• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for C++ lambda expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/DeclSpec.h"
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Sema/Initialization.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/ScopeInfo.h"
22 #include "clang/Sema/SemaInternal.h"
23 #include "clang/Sema/SemaLambda.h"
24 using namespace clang;
25 using namespace sema;
26 
27 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 ///  - its enclosing context is non-dependent
42 ///  - and if the chain of lambdas between L and the lambda in which
43 ///    V is potentially used (i.e. the lambda at the top of the scope info
44 ///    stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 ///  LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
54 ///  is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready.  If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61 
62 static inline Optional<unsigned>
getStackIndexOfNearestEnclosingCaptureReadyLambda(ArrayRef<const clang::sema::FunctionScopeInfo * > FunctionScopes,VarDecl * VarToCapture)63 getStackIndexOfNearestEnclosingCaptureReadyLambda(
64     ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
65     VarDecl *VarToCapture) {
66   // Label failure to capture.
67   const Optional<unsigned> NoLambdaIsCaptureReady;
68 
69   assert(
70       isa<clang::sema::LambdaScopeInfo>(
71           FunctionScopes[FunctionScopes.size() - 1]) &&
72       "The function on the top of sema's function-info stack must be a lambda");
73 
74   // If VarToCapture is null, we are attempting to capture 'this'.
75   const bool IsCapturingThis = !VarToCapture;
76   const bool IsCapturingVariable = !IsCapturingThis;
77 
78   // Start with the current lambda at the top of the stack (highest index).
79   unsigned CurScopeIndex = FunctionScopes.size() - 1;
80   DeclContext *EnclosingDC =
81       cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
82 
83   do {
84     const clang::sema::LambdaScopeInfo *LSI =
85         cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
86     // IF we have climbed down to an intervening enclosing lambda that contains
87     // the variable declaration - it obviously can/must not capture the
88     // variable.
89     // Since its enclosing DC is dependent, all the lambdas between it and the
90     // innermost nested lambda are dependent (otherwise we wouldn't have
91     // arrived here) - so we don't yet have a lambda that can capture the
92     // variable.
93     if (IsCapturingVariable &&
94         VarToCapture->getDeclContext()->Equals(EnclosingDC))
95       return NoLambdaIsCaptureReady;
96 
97     // For an enclosing lambda to be capture ready for an entity, all
98     // intervening lambda's have to be able to capture that entity. If even
99     // one of the intervening lambda's is not capable of capturing the entity
100     // then no enclosing lambda can ever capture that entity.
101     // For e.g.
102     // const int x = 10;
103     // [=](auto a) {    #1
104     //   [](auto b) {   #2 <-- an intervening lambda that can never capture 'x'
105     //    [=](auto c) { #3
106     //       f(x, c);  <-- can not lead to x's speculative capture by #1 or #2
107     //    }; }; };
108     // If they do not have a default implicit capture, check to see
109     // if the entity has already been explicitly captured.
110     // If even a single dependent enclosing lambda lacks the capability
111     // to ever capture this variable, there is no further enclosing
112     // non-dependent lambda that can capture this variable.
113     if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
114       if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
115         return NoLambdaIsCaptureReady;
116       if (IsCapturingThis && !LSI->isCXXThisCaptured())
117         return NoLambdaIsCaptureReady;
118     }
119     EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
120 
121     assert(CurScopeIndex);
122     --CurScopeIndex;
123   } while (!EnclosingDC->isTranslationUnit() &&
124            EnclosingDC->isDependentContext() &&
125            isLambdaCallOperator(EnclosingDC));
126 
127   assert(CurScopeIndex < (FunctionScopes.size() - 1));
128   // If the enclosingDC is not dependent, then the immediately nested lambda
129   // (one index above) is capture-ready.
130   if (!EnclosingDC->isDependentContext())
131     return CurScopeIndex + 1;
132   return NoLambdaIsCaptureReady;
133 }
134 
135 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
136 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
137 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
138 /// If successful, returns the index into Sema's FunctionScopeInfo stack
139 /// of the capture-capable lambda's LambdaScopeInfo.
140 ///
141 /// Given the current stack of lambdas being processed by Sema and
142 /// the variable of interest, to identify the nearest enclosing lambda (to the
143 /// current lambda at the top of the stack) that can truly capture
144 /// a variable, it has to have the following two properties:
145 ///  a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
146 ///     - climb down the stack (i.e. starting from the innermost and examining
147 ///       each outer lambda step by step) checking if each enclosing
148 ///       lambda can either implicitly or explicitly capture the variable.
149 ///       Record the first such lambda that is enclosed in a non-dependent
150 ///       context. If no such lambda currently exists return failure.
151 ///  b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
152 ///  capture the variable by checking all its enclosing lambdas:
153 ///     - check if all outer lambdas enclosing the 'capture-ready' lambda
154 ///       identified above in 'a' can also capture the variable (this is done
155 ///       via tryCaptureVariable for variables and CheckCXXThisCapture for
156 ///       'this' by passing in the index of the Lambda identified in step 'a')
157 ///
158 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
159 /// LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
160 /// is at the top of the stack.
161 ///
162 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
163 ///
164 ///
165 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
166 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
167 /// which is capture-capable.  If the return value evaluates to 'false' then
168 /// no lambda is capture-capable for \p VarToCapture.
169 
getStackIndexOfNearestEnclosingCaptureCapableLambda(ArrayRef<const sema::FunctionScopeInfo * > FunctionScopes,VarDecl * VarToCapture,Sema & S)170 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
171     ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
172     VarDecl *VarToCapture, Sema &S) {
173 
174   const Optional<unsigned> NoLambdaIsCaptureCapable;
175 
176   const Optional<unsigned> OptionalStackIndex =
177       getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
178                                                         VarToCapture);
179   if (!OptionalStackIndex)
180     return NoLambdaIsCaptureCapable;
181 
182   const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
183   assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
184           S.getCurGenericLambda()) &&
185          "The capture ready lambda for a potential capture can only be the "
186          "current lambda if it is a generic lambda");
187 
188   const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
189       cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
190 
191   // If VarToCapture is null, we are attempting to capture 'this'
192   const bool IsCapturingThis = !VarToCapture;
193   const bool IsCapturingVariable = !IsCapturingThis;
194 
195   if (IsCapturingVariable) {
196     // Check if the capture-ready lambda can truly capture the variable, by
197     // checking whether all enclosing lambdas of the capture-ready lambda allow
198     // the capture - i.e. make sure it is capture-capable.
199     QualType CaptureType, DeclRefType;
200     const bool CanCaptureVariable =
201         !S.tryCaptureVariable(VarToCapture,
202                               /*ExprVarIsUsedInLoc*/ SourceLocation(),
203                               clang::Sema::TryCapture_Implicit,
204                               /*EllipsisLoc*/ SourceLocation(),
205                               /*BuildAndDiagnose*/ false, CaptureType,
206                               DeclRefType, &IndexOfCaptureReadyLambda);
207     if (!CanCaptureVariable)
208       return NoLambdaIsCaptureCapable;
209   } else {
210     // Check if the capture-ready lambda can truly capture 'this' by checking
211     // whether all enclosing lambdas of the capture-ready lambda can capture
212     // 'this'.
