• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkDashPathPriv.h"
9 #include "SkPathMeasure.h"
10 #include "SkStrokeRec.h"
11 
is_even(int x)12 static inline int is_even(int x) {
13     return !(x & 1);
14 }
15 
find_first_interval(const SkScalar intervals[],SkScalar phase,int32_t * index,int count)16 static SkScalar find_first_interval(const SkScalar intervals[], SkScalar phase,
17                                     int32_t* index, int count) {
18     for (int i = 0; i < count; ++i) {
19         if (phase > intervals[i]) {
20             phase -= intervals[i];
21         } else {
22             *index = i;
23             return intervals[i] - phase;
24         }
25     }
26     // If we get here, phase "appears" to be larger than our length. This
27     // shouldn't happen with perfect precision, but we can accumulate errors
28     // during the initial length computation (rounding can make our sum be too
29     // big or too small. In that event, we just have to eat the error here.
30     *index = 0;
31     return intervals[0];
32 }
33 
CalcDashParameters(SkScalar phase,const SkScalar intervals[],int32_t count,SkScalar * initialDashLength,int32_t * initialDashIndex,SkScalar * intervalLength,SkScalar * adjustedPhase)34 void SkDashPath::CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count,
35                                     SkScalar* initialDashLength, int32_t* initialDashIndex,
36                                     SkScalar* intervalLength, SkScalar* adjustedPhase) {
37     SkScalar len = 0;
38     for (int i = 0; i < count; i++) {
39         len += intervals[i];
40     }
41     *intervalLength = len;
42 
43     // watch out for values that might make us go out of bounds
44     if ((len > 0) && SkScalarIsFinite(phase) && SkScalarIsFinite(len)) {
45 
46         // Adjust phase to be between 0 and len, "flipping" phase if negative.
47         // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
48         if (adjustedPhase) {
49             if (phase < 0) {
50                 phase = -phase;
51                 if (phase > len) {
52                     phase = SkScalarMod(phase, len);
53                 }
54                 phase = len - phase;
55 
56                 // Due to finite precision, it's possible that phase == len,
57                 // even after the subtract (if len >>> phase), so fix that here.
58                 // This fixes http://crbug.com/124652 .
59                 SkASSERT(phase <= len);
60                 if (phase == len) {
61                     phase = 0;
62                 }
63             } else if (phase >= len) {
64                 phase = SkScalarMod(phase, len);
65             }
66             *adjustedPhase = phase;
67         }
68         SkASSERT(phase >= 0 && phase < len);
69 
70         *initialDashLength = find_first_interval(intervals, phase,
71                                                 initialDashIndex, count);
72 
73         SkASSERT(*initialDashLength >= 0);
74         SkASSERT(*initialDashIndex >= 0 && *initialDashIndex < count);
75     } else {
76         *initialDashLength = -1;    // signal bad dash intervals
77     }
78 }
79 
outset_for_stroke(SkRect * rect,const SkStrokeRec & rec)80 static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
81     SkScalar radius = SkScalarHalf(rec.getWidth());
82     if (0 == radius) {
83         radius = SK_Scalar1;    // hairlines
84     }
85     if (SkPaint::kMiter_Join == rec.getJoin()) {
86         radius = SkScalarMul(radius, rec.getMiter());
87     }
88     rect->outset(radius, radius);
89 }
90 
91 // Only handles lines for now. If returns true, dstPath is the new (smaller)
92 // path. If returns false, then dstPath parameter is ignored.
