• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_JACOBI_H
12 #define EIGEN_JACOBI_H
13 
14 namespace Eigen {
15 
16 /** \ingroup Jacobi_Module
17   * \jacobi_module
18   * \class JacobiRotation
19   * \brief Rotation given by a cosine-sine pair.
20   *
21   * This class represents a Jacobi or Givens rotation.
22   * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by
23   * its cosine \c c and sine \c s as follow:
24   * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s  & \overline c \end{array} \right ) \f$
25   *
26   * You can apply the respective counter-clockwise rotation to a column vector \c v by
27   * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code:
28   * \code
29   * v.applyOnTheLeft(J.adjoint());
30   * \endcode
31   *
32   * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
33   */
34 template<typename Scalar> class JacobiRotation
35 {
36   public:
37     typedef typename NumTraits<Scalar>::Real RealScalar;
38 
39     /** Default constructor without any initialization. */
JacobiRotation()40     JacobiRotation() {}
41 
42     /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */
JacobiRotation(const Scalar & c,const Scalar & s)43     JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {}
44 
c()45     Scalar& c() { return m_c; }
c()46     Scalar c() const { return m_c; }
s()47     Scalar& s() { return m_s; }
s()48     Scalar s() const { return m_s; }
49 
50     /** Concatenates two planar rotation */
51     JacobiRotation operator*(const JacobiRotation& other)
52     {
53       using numext::conj;
54       return JacobiRotation(m_c * other.m_c - conj(m_s) * other.m_s,
55                             conj(m_c * conj(other.m_s) + conj(m_s) * conj(other.m_c)));
56     }
57 
58     /** Returns the transposed transformation */
transpose()59     JacobiRotation transpose() const { using numext::conj; return JacobiRotation(m_c, -conj(m_s)); }
60 
61     /** Returns the adjoint transformation */
adjoint()62     JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); }
63 
64     template<typename Derived>
65     bool makeJacobi(const MatrixBase<Derived>&, typename Derived::Index p, typename Derived::Index q);
66     bool makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z);
67 
68     void makeGivens(const Scalar& p, const Scalar& q, Scalar* z=0);
69 
70   protected:
71     void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::true_type);
72     void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::false_type);
73 
74     Scalar m_c, m_s;
75 };
76 
77 /** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix
78   * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$
79   *
80   * \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
81   */
82 template<typename Scalar>
makeJacobi(const RealScalar & x,const Scalar & y,const RealScalar & z)83 bool JacobiRotation<Scalar>::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z)
84 {
85   using std::sqrt;
86   using std::abs;
87   typedef typename NumTraits<Scalar>::Real RealScalar;
88   if(y == Scalar(0))
89   {
90     m_c = Scalar(1);
91     m_s = Scalar(0);
92     return false;
93   }
94   else
95   {
96     RealScalar tau = (x-z)/(RealScalar(2)*abs(y));
97     RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1));
98     RealScalar t;
99     if(tau>RealScalar(0))
100     {
101       t = RealScalar(1) / (tau + w);
102     }
103     else
104     {
105       t = RealScalar(1) / (tau - w);
106     }
107     RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
108     RealScalar n = RealScalar(1) / sqrt(numext::abs2(t)+RealScalar(1));
109     m_s = - sign_t * (numext::conj(y) / abs(y)) * abs(t) * n;
110     m_c = n;
111     return true;
112   }
113 }
114 
115 /** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix
116   * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields
117   * a diagonal matrix \f$ A = J^* B J \f$
118   *
119   * Example: \include Jacobi_makeJacobi.cpp
120   * Output: \verbinclude Jacobi_makeJacobi.out
121   *
122   * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
123   */
124 template<typename Scalar>
125 template<typename Derived>
makeJacobi(const MatrixBase<Derived> & m,typename Derived::Index p,typename Derived::Index q)126 inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, typename Derived::Index p, typename Derived::Index q)
127 {
128   return makeJacobi(numext::real(m.coeff(p,p)), m.coeff(p,q), numext::real(m.coeff(q,q)));
129 }
130 
131 /** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector
132   * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields:
133   * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$.
134   *
135   * The value of \a z is returned if \a z is not null (the default is null).
136   * Also note that G is built such that the cosine is always real.
137   *
138   * Example: \include Jacobi_makeGivens.cpp
139   * Output: \verbinclude Jacobi_makeGivens.out
140   *
141   * This function implements the continuous Givens rotation generation algorithm
142   * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem.
143   * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.