213     const bool CanCaptureThis =
214         !S.CheckCXXThisCapture(
215              CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
216              /*Explicit*/ false, /*BuildAndDiagnose*/ false,
217              &IndexOfCaptureReadyLambda);
218     if (!CanCaptureThis)
219       return NoLambdaIsCaptureCapable;
220   }
221   return IndexOfCaptureReadyLambda;
222 }
223 
224 static inline TemplateParameterList *
getGenericLambdaTemplateParameterList(LambdaScopeInfo * LSI,Sema & SemaRef)225 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
226   if (LSI->GLTemplateParameterList)
227     return LSI->GLTemplateParameterList;
228 
229   if (LSI->AutoTemplateParams.size()) {
230     SourceRange IntroRange = LSI->IntroducerRange;
231     SourceLocation LAngleLoc = IntroRange.getBegin();
232     SourceLocation RAngleLoc = IntroRange.getEnd();
233     LSI->GLTemplateParameterList = TemplateParameterList::Create(
234         SemaRef.Context,
235         /*Template kw loc*/ SourceLocation(), LAngleLoc,
236         (NamedDecl **)LSI->AutoTemplateParams.data(),
237         LSI->AutoTemplateParams.size(), RAngleLoc);
238   }
239   return LSI->GLTemplateParameterList;
240 }
241 
createLambdaClosureType(SourceRange IntroducerRange,TypeSourceInfo * Info,bool KnownDependent,LambdaCaptureDefault CaptureDefault)242 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
243                                              TypeSourceInfo *Info,
244                                              bool KnownDependent,
245                                              LambdaCaptureDefault CaptureDefault) {
246   DeclContext *DC = CurContext;
247   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
248     DC = DC->getParent();
249   bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
250                                                                *this);
251   // Start constructing the lambda class.
252   CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
253                                                      IntroducerRange.getBegin(),
254                                                      KnownDependent,
255                                                      IsGenericLambda,
256                                                      CaptureDefault);
257   DC->addDecl(Class);
258 
259   return Class;
260 }
261 
262 /// \brief Determine whether the given context is or is enclosed in an inline
263 /// function.
isInInlineFunction(const DeclContext * DC)264 static bool isInInlineFunction(const DeclContext *DC) {
265   while (!DC->isFileContext()) {
266     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
267       if (FD->isInlined())
268         return true;
269 
270     DC = DC->getLexicalParent();
271   }
272 
273   return false;
274 }
275 
276 MangleNumberingContext *
getCurrentMangleNumberContext(const DeclContext * DC,Decl * & ManglingContextDecl)277 Sema::getCurrentMangleNumberContext(const DeclContext *DC,
278                                     Decl *&ManglingContextDecl) {
279   // Compute the context for allocating mangling numbers in the current
280   // expression, if the ABI requires them.
281   ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
282 
283   enum ContextKind {
284     Normal,
285     DefaultArgument,
286     DataMember,
287     StaticDataMember
288   } Kind = Normal;
289 
290   // Default arguments of member function parameters that appear in a class
291   // definition, as well as the initializers of data members, receive special
292   // treatment. Identify them.
293   if (ManglingContextDecl) {
294     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
295       if (const DeclContext *LexicalDC
296           = Param->getDeclContext()->getLexicalParent())
297         if (LexicalDC->isRecord())
298           Kind = DefaultArgument;
299     } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
300       if (Var->getDeclContext()->isRecord())
301         Kind = StaticDataMember;
302     } else if (isa<FieldDecl>(ManglingContextDecl)) {
303       Kind = DataMember;
304     }
305   }
306 
307   // Itanium ABI [5.1.7]:
308   //   In the following contexts [...] the one-definition rule requires closure
309   //   types in different translation units to "correspond":
310   bool IsInNonspecializedTemplate =
311     !ActiveTemplateInstantiations.empty() || CurContext->isDependentContext();
312   switch (Kind) {
313   case Normal:
314     //  -- the bodies of non-exported nonspecialized template functions
315     //  -- the bodies of inline functions
316     if ((IsInNonspecializedTemplate &&
317          !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
318         isInInlineFunction(CurContext)) {
319       ManglingContextDecl = nullptr;
320       return &Context.getManglingNumberContext(DC);
321     }
322 
323     ManglingContextDecl = nullptr;
324     return nullptr;
325 
326   case StaticDataMember:
327     //  -- the initializers of nonspecialized static members of template classes
328     if (!IsInNonspecializedTemplate) {
329       ManglingContextDecl = nullptr;
330       return nullptr;
331     }
332     // Fall through to get the current context.
333 
334   case DataMember:
335     //  -- the in-class initializers of class members
336   case DefaultArgument:
337     //  -- default arguments appearing in class definitions
338     return &ExprEvalContexts.back().getMangleNumberingContext(Context);
339   }
340 
341   llvm_unreachable("unexpected context");
342 }
343 
344 MangleNumberingContext &
getMangleNumberingContext(ASTContext & Ctx)345 Sema::ExpressionEvaluationContextRecord::getMangleNumberingContext(
346     ASTContext &Ctx) {
347   assert(ManglingContextDecl && "Need to have a context declaration");
348   if (!MangleNumbering)
349     MangleNumbering = Ctx.createMangleNumberingContext();
350   return *MangleNumbering;
351 }
352 
startLambdaDefinition(CXXRecordDecl * Class,SourceRange IntroducerRange,TypeSourceInfo * MethodTypeInfo,SourceLocation EndLoc,ArrayRef<ParmVarDecl * > Params)353 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
354                                            SourceRange IntroducerRange,
355                                            TypeSourceInfo *MethodTypeInfo,
356                                            SourceLocation EndLoc,
357                                            ArrayRef<ParmVarDecl *> Params) {
358   QualType MethodType = MethodTypeInfo->getType();
359   TemplateParameterList *TemplateParams =
360             getGenericLambdaTemplateParameterList(getCurLambda(), *this);
361   // If a lambda appears in a dependent context or is a generic lambda (has
362   // template parameters) and has an 'auto' return type, deduce it to a
363   // dependent type.
364   if (Class->isDependentContext() || TemplateParams) {
365     const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
366     QualType Result = FPT->getReturnType();
367     if (Result->isUndeducedType()) {
368       Result = SubstAutoType(Result, Context.DependentTy);
369       MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
370                                            FPT->getExtProtoInfo());
371     }
372   }
373 
374   // C++11 [expr.prim.lambda]p5:
375   //   The closure type for a lambda-expression has a public inline function
376   //   call operator (13.5.4) whose parameters and return type are described by
377   //   the lambda-expression's parameter-declaration-clause and
378   //   trailing-return-type respectively.
379   DeclarationName MethodName
380     = Context.DeclarationNames.getCXXOperatorName(OO_Call);
381   DeclarationNameLoc MethodNameLoc;
382   MethodNameLoc.CXXOperatorName.BeginOpNameLoc
383     = IntroducerRange.getBegin().getRawEncoding();
384   MethodNameLoc.CXXOperatorName.EndOpNameLoc
385     = IntroducerRange.getEnd().getRawEncoding();
386   CXXMethodDecl *Method
387     = CXXMethodDecl::Create(Context, Class, EndLoc,
388                             DeclarationNameInfo(MethodName,
389                                                 IntroducerRange.getBegin(),
390                                                 MethodNameLoc),
391                             MethodType, MethodTypeInfo,
392                             SC_None,
393                             /*isInline=*/true,
394                             /*isConstExpr=*/false,
395                             EndLoc);
396   Method->setAccess(AS_public);
397 
398   // Temporarily set the lexical declaration context to the current
399   // context, so that the Scope stack matches the lexical nesting.
400   Method->setLexicalDeclContext(CurContext);
401   // Create a function template if we have a template parameter list
402   FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
403             FunctionTemplateDecl::Create(Context, Class,
404                                          Method->getLocation(), MethodName,
405                                          TemplateParams,
406                                          Method) : nullptr;
407   if (TemplateMethod) {
408     TemplateMethod->setLexicalDeclContext(CurContext);
409     TemplateMethod->setAccess(AS_public);
410     Method->setDescribedFunctionTemplate(TemplateMethod);
411   }
412 
413   // Add parameters.
