shape = -1;
188 element = 0;
189 optype = optype_min = optype_max = -1;
190 }
191
192
get_test_array_types_and_sizes(int test_case_idx,vector<vector<Size>> & sizes,vector<vector<int>> & types)193 void CV_MorphologyBaseTest::get_test_array_types_and_sizes( int test_case_idx,
194 vector<vector<Size> >& sizes, vector<vector<int> >& types )
195 {
196 RNG& rng = ts->get_rng();
197 CV_FilterBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
198 int depth = cvtest::randInt(rng) % 4;
199 depth = depth == 0 ? CV_8U : depth == 1 ? CV_16U : depth == 2 ? CV_16S : CV_32F;
200 int cn = CV_MAT_CN(types[INPUT][0]);
201
202 types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth, cn);
203 shape = cvtest::randInt(rng) % 4;
204 if( shape >= 3 )
205 shape = CV_SHAPE_CUSTOM;
206 else
207 sizes[INPUT][1] = cvSize(0,0);
208 optype = cvtest::randInt(rng) % (optype_max - optype_min + 1) + optype_min;
209 }
210
211
get_success_error_level(int,int,int)212 double CV_MorphologyBaseTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
213 {
214 return test_mat[INPUT][0].depth() < CV_32F ||
215 (optype == CV_MOP_ERODE || optype == CV_MOP_DILATE ||
216 optype == CV_MOP_OPEN || optype == CV_MOP_CLOSE) ? 0 : 1e-5;
217 }
218
219
prepare_test_case(int test_case_idx)220 int CV_MorphologyBaseTest::prepare_test_case( int test_case_idx )
221 {
222 int code = CV_FilterBaseTest::prepare_test_case( test_case_idx );
223 vector<int> eldata;
224
225 if( code <= 0 )
226 return code;
227
228 if( shape == CV_SHAPE_CUSTOM )
229 {
230 eldata.resize(aperture_size.width*aperture_size.height);
231 const uchar* src = test_mat[INPUT][1].ptr();
232 int srcstep = (int)test_mat[INPUT][1].step;
233 int i, j, nonzero = 0;
234
235 for( i = 0; i < aperture_size.height; i++ )
236 {
237 for( j = 0; j < aperture_size.width; j++ )
238 {
239 eldata[i*aperture_size.width + j] = src[i*srcstep + j];
240 nonzero += src[i*srcstep + j] != 0;
241 }
242 }
243
244 if( nonzero == 0 )
245 eldata[anchor.y*aperture_size.width + anchor.x] = 1;
246 }
247
248 cvReleaseStructuringElement( &element );
249 element = cvCreateStructuringElementEx( aperture_size.width, aperture_size.height,
250 anchor.x, anchor.y, shape, eldata.empty() ? 0 : &eldata[0] );
251 return code;
252 }
253
254
prepare_to_validation(int)255 void CV_MorphologyBaseTest::prepare_to_validation( int /*test_case_idx*/ )
256 {
257 Mat& src = test_mat[INPUT][0], &dst = test_mat[REF_OUTPUT][0];
258 Mat _ielement(element->nRows, element->nCols, CV_32S, element->values);
259 Mat _element;
260 _ielement.convertTo(_element, CV_8U);
261 Point _anchor(element->anchorX, element->anchorY);
262 int _border = BORDER_REPLICATE;
263
264 if( optype == CV_MOP_ERODE )
265 {
266 cvtest::erode( src, dst, _element, _anchor, _border );
267 }
268 else if( optype == CV_MOP_DILATE )
269 {
270 cvtest::dilate( src, dst, _element, _anchor, _border );
271 }
272 else
273 {
274 Mat temp;
275 if( optype == CV_MOP_OPEN )
276 {
277 cvtest::erode( src, temp, _element, _anchor, _border );
278 cvtest::dilate( temp, dst, _element, _anchor, _border );
279 }
280 else if( optype == CV_MOP_CLOSE )
281 {
282 cvtest::dilate( src, temp, _element, _anchor, _border );
283 cvtest::erode( temp, dst, _element, _anchor, _border );
284 }
285 else if( optype == CV_MOP_GRADIENT )
286 {
287 cvtest::erode( src, temp, _element, _anchor, _border );
288 cvtest::dilate( src, dst, _element, _anchor, _border );
289 cvtest::add( dst, 1, temp, -1, Scalar::all(0), dst, dst.type() );
290 }
291 else if( optype == CV_MOP_TOPHAT )
292 {
293 cvtest::erode( src, temp, _element, _anchor, _border );
294 cvtest::dilate( temp, dst, _element, _anchor, _border );
295 cvtest::add( src, 1, dst, -1, Scalar::all(0), dst, dst.type() );
296 }
297 else if( optype == CV_MOP_BLACKHAT )
298 {
299 cvtest::dilate( src, temp, _element, _anchor, _border );
300 cvtest::erode( temp, dst, _element, _anchor, _border );
301 cvtest::add( dst, 1, src, -1, Scalar::all(0), dst, dst.type() );
302 }
303 else
304 CV_Error( CV_StsBadArg, "Unknown operation" );
305 }
306
307 cvReleaseStructuringElement( &element );
308 }
309
310
311 /////////////// erode ///////////////
312
313 class CV_ErodeTest : public CV_MorphologyBaseTest
314 {
315 public:
316 CV_ErodeTest();
317 protected:
318 void run_func();
319 };
320
321
CV_ErodeTest()322 CV_ErodeTest::CV_ErodeTest()
323 {
324 optype_min = optype_max = CV_MOP_ERODE;
325 }
326
327
run_func()328 void CV_ErodeTest::run_func()
329 {
330 cvErode( inplace ? test_array[OUTPUT][0] : test_array[INPUT][0],
331 test_array[OUTPUT][0], element, 1 );
332 }
333
334
335 /////////////// dilate ///////////////
336
337 class CV_DilateTest : public CV_MorphologyBaseTest
338 {
339 public:
340 CV_DilateTest();
341 protected:
342 void run_func();
343 };
344
345
CV_DilateTest()346 CV_DilateTest::CV_DilateTest()
347 {
348 optype_min = optype_max = CV_MOP_DILATE;
349 }
350
351
run_func()352 void CV_DilateTest::run_func()
353 {
354 cvDilate( inplace ? test_array[OUTPUT][0] : test_array[INPUT][0],
355 test_array[OUTPUT][0], element, 1 );
356 }
357
358 /////////////// morphEx ///////////////
359
360 class CV_MorphExTest : public CV_MorphologyBaseTest
361 {
362 public:
363 CV_MorphExTest();
364 protected:
365 void run_func();
366 };
367
368
CV_MorphExTest()369 CV_MorphExTest::CV_MorphExTest()
370 {
371 optype_min = CV_MOP_ERODE;
372 optype_max = CV_MOP_BLACKHAT;
373 }
374
375
run_func()376 void CV_MorphExTest::run_func()
377 {
378 cvMorphologyEx( test_array[inplace ? OUTPUT : INPUT][0],
379 test_array[OUTPUT][0], 0, element, optype, 1 );
380 }
381
382 /////////////// generic filter ///////////////
383
384 class CV_FilterTest : public CV_FilterBaseTest
385 {
386 public:
387 CV_FilterTest();
388
389 protected:
390 void prepare_to_validation( int test_case_idx );
391 void run_func();
392 void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
393 double get_success_error_level( int test_case_idx, int i, int j );
394 };
395
396
CV_FilterTest()397 CV_FilterTest::CV_FilterTest() : CV_FilterBaseTest( true )
398 {
399 }
400
401
get_test_array_types_and_sizes(int test_case_idx,vector<vector<Size>> & sizes,vector<vector<int>> & types)402 void CV_FilterTest::get_test_array_types_and_sizes( int test_case_idx,
403 vector<vector<Size> >& sizes, vector<vector<int> >& types )
404 {
405 CV_FilterBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
406 RNG& rng = ts->get_rng();
407 int depth = cvtest::randInt(rng)%3;
408 int cn = CV_MAT_CN(types[INPUT][0]);
409 depth = depth == 0 ? CV_8U : depth == 1 ? CV_16U : CV_32F;
410 types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth, cn);
411 }
412
413
get_success_error_level(int,int,int)414 double CV_FilterTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
415 {
416 int depth = test_mat[INPUT][0].depth();
417 return depth <= CV_8S ? 2 : depth <= CV_32S ? 32 :
418 depth == CV_32F ? 1e-4 : 1e-10;
419 }
420
421
run_func()422 void CV_FilterTest::run_func()
423 {