cull_path(const SkPath & srcPath,const SkStrokeRec & rec,const SkRect * cullRect,SkScalar intervalLength,SkPath * dstPath)93 static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
94                       const SkRect* cullRect, SkScalar intervalLength,
95                       SkPath* dstPath) {
96     if (nullptr == cullRect) {
97         return false;
98     }
99 
100     SkPoint pts[2];
101     if (!srcPath.isLine(pts)) {
102         return false;
103     }
104 
105     SkRect bounds = *cullRect;
106     outset_for_stroke(&bounds, rec);
107 
108     SkScalar dx = pts[1].x() - pts[0].x();
109     SkScalar dy = pts[1].y() - pts[0].y();
110 
111     // just do horizontal lines for now (lazy)
112     if (dy) {
113         return false;
114     }
115 
116     SkScalar minX = pts[0].fX;
117     SkScalar maxX = pts[1].fX;
118 
119     if (dx < 0) {
120         SkTSwap(minX, maxX);
121     }
122 
123     SkASSERT(minX <= maxX);
124     if (maxX < bounds.fLeft || minX > bounds.fRight) {
125         return false;
126     }
127 
128     // Now we actually perform the chop, removing the excess to the left and
129     // right of the bounds (keeping our new line "in phase" with the dash,
130     // hence the (mod intervalLength).
131 
132     if (minX < bounds.fLeft) {
133         minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX,
134                                           intervalLength);
135     }
136     if (maxX > bounds.fRight) {
137         maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight,
138                                            intervalLength);
139     }
140 
141     SkASSERT(maxX >= minX);
142     if (dx < 0) {
143         SkTSwap(minX, maxX);
144     }
145     pts[0].fX = minX;
146     pts[1].fX = maxX;
147 
148     dstPath->moveTo(pts[0]);
149     dstPath->lineTo(pts[1]);
150     return true;
151 }
152 
153 class SpecialLineRec {
154 public:
init(const SkPath & src,SkPath * dst,SkStrokeRec * rec,int intervalCount,SkScalar intervalLength)155     bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
156               int intervalCount, SkScalar intervalLength) {
157         if (rec->isHairlineStyle() || !src.isLine(fPts)) {
158             return false;
159         }
160 
161         // can relax this in the future, if we handle square and round caps
162         if (SkPaint::kButt_Cap != rec->getCap()) {
163             return false;
164         }
165 
166         SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
167 
168         fTangent = fPts[1] - fPts[0];
169         if (fTangent.isZero()) {
170             return false;
171         }
172 
173         fPathLength = pathLength;
174         fTangent.scale(SkScalarInvert(pathLength));
175         fTangent.rotateCCW(&fNormal);
176         fNormal.scale(SkScalarHalf(rec->getWidth()));
177 
178         // now estimate how many quads will be added to the path
179         //     resulting segments = pathLen * intervalCount / intervalLen
180         //     resulting points = 4 * segments
181 
182         SkScalar ptCount = SkScalarMulDiv(pathLength,
183                                           SkIntToScalar(intervalCount),
184                                           intervalLength);
185         int n = SkScalarCeilToInt(ptCount) << 2;
186         dst->incReserve(n);
187 
188         // we will take care of the stroking
189         rec->setFillStyle();
190         return true;
191     }
192 
addSegment(SkScalar d0,SkScalar d1,SkPath * path) const193     void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
194         SkASSERT(d0 < fPathLength);
195         // clamp the segment to our length
196         if (d1 > fPathLength) {
197             d1 = fPathLength;
198         }
199 
200         SkScalar x0 = fPts[0].fX + SkScalarMul(fTangent.fX, d0);
201         SkScalar x1 = fPts[0].fX + SkScalarMul(fTangent.fX, d1);
202         SkScalar y0 = fPts[0].fY + SkScalarMul(fTangent.fY, d0);
203         SkScalar y1 = fPts[0].fY + SkScalarMul(fTangent.fY, d1);
204 
205         SkPoint pts[4];
206         pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY);   // moveTo
207         pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY);   // lineTo
208         pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY);   // lineTo
209         pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY);   // lineTo
210 
211         path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
212     }
213 
214 private:
215     SkPoint fPts[2];
216     SkVector fTangent;
217     SkVector fNormal;
218     SkScalar fPathLength;
219 };
220 
221 
FilterDashPath(SkPath * dst,const SkPath & src,SkStrokeRec * rec,const SkRect * cullRect,const SkScalar aIntervals[],int32_t count,SkScalar initialDashLength,int32_t initialDashIndex,SkScalar intervalLength)222 bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