414   if (!Params.empty()) {
415     Method->setParams(Params);
416     CheckParmsForFunctionDef(const_cast<ParmVarDecl **>(Params.begin()),
417                              const_cast<ParmVarDecl **>(Params.end()),
418                              /*CheckParameterNames=*/false);
419 
420     for (auto P : Method->params())
421       P->setOwningFunction(Method);
422   }
423 
424   Decl *ManglingContextDecl;
425   if (MangleNumberingContext *MCtx =
426           getCurrentMangleNumberContext(Class->getDeclContext(),
427                                         ManglingContextDecl)) {
428     unsigned ManglingNumber = MCtx->getManglingNumber(Method);
429     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl);
430   }
431 
432   return Method;
433 }
434 
buildLambdaScope(LambdaScopeInfo * LSI,CXXMethodDecl * CallOperator,SourceRange IntroducerRange,LambdaCaptureDefault CaptureDefault,SourceLocation CaptureDefaultLoc,bool ExplicitParams,bool ExplicitResultType,bool Mutable)435 void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
436                                         CXXMethodDecl *CallOperator,
437                                         SourceRange IntroducerRange,
438                                         LambdaCaptureDefault CaptureDefault,
439                                         SourceLocation CaptureDefaultLoc,
440                                         bool ExplicitParams,
441                                         bool ExplicitResultType,
442                                         bool Mutable) {
443   LSI->CallOperator = CallOperator;
444   CXXRecordDecl *LambdaClass = CallOperator->getParent();
445   LSI->Lambda = LambdaClass;
446   if (CaptureDefault == LCD_ByCopy)
447     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
448   else if (CaptureDefault == LCD_ByRef)
449     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
450   LSI->CaptureDefaultLoc = CaptureDefaultLoc;
451   LSI->IntroducerRange = IntroducerRange;
452   LSI->ExplicitParams = ExplicitParams;
453   LSI->Mutable = Mutable;
454 
455   if (ExplicitResultType) {
456     LSI->ReturnType = CallOperator->getReturnType();
457 
458     if (!LSI->ReturnType->isDependentType() &&
459         !LSI->ReturnType->isVoidType()) {
460       if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
461                               diag::err_lambda_incomplete_result)) {
462         // Do nothing.
463       }
464     }
465   } else {
466     LSI->HasImplicitReturnType = true;
467   }
468 }
469 
finishLambdaExplicitCaptures(LambdaScopeInfo * LSI)470 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
471   LSI->finishedExplicitCaptures();
472 }
473 
addLambdaParameters(CXXMethodDecl * CallOperator,Scope * CurScope)474 void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
475   // Introduce our parameters into the function scope
476   for (unsigned p = 0, NumParams = CallOperator->getNumParams();
477        p < NumParams; ++p) {
478     ParmVarDecl *Param = CallOperator->getParamDecl(p);
479 
480     // If this has an identifier, add it to the scope stack.
481     if (CurScope && Param->getIdentifier()) {
482       CheckShadow(CurScope, Param);
483 
484       PushOnScopeChains(Param, CurScope);
485     }
486   }
487 }
488 
489 /// If this expression is an enumerator-like expression of some type
490 /// T, return the type T; otherwise, return null.
491 ///
492 /// Pointer comparisons on the result here should always work because
493 /// it's derived from either the parent of an EnumConstantDecl
494 /// (i.e. the definition) or the declaration returned by
495 /// EnumType::getDecl() (i.e. the definition).
findEnumForBlockReturn(Expr * E)496 static EnumDecl *findEnumForBlockReturn(Expr *E) {
497   // An expression is an enumerator-like expression of type T if,
498   // ignoring parens and parens-like expressions:
499   E = E->IgnoreParens();
500 
501   //  - it is an enumerator whose enum type is T or
502   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
503     if (EnumConstantDecl *D
504           = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
505       return cast<EnumDecl>(D->getDeclContext());
506     }
507     return nullptr;
508   }
509 
510   //  - it is a comma expression whose RHS is an enumerator-like
511   //    expression of type T or
512   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
513     if (BO->getOpcode() == BO_Comma)
514       return findEnumForBlockReturn(BO->getRHS());
515     return nullptr;
516   }
517 
518   //  - it is a statement-expression whose value expression is an
519   //    enumerator-like expression of type T or
520   if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
521     if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
522       return findEnumForBlockReturn(last);
523     return nullptr;
524   }
525 
526   //   - it is a ternary conditional operator (not the GNU ?:
527   //     extension) whose second and third operands are
528   //     enumerator-like expressions of type T or
529   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
530     if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
531       if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
532         return ED;
533     return nullptr;
534   }
535 
536   // (implicitly:)
537   //   - it is an implicit integral conversion applied to an
538   //     enumerator-like expression of type T or
539   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
540     // We can sometimes see integral conversions in valid
541     // enumerator-like expressions.
542     if (ICE->getCastKind() == CK_IntegralCast)
543       return findEnumForBlockReturn(ICE->getSubExpr());
544 
545     // Otherwise, just rely on the type.
546   }
547 
548   //   - it is an expression of that formal enum type.
549   if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
550     return ET->getDecl();
551   }
552 
553   // Otherwise, nope.
554   return nullptr;
555 }
556 
557 /// Attempt to find a type T for which the returned expression of the
558 /// given statement is an enumerator-like expression of that type.
findEnumForBlockReturn(ReturnStmt * ret)559 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
560   if (Expr *retValue = ret->getRetValue())
561     return findEnumForBlockReturn(retValue);
562   return nullptr;
563 }
564 
565 /// Attempt to find a common type T for which all of the returned
566 /// expressions in a block are enumerator-like expressions of that
567 /// type.
findCommonEnumForBlockReturns(ArrayRef<ReturnStmt * > returns)568 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
569   ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
570 
571   // Try to find one for the first return.
572   EnumDecl *ED = findEnumForBlockReturn(*i);
573   if (!ED) return nullptr;
574 
575   // Check that the rest of the returns have the same enum.
576   for (++i; i != e; ++i) {
577     if (findEnumForBlockReturn(*i) != ED)
578       return nullptr;
579   }
580 
581   // Never infer an anonymous enum type.
582   if (!ED->hasNameForLinkage()) return nullptr;
583 
584   return ED;
585 }
586 
587 /// Adjust the given return statements so that they formally return
588 /// the given type.  It should require, at most, an IntegralCast.
adjustBlockReturnsToEnum(Sema & S,ArrayRef<ReturnStmt * > returns,QualType returnType)589 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
590                                      QualType returnType) {
591   for (ArrayRef<ReturnStmt*>::iterator
592          i = returns.begin(), e = returns.end(); i != e; ++i) {
593     ReturnStmt *ret = *i;
594     Expr *retValue = ret->getRetValue();
595     if (S.Context.hasSameType(retValue->getType(), returnType))
596       continue;
597 
598     // Right now we only support integral fixup casts.
599     assert(returnType->isIntegralOrUnscopedEnumerationType());
600     assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
601 
602     ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
603 
604     Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
605     E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
606                                  E, /*base path*/ nullptr, VK_RValue);
607     if (cleanups) {
608       cleanups->setSubExpr(E);
609     } else {
610       ret->setRetValue(E);
611     }
612   }
613 }
614 
deduceClosureReturnType(CapturingScopeInfo & CSI)615 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
616   assert(CSI.HasImplicitReturnType);
617   // If it was ever a placeholder, it had to been deduced to DependentTy.
618   assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
619 
620   // C++ core issue 975:
621   //   If a lambda-expression does not include a trailing-return-type,
622   //   it is as if the trailing-return-type denotes the following type:
623   //     - if there are no return statements in the compound-statement,
624   //       or all return statements return either an expression of type
625   //       void or no expression or braced-init-list, the type void;
626   //     - otherwise, if all return statements return an expression
627   //       and the types of the returned expressions after
628   //       lvalue-to-rvalue conversion (4.1 [conv.lval]),
629   //       array-to-pointer conversion (4.2 [conv.array]), and
630   //       function-to-pointer conversion (4.3 [conv.func]) are the
631   //       same, that common type;
632   //     - otherwise, the program is ill-formed.
633   //
634   // C++ core issue 1048 additionally removes top-level cv-qualifiers
635   // from the types of returned expressions to match the C++14 auto
636   // deduction rules.
637   //
638   // In addition, in blocks in non-C++ modes, if all of the return
639   // statements are enumerator-like expressions of some type T, where
640   // T has a name for linkage, then we infer the return type of the
641   // block to be that type.
642 
643   // First case: no return statements, implicit void return type.
644   ASTContext &Ctx = getASTContext();
645   if (CSI.Returns.empty()) {
646     // It's possible there were simply no /valid/ return statements.