424 CvMat kernel = test_mat[INPUT][1];
425 cvFilter2D( test_array[inplace ? OUTPUT : INPUT][0],
426 test_array[OUTPUT][0], &kernel, anchor );
427 }
428
429
prepare_to_validation(int)430 void CV_FilterTest::prepare_to_validation( int /*test_case_idx*/ )
431 {
432 cvtest::filter2D( test_mat[INPUT][0], test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][0].type(),
433 test_mat[INPUT][1], anchor, 0, BORDER_REPLICATE );
434 }
435
436
437 ////////////////////////
438
439 class CV_DerivBaseTest : public CV_FilterBaseTest
440 {
441 public:
442 CV_DerivBaseTest();
443 protected:
444 void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
445 double get_success_error_level( int test_case_idx, int i, int j );
446 int _aperture_size;
447 };
448
449
CV_DerivBaseTest()450 CV_DerivBaseTest::CV_DerivBaseTest() : CV_FilterBaseTest( true )
451 {
452 max_aperture_size = 7;
453 }
454
455
get_test_array_types_and_sizes(int test_case_idx,vector<vector<Size>> & sizes,vector<vector<int>> & types)456 void CV_DerivBaseTest::get_test_array_types_and_sizes( int test_case_idx,
457 vector<vector<Size> >& sizes, vector<vector<int> >& types )
458 {
459 RNG& rng = ts->get_rng();
460 CV_FilterBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
461 int depth = cvtest::randInt(rng) % 2;
462 depth = depth == 0 ? CV_8U : CV_32F;
463 types[INPUT][0] = CV_MAKETYPE(depth,1);
464 types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth==CV_8U?CV_16S:CV_32F,1);
465 _aperture_size = (cvtest::randInt(rng)%5)*2 - 1;
466 sizes[INPUT][1] = aperture_size = cvSize(_aperture_size, _aperture_size);
467 }
468
469
get_success_error_level(int,int,int)470 double CV_DerivBaseTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
471 {
472 int depth = test_mat[INPUT][0].depth();
473 return depth <= CV_8S ? 2 : 5e-4;
474 }
475
476
477 /////////////// sobel ///////////////
478
479 class CV_SobelTest : public CV_DerivBaseTest
480 {
481 public:
482 CV_SobelTest();
483
484 protected:
485 void prepare_to_validation( int test_case_idx );
486 void run_func();
487 void get_test_array_types_and_sizes( int test_case_idx,
488 vector<vector<Size> >& sizes, vector<vector<int> >& types );
489 int dx, dy, origin;
490 };
491
492
CV_SobelTest()493 CV_SobelTest::CV_SobelTest() {}
494
495
get_test_array_types_and_sizes(int test_case_idx,vector<vector<Size>> & sizes,vector<vector<int>> & types)496 void CV_SobelTest::get_test_array_types_and_sizes( int test_case_idx,
497 vector<vector<Size> >& sizes,
498 vector<vector<int> >& types )
499 {
500 RNG& rng = ts->get_rng();
501 CV_DerivBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
502 int max_d = _aperture_size > 0 ? 2 : 1;
503 origin = cvtest::randInt(rng) % 2;
504 dx = cvtest::randInt(rng) % (max_d + 1);
505 dy = cvtest::randInt(rng) % (max_d + 1 - dx);
506 if( dx == 0 && dy == 0 )
507 dx = 1;
508 if( cvtest::randInt(rng) % 2 )
509 {
510 int t;
511 CV_SWAP( dx, dy, t );
512 }
513
514 if( _aperture_size < 0 )
515 aperture_size = cvSize(3, 3);
516 else if( _aperture_size == 1 )
517 {
518 if( dx == 0 )
519 aperture_size = cvSize(1, 3);
520 else if( dy == 0 )
521 aperture_size = cvSize(3, 1);
522 else
523 {
524 _aperture_size = 3;
525 aperture_size = cvSize(3, 3);
526 }
527 }
528 else
529 aperture_size = cvSize(_aperture_size, _aperture_size);
530
531 sizes[INPUT][1] = aperture_size;
532 anchor.x = aperture_size.width / 2;
533 anchor.y = aperture_size.height / 2;
534 }
535
536
run_func()537 void CV_SobelTest::run_func()
538 {
539 cvSobel( test_array[inplace ? OUTPUT : INPUT][0],
540 test_array[OUTPUT][0], dx, dy, _aperture_size );
541 /*cv::Sobel( test_mat[inplace ? OUTPUT : INPUT][0],
542 test_mat[OUTPUT][0], test_mat[OUTPUT][0].depth(),
543 dx, dy, _aperture_size, 1, 0, border );*/
544 }
545
546
prepare_to_validation(int)547 void CV_SobelTest::prepare_to_validation( int /*test_case_idx*/ )
548 {
549 Mat kernel = cvtest::calcSobelKernel2D( dx, dy, _aperture_size, 0 );
550 cvtest::filter2D( test_mat[INPUT][0], test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][0].depth(),
551 kernel, anchor, 0, BORDER_REPLICATE);
552 }
553
554
555 /////////////// laplace ///////////////
556
557 class CV_LaplaceTest : public CV_DerivBaseTest
558 {
559 public:
560 CV_LaplaceTest();
561
562 protected:
563 int prepare_test_case( int test_case_idx );
564 void prepare_to_validation( int test_case_idx );
565 void run_func();
566 void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
567 };
568
569
CV_LaplaceTest()570 CV_LaplaceTest::CV_LaplaceTest()
571 {
572 }
573
574
get_test_array_types_and_sizes(int test_case_idx,vector<vector<Size>> & sizes,vector<vector<int>> & types)575 void CV_LaplaceTest::get_test_array_types_and_sizes( int test_case_idx,
576 vector<vector<Size> >& sizes, vector<vector<int> >& types )
577 {
578 CV_DerivBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
579 if( _aperture_size <= 1 )
580 {
581 if( _aperture_size < 0 )
582 _aperture_size = 1;
583 aperture_size = cvSize(3, 3);
584 }
585 else
586 aperture_size = cvSize(_aperture_size, _aperture_size);
587
588 sizes[INPUT][1] = aperture_size;
589 anchor.x = aperture_size.width / 2;
590 anchor.y = aperture_size.height / 2;
591 }
592
593
run_func()594 void CV_LaplaceTest::run_func()
595 {
596 cvLaplace( test_array[inplace ? OUTPUT : INPUT][0],
597 test_array[OUTPUT][0], _aperture_size );
598 }
599
600
prepare_test_case(int test_case_idx)601 int CV_LaplaceTest::prepare_test_case( int test_case_idx )
602 {
603 int code = CV_DerivBaseTest::prepare_test_case( test_case_idx );
604 return _aperture_size < 0 ? 0 : code;
605 }
606
607
prepare_to_validation(int)608 void CV_LaplaceTest::prepare_to_validation( int /*test_case_idx*/ )
609 {
610 Mat kernel = cvtest::calcLaplaceKernel2D( _aperture_size );
611 cvtest::filter2D( test_mat[INPUT][0], test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][0].depth(),
612 kernel, anchor, 0, BORDER_REPLICATE );
613 }
614
615
616 ////////////////////////////////////////////////////////////
617
618 class CV_SmoothBaseTest : public CV_FilterBaseTest
619 {
620 public:
621 CV_SmoothBaseTest();
622
623 protected:
624 void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
625 double get_success_error_level( int test_case_idx, int i, int j );
626 const char* smooth_type;
627 };
628
629
CV_SmoothBaseTest()630 CV_SmoothBaseTest::CV_SmoothBaseTest() : CV_FilterBaseTest( true )
631 {
632 smooth_type = "";
633 }
634
635
get_test_array_types_and_sizes(int test_case_idx,vector<vector<Size>> & sizes,vector<vector<int>> & types)636 void CV_SmoothBaseTest::get_test_array_types_and_sizes( int test_case_idx,
637 vector<vector<Size> >& sizes, vector<vector<int> >& types )
638 {
639 RNG& rng = ts->get_rng();
640 CV_FilterBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
641 int depth = cvtest::randInt(rng) % 2;
642 int cn = CV_MAT_CN(types[INPUT][0]);
643 depth = depth == 0 ? CV_8U : CV_32F;
644 types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth,cn);