144   *
145   * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
146   */
147 template<typename Scalar>
makeGivens(const Scalar & p,const Scalar & q,Scalar * z)148 void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* z)
149 {
150   makeGivens(p, q, z, typename internal::conditional<NumTraits<Scalar>::IsComplex, internal::true_type, internal::false_type>::type());
151 }
152 
153 
154 // specialization for complexes
155 template<typename Scalar>
makeGivens(const Scalar & p,const Scalar & q,Scalar * r,internal::true_type)156 void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type)
157 {
158   using std::sqrt;
159   using std::abs;
160   using numext::conj;
161 
162   if(q==Scalar(0))
163   {
164     m_c = numext::real(p)<0 ? Scalar(-1) : Scalar(1);
165     m_s = 0;
166     if(r) *r = m_c * p;
167   }
168   else if(p==Scalar(0))
169   {
170     m_c = 0;
171     m_s = -q/abs(q);
172     if(r) *r = abs(q);
173   }
174   else
175   {
176     RealScalar p1 = numext::norm1(p);
177     RealScalar q1 = numext::norm1(q);
178     if(p1>=q1)
179     {
180       Scalar ps = p / p1;
181       RealScalar p2 = numext::abs2(ps);
182       Scalar qs = q / p1;
183       RealScalar q2 = numext::abs2(qs);
184 
185       RealScalar u = sqrt(RealScalar(1) + q2/p2);
186       if(numext::real(p)<RealScalar(0))
187         u = -u;
188 
189       m_c = Scalar(1)/u;
190       m_s = -qs*conj(ps)*(m_c/p2);
191       if(r) *r = p * u;
192     }
193     else
194     {
195       Scalar ps = p / q1;
196       RealScalar p2 = numext::abs2(ps);
197       Scalar qs = q / q1;
198       RealScalar q2 = numext::abs2(qs);
199 
200       RealScalar u = q1 * sqrt(p2 + q2);
201       if(numext::real(p)<RealScalar(0))
202         u = -u;
203 
204       p1 = abs(p);
205       ps = p/p1;
206       m_c = p1/u;
207       m_s = -conj(ps) * (q/u);
208       if(r) *r = ps * u;
209     }
210   }
211 }
212 
213 // specialization for reals
214 template<typename Scalar>
makeGivens(const Scalar & p,const Scalar & q,Scalar * r,internal::false_type)215 void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type)
216 {
217   using std::sqrt;
218   using std::abs;
219   if(q==Scalar(0))
220   {
221     m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1);
222     m_s = Scalar(0);
223     if(r) *r = abs(p);
224   }
225   else if(p==Scalar(0))
226   {
227     m_c = Scalar(0);
228     m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1);
229     if(r) *r = abs(q);
230   }
231   else if(abs(p) > abs(q))
232   {
233     Scalar t = q/p;
234     Scalar u = sqrt(Scalar(1) + numext::abs2(t));
235     if(p<Scalar(0))
236       u = -u;
237     m_c = Scalar(1)/u;
238     m_s = -t * m_c;
239     if(r) *r = p * u;
240   }
241   else
242   {
243     Scalar t = p/q;
244     Scalar u = sqrt(Scalar(1) + numext::abs2(t));
245     if(q<Scalar(0))
246       u = -u;
247     m_s = -Scalar(1)/u;
248     m_c = -t * m_s;
249     if(r) *r = q * u;
250   }
251 
252 }
253 
254 /****************************************************************************************
255 *   Implementation of MatrixBase methods
256 ****************************************************************************************/
257 
258 /** \jacobi_module
259   * Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y:
260   * \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right )  =  J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$
261   *
262   * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
263   */
264 namespace internal {
265 template<typename VectorX, typename VectorY, typename OtherScalar>
266 void apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j);
267 }
268 
269 /** \jacobi_module
270   * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B,
271   * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$.
272   *
273   * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane()
274   */
275 template<typename Derived>
276 template<typename OtherScalar>
applyOnTheLeft(Index p,Index q,const JacobiRotation<OtherScalar> & j)277 inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j)
278 {
279   RowXpr x(this->row(p));
280   RowXpr y(this->row(q));
281   internal::apply_rotation_in_the_plane(x, y, j);
282 }
283 
284 /** \ingroup Jacobi_Module
285   * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J
286   * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$.