647     // In this case, the first one we found may have at least given us a type.
648     if (CSI.ReturnType.isNull())
649       CSI.ReturnType = Ctx.VoidTy;
650     return;
651   }
652 
653   // Second case: at least one return statement has dependent type.
654   // Delay type checking until instantiation.
655   assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
656   if (CSI.ReturnType->isDependentType())
657     return;
658 
659   // Try to apply the enum-fuzz rule.
660   if (!getLangOpts().CPlusPlus) {
661     assert(isa<BlockScopeInfo>(CSI));
662     const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
663     if (ED) {
664       CSI.ReturnType = Context.getTypeDeclType(ED);
665       adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
666       return;
667     }
668   }
669 
670   // Third case: only one return statement. Don't bother doing extra work!
671   SmallVectorImpl<ReturnStmt*>::iterator I = CSI.Returns.begin(),
672                                          E = CSI.Returns.end();
673   if (I+1 == E)
674     return;
675 
676   // General case: many return statements.
677   // Check that they all have compatible return types.
678 
679   // We require the return types to strictly match here.
680   // Note that we've already done the required promotions as part of
681   // processing the return statement.
682   for (; I != E; ++I) {
683     const ReturnStmt *RS = *I;
684     const Expr *RetE = RS->getRetValue();
685 
686     QualType ReturnType =
687         (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
688     if (Context.getCanonicalFunctionResultType(ReturnType) ==
689           Context.getCanonicalFunctionResultType(CSI.ReturnType))
690       continue;
691 
692     // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
693     // TODO: It's possible that the *first* return is the divergent one.
694     Diag(RS->getLocStart(),
695          diag::err_typecheck_missing_return_type_incompatible)
696       << ReturnType << CSI.ReturnType
697       << isa<LambdaScopeInfo>(CSI);
698     // Continue iterating so that we keep emitting diagnostics.
699   }
700 }
701 
buildLambdaInitCaptureInitialization(SourceLocation Loc,bool ByRef,IdentifierInfo * Id,bool IsDirectInit,Expr * & Init)702 QualType Sema::buildLambdaInitCaptureInitialization(SourceLocation Loc,
703                                                     bool ByRef,
704                                                     IdentifierInfo *Id,
705                                                     bool IsDirectInit,
706                                                     Expr *&Init) {
707   // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
708   // deduce against.
709   QualType DeductType = Context.getAutoDeductType();
710   TypeLocBuilder TLB;
711   TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
712   if (ByRef) {
713     DeductType = BuildReferenceType(DeductType, true, Loc, Id);
714     assert(!DeductType.isNull() && "can't build reference to auto");
715     TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
716   }
717   TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
718 
719   // Deduce the type of the init capture.
720   QualType DeducedType = deduceVarTypeFromInitializer(
721       /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
722       SourceRange(Loc, Loc), IsDirectInit, Init);
723   if (DeducedType.isNull())
724     return QualType();
725 
726   // Are we a non-list direct initialization?
727   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
728 
729   // Perform initialization analysis and ensure any implicit conversions
730   // (such as lvalue-to-rvalue) are enforced.
731   InitializedEntity Entity =
732       InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
733   InitializationKind Kind =
734       IsDirectInit
735           ? (CXXDirectInit ? InitializationKind::CreateDirect(
736                                  Loc, Init->getLocStart(), Init->getLocEnd())
737                            : InitializationKind::CreateDirectList(Loc))
738           : InitializationKind::CreateCopy(Loc, Init->getLocStart());
739 
740   MultiExprArg Args = Init;
741   if (CXXDirectInit)
742     Args =
743         MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
744   QualType DclT;
745   InitializationSequence InitSeq(*this, Entity, Kind, Args);
746   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
747 
748   if (Result.isInvalid())
749     return QualType();
750   Init = Result.getAs<Expr>();
751 
752   // The init-capture initialization is a full-expression that must be
753   // processed as one before we enter the declcontext of the lambda's
754   // call-operator.
755   Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false,
756                                /*IsConstexpr*/ false,
757                                /*IsLambdaInitCaptureInitalizer*/ true);
758   if (Result.isInvalid())
759     return QualType();
760 
761   Init = Result.getAs<Expr>();
762   return DeducedType;
763 }
764 
createLambdaInitCaptureVarDecl(SourceLocation Loc,QualType InitCaptureType,IdentifierInfo * Id,unsigned InitStyle,Expr * Init)765 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
766                                               QualType InitCaptureType,
767                                               IdentifierInfo *Id,
768                                               unsigned InitStyle, Expr *Init) {
769   TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType,
770       Loc);
771   // Create a dummy variable representing the init-capture. This is not actually
772   // used as a variable, and only exists as a way to name and refer to the
773   // init-capture.
774   // FIXME: Pass in separate source locations for '&' and identifier.
775   VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
776                                    Loc, Id, InitCaptureType, TSI, SC_Auto);
777   NewVD->setInitCapture(true);
778   NewVD->setReferenced(true);
779   // FIXME: Pass in a VarDecl::InitializationStyle.
780   NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
781   NewVD->markUsed(Context);
782   NewVD->setInit(Init);
783   return NewVD;
784 }
785 
buildInitCaptureField(LambdaScopeInfo * LSI,VarDecl * Var)786 FieldDecl *Sema::buildInitCaptureField(LambdaScopeInfo *LSI, VarDecl *Var) {
787   FieldDecl *Field = FieldDecl::Create(
788       Context, LSI->Lambda, Var->getLocation(), Var->getLocation(),
789       nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false,
790       ICIS_NoInit);
791   Field->setImplicit(true);
792   Field->setAccess(AS_private);
793   LSI->Lambda->addDecl(Field);
794 
795   LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
796                   /*isNested*/false, Var->getLocation(), SourceLocation(),
797                   Var->getType(), Var->getInit());
798   return Field;
799 }
800 
ActOnStartOfLambdaDefinition(LambdaIntroducer & Intro,Declarator & ParamInfo,Scope * CurScope)801 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
802                                         Declarator &ParamInfo,
803                                         Scope *CurScope) {
804   // Determine if we're within a context where we know that the lambda will
805   // be dependent, because there are template parameters in scope.
806   bool KnownDependent = false;
807   LambdaScopeInfo *const LSI = getCurLambda();
808   assert(LSI && "LambdaScopeInfo should be on stack!");
809   TemplateParameterList *TemplateParams =
810             getGenericLambdaTemplateParameterList(LSI, *this);
811 
812   if (Scope *TmplScope = CurScope->getTemplateParamParent()) {
813     // Since we have our own TemplateParams, so check if an outer scope
814     // has template params, only then are we in a dependent scope.
815     if (TemplateParams)  {
816       TmplScope = TmplScope->getParent();
817       TmplScope = TmplScope ? TmplScope->getTemplateParamParent() : nullptr;
818     }
819     if (TmplScope && !TmplScope->decl_empty())
820       KnownDependent = true;
821   }
822   // Determine the signature of the call operator.
823   TypeSourceInfo *MethodTyInfo;
824   bool ExplicitParams = true;
825   bool ExplicitResultType = true;
826   bool ContainsUnexpandedParameterPack = false;
827   SourceLocation EndLoc;
828   SmallVector<ParmVarDecl *, 8> Params;
829   if (ParamInfo.getNumTypeObjects() == 0) {
830     // C++11 [expr.prim.lambda]p4:
831     //   If a lambda-expression does not include a lambda-declarator, it is as
832     //   if the lambda-declarator were ().
833     FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
834         /*IsVariadic=*/false, /*IsCXXMethod=*/true));
835     EPI.HasTrailingReturn = true;
836     EPI.TypeQuals |= DeclSpec::TQ_const;
837     // C++1y [expr.prim.lambda]:
838     //   The lambda return type is 'auto', which is replaced by the
839     //   trailing-return type if provided and/or deduced from 'return'
840     //   statements
841     // We don't do this before C++1y, because we don't support deduced return
842     // types there.