645 anchor.x = cvtest::randInt(rng)%(max_aperture_size/2+1);
646 anchor.y = cvtest::randInt(rng)%(max_aperture_size/2+1);
647 aperture_size.width = anchor.x*2 + 1;
648 aperture_size.height = anchor.y*2 + 1;
649 sizes[INPUT][1] = aperture_size;
650 }
651
652
get_success_error_level(int,int,int)653 double CV_SmoothBaseTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
654 {
655 int depth = test_mat[INPUT][0].depth();
656 return depth <= CV_8S ? 1 : 1e-5;
657 }
658
659
660 /////////////// blur ///////////////
661
662 class CV_BlurTest : public CV_SmoothBaseTest
663 {
664 public:
665 CV_BlurTest();
666
667 protected:
668 int prepare_test_case( int test_case_idx );
669 void prepare_to_validation( int test_case_idx );
670 void run_func();
671 void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
672 bool normalize;
673 };
674
675
CV_BlurTest()676 CV_BlurTest::CV_BlurTest()
677 {
678 }
679
680
get_test_array_types_and_sizes(int test_case_idx,vector<vector<Size>> & sizes,vector<vector<int>> & types)681 void CV_BlurTest::get_test_array_types_and_sizes( int test_case_idx,
682 vector<vector<Size> >& sizes, vector<vector<int> >& types )
683 {
684 RNG& rng = ts->get_rng();
685 CV_SmoothBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
686 int depth = cvtest::randInt(rng) % 4;
687 int cn = (cvtest::randInt(rng) % 4) + 1;
688 depth = depth == 0 ? CV_8U : depth == 1 ? CV_16U : depth == 2 ? CV_16S : CV_32F;
689 types[OUTPUT][0] = types[REF_OUTPUT][0] = types[INPUT][0] = CV_MAKETYPE(depth, cn);
690 normalize = cvtest::randInt(rng) % 2 != 0;
691 if( !normalize )
692 {
693 types[INPUT][0] = CV_MAKETYPE(depth, 1);
694 types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth==CV_8U?CV_16S:CV_32F,1);
695 }
696 }
697
698
run_func()699 void CV_BlurTest::run_func()
700 {
701 cvSmooth( inplace ? test_array[OUTPUT][0] : test_array[INPUT][0],
702 test_array[OUTPUT][0], normalize ? CV_BLUR : CV_BLUR_NO_SCALE,
703 aperture_size.width, aperture_size.height );
704 }
705
706
prepare_test_case(int test_case_idx)707 int CV_BlurTest::prepare_test_case( int test_case_idx )
708 {
709 int code = CV_SmoothBaseTest::prepare_test_case( test_case_idx );
710 return code > 0 && !normalize && test_mat[INPUT][0].channels() > 1 ? 0 : code;
711 }
712
713
prepare_to_validation(int)714 void CV_BlurTest::prepare_to_validation( int /*test_case_idx*/ )
715 {
716 Mat kernel(aperture_size, CV_64F);
717 kernel.setTo(Scalar::all(normalize ? 1./(aperture_size.width*aperture_size.height) : 1.));
718 cvtest::filter2D( test_mat[INPUT][0], test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][0].depth(),
719 kernel, anchor, 0, BORDER_REPLICATE );
720 }
721
722
723 /////////////// gaussian ///////////////
724
725 class CV_GaussianBlurTest : public CV_SmoothBaseTest
726 {
727 public:
728 CV_GaussianBlurTest();
729
730 protected:
731 void prepare_to_validation( int test_case_idx );
732 void run_func();
733 void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
734 double get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ );
735 double sigma;
736 int param1, param2;
737 };
738
739
CV_GaussianBlurTest()740 CV_GaussianBlurTest::CV_GaussianBlurTest() : CV_SmoothBaseTest()
741 {
742 sigma = 0.;
743 smooth_type = "Gaussian";
744 }
745
746
get_success_error_level(int,int,int)747 double CV_GaussianBlurTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
748 {
749 int depth = test_mat[INPUT][0].depth();
750 return depth <= CV_8S ? 8 : 1e-5;
751 }
752
753
get_test_array_types_and_sizes(int test_case_idx,vector<vector<Size>> & sizes,vector<vector<int>> & types)754 void CV_GaussianBlurTest::get_test_array_types_and_sizes( int test_case_idx,
755 vector<vector<Size> >& sizes, vector<vector<int> >& types )
756 {
757 RNG& rng = ts->get_rng();
758 int kernel_case = cvtest::randInt(rng) % 2;
759 CV_SmoothBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
760 anchor = cvPoint(aperture_size.width/2,aperture_size.height/2);
761
762 sigma = exp(cvtest::randReal(rng)*5-2);
763 param1 = aperture_size.width;
764 param2 = aperture_size.height;
765
766 if( kernel_case == 0 )
767 sigma = 0.;
768 }
769
run_func()770 void CV_GaussianBlurTest::run_func()
771 {
772 cvSmooth( test_array[inplace ? OUTPUT : INPUT][0],
773 test_array[OUTPUT][0], CV_GAUSSIAN,
774 param1, param2, sigma, sigma );
775 }
776
777
778 // !!! Copied from cvSmooth, if the code is changed in cvSmooth,
779 // make sure to update this one too.
780 #define SMALL_GAUSSIAN_SIZE 7
781 static void
calcGaussianKernel(int n,double sigma,vector<float> & kernel)782 calcGaussianKernel( int n, double sigma, vector<float>& kernel )
783 {
784 static const float small_gaussian_tab[][SMALL_GAUSSIAN_SIZE] =
785 {
786 {1.f},
787 {0.25f, 0.5f, 0.25f},
788 {0.0625f, 0.25f, 0.375f, 0.25f, 0.0625f},
789 {0.03125, 0.109375, 0.21875, 0.28125, 0.21875, 0.109375, 0.03125}
790 };
791
792 kernel.resize(n);
793 if( n <= SMALL_GAUSSIAN_SIZE && sigma <= 0 )
794 {
795 assert( n%2 == 1 );
796 memcpy( &kernel[0], small_gaussian_tab[n>>1], n*sizeof(kernel[0]));
797 }
798 else
799 {
800 double sigmaX = sigma > 0 ? sigma : (n/2 - 1)*0.3 + 0.8;
801 double scale2X = -0.5/(sigmaX*sigmaX);
802 double sum = 1.;
803 int i;
804 sum = kernel[n/2] = 1.f;
805
806 for( i = 1; i <= n/2; i++ )
807 {
808 kernel[n/2+i] = kernel[n/2-i] = (float)exp(scale2X*i*i);
809 sum += kernel[n/2+i]*2;
810 }
811
812 sum = 1./sum;
813 for( i = 0; i <= n/2; i++ )
814 kernel[n/2+i] = kernel[n/2-i] = (float)(kernel[n/2+i]*sum);
815 }
816 }
817
818
calcGaussianKernel2D(Size ksize,double sigma)819 static Mat calcGaussianKernel2D( Size ksize, double sigma )
820 {
821 vector<float> kx, ky;
822 Mat kernel(ksize, CV_32F);
823
824 calcGaussianKernel( kernel.cols, sigma, kx );
825 calcGaussianKernel( kernel.rows, sigma, ky );
826
827 for( int i = 0; i < kernel.rows; i++ )
828 for( int j = 0; j < kernel.cols; j++ )
829 kernel.at<float>(i, j) = kx[j]*ky[i];
830 return kernel;
831 }
832
833
prepare_to_validation(int)834 void CV_GaussianBlurTest::prepare_to_validation( int /*test_case_idx*/ )
835 {
836 Mat kernel = calcGaussianKernel2D( aperture_size, sigma );
837 cvtest::filter2D( test_mat[INPUT][0], test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][0].depth(),
838 kernel, anchor, 0, border & ~BORDER_ISOLATED );
839 }
840
841
842 /////////////// median ///////////////
843
844 class CV_MedianBlurTest : public CV_SmoothBaseTest
845 {
846 public:
847 CV_MedianBlurTest();
848
849 protected:
850 void prepare_to_validation( int test_case_idx );
851 double get_success_error_level( int test_case_idx, int i, int j );
852 void run_func();
853 void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
854 };
855
856
CV_MedianBlurTest()857 CV_MedianBlurTest::CV_MedianBlurTest()
858 {
859 smooth_type = "Median";
860 }
861
862
get_test_array_types_and_sizes(int test_case_idx,vector<vector<Size>> & sizes,vector<vector<int>> & types)863 void CV_MedianBlurTest::get_test_array_types_and_sizes( int test_case_idx,