223                                 const SkRect* cullRect, const SkScalar aIntervals[],
224                                 int32_t count, SkScalar initialDashLength, int32_t initialDashIndex,
225                                 SkScalar intervalLength) {
226 
227     // we do nothing if the src wants to be filled, or if our dashlength is 0
228     if (rec->isFillStyle() || initialDashLength < 0) {
229         return false;
230     }
231 
232     const SkScalar* intervals = aIntervals;
233     SkScalar        dashCount = 0;
234     int             segCount = 0;
235 
236     SkPath cullPathStorage;
237     const SkPath* srcPtr = &src;
238     if (cull_path(src, *rec, cullRect, intervalLength, &cullPathStorage)) {
239         srcPtr = &cullPathStorage;
240     }
241 
242     SpecialLineRec lineRec;
243     bool specialLine = lineRec.init(*srcPtr, dst, rec, count >> 1, intervalLength);
244 
245     SkPathMeasure   meas(*srcPtr, false, rec->getResScale());
246 
247     do {
248         bool        skipFirstSegment = meas.isClosed();
249         bool        addedSegment = false;
250         SkScalar    length = meas.getLength();
251         int         index = initialDashIndex;
252 
253         // Since the path length / dash length ratio may be arbitrarily large, we can exert
254         // significant memory pressure while attempting to build the filtered path. To avoid this,
255         // we simply give up dashing beyond a certain threshold.
256         //
257         // The original bug report (http://crbug.com/165432) is based on a path yielding more than
258         // 90 million dash segments and crashing the memory allocator. A limit of 1 million
259         // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
260         // maximum dash memory overhead at roughly 17MB per path.
261         static const SkScalar kMaxDashCount = 1000000;
262         dashCount += length * (count >> 1) / intervalLength;
263         if (dashCount > kMaxDashCount) {
264             dst->reset();
265             return false;
266         }
267 
268         // Using double precision to avoid looping indefinitely due to single precision rounding
269         // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
270         double  distance = 0;
271         double  dlen = initialDashLength;
272 
273         while (distance < length) {
274             SkASSERT(dlen >= 0);
275             addedSegment = false;
276             if (is_even(index) && !skipFirstSegment) {
277                 addedSegment = true;
278                 ++segCount;
279 
280                 if (specialLine) {
281                     lineRec.addSegment(SkDoubleToScalar(distance),
282                                        SkDoubleToScalar(distance + dlen),
283                                        dst);
284                 } else {
285                     meas.getSegment(SkDoubleToScalar(distance),
286                                     SkDoubleToScalar(distance + dlen),
287                                     dst, true);
288                 }
289             }
290             distance += dlen;
291 
292             // clear this so we only respect it the first time around
293             skipFirstSegment = false;
294 
295             // wrap around our intervals array if necessary
296             index += 1;
297             SkASSERT(index <= count);
298             if (index == count) {
299                 index = 0;
300             }
301 
302             // fetch our next dlen
303             dlen = intervals[index];
304         }
305 
306         // extend if we ended on a segment and we need to join up with the (skipped) initial segment
307         if (meas.isClosed() && is_even(initialDashIndex) &&
308             initialDashLength > 0) {
309             meas.getSegment(0, initialDashLength, dst, !addedSegment);
310             ++segCount;
311         }
312     } while (meas.nextContour());
313 
314     if (segCount > 1) {
315         dst->setConvexity(SkPath::kConcave_Convexity);
316     }
317 
318     return true;
319 }
320 
FilterDashPath(SkPath * dst,const SkPath & src,SkStrokeRec * rec,const SkRect * cullRect,const SkPathEffect::DashInfo & info)321 bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
322                                 const SkRect* cullRect, const SkPathEffect::DashInfo& info) {
323     SkScalar initialDashLength = 0;
324     int32_t initialDashIndex = 0;
325     SkScalar intervalLength = 0;
326     CalcDashParameters(info.fPhase, info.fIntervals, info.fCount,
327                        &initialDashLength, &initialDashIndex, &intervalLength);
328     return FilterDashPath(dst, src, rec, cullRect, info.fIntervals, info.fCount, initialDashLength,
329                           initialDashIndex, intervalLength);
330 }
331