843     QualType DefaultTypeForNoTrailingReturn =
844         getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
845                                   : Context.DependentTy;
846     QualType MethodTy =
847         Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
848     MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
849     ExplicitParams = false;
850     ExplicitResultType = false;
851     EndLoc = Intro.Range.getEnd();
852   } else {
853     assert(ParamInfo.isFunctionDeclarator() &&
854            "lambda-declarator is a function");
855     DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
856 
857     // C++11 [expr.prim.lambda]p5:
858     //   This function call operator is declared const (9.3.1) if and only if
859     //   the lambda-expression's parameter-declaration-clause is not followed
860     //   by mutable. It is neither virtual nor declared volatile. [...]
861     if (!FTI.hasMutableQualifier())
862       FTI.TypeQuals |= DeclSpec::TQ_const;
863 
864     MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
865     assert(MethodTyInfo && "no type from lambda-declarator");
866     EndLoc = ParamInfo.getSourceRange().getEnd();
867 
868     ExplicitResultType = FTI.hasTrailingReturnType();
869 
870     if (FTIHasNonVoidParameters(FTI)) {
871       Params.reserve(FTI.NumParams);
872       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
873         Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
874     }
875 
876     // Check for unexpanded parameter packs in the method type.
877     if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
878       ContainsUnexpandedParameterPack = true;
879   }
880 
881   CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
882                                                  KnownDependent, Intro.Default);
883 
884   CXXMethodDecl *Method = startLambdaDefinition(Class, Intro.Range,
885                                                 MethodTyInfo, EndLoc, Params);
886   if (ExplicitParams)
887     CheckCXXDefaultArguments(Method);
888 
889   // Attributes on the lambda apply to the method.
890   ProcessDeclAttributes(CurScope, Method, ParamInfo);
891 
892   // Introduce the function call operator as the current declaration context.
893   PushDeclContext(CurScope, Method);
894 
895   // Build the lambda scope.
896   buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
897                    ExplicitParams, ExplicitResultType, !Method->isConst());
898 
899   // C++11 [expr.prim.lambda]p9:
900   //   A lambda-expression whose smallest enclosing scope is a block scope is a
901   //   local lambda expression; any other lambda expression shall not have a
902   //   capture-default or simple-capture in its lambda-introducer.
903   //
904   // For simple-captures, this is covered by the check below that any named
905   // entity is a variable that can be captured.
906   //
907   // For DR1632, we also allow a capture-default in any context where we can
908   // odr-use 'this' (in particular, in a default initializer for a non-static
909   // data member).
910   if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
911       (getCurrentThisType().isNull() ||
912        CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
913                            /*BuildAndDiagnose*/false)))
914     Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
915 
916   // Distinct capture names, for diagnostics.
917   llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
918 
919   // Handle explicit captures.
920   SourceLocation PrevCaptureLoc
921     = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
922   for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
923        PrevCaptureLoc = C->Loc, ++C) {
924     if (C->Kind == LCK_This) {
925       // C++11 [expr.prim.lambda]p8:
926       //   An identifier or this shall not appear more than once in a
927       //   lambda-capture.
928       if (LSI->isCXXThisCaptured()) {
929         Diag(C->Loc, diag::err_capture_more_than_once)
930             << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
931             << FixItHint::CreateRemoval(
932                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
933         continue;
934       }
935 
936       // C++11 [expr.prim.lambda]p8:
937       //   If a lambda-capture includes a capture-default that is =, the
938       //   lambda-capture shall not contain this [...].
939       if (Intro.Default == LCD_ByCopy) {
940         Diag(C->Loc, diag::err_this_capture_with_copy_default)
941             << FixItHint::CreateRemoval(
942                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
943         continue;
944       }
945 
946       // C++11 [expr.prim.lambda]p12:
947       //   If this is captured by a local lambda expression, its nearest
948       //   enclosing function shall be a non-static member function.
949       QualType ThisCaptureType = getCurrentThisType();
950       if (ThisCaptureType.isNull()) {
951         Diag(C->Loc, diag::err_this_capture) << true;
952         continue;
953       }
954 
955       CheckCXXThisCapture(C->Loc, /*Explicit=*/true);
956       continue;
957     }
958 
959     assert(C->Id && "missing identifier for capture");
960 
961     if (C->Init.isInvalid())
962       continue;
963 
964     VarDecl *Var = nullptr;
965     if (C->Init.isUsable()) {
966       Diag(C->Loc, getLangOpts().CPlusPlus14
967                        ? diag::warn_cxx11_compat_init_capture
968                        : diag::ext_init_capture);
969 
970       if (C->Init.get()->containsUnexpandedParameterPack())
971         ContainsUnexpandedParameterPack = true;
972       // If the initializer expression is usable, but the InitCaptureType
973       // is not, then an error has occurred - so ignore the capture for now.
974       // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
975       // FIXME: we should create the init capture variable and mark it invalid
976       // in this case.
977       if (C->InitCaptureType.get().isNull())
978         continue;
979 
980       unsigned InitStyle;
981       switch (C->InitKind) {
982       case LambdaCaptureInitKind::NoInit:
983         llvm_unreachable("not an init-capture?");
984       case LambdaCaptureInitKind::CopyInit:
985         InitStyle = VarDecl::CInit;
986         break;
987       case LambdaCaptureInitKind::DirectInit:
988         InitStyle = VarDecl::CallInit;
989         break;
990       case LambdaCaptureInitKind::ListInit:
991         InitStyle = VarDecl::ListInit;
992         break;
993       }
994       Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
995                                            C->Id, InitStyle, C->Init.get());
996       // C++1y [expr.prim.lambda]p11:
997       //   An init-capture behaves as if it declares and explicitly
998       //   captures a variable [...] whose declarative region is the
999       //   lambda-expression's compound-statement
1000       if (Var)
1001         PushOnScopeChains(Var, CurScope, false);
1002     } else {
1003       assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1004              "init capture has valid but null init?");
1005 
1006       // C++11 [expr.prim.lambda]p8:
1007       //   If a lambda-capture includes a capture-default that is &, the
1008       //   identifiers in the lambda-capture shall not be preceded by &.
1009       //   If a lambda-capture includes a capture-default that is =, [...]
1010       //   each identifier it contains shall be preceded by &.
1011       if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1012         Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1013             << FixItHint::CreateRemoval(
1014                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1015         continue;
1016       } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1017         Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1018             << FixItHint::CreateRemoval(
1019                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1020         continue;
1021       }
1022 
1023       // C++11 [expr.prim.lambda]p10:
1024       //   The identifiers in a capture-list are looked up using the usual
1025       //   rules for unqualified name lookup (3.4.1)
1026       DeclarationNameInfo Name(C->Id, C->Loc);
1027       LookupResult R(*this, Name, LookupOrdinaryName);
1028       LookupName(R, CurScope);
1029       if (R.isAmbiguous())
1030         continue;
1031       if (R.empty()) {
1032         // FIXME: Disable corrections that would add qualification?
1033         CXXScopeSpec ScopeSpec;
1034         if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R,
1035                                 llvm::make_unique<DeclFilterCCC<VarDecl>>()))
1036           continue;
1037       }
1038 
1039       Var = R.getAsSingle<VarDecl>();
1040       if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1041         continue;
1042     }
1043 
1044     // C++11 [expr.prim.lambda]p8:
1045     //   An identifier or this shall not appear more than once in a
1046     //   lambda-capture.
1047     if (!CaptureNames.insert(C->Id).second) {
1048       if (Var && LSI->isCaptured(Var)) {
1049         Diag(C->Loc, diag::err_capture_more_than_once)
1050             << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1051             << FixItHint::CreateRemoval(
1052                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1053       } else
1054         // Previous capture captured something different (one or both was
1055         // an init-cpature): no fixit.
1056         Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1057       continue;
1058     }
1059 
1060     // C++11 [expr.prim.lambda]p10:
1061     //   [...] each such lookup shall find a variable with automatic storage
1062     //   duration declared in the reaching scope of the local lambda expression.
1063     // Note that the 'reaching scope' check happens in tryCaptureVariable().