864 vector<vector<Size> >& sizes, vector<vector<int> >& types )
865 {
866 CV_SmoothBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
867 int depth = CV_8U;
868 int cn = CV_MAT_CN(types[INPUT][0]);
869 types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth,cn);
870 types[INPUT][1] = CV_MAKETYPE(depth,1);
871
872 aperture_size.height = aperture_size.width;
873 anchor.x = anchor.y = aperture_size.width / 2;
874 sizes[INPUT][1] = cvSize(aperture_size.width,aperture_size.height);
875
876 sizes[OUTPUT][0] = sizes[INPUT][0];
877 sizes[REF_OUTPUT][0] = sizes[INPUT][0];
878
879 inplace = false;
880 border = BORDER_REPLICATE | BORDER_ISOLATED;
881 }
882
883
get_success_error_level(int,int,int)884 double CV_MedianBlurTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
885 {
886 return 0;
887 }
888
889
run_func()890 void CV_MedianBlurTest::run_func()
891 {
892 cvSmooth( test_array[INPUT][0], test_array[OUTPUT][0],
893 CV_MEDIAN, aperture_size.width );
894 }
895
896
897 struct median_pair
898 {
899 int col;
900 int val;
median_pairmedian_pair901 median_pair() { }
median_pairmedian_pair902 median_pair( int _col, int _val ) : col(_col), val(_val) { }
903 };
904
905
test_medianFilter(const Mat & src,Mat & dst,int m)906 static void test_medianFilter( const Mat& src, Mat& dst, int m )
907 {
908 int i, j, k, l, m2 = m*m, n;
909 vector<int> col_buf(m+1);
910 vector<median_pair> _buf0(m*m+1), _buf1(m*m+1);
911 median_pair *buf0 = &_buf0[0], *buf1 = &_buf1[0];
912 int step = (int)(src.step/src.elemSize());
913
914 assert( src.rows == dst.rows + m - 1 && src.cols == dst.cols + m - 1 &&
915 src.type() == dst.type() && src.type() == CV_8UC1 );
916
917 for( i = 0; i < dst.rows; i++ )
918 {
919 uchar* dst1 = dst.ptr<uchar>(i);
920 for( k = 0; k < m; k++ )
921 {
922 const uchar* src1 = src.ptr<uchar>(i+k);
923 for( j = 0; j < m-1; j++ )
924 *buf0++ = median_pair(j, src1[j]);
925 }
926
927 n = m2 - m;
928 buf0 -= n;
929 for( k = n-1; k > 0; k-- )
930 {
931 int f = 0;
932 for( j = 0; j < k; j++ )
933 {
934 if( buf0[j].val > buf0[j+1].val )
935 {
936 median_pair t;
937 CV_SWAP( buf0[j], buf0[j+1], t );
938 f = 1;
939 }
940 }
941 if( !f )
942 break;
943 }
944
945 for( j = 0; j < dst.cols; j++ )
946 {
947 int ins_col = j + m - 1;
948 int del_col = j - 1;
949 const uchar* src1 = src.ptr<uchar>(i) + ins_col;
950 for( k = 0; k < m; k++, src1 += step )
951 {
952 col_buf[k] = src1[0];
953 for( l = k-1; l >= 0; l-- )
954 {
955 int t;
956 if( col_buf[l] < col_buf[l+1] )
957 break;
958 CV_SWAP( col_buf[l], col_buf[l+1], t );
959 }
960 }
961
962 col_buf[m] = INT_MAX;
963
964 for( k = 0, l = 0; k < n; )
965 {
966 if( buf0[k].col == del_col )
967 k++;
968 else if( buf0[k].val < col_buf[l] )
969 *buf1++ = buf0[k++];
970 else
971 {
972 assert( col_buf[l] < INT_MAX );
973 *buf1++ = median_pair(ins_col,col_buf[l++]);
974 }
975 }
976
977 for( ; l < m; l++ )
978 *buf1++ = median_pair(ins_col,col_buf[l]);
979
980 if( del_col < 0 )
981 n += m;
982 buf1 -= n;
983 assert( n == m2 );
984 dst1[j] = (uchar)buf1[n/2].val;
985 median_pair* tbuf;
986 CV_SWAP( buf0, buf1, tbuf );
987 }
988 }
989 }
990
991
prepare_to_validation(int)992 void CV_MedianBlurTest::prepare_to_validation( int /*test_case_idx*/ )
993 {
994 // CV_SmoothBaseTest::prepare_to_validation( test_case_idx );
995 const Mat& src0 = test_mat[INPUT][0];
996 Mat& dst0 = test_mat[REF_OUTPUT][0];
997 int i, cn = src0.channels();
998 int m = aperture_size.width;
999 Mat src(src0.rows + m - 1, src0.cols + m - 1, src0.depth());
1000 Mat dst;
1001 if( cn == 1 )
1002 dst = dst0;
1003 else
1004 dst.create(src0.size(), src0.depth());
1005
1006 for( i = 0; i < cn; i++ )
1007 {
1008 Mat ptr = src0;
1009 if( cn > 1 )
1010 {
1011 cvtest::extract( src0, dst, i );
1012 ptr = dst;
1013 }
1014 cvtest::copyMakeBorder( ptr, src, m/2, m/2, m/2, m/2, border & ~BORDER_ISOLATED );
1015 test_medianFilter( src, dst, m );
1016 if( cn > 1 )
1017 cvtest::insert( dst, dst0, i );
1018 }
1019 }
1020
1021
1022 /////////////// pyramid tests ///////////////
1023
1024 class CV_PyramidBaseTest : public CV_FilterBaseTest
1025 {
1026 public:
1027 CV_PyramidBaseTest( bool downsample );
1028
1029 protected:
1030 double get_success_error_level( int test_case_idx, int i, int j );
1031 void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
1032 bool downsample;
1033 Mat kernel;
1034 };
1035
1036
CV_PyramidBaseTest(bool _downsample)1037 CV_PyramidBaseTest::CV_PyramidBaseTest( bool _downsample ) : CV_FilterBaseTest(true)
1038 {
1039 static float kdata[] = { 1.f, 4.f, 6.f, 4.f, 1.f };
1040 downsample = _downsample;
1041 Mat kernel1d(1, 5, CV_32F, kdata);
1042 kernel = (kernel1d.t()*kernel1d)*((downsample ? 1 : 4)/256.);
1043 }
1044
1045
get_success_error_level(int,int,int)1046 double CV_PyramidBaseTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
1047 {
1048 int depth = test_mat[INPUT][0].depth();
1049 return depth < CV_32F ? 1 : 1e-5;
1050 }
1051
1052
get_test_array_types_and_sizes(int test_case_idx,vector<vector<Size>> & sizes,vector<vector<int>> & types)1053 void CV_PyramidBaseTest::get_test_array_types_and_sizes( int test_case_idx,
1054 vector<vector<Size> >& sizes,
1055 vector<vector<int> >& types )
1056 {
1057 const int channels[] = {1, 3, 4};
1058 const int depthes[] = {CV_8U, CV_16S, CV_16U, CV_32F};
1059
1060 RNG& rng = ts->get_rng();
1061 CvSize sz;
1062 CV_FilterBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
1063
1064 int depth = depthes[cvtest::randInt(rng) % (sizeof(depthes)/sizeof(depthes[0]))];
1065 int cn = channels[cvtest::randInt(rng) % (sizeof(channels)/sizeof(channels[0]))];
1066
1067 aperture_size = cvSize(5,5);
1068 anchor = cvPoint(aperture_size.width/2, aperture_size.height/2);
1069
1070 types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth, cn);
1071
1072 sz.width = MAX( sizes[INPUT][0].width/2, 1 );
1073 sz.height = MAX( sizes[INPUT][0].height/2, 1 );
1074
1075 if( downsample )
1076 {
1077 sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = sz;
1078 sz.width *= 2;
1079 sz.height *= 2;
1080 sizes[INPUT][0] = sz;
1081 }
1082 else
1083 {
1084 sizes[INPUT][0] = sz;
1085 sz.width *= 2;
1086 sz.height *= 2;
1087 sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = sz;
1088 }
1089
1090 sizes[INPUT][1] = aperture_size;
1091 inplace = false;
1092 }
1093
1094
1095 /////// pyrdown ////////
1096
1097 class CV_PyramidDownTest : public CV_PyramidBaseTest
1098 {
1099 public:
1100 CV_PyramidDownTest();
1101
1102 protected:
1103 void run_func();
1104 void prepare_to_validation( int );
1105 };
1106
1107
CV_PyramidDownTest()1108 CV_PyramidDownTest::CV_PyramidDownTest() : CV_PyramidBaseTest( true )
1109 {
1110 }
1111
1112
run_func()1113 void CV_PyramidDownTest::run_func()
1114 {
1115 cvPyrDown( test_array[INPUT][0], test_array[OUTPUT][0], CV_GAUSSIAN_5x5 );
1116 }
1117
1118
prepare_to_validation(int)1119 void CV_PyramidDownTest::prepare_to_validation( int /*test_case_idx*/ )