287   *
288   * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane()
289   */
290 template<typename Derived>
291 template<typename OtherScalar>
applyOnTheRight(Index p,Index q,const JacobiRotation<OtherScalar> & j)292 inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j)
293 {
294   ColXpr x(this->col(p));
295   ColXpr y(this->col(q));
296   internal::apply_rotation_in_the_plane(x, y, j.transpose());
297 }
298 
299 namespace internal {
300 template<typename VectorX, typename VectorY, typename OtherScalar>
apply_rotation_in_the_plane(VectorX & _x,VectorY & _y,const JacobiRotation<OtherScalar> & j)301 void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j)
302 {
303   typedef typename VectorX::Index Index;
304   typedef typename VectorX::Scalar Scalar;
305   enum { PacketSize = packet_traits<Scalar>::size };
306   typedef typename packet_traits<Scalar>::type Packet;
307   eigen_assert(_x.size() == _y.size());
308   Index size = _x.size();
309   Index incrx = _x.innerStride();
310   Index incry = _y.innerStride();
311 
312   Scalar* EIGEN_RESTRICT x = &_x.coeffRef(0);
313   Scalar* EIGEN_RESTRICT y = &_y.coeffRef(0);
314 
315   OtherScalar c = j.c();
316   OtherScalar s = j.s();
317   if (c==OtherScalar(1) && s==OtherScalar(0))
318     return;
319 
320   /*** dynamic-size vectorized paths ***/
321 
322   if(VectorX::SizeAtCompileTime == Dynamic &&
323     (VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
324     ((incrx==1 && incry==1) || PacketSize == 1))
325   {
326     // both vectors are sequentially stored in memory => vectorization
327     enum { Peeling = 2 };
328 
329     Index alignedStart = internal::first_aligned(y, size);
330     Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;
331 
332     const Packet pc = pset1<Packet>(c);
333     const Packet ps = pset1<Packet>(s);
334     conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj;
335 
336     for(Index i=0; i<alignedStart; ++i)
337     {
338       Scalar xi = x[i];
339       Scalar yi = y[i];
340       x[i] =  c * xi + numext::conj(s) * yi;
341       y[i] = -s * xi + numext::conj(c) * yi;
342     }
343 
344     Scalar* EIGEN_RESTRICT px = x + alignedStart;
345     Scalar* EIGEN_RESTRICT py = y + alignedStart;
346 
347     if(internal::first_aligned(x, size)==alignedStart)
348     {
349       for(Index i=alignedStart; i<alignedEnd; i+=PacketSize)
350       {
351         Packet xi = pload<Packet>(px);
352         Packet yi = pload<Packet>(py);
353         pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
354         pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
355         px += PacketSize;
356         py += PacketSize;
357       }
358     }
359     else
360     {
361       Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize);
362       for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize)
363       {
364         Packet xi   = ploadu<Packet>(px);
365         Packet xi1  = ploadu<Packet>(px+PacketSize);
366         Packet yi   = pload <Packet>(py);
367         Packet yi1  = pload <Packet>(py+PacketSize);
368         pstoreu(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
369         pstoreu(px+PacketSize, padd(pmul(pc,xi1),pcj.pmul(ps,yi1)));
370         pstore (py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
371         pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pmul(ps,xi1)));
372         px += Peeling*PacketSize;
373         py += Peeling*PacketSize;
374       }
375       if(alignedEnd!=peelingEnd)
376       {
377         Packet xi = ploadu<Packet>(x+peelingEnd);
378         Packet yi = pload <Packet>(y+peelingEnd);
379         pstoreu(x+peelingEnd, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
380         pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
381       }
382     }
383 
384     for(Index i=alignedEnd; i<size; ++i)
385     {
386       Scalar xi = x[i];
387       Scalar yi = y[i];
388       x[i] =  c * xi + numext::conj(s) * yi;
389       y[i] = -s * xi + numext::conj(c) * yi;
390     }
391   }
392 
393   /*** fixed-size vectorized path ***/
394   else if(VectorX::SizeAtCompileTime != Dynamic &&
395           (VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
396           (VectorX::Flags & VectorY::Flags & AlignedBit))
397   {
398     const Packet pc = pset1<Packet>(c);
399     const Packet ps = pset1<Packet>(s);
400     conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj;
401     Scalar* EIGEN_RESTRICT px = x;
402     Scalar* EIGEN_RESTRICT py = y;
403     for(Index i=0; i<size; i+=PacketSize)
404     {
405       Packet xi = pload<Packet>(px);
406       Packet yi = pload<Packet>(py);
407       pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
408       pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
409       px += PacketSize;
410       py += PacketSize;
411     }
412   }
413 
414   /*** non-vectorized path ***/
415   else
416   {
417     for(Index i=0; i<size; ++i)
418     {
419       Scalar xi = *x;
420       Scalar yi = *y;
421       *x =  c * xi + numext::conj(s) * yi;
422       *y = -s * xi + numext::conj(c) * yi;
423       x += incrx;
424       y += incry;
425     }
426   }
427 }
428 
429 } // end namespace internal
430 
431 } // end namespace Eigen
432 
433 #endif // EIGEN_JACOBI_H
434