1064     if (!Var) {
1065       Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1066       continue;
1067     }
1068 
1069     // Ignore invalid decls; they'll just confuse the code later.
1070     if (Var->isInvalidDecl())
1071       continue;
1072 
1073     if (!Var->hasLocalStorage()) {
1074       Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1075       Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1076       continue;
1077     }
1078 
1079     // C++11 [expr.prim.lambda]p23:
1080     //   A capture followed by an ellipsis is a pack expansion (14.5.3).
1081     SourceLocation EllipsisLoc;
1082     if (C->EllipsisLoc.isValid()) {
1083       if (Var->isParameterPack()) {
1084         EllipsisLoc = C->EllipsisLoc;
1085       } else {
1086         Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1087           << SourceRange(C->Loc);
1088 
1089         // Just ignore the ellipsis.
1090       }
1091     } else if (Var->isParameterPack()) {
1092       ContainsUnexpandedParameterPack = true;
1093     }
1094 
1095     if (C->Init.isUsable()) {
1096       buildInitCaptureField(LSI, Var);
1097     } else {
1098       TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1099                                                    TryCapture_ExplicitByVal;
1100       tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1101     }
1102   }
1103   finishLambdaExplicitCaptures(LSI);
1104 
1105   LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1106 
1107   // Add lambda parameters into scope.
1108   addLambdaParameters(Method, CurScope);
1109 
1110   // Enter a new evaluation context to insulate the lambda from any
1111   // cleanups from the enclosing full-expression.
1112   PushExpressionEvaluationContext(PotentiallyEvaluated);
1113 }
1114 
ActOnLambdaError(SourceLocation StartLoc,Scope * CurScope,bool IsInstantiation)1115 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1116                             bool IsInstantiation) {
1117   LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1118 
1119   // Leave the expression-evaluation context.
1120   DiscardCleanupsInEvaluationContext();
1121   PopExpressionEvaluationContext();
1122 
1123   // Leave the context of the lambda.
1124   if (!IsInstantiation)
1125     PopDeclContext();
1126 
1127   // Finalize the lambda.
1128   CXXRecordDecl *Class = LSI->Lambda;
1129   Class->setInvalidDecl();
1130   SmallVector<Decl*, 4> Fields(Class->fields());
1131   ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1132               SourceLocation(), nullptr);
1133   CheckCompletedCXXClass(Class);
1134 
1135   PopFunctionScopeInfo();
1136 }
1137 
1138 /// \brief Add a lambda's conversion to function pointer, as described in
1139 /// C++11 [expr.prim.lambda]p6.
addFunctionPointerConversion(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator)1140 static void addFunctionPointerConversion(Sema &S,
1141                                          SourceRange IntroducerRange,
1142                                          CXXRecordDecl *Class,
1143                                          CXXMethodDecl *CallOperator) {
1144   // This conversion is explicitly disabled if the lambda's function has
1145   // pass_object_size attributes on any of its parameters.
1146   if (std::any_of(CallOperator->param_begin(), CallOperator->param_end(),
1147                   std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>)))
1148     return;
1149 
1150   // Add the conversion to function pointer.
1151   const FunctionProtoType *CallOpProto =
1152       CallOperator->getType()->getAs<FunctionProtoType>();
1153   const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1154       CallOpProto->getExtProtoInfo();
1155   QualType PtrToFunctionTy;
1156   QualType InvokerFunctionTy;
1157   {
1158     FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1159     CallingConv CC = S.Context.getDefaultCallingConvention(
1160         CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1161     InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1162     InvokerExtInfo.TypeQuals = 0;
1163     assert(InvokerExtInfo.RefQualifier == RQ_None &&
1164         "Lambda's call operator should not have a reference qualifier");
1165     InvokerFunctionTy =
1166         S.Context.getFunctionType(CallOpProto->getReturnType(),
1167                                   CallOpProto->getParamTypes(), InvokerExtInfo);
1168     PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1169   }
1170 
1171   // Create the type of the conversion function.
1172   FunctionProtoType::ExtProtoInfo ConvExtInfo(
1173       S.Context.getDefaultCallingConvention(
1174       /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1175   // The conversion function is always const.
1176   ConvExtInfo.TypeQuals = Qualifiers::Const;
1177   QualType ConvTy =
1178       S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1179 
1180   SourceLocation Loc = IntroducerRange.getBegin();
1181   DeclarationName ConversionName
1182     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1183         S.Context.getCanonicalType(PtrToFunctionTy));
1184   DeclarationNameLoc ConvNameLoc;
1185   // Construct a TypeSourceInfo for the conversion function, and wire
1186   // all the parameters appropriately for the FunctionProtoTypeLoc
1187   // so that everything works during transformation/instantiation of
1188   // generic lambdas.
1189   // The main reason for wiring up the parameters of the conversion
1190   // function with that of the call operator is so that constructs
1191   // like the following work:
1192   // auto L = [](auto b) {                <-- 1
1193   //   return [](auto a) -> decltype(a) { <-- 2
1194   //      return a;
1195   //   };
1196   // };
1197   // int (*fp)(int) = L(5);
1198   // Because the trailing return type can contain DeclRefExprs that refer
1199   // to the original call operator's variables, we hijack the call
1200   // operators ParmVarDecls below.
1201   TypeSourceInfo *ConvNamePtrToFunctionTSI =
1202       S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1203   ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
1204 
1205   // The conversion function is a conversion to a pointer-to-function.
1206   TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1207   FunctionProtoTypeLoc ConvTL =
1208       ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1209   // Get the result of the conversion function which is a pointer-to-function.
1210   PointerTypeLoc PtrToFunctionTL =
1211       ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1212   // Do the same for the TypeSourceInfo that is used to name the conversion
1213   // operator.
1214   PointerTypeLoc ConvNamePtrToFunctionTL =
1215       ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1216 
1217   // Get the underlying function types that the conversion function will
1218   // be converting to (should match the type of the call operator).
1219   FunctionProtoTypeLoc CallOpConvTL =
1220       PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1221   FunctionProtoTypeLoc CallOpConvNameTL =
1222     ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1223 
1224   // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1225   // These parameter's are essentially used to transform the name and
1226   // the type of the conversion operator.  By using the same parameters
1227   // as the call operator's we don't have to fix any back references that
1228   // the trailing return type of the call operator's uses (such as
1229   // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1230   // - we can simply use the return type of the call operator, and
1231   // everything should work.
1232   SmallVector<ParmVarDecl *, 4> InvokerParams;
1233   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1234     ParmVarDecl *From = CallOperator->getParamDecl(I);
1235 
1236     InvokerParams.push_back(ParmVarDecl::Create(S.Context,
1237            // Temporarily add to the TU. This is set to the invoker below.
1238                                              S.Context.getTranslationUnitDecl(),
1239                                              From->getLocStart(),
1240                                              From->getLocation(),
1241                                              From->getIdentifier(),
1242                                              From->getType(),
1243                                              From->getTypeSourceInfo(),
1244                                              From->getStorageClass(),
1245                                              /*DefaultArg=*/nullptr));
1246     CallOpConvTL.setParam(I, From);
1247     CallOpConvNameTL.setParam(I, From);
1248   }
1249 
1250   CXXConversionDecl *Conversion
1251     = CXXConversionDecl::Create(S.Context, Class, Loc,
1252                                 DeclarationNameInfo(ConversionName,
1253                                   Loc, ConvNameLoc),
1254                                 ConvTy,
1255                                 ConvTSI,
1256                                 /*isInline=*/true, /*isExplicit=*/false,
1257                                 /*isConstexpr=*/false,
1258                                 CallOperator->getBody()->getLocEnd());
1259   Conversion->setAccess(AS_public);
1260   Conversion->setImplicit(true);
1261 
1262   if (Class->isGenericLambda()) {
1263     // Create a template version of the conversion operator, using the template
1264     // parameter list of the function call operator.