1120 {
1121 Mat& src = test_mat[INPUT][0], &dst = test_mat[REF_OUTPUT][0];
1122 Mat temp;
1123 cvtest::filter2D(src, temp, src.depth(),
1124 kernel, Point(kernel.cols/2, kernel.rows/2),
1125 0, BORDER_REFLECT_101);
1126
1127 size_t elem_size = temp.elemSize();
1128 size_t ncols = dst.cols*elem_size;
1129
1130 for( int i = 0; i < dst.rows; i++ )
1131 {
1132 const uchar* src_row = temp.ptr(i*2);
1133 uchar* dst_row = dst.ptr(i);
1134
1135 for( size_t j = 0; j < ncols; j += elem_size )
1136 {
1137 for( size_t k = 0; k < elem_size; k++ )
1138 dst_row[j+k] = src_row[j*2+k];
1139 }
1140 }
1141 }
1142
1143
1144 /////// pyrup ////////
1145
1146 class CV_PyramidUpTest : public CV_PyramidBaseTest
1147 {
1148 public:
1149 CV_PyramidUpTest();
1150
1151 protected:
1152 void run_func();
1153 void prepare_to_validation( int );
1154 };
1155
1156
CV_PyramidUpTest()1157 CV_PyramidUpTest::CV_PyramidUpTest() : CV_PyramidBaseTest( false )
1158 {
1159 }
1160
1161
run_func()1162 void CV_PyramidUpTest::run_func()
1163 {
1164 cvPyrUp( test_array[INPUT][0], test_array[OUTPUT][0], CV_GAUSSIAN_5x5 );
1165 }
1166
1167
prepare_to_validation(int)1168 void CV_PyramidUpTest::prepare_to_validation( int /*test_case_idx*/ )
1169 {
1170 Mat& src = test_mat[INPUT][0], &dst = test_mat[REF_OUTPUT][0];
1171 Mat temp(dst.size(), dst.type());
1172
1173 size_t elem_size = src.elemSize();
1174 size_t ncols = src.cols*elem_size;
1175
1176 for( int i = 0; i < src.rows; i++ )
1177 {
1178 const uchar* src_row = src.ptr(i);
1179 uchar* dst_row = temp.ptr(i*2);
1180
1181 if( i*2 + 1 < temp.rows )
1182 memset( temp.ptr(i*2+1), 0, temp.cols*elem_size );
1183 for( size_t j = 0; j < ncols; j += elem_size )
1184 {
1185 for( size_t k = 0; k < elem_size; k++ )
1186 {
1187 dst_row[j*2+k] = src_row[j+k];
1188 dst_row[j*2+k+elem_size] = 0;
1189 }
1190 }
1191 }
1192
1193 cvtest::filter2D(temp, dst, dst.depth(),
1194 kernel, Point(kernel.cols/2, kernel.rows/2),
1195 0, BORDER_REFLECT_101);
1196 }
1197
1198
1199 //////////////////////// feature selection //////////////////////////
1200
1201 class CV_FeatureSelBaseTest : public cvtest::ArrayTest
1202 {
1203 public:
1204 CV_FeatureSelBaseTest( int width_factor );
1205
1206 protected:
1207 int read_params( CvFileStorage* fs );
1208 void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
1209 void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
1210 double get_success_error_level( int test_case_idx, int i, int j );
1211 int aperture_size, block_size;
1212 int max_aperture_size;
1213 int max_block_size;
1214 int width_factor;
1215 };
1216
1217
CV_FeatureSelBaseTest(int _width_factor)1218 CV_FeatureSelBaseTest::CV_FeatureSelBaseTest( int _width_factor )
1219 {
1220 max_aperture_size = 7;
1221 max_block_size = 21;
1222 // 1 input, 1 output, temp arrays are allocated in the reference functions
1223 test_array[INPUT].push_back(NULL);
1224 test_array[OUTPUT].push_back(NULL);
1225 test_array[REF_OUTPUT].push_back(NULL);
1226 element_wise_relative_error = false;
1227 width_factor = _width_factor;
1228 }
1229
1230
read_params(CvFileStorage * fs)1231 int CV_FeatureSelBaseTest::read_params( CvFileStorage* fs )
1232 {
1233 int code = cvtest::BaseTest::read_params( fs );
1234 if( code < 0 )
1235 return code;
1236
1237 max_aperture_size = cvReadInt( find_param( fs, "max_aperture_size" ), max_aperture_size );
1238 max_aperture_size = cvtest::clipInt( max_aperture_size, 1, 9 );
1239 max_block_size = cvReadInt( find_param( fs, "max_block_size" ), max_block_size );
1240 max_block_size = cvtest::clipInt( max_aperture_size, 1, 100 );
1241
1242 return code;
1243 }
1244
1245
get_success_error_level(int,int,int)1246 double CV_FeatureSelBaseTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
1247 {
1248 int depth = test_mat[INPUT][0].depth();
1249 return depth <= CV_8S ? 3e-2 : depth == CV_32F ? 1e-3 : 1e-10;
1250 }
1251
1252
get_minmax_bounds(int i,int j,int type,Scalar & low,Scalar & high)1253 void CV_FeatureSelBaseTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
1254 {
1255 cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
1256 if( i == INPUT && CV_MAT_DEPTH(type) == CV_32F )
1257 {
1258 low = Scalar::all(-10.);
1259 high = Scalar::all(10.);
1260 }
1261 }
1262
1263
get_test_array_types_and_sizes(int test_case_idx,vector<vector<Size>> & sizes,vector<vector<int>> & types)1264 void CV_FeatureSelBaseTest::get_test_array_types_and_sizes( int test_case_idx,
1265 vector<vector<Size> >& sizes, vector<vector<int> >& types )
1266 {
1267 RNG& rng = ts->get_rng();
1268 cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
1269 int depth = cvtest::randInt(rng) % 2, asz;
1270
1271 depth = depth == 0 ? CV_8U : CV_32F;
1272 types[INPUT][0] = depth;
1273 types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_32FC1;
1274
1275 aperture_size = (cvtest::randInt(rng) % (max_aperture_size+2) - 1) | 1;
1276 if( aperture_size == 1 )
1277 aperture_size = 3;
1278 if( depth == CV_8U )
1279 aperture_size = MIN( aperture_size, 5 );
1280 block_size = (cvtest::randInt(rng) % max_block_size + 1) | 1;
1281 if( block_size <= 3 )
1282 block_size = 3;
1283 asz = aperture_size > 0 ? aperture_size : 3;
1284
1285 sizes[INPUT][0].width = MAX( sizes[INPUT][0].width, asz + block_size );
1286 sizes[INPUT][0].height = MAX( sizes[INPUT][0].height, asz + block_size );
1287 sizes[OUTPUT][0].height = sizes[REF_OUTPUT][0].height = sizes[INPUT][0].height;
1288 sizes[OUTPUT][0].width = sizes[REF_OUTPUT][0].width = sizes[INPUT][0].width*width_factor;
1289 }
1290
1291
1292 static void
test_cornerEigenValsVecs(const Mat & src,Mat & eigenv,Mat & ocv_eigenv,int block_size,int _aperture_size,int mode)1293 test_cornerEigenValsVecs( const Mat& src, Mat& eigenv, Mat& ocv_eigenv,
1294 int block_size, int _aperture_size, int mode )
1295 {
1296 int i, j;
1297 int aperture_size = _aperture_size < 0 ? 3 : _aperture_size;
1298 Point anchor( aperture_size/2, aperture_size/2 );
1299
1300 CV_Assert( src.type() == CV_8UC1 || src.type() == CV_32FC1 );
1301 CV_Assert( eigenv.type() == CV_32FC1 );
1302 CV_Assert( src.rows == eigenv.rows &&
1303 ((mode > 0 && src.cols == eigenv.cols) ||
1304 (mode == 0 && src.cols*6 == eigenv.cols)) );
1305
1306 int type = src.type();
1307 int ftype = CV_32FC1;
1308 double kernel_scale = type != ftype ? 1./255 : 1;
1309
1310 Mat dx2, dy2, dxdy(src.size(), CV_32F), kernel;
1311
1312 kernel = cvtest::calcSobelKernel2D( 1, 0, _aperture_size );
1313 cvtest::filter2D( src, dx2, ftype, kernel*kernel_scale, anchor, 0, BORDER_REPLICATE );
1314 kernel = cvtest::calcSobelKernel2D( 0, 1, _aperture_size );
1315 cvtest::filter2D( src, dy2, ftype, kernel*kernel_scale, anchor, 0, BORDER_REPLICATE );
1316
1317 double denom = (1 << (aperture_size-1))*block_size;
1318 denom = denom * denom;
1319 if( _aperture_size < 0 )
1320 denom *= 4;
1321 denom = 1./denom;
1322
1323 for( i = 0; i < src.rows; i++ )
1324 {
1325 float* dxdyp = dxdy.ptr<float>(i);