1265     FunctionTemplateDecl *TemplateCallOperator =
1266             CallOperator->getDescribedFunctionTemplate();
1267     FunctionTemplateDecl *ConversionTemplate =
1268                   FunctionTemplateDecl::Create(S.Context, Class,
1269                                       Loc, ConversionName,
1270                                       TemplateCallOperator->getTemplateParameters(),
1271                                       Conversion);
1272     ConversionTemplate->setAccess(AS_public);
1273     ConversionTemplate->setImplicit(true);
1274     Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1275     Class->addDecl(ConversionTemplate);
1276   } else
1277     Class->addDecl(Conversion);
1278   // Add a non-static member function that will be the result of
1279   // the conversion with a certain unique ID.
1280   DeclarationName InvokerName = &S.Context.Idents.get(
1281                                                  getLambdaStaticInvokerName());
1282   // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1283   // we should get a prebuilt TrivialTypeSourceInfo from Context
1284   // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1285   // then rewire the parameters accordingly, by hoisting up the InvokeParams
1286   // loop below and then use its Params to set Invoke->setParams(...) below.
1287   // This would avoid the 'const' qualifier of the calloperator from
1288   // contaminating the type of the invoker, which is currently adjusted
1289   // in SemaTemplateDeduction.cpp:DeduceTemplateArguments.  Fixing the
1290   // trailing return type of the invoker would require a visitor to rebuild
1291   // the trailing return type and adjusting all back DeclRefExpr's to refer
1292   // to the new static invoker parameters - not the call operator's.
1293   CXXMethodDecl *Invoke
1294     = CXXMethodDecl::Create(S.Context, Class, Loc,
1295                             DeclarationNameInfo(InvokerName, Loc),
1296                             InvokerFunctionTy,
1297                             CallOperator->getTypeSourceInfo(),
1298                             SC_Static, /*IsInline=*/true,
1299                             /*IsConstexpr=*/false,
1300                             CallOperator->getBody()->getLocEnd());
1301   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1302     InvokerParams[I]->setOwningFunction(Invoke);
1303   Invoke->setParams(InvokerParams);
1304   Invoke->setAccess(AS_private);
1305   Invoke->setImplicit(true);
1306   if (Class->isGenericLambda()) {
1307     FunctionTemplateDecl *TemplateCallOperator =
1308             CallOperator->getDescribedFunctionTemplate();
1309     FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1310                           S.Context, Class, Loc, InvokerName,
1311                           TemplateCallOperator->getTemplateParameters(),
1312                           Invoke);
1313     StaticInvokerTemplate->setAccess(AS_private);
1314     StaticInvokerTemplate->setImplicit(true);
1315     Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1316     Class->addDecl(StaticInvokerTemplate);
1317   } else
1318     Class->addDecl(Invoke);
1319 }
1320 
1321 /// \brief Add a lambda's conversion to block pointer.
addBlockPointerConversion(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator)1322 static void addBlockPointerConversion(Sema &S,
1323                                       SourceRange IntroducerRange,
1324                                       CXXRecordDecl *Class,
1325                                       CXXMethodDecl *CallOperator) {
1326   const FunctionProtoType *Proto =
1327       CallOperator->getType()->getAs<FunctionProtoType>();
1328 
1329   // The function type inside the block pointer type is the same as the call
1330   // operator with some tweaks. The calling convention is the default free
1331   // function convention, and the type qualifications are lost.
1332   FunctionProtoType::ExtProtoInfo BlockEPI = Proto->getExtProtoInfo();
1333   BlockEPI.ExtInfo =
1334       BlockEPI.ExtInfo.withCallingConv(S.Context.getDefaultCallingConvention(
1335           Proto->isVariadic(), /*IsCXXMethod=*/false));
1336   BlockEPI.TypeQuals = 0;
1337   QualType FunctionTy = S.Context.getFunctionType(
1338       Proto->getReturnType(), Proto->getParamTypes(), BlockEPI);
1339   QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1340 
1341   FunctionProtoType::ExtProtoInfo ConversionEPI(
1342       S.Context.getDefaultCallingConvention(
1343           /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1344   ConversionEPI.TypeQuals = Qualifiers::Const;
1345   QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1346 
1347   SourceLocation Loc = IntroducerRange.getBegin();
1348   DeclarationName Name
1349     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1350         S.Context.getCanonicalType(BlockPtrTy));
1351   DeclarationNameLoc NameLoc;
1352   NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
1353   CXXConversionDecl *Conversion
1354     = CXXConversionDecl::Create(S.Context, Class, Loc,
1355                                 DeclarationNameInfo(Name, Loc, NameLoc),
1356                                 ConvTy,
1357                                 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1358                                 /*isInline=*/true, /*isExplicit=*/false,
1359                                 /*isConstexpr=*/false,
1360                                 CallOperator->getBody()->getLocEnd());
1361   Conversion->setAccess(AS_public);
1362   Conversion->setImplicit(true);
1363   Class->addDecl(Conversion);
1364 }
1365 
performLambdaVarCaptureInitialization(Sema & S,LambdaScopeInfo::Capture & Capture,FieldDecl * Field,SmallVectorImpl<VarDecl * > & ArrayIndexVars,SmallVectorImpl<unsigned> & ArrayIndexStarts)1366 static ExprResult performLambdaVarCaptureInitialization(
1367     Sema &S, LambdaScopeInfo::Capture &Capture,
1368     FieldDecl *Field,
1369     SmallVectorImpl<VarDecl *> &ArrayIndexVars,
1370     SmallVectorImpl<unsigned> &ArrayIndexStarts) {
1371   assert(Capture.isVariableCapture() && "not a variable capture");
1372 
1373   auto *Var = Capture.getVariable();
1374   SourceLocation Loc = Capture.getLocation();
1375 
1376   // C++11 [expr.prim.lambda]p21:
1377   //   When the lambda-expression is evaluated, the entities that
1378   //   are captured by copy are used to direct-initialize each
1379   //   corresponding non-static data member of the resulting closure
1380   //   object. (For array members, the array elements are
1381   //   direct-initialized in increasing subscript order.) These
1382   //   initializations are performed in the (unspecified) order in
1383   //   which the non-static data members are declared.
1384 
1385   // C++ [expr.prim.lambda]p12:
1386   //   An entity captured by a lambda-expression is odr-used (3.2) in
1387   //   the scope containing the lambda-expression.
1388   ExprResult RefResult = S.BuildDeclarationNameExpr(
1389       CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1390   if (RefResult.isInvalid())
1391     return ExprError();
1392   Expr *Ref = RefResult.get();
1393 
1394   QualType FieldType = Field->getType();
1395 
1396   // When the variable has array type, create index variables for each
1397   // dimension of the array. We use these index variables to subscript
1398   // the source array, and other clients (e.g., CodeGen) will perform
1399   // the necessary iteration with these index variables.
1400   //
1401   // FIXME: This is dumb. Add a proper AST representation for array
1402   // copy-construction and use it here.
1403   SmallVector<VarDecl *, 4> IndexVariables;
1404   QualType BaseType = FieldType;
1405   QualType SizeType = S.Context.getSizeType();
1406   ArrayIndexStarts.push_back(ArrayIndexVars.size());
1407   while (const ConstantArrayType *Array
1408                         = S.Context.getAsConstantArrayType(BaseType)) {
1409     // Create the iteration variable for this array index.
1410     IdentifierInfo *IterationVarName = nullptr;
1411     {
1412       SmallString<8> Str;
1413       llvm::raw_svector_ostream OS(Str);
1414       OS << "__i" << IndexVariables.size();
1415       IterationVarName = &S.Context.Idents.get(OS.str());
1416     }
1417     VarDecl *IterationVar = VarDecl::Create(
1418         S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
1419         S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
1420     IterationVar->setImplicit();
1421     IndexVariables.push_back(IterationVar);
1422     ArrayIndexVars.push_back(IterationVar);
1423 
1424     // Create a reference to the iteration variable.
1425     ExprResult IterationVarRef =
1426         S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
1427     assert(!IterationVarRef.isInvalid() &&
1428            "Reference to invented variable cannot fail!");
1429     IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.get());
1430     assert(!IterationVarRef.isInvalid() &&
1431            "Conversion of invented variable cannot fail!");
1432 
1433     // Subscript the array with this iteration variable.