1326 float* dx2p = dx2.ptr<float>(i);
1327 float* dy2p = dy2.ptr<float>(i);
1328
1329 for( j = 0; j < src.cols; j++ )
1330 {
1331 double xval = dx2p[j], yval = dy2p[j];
1332 dxdyp[j] = (float)(xval*yval*denom);
1333 dx2p[j] = (float)(xval*xval*denom);
1334 dy2p[j] = (float)(yval*yval*denom);
1335 }
1336 }
1337
1338 kernel = Mat::ones(block_size, block_size, CV_32F);
1339 anchor = Point(block_size/2, block_size/2);
1340
1341 cvtest::filter2D( dx2, dx2, ftype, kernel, anchor, 0, BORDER_REPLICATE );
1342 cvtest::filter2D( dy2, dy2, ftype, kernel, anchor, 0, BORDER_REPLICATE );
1343 cvtest::filter2D( dxdy, dxdy, ftype, kernel, anchor, 0, BORDER_REPLICATE );
1344
1345 if( mode == 0 )
1346 {
1347 for( i = 0; i < src.rows; i++ )
1348 {
1349 float* eigenvp = eigenv.ptr<float>(i);
1350 float* ocv_eigenvp = ocv_eigenv.ptr<float>(i);
1351 const float* dxdyp = dxdy.ptr<float>(i);
1352 const float* dx2p = dx2.ptr<float>(i);
1353 const float* dy2p = dy2.ptr<float>(i);
1354
1355 for( j = 0; j < src.cols; j++ )
1356 {
1357 double a = dx2p[j], b = dxdyp[j], c = dy2p[j];
1358 double d = sqrt((a-c)*(a-c) + 4*b*b);
1359 double l1 = 0.5*(a + c + d);
1360 double l2 = 0.5*(a + c - d);
1361 double x1, y1, x2, y2, s;
1362
1363 if( fabs(a - l1) + fabs(b) >= 1e-3 )
1364 x1 = b, y1 = l1 - a;
1365 else
1366 x1 = l1 - c, y1 = b;
1367 s = 1./(sqrt(x1*x1+y1*y1)+DBL_EPSILON);
1368 x1 *= s; y1 *= s;
1369
1370 if( fabs(a - l2) + fabs(b) >= 1e-3 )
1371 x2 = b, y2 = l2 - a;
1372 else
1373 x2 = l2 - c, y2 = b;
1374 s = 1./(sqrt(x2*x2+y2*y2)+DBL_EPSILON);
1375 x2 *= s; y2 *= s;
1376
1377 /* the orientation of eigen vectors might be inversed relative to OpenCV function,
1378 which is normal */
1379 if( (fabs(x1) >= fabs(y1) && ocv_eigenvp[j*6+2]*x1 < 0) ||
1380 (fabs(x1) < fabs(y1) && ocv_eigenvp[j*6+3]*y1 < 0) )
1381 x1 = -x1, y1 = -y1;
1382
1383 if( (fabs(x2) >= fabs(y2) && ocv_eigenvp[j*6+4]*x2 < 0) ||
1384 (fabs(x2) < fabs(y2) && ocv_eigenvp[j*6+5]*y2 < 0) )
1385 x2 = -x2, y2 = -y2;
1386
1387 eigenvp[j*6] = (float)l1;
1388 eigenvp[j*6+1] = (float)l2;
1389 eigenvp[j*6+2] = (float)x1;
1390 eigenvp[j*6+3] = (float)y1;
1391 eigenvp[j*6+4] = (float)x2;
1392 eigenvp[j*6+5] = (float)y2;
1393 }
1394 }
1395 }
1396 else if( mode == 1 )
1397 {
1398 for( i = 0; i < src.rows; i++ )
1399 {
1400 float* eigenvp = eigenv.ptr<float>(i);
1401 const float* dxdyp = dxdy.ptr<float>(i);
1402 const float* dx2p = dx2.ptr<float>(i);
1403 const float* dy2p = dy2.ptr<float>(i);
1404
1405 for( j = 0; j < src.cols; j++ )
1406 {
1407 double a = dx2p[j], b = dxdyp[j], c = dy2p[j];
1408 double d = sqrt((a-c)*(a-c) + 4*b*b);
1409 eigenvp[j] = (float)(0.5*(a + c - d));
1410 }
1411 }
1412 }
1413 }
1414
1415
1416 // min eigenval
1417 class CV_MinEigenValTest : public CV_FeatureSelBaseTest
1418 {
1419 public:
1420 CV_MinEigenValTest();
1421
1422 protected:
1423 void run_func();
1424 void prepare_to_validation( int );
1425 };
1426
1427
CV_MinEigenValTest()1428 CV_MinEigenValTest::CV_MinEigenValTest() : CV_FeatureSelBaseTest( 1 )
1429 {
1430 }
1431
1432
run_func()1433 void CV_MinEigenValTest::run_func()
1434 {
1435 cvCornerMinEigenVal( test_array[INPUT][0], test_array[OUTPUT][0],
1436 block_size, aperture_size );
1437 }
1438
1439
prepare_to_validation(int)1440 void CV_MinEigenValTest::prepare_to_validation( int /*test_case_idx*/ )
1441 {
1442 test_cornerEigenValsVecs( test_mat[INPUT][0], test_mat[REF_OUTPUT][0],
1443 test_mat[OUTPUT][0], block_size, aperture_size, 1 );
1444 }
1445
1446
1447 // eigenval's & vec's
1448 class CV_EigenValVecTest : public CV_FeatureSelBaseTest
1449 {
1450 public:
1451 CV_EigenValVecTest();
1452
1453 protected:
1454 void run_func();
1455 void prepare_to_validation( int );
1456 };
1457
1458
CV_EigenValVecTest()1459 CV_EigenValVecTest::CV_EigenValVecTest() : CV_FeatureSelBaseTest( 6 )
1460 {
1461 }
1462
1463
run_func()1464 void CV_EigenValVecTest::run_func()
1465 {
1466 cvCornerEigenValsAndVecs( test_array[INPUT][0], test_array[OUTPUT][0],
1467 block_size, aperture_size );
1468 }
1469
1470
prepare_to_validation(int)1471 void CV_EigenValVecTest::prepare_to_validation( int /*test_case_idx*/ )
1472 {
1473 test_cornerEigenValsVecs( test_mat[INPUT][0], test_mat[REF_OUTPUT][0],
1474 test_mat[OUTPUT][0], block_size, aperture_size, 0 );
1475 }
1476
1477
1478 // precornerdetect
1479 class CV_PreCornerDetectTest : public CV_FeatureSelBaseTest
1480 {
1481 public:
1482 CV_PreCornerDetectTest();
1483
1484 protected:
1485 void run_func();
1486 void prepare_to_validation( int );
1487 int prepare_test_case( int );
1488 };
1489
1490
CV_PreCornerDetectTest()1491 CV_PreCornerDetectTest::CV_PreCornerDetectTest() : CV_FeatureSelBaseTest( 1 )
1492 {
1493 }
1494
1495
run_func()1496 void CV_PreCornerDetectTest::run_func()
1497 {
1498 cvPreCornerDetect( test_array[INPUT][0], test_array[OUTPUT][0], aperture_size );
1499 }
1500
1501
prepare_test_case(int test_case_idx)1502 int CV_PreCornerDetectTest::prepare_test_case( int test_case_idx )
1503 {
1504 int code = CV_FeatureSelBaseTest::prepare_test_case( test_case_idx );
1505 if( aperture_size < 0 )
1506 aperture_size = 3;
1507 return code;
1508 }
1509
1510
prepare_to_validation(int)1511 void CV_PreCornerDetectTest::prepare_to_validation( int /*test_case_idx*/ )
1512 {
1513 /*cvTsCornerEigenValsVecs( test_mat[INPUT][0], test_mat[REF_OUTPUT][0],
1514 block_size, aperture_size, 0 );*/
1515 const Mat& src = test_mat[INPUT][0];
1516 Mat& dst = test_mat[REF_OUTPUT][0];
1517
1518 int type = src.type(), ftype = CV_32FC1;
1519 Point anchor(aperture_size/2, aperture_size/2);
1520
1521 double kernel_scale = type != ftype ? 1./255 : 1.;
1522
1523 Mat dx, dy, d2x, d2y, dxy, kernel;
1524
1525 kernel = cvtest::calcSobelKernel2D(1, 0, aperture_size);
1526 cvtest::filter2D(src, dx, ftype, kernel*kernel_scale, anchor, 0, BORDER_REPLICATE);
1527 kernel = cvtest::calcSobelKernel2D(2, 0, aperture_size);
1528 cvtest::filter2D(src, d2x, ftype, kernel*kernel_scale, anchor, 0, BORDER_REPLICATE);
1529 kernel = cvtest::calcSobelKernel2D(0, 1, aperture_size);
1530 cvtest::filter2D(src, dy, ftype, kernel*kernel_scale, anchor, 0, BORDER_REPLICATE);
1531 kernel = cvtest::calcSobelKernel2D(0, 2, aperture_size);
1532 cvtest::filter2D(src, d2y, ftype, kernel*kernel_scale, anchor, 0, BORDER_REPLICATE);
1533 kernel = cvtest::calcSobelKernel2D(1, 1, aperture_size);
1534 cvtest::filter2D(src, dxy, ftype, kernel*kernel_scale, anchor, 0, BORDER_REPLICATE);
1535
1536 double denom = 1 << (aperture_size-1);
1537 denom = denom * denom * denom;
1538 denom = 1./denom;
1539
1540 for( int i = 0; i < src.rows; i++ )
1541 {
1542 const float* _dx = dx.ptr<float>(i);
1543 const float* _dy = dy.ptr<float>(i);
1544 const float* _d2x = d2x.ptr<float>(i);
1545 const float* _d2y = d2y.ptr<float>(i);
1546 const float* _dxy = dxy.ptr<float>(i);
1547 float* corner = dst.ptr<float>(i);
1548
1549 for( int j = 0; j < src.cols; j++ )
1550 {
1551 double x = _dx[j];
1552 double y = _dy[j];
1553
1554 corner[j] = (float)(denom*(x*x*_d2y[j] + y*y*_d2x[j] - 2*x*y*_dxy[j]));
1555 }
1556 }
1557 }
1558
1559
1560 ///////// integral /////////
1561
1562 class CV_IntegralTest : public cvtest::ArrayTest
1563 {
1564 public:
1565 CV_IntegralTest();
1566
1567 protected:
1568 void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
1569 void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
1570 double get_success_error_level( int test_case_idx, int i, int j );
1571 void run_func();
1572 void prepare_to_validation( int );
1573
1574 int prepare_test_case( int test_case_idx );
1575 };
1576
1577
CV_IntegralTest()1578 CV_IntegralTest::CV_IntegralTest()
1579 {
1580 test_array[INPUT].push_back(NULL);
1581 test_array[OUTPUT].push_back(NULL);
1582 test_array[OUTPUT].push_back(NULL);
1583 test_array[OUTPUT].push_back(NULL);
1584 test_array[REF_OUTPUT].push_back(NULL);
1585 test_array[REF_OUTPUT].push_back(NULL);
1586 test_array[REF_OUTPUT].push_back(NULL);
1587 element_wise_relative_error = true;
1588 }
1589
1590
get_minmax_bounds(int i,int j,int type,Scalar & low,Scalar & high)1591 void CV_IntegralTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
1592 {
1593 cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
1594 int depth = CV_MAT_DEPTH(type);
1595 if( depth == CV_32F )
1596 {
1597 low = Scalar::all(-10.);
1598 high = Scalar::all(10.);
1599 }
1600 }
1601
1602
get_test_array_types_and_sizes(int test_case_idx,vector<vector<Size>> & sizes,vector<vector<int>> & types)1603 void CV_IntegralTest::get_test_array_types_and_sizes( int test_case_idx,
1604 vector<vector<Size> >& sizes, vector<vector<int> >& types )
1605 {
1606 RNG& rng = ts->get_rng();
1607 int depth = cvtest::randInt(rng) % 2, sum_depth;
1608 int cn = cvtest::randInt(rng) % 3 + 1;
1609 cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
1610 Size sum_size;
1611
1612 depth = depth == 0 ? CV_8U : CV_32F;
1613 cn += cn == 2;
1614 int b = (cvtest::randInt(rng) & 1) != 0;
1615 sum_depth = depth == CV_8U && b ? CV_32S : b ? CV_32F : CV_64F;
1616
1617 types[INPUT][0] = CV_MAKETYPE(depth,cn);
1618 types[OUTPUT][0] = types[REF_OUTPUT][0] =
1619 types[OUTPUT][2] = types[REF_OUTPUT][2] = CV_MAKETYPE(sum_depth, cn);
1620 types[OUTPUT][1] = types[REF_OUTPUT][1] = CV_MAKETYPE(CV_64F, cn);
1621
1622 sum_size.width = sizes[INPUT][0].width + 1;
1623 sum_size.height = sizes[INPUT][0].height + 1;
1624
1625 sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = sum_size;
1626 sizes[OUTPUT][1] = sizes[REF_OUTPUT][1] =
1627 sizes[OUTPUT][2] = sizes[REF_OUTPUT][2] = Size(0,0);
1628
1629 if( cvtest::randInt(rng) % 3 > 0 )
1630 {
1631 sizes[OUTPUT][1] = sizes[REF_OUTPUT][1] = sum_size;
1632 if( cvtest::randInt(rng) % 2 > 0 )
1633 sizes[REF_OUTPUT][2] = sizes[OUTPUT][2] = sum_size;
1634 }
1635 }
1636
1637
get_success_error_level(int,int i,int j)1638 double CV_IntegralTest::get_success_error_level( int, int i, int j )
1639 {
1640 int depth = test_mat[i][j].depth();
1641 return depth == CV_32S ? 0 : depth == CV_64F ? FLT_EPSILON : 5e-3;
1642 }
1643
1644
prepare_test_case(int test_case_idx)1645 int CV_IntegralTest::prepare_test_case( int test_case_idx )
1646 {
1647 int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
1648 return code > 0 && ((test_array[OUTPUT][2] && test_mat[OUTPUT][2].channels() > 1) ||
1649 test_mat[OUTPUT][0].depth() < test_mat[INPUT][0].depth()) ? 0 : code;
1650 }
1651
1652
run_func()1653 void CV_IntegralTest::run_func()
1654 {
1655 cvIntegral( test_array[INPUT][0], test_array[OUTPUT][0],
1656 test_array[OUTPUT][1], test_array[OUTPUT][2] );
1657 }
1658
1659
test_integral(const Mat & img,Mat * sum,Mat * sqsum,Mat * tilted)1660 static void test_integral( const Mat& img, Mat* sum, Mat* sqsum, Mat* tilted )
1661 {
1662 CV_Assert( img.depth() == CV_32F );
1663
1664 sum->create(img.rows+1, img.cols+1, CV_64F);
1665 if( sqsum )
1666 sqsum->create(img.rows+1, img.cols+1, CV_64F);
1667 if( tilted )
1668 tilted->create(img.rows+1, img.cols+1, CV_64F);
1669
1670 const float* data = img.ptr<float>();
1671 double* sdata = sum->ptr<double>();
1672 double* sqdata = sqsum ? sqsum->ptr<double>() : 0;
1673 double* tdata = tilted ? tilted->ptr<double>() : 0;
1674 int step = (int)(img.step/sizeof(data[0]));
1675 int sstep = (int)(sum->step/sizeof(sdata[0]));
1676 int sqstep = sqsum ? (int)(sqsum->step/sizeof(sqdata[0])) : 0;
1677 int tstep = tilted ? (int)(tilted->step/sizeof(tdata[0])) : 0;
1678 Size size = img.size();
1679
1680 memset( sdata, 0, (size.width+1)*sizeof(sdata[0]) );
1681 if( sqsum )
1682 memset( sqdata, 0, (size.width+1)*sizeof(sqdata[0]) );
1683 if( tilted )
1684 memset( tdata, 0, (size.width+1)*sizeof(tdata[0]) );
1685
1686 for( ; size.height--; data += step )
1687 {
1688 double s = 0, sq = 0;
1689 int x;
1690 sdata += sstep;
1691 sqdata += sqstep;
1692 tdata += tstep;
1693
1694 for( x = 0; x <= size.width; x++ )
1695 {
1696 double t = x > 0 ? data[x-1] : 0, ts = t;
1697 s += t;
1698 sq += t*t;
1699
1700 sdata[x] = s + sdata[x - sstep];
1701 if( sqdata )
1702 sqdata[x] = sq + sqdata[x - sqstep];
1703
1704 if( !tdata )
1705 continue;
1706
1707 if( x == 0 )
1708 ts += tdata[-tstep+1];
1709 else
1710 {
1711 ts += tdata[x-tstep-1];
1712 if( data > img.ptr<float>() )
1713 {
1714 ts += data[x-step-1];
1715 if( x < size.width )
1716 ts += tdata[x-tstep+1] - tdata[x-tstep*2];
1717 }
1718 }
1719
1720 tdata[x] = ts;
1721 }
1722 }
1723 }
1724
1725
prepare_to_validation(int)1726 void CV_IntegralTest::prepare_to_validation( int /*test_case_idx*/ )
1727 {
1728 Mat& src = test_mat[INPUT][0];
1729 int cn = src.channels();
1730
1731 Mat* sum0 = &test_mat[REF_OUTPUT][0];
1732 Mat* sqsum0 = test_array[REF_OUTPUT][1] ? &test_mat[REF_OUTPUT][1] : 0;
1733 Mat* tsum0 = test_array[REF_OUTPUT][2] ? &test_mat[REF_OUTPUT][2] : 0;
1734
1735 Mat plane, srcf, psum, psqsum, ptsum, psum2, psqsum2, ptsum2;
1736 if( cn == 1 )
1737 {
1738 plane = src;
1739 psum2 = *sum0;
1740 psqsum2 = sqsum0 ? *sqsum0 : Mat();
1741 ptsum2 = tsum0 ? *tsum0 : Mat();
1742 }
1743
1744 for( int i = 0; i < cn; i++ )
1745 {
1746 if( cn > 1 )
1747 cvtest::extract(src, plane, i);
1748 plane.convertTo(srcf, CV_32F);
1749
1750 test_integral( srcf, &psum, sqsum0 ? &psqsum : 0, tsum0 ? &ptsum : 0 );
1751 psum.convertTo(psum2, sum0->depth());
1752 if( sqsum0 )
1753 psqsum.convertTo(psqsum2, sqsum0->depth());
1754 if( tsum0 )
1755 ptsum.convertTo(ptsum2, tsum0->depth());
1756
1757 if( cn > 1 )
1758 {
1759 cvtest::insert(psum2, *sum0, i);
1760 if( sqsum0 )
1761 cvtest::insert(psqsum2, *sqsum0, i);
1762 if( tsum0 )
1763 cvtest::insert(ptsum2, *tsum0, i);
1764 }
1765 }
1766 }
1767
1768
1769 ///////////////////////////////////////////////////////////////////////////////////
1770
TEST(Imgproc_Erode,accuracy)1771 TEST(Imgproc_Erode, accuracy) { CV_ErodeTest test; test.safe_run(); }
TEST(Imgproc_Dilate,accuracy)1772 TEST(Imgproc_Dilate, accuracy) { CV_DilateTest test; test.safe_run(); }
TEST(Imgproc_MorphologyEx,accuracy)1773 TEST(Imgproc_MorphologyEx, accuracy) { CV_MorphExTest test; test.safe_run(); }
TEST(Imgproc_Filter2D,accuracy)1774 TEST(Imgproc_Filter2D, accuracy) { CV_FilterTest test; test.safe_run(); }
TEST(Imgproc_Sobel,accuracy)1775 TEST(Imgproc_Sobel, accuracy) { CV_SobelTest test; test.safe_run(); }
TEST(Imgproc_Laplace,accuracy)1776 TEST(Imgproc_Laplace, accuracy) { CV_LaplaceTest test; test.safe_run(); }
TEST(Imgproc_Blur,accuracy)1777 TEST(Imgproc_Blur, accuracy) { CV_BlurTest test; test.safe_run(); }
TEST(Imgproc_GaussianBlur,accuracy)1778 TEST(Imgproc_GaussianBlur, accuracy) { CV_GaussianBlurTest test; test.safe_run(); }
TEST(Imgproc_MedianBlur,accuracy)1779 TEST(Imgproc_MedianBlur, accuracy) { CV_MedianBlurTest test; test.safe_run(); }
TEST(Imgproc_PyramidDown,accuracy)1780 TEST(Imgproc_PyramidDown, accuracy) { CV_PyramidDownTest test; test.safe_run(); }
TEST(Imgproc_PyramidUp,accuracy)1781 TEST(Imgproc_PyramidUp, accuracy) { CV_PyramidUpTest test; test.safe_run(); }
TEST(Imgproc_MinEigenVal,accuracy)1782 TEST(Imgproc_MinEigenVal, accuracy) { CV_MinEigenValTest test; test.safe_run(); }
TEST(Imgproc_EigenValsVecs,accuracy)1783 TEST(Imgproc_EigenValsVecs, accuracy) { CV_EigenValVecTest test; test.safe_run(); }
TEST(Imgproc_PreCornerDetect,accuracy)1784 TEST(Imgproc_PreCornerDetect, accuracy) { CV_PreCornerDetectTest test; test.safe_run(); }
TEST(Imgproc_Integral,accuracy)1785 TEST(Imgproc_Integral, accuracy) { CV_IntegralTest test; test.safe_run(); }
1786
1787 //////////////////////////////////////////////////////////////////////////////////
1788
1789 class CV_FilterSupportedFormatsTest : public cvtest::BaseTest
1790 {
1791 public:
CV_FilterSupportedFormatsTest()1792 CV_FilterSupportedFormatsTest() {}
~CV_FilterSupportedFormatsTest()1793 ~CV_FilterSupportedFormatsTest() {}
1794 protected:
run(int)1795 void run(int)
1796 {
1797 const int depths[][2] =
1798 {
1799 {CV_8U, CV_8U},
1800 {CV_8U, CV_16U},
1801 {CV_8U, CV_16S},
1802 {CV_8U, CV_32F},
1803 {CV_8U, CV_64F},
1804 {CV_16U, CV_16U},
1805 {CV_16U, CV_32F},
1806 {CV_16U, CV_64F},
1807 {CV_16S, CV_16S},
1808 {CV_16S, CV_32F},
1809 {CV_16S, CV_64F},
1810 {CV_32F, CV_32F},
1811 {CV_64F, CV_64F},
1812 {-1, -1}
1813 };
1814
1815 int i = 0;
1816 volatile int fidx = -1;
1817 try
1818 {
1819 // use some "odd" size to do yet another smoke
1820 // testing of the non-SIMD loop tails
1821 Size sz(163, 117);
1822 Mat small_kernel(5, 5, CV_32F), big_kernel(21, 21, CV_32F);
1823 Mat kernelX(11, 1, CV_32F), kernelY(7, 1, CV_32F);
1824 Mat symkernelX(11, 1, CV_32F), symkernelY(7, 1, CV_32F);
1825 randu(small_kernel, -10, 10);
1826 randu(big_kernel, -1, 1);
1827 randu(kernelX, -1, 1);
1828 randu(kernelY, -1, 1);
1829 flip(kernelX, symkernelX, 0);
1830 symkernelX += kernelX;
1831 flip(kernelY, symkernelY, 0);
1832 symkernelY += kernelY;
1833
1834 Mat elem_ellipse = getStructuringElement(MORPH_ELLIPSE, Size(7, 7));
1835 Mat elem_rect = getStructuringElement(MORPH_RECT, Size(7, 7));
1836
1837 for( i = 0; depths[i][0] >= 0; i++ )
1838 {
1839 int sdepth = depths[i][0];
1840 int ddepth = depths[i][1];
1841 Mat src(sz, CV_MAKETYPE(sdepth, 5)), dst;
1842 randu(src, 0, 100);
1843 // non-separable filtering with a small kernel
1844 fidx = 0;
1845 filter2D(src, dst, ddepth, small_kernel);
1846 fidx++;
1847 filter2D(src, dst, ddepth, big_kernel);
1848 fidx++;
1849 sepFilter2D(src, dst, ddepth, kernelX, kernelY);
1850 fidx++;
1851 sepFilter2D(src, dst, ddepth, symkernelX, symkernelY);
1852 fidx++;
1853 Sobel(src, dst, ddepth, 2, 0, 5);
1854 fidx++;
1855 Scharr(src, dst, ddepth, 0, 1);
1856 if( sdepth != ddepth )
1857 continue;
1858 fidx++;
1859 GaussianBlur(src, dst, Size(5, 5), 1.2, 1.2);
1860 fidx++;
1861 blur(src, dst, Size(11, 11));
1862 fidx++;
1863 morphologyEx(src, dst, MORPH_GRADIENT, elem_ellipse);
1864 fidx++;
1865 morphologyEx(src, dst, MORPH_GRADIENT, elem_rect);
1866 }
1867 }
1868 catch(...)
1869 {
1870 ts->printf(cvtest::TS::LOG, "Combination of depths %d => %d in %s is not supported (yet it should be)",
1871 depths[i][0], depths[i][1],
1872 fidx == 0 ? "filter2D (small kernel)" :
1873 fidx == 1 ? "filter2D (large kernel)" :
1874 fidx == 2 ? "sepFilter2D" :
1875 fidx == 3 ? "sepFilter2D (symmetrical/asymmetrical kernel)" :
1876 fidx == 4 ? "Sobel" :
1877 fidx == 5 ? "Scharr" :
1878 fidx == 6 ? "GaussianBlur" :
1879 fidx == 7 ? "blur" :
1880 fidx == 8 || fidx == 9 ? "morphologyEx" :
1881 "unknown???");
1882
1883 ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
1884 }
1885 }
1886 };
1887
TEST(Imgproc_Filtering,supportedFormats)1888 TEST(Imgproc_Filtering, supportedFormats) { CV_FilterSupportedFormatsTest test; test.safe_run(); }
1889
TEST(Imgproc_Blur,borderTypes)1890 TEST(Imgproc_Blur, borderTypes)
1891 {
1892 Size kernelSize(3, 3);
1893
1894 /// ksize > src_roi.size()
1895 Mat src(3, 3, CV_8UC1, cv::Scalar::all(255)), dst;
1896 Mat src_roi = src(Rect(1, 1, 1, 1));
1897 src_roi.setTo(cv::Scalar::all(0));
1898
1899 // should work like !BORDER_ISOLATED
1900 blur(src_roi, dst, kernelSize, Point(-1, -1), BORDER_REPLICATE);
1901 EXPECT_EQ(227, dst.at<uchar>(0, 0));
1902
1903 // should work like BORDER_ISOLATED
1904 blur(src_roi, dst, kernelSize, Point(-1, -1), BORDER_REPLICATE | BORDER_ISOLATED);
1905 EXPECT_EQ(0, dst.at<uchar>(0, 0));
1906
1907 /// ksize <= src_roi.size()
1908 src = Mat(5, 5, CV_8UC1, cv::Scalar(255));
1909 src_roi = src(Rect(1, 1, 3, 3));
1910 src_roi.setTo(0);
1911 src.at<uchar>(2, 2) = 255;
1912
1913 // should work like !BORDER_ISOLATED
1914 blur(src_roi, dst, kernelSize, Point(-1, -1), BORDER_REPLICATE);
1915 Mat expected_dst =
1916 (Mat_<uchar>(3, 3) << 170, 113, 170, 113, 28, 113, 170, 113, 170);
1917 EXPECT_EQ(expected_dst.type(), dst.type());
1918 EXPECT_EQ(expected_dst.size(), dst.size());
1919 EXPECT_DOUBLE_EQ(0.0, cvtest::norm(expected_dst, dst, NORM_INF));
1920 }
1921
TEST(Imgproc_Morphology,iterated)1922 TEST(Imgproc_Morphology, iterated)
1923 {
1924 RNG& rng = theRNG();
1925 for( int iter = 0; iter < 30; iter++ )
1926 {
1927 int width = rng.uniform(5, 33);
1928 int height = rng.uniform(5, 33);
1929 int cn = rng.uniform(1, 5);
1930 int iterations = rng.uniform(1, 11);
1931 int op = rng.uniform(0, 2);
1932 Mat src(height, width, CV_8UC(cn)), dst0, dst1, dst2;
1933
1934 randu(src, 0, 256);
1935 if( op == 0 )
1936 dilate(src, dst0, Mat(), Point(-1,-1), iterations);
1937 else
1938 erode(src, dst0, Mat(), Point(-1,-1), iterations);
1939
1940 for( int i = 0; i < iterations; i++ )
1941 if( op == 0 )
1942 dilate(i == 0 ? src : dst1, dst1, Mat(), Point(-1,-1), 1);
1943 else
1944 erode(i == 0 ? src : dst1, dst1, Mat(), Point(-1,-1), 1);
1945
1946 Mat kern = getStructuringElement(MORPH_RECT, Size(3,3));
1947 if( op == 0 )
1948 dilate(src, dst2, kern, Point(-1,-1), iterations);
1949 else
1950 erode(src, dst2, kern, Point(-1,-1), iterations);
1951 ASSERT_EQ(0.0, norm(dst0, dst1, NORM_INF));
1952 ASSERT_EQ(0.0, norm(dst0, dst2, NORM_INF));
1953 }
1954 }
1955