1434     ExprResult Subscript =
1435         S.CreateBuiltinArraySubscriptExpr(Ref, Loc, IterationVarRef.get(), Loc);
1436     if (Subscript.isInvalid())
1437       return ExprError();
1438 
1439     Ref = Subscript.get();
1440     BaseType = Array->getElementType();
1441   }
1442 
1443   // Construct the entity that we will be initializing. For an array, this
1444   // will be first element in the array, which may require several levels
1445   // of array-subscript entities.
1446   SmallVector<InitializedEntity, 4> Entities;
1447   Entities.reserve(1 + IndexVariables.size());
1448   Entities.push_back(InitializedEntity::InitializeLambdaCapture(
1449       Var->getIdentifier(), FieldType, Loc));
1450   for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1451     Entities.push_back(
1452         InitializedEntity::InitializeElement(S.Context, 0, Entities.back()));
1453 
1454   InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
1455   InitializationSequence Init(S, Entities.back(), InitKind, Ref);
1456   return Init.Perform(S, Entities.back(), InitKind, Ref);
1457 }
1458 
ActOnLambdaExpr(SourceLocation StartLoc,Stmt * Body,Scope * CurScope)1459 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
1460                                  Scope *CurScope) {
1461   LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1462   ActOnFinishFunctionBody(LSI.CallOperator, Body);
1463   return BuildLambdaExpr(StartLoc, Body->getLocEnd(), &LSI);
1464 }
1465 
1466 static LambdaCaptureDefault
mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS)1467 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
1468   switch (ICS) {
1469   case CapturingScopeInfo::ImpCap_None:
1470     return LCD_None;
1471   case CapturingScopeInfo::ImpCap_LambdaByval:
1472     return LCD_ByCopy;
1473   case CapturingScopeInfo::ImpCap_CapturedRegion:
1474   case CapturingScopeInfo::ImpCap_LambdaByref:
1475     return LCD_ByRef;
1476   case CapturingScopeInfo::ImpCap_Block:
1477     llvm_unreachable("block capture in lambda");
1478   }
1479   llvm_unreachable("Unknown implicit capture style");
1480 }
1481 
BuildLambdaExpr(SourceLocation StartLoc,SourceLocation EndLoc,LambdaScopeInfo * LSI)1482 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
1483                                  LambdaScopeInfo *LSI) {
1484   // Collect information from the lambda scope.
1485   SmallVector<LambdaCapture, 4> Captures;
1486   SmallVector<Expr *, 4> CaptureInits;
1487   SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1488   LambdaCaptureDefault CaptureDefault =
1489       mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
1490   CXXRecordDecl *Class;
1491   CXXMethodDecl *CallOperator;
1492   SourceRange IntroducerRange;
1493   bool ExplicitParams;
1494   bool ExplicitResultType;
1495   bool LambdaExprNeedsCleanups;
1496   bool ContainsUnexpandedParameterPack;
1497   SmallVector<VarDecl *, 4> ArrayIndexVars;
1498   SmallVector<unsigned, 4> ArrayIndexStarts;
1499   {
1500     CallOperator = LSI->CallOperator;
1501     Class = LSI->Lambda;
1502     IntroducerRange = LSI->IntroducerRange;
1503     ExplicitParams = LSI->ExplicitParams;
1504     ExplicitResultType = !LSI->HasImplicitReturnType;
1505     LambdaExprNeedsCleanups = LSI->ExprNeedsCleanups;
1506     ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1507 
1508     CallOperator->setLexicalDeclContext(Class);
1509     Decl *TemplateOrNonTemplateCallOperatorDecl =
1510         CallOperator->getDescribedFunctionTemplate()
1511         ? CallOperator->getDescribedFunctionTemplate()
1512         : cast<Decl>(CallOperator);
1513 
1514     TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1515     Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
1516 
1517     PopExpressionEvaluationContext();
1518 
1519     // Translate captures.
1520     auto CurField = Class->field_begin();
1521     for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I, ++CurField) {
1522       LambdaScopeInfo::Capture From = LSI->Captures[I];
1523       assert(!From.isBlockCapture() && "Cannot capture __block variables");
1524       bool IsImplicit = I >= LSI->NumExplicitCaptures;
1525 
1526       // Handle 'this' capture.
1527       if (From.isThisCapture()) {
1528         Captures.push_back(
1529             LambdaCapture(From.getLocation(), IsImplicit, LCK_This));
1530         CaptureInits.push_back(new (Context) CXXThisExpr(From.getLocation(),
1531                                                          getCurrentThisType(),
1532                                                          /*isImplicit=*/true));
1533         ArrayIndexStarts.push_back(ArrayIndexVars.size());
1534         continue;
1535       }
1536       if (From.isVLATypeCapture()) {
1537         Captures.push_back(
1538             LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType));
1539         CaptureInits.push_back(nullptr);
1540         ArrayIndexStarts.push_back(ArrayIndexVars.size());
1541         continue;
1542       }
1543 
1544       VarDecl *Var = From.getVariable();
1545       LambdaCaptureKind Kind = From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1546       Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind,
1547                                        Var, From.getEllipsisLoc()));
1548       Expr *Init = From.getInitExpr();
1549       if (!Init) {
1550         auto InitResult = performLambdaVarCaptureInitialization(
1551             *this, From, *CurField, ArrayIndexVars, ArrayIndexStarts);
1552         if (InitResult.isInvalid())
1553           return ExprError();
1554         Init = InitResult.get();
1555       } else {
1556         ArrayIndexStarts.push_back(ArrayIndexVars.size());
1557       }
1558       CaptureInits.push_back(Init);
1559     }
1560 
1561     // C++11 [expr.prim.lambda]p6:
1562     //   The closure type for a lambda-expression with no lambda-capture
1563     //   has a public non-virtual non-explicit const conversion function
1564     //   to pointer to function having the same parameter and return
1565     //   types as the closure type's function call operator.
1566     if (Captures.empty() && CaptureDefault == LCD_None)
1567       addFunctionPointerConversion(*this, IntroducerRange, Class,
1568                                    CallOperator);
1569 
1570     // Objective-C++:
1571     //   The closure type for a lambda-expression has a public non-virtual
1572     //   non-explicit const conversion function to a block pointer having the
1573     //   same parameter and return types as the closure type's function call
1574     //   operator.
1575     // FIXME: Fix generic lambda to block conversions.
1576     if (getLangOpts().Blocks && getLangOpts().ObjC1 &&
1577                                               !Class->isGenericLambda())
1578       addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1579 
1580     // Finalize the lambda class.
1581     SmallVector<Decl*, 4> Fields(Class->fields());
1582     ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1583                 SourceLocation(), nullptr);
1584     CheckCompletedCXXClass(Class);
1585   }
1586 
1587   if (LambdaExprNeedsCleanups)
1588     ExprNeedsCleanups = true;
1589 
1590   LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1591                                           CaptureDefault, CaptureDefaultLoc,
1592                                           Captures,
1593                                           ExplicitParams, ExplicitResultType,
1594                                           CaptureInits, ArrayIndexVars,
1595                                           ArrayIndexStarts, EndLoc,
1596                                           ContainsUnexpandedParameterPack);
1597 
1598   if (!CurContext->isDependentContext()) {
1599     switch (ExprEvalContexts.back().Context) {
1600     // C++11 [expr.prim.lambda]p2:
1601     //   A lambda-expression shall not appear in an unevaluated operand
1602     //   (Clause 5).
1603     case Unevaluated:
1604     case UnevaluatedAbstract:
1605     // C++1y [expr.const]p2:
1606     //   A conditional-expression e is a core constant expression unless the
1607     //   evaluation of e, following the rules of the abstract machine, would
1608     //   evaluate [...] a lambda-expression.
1609     //
1610     // This is technically incorrect, there are some constant evaluated contexts
1611     // where this should be allowed.  We should probably fix this when DR1607 is
1612     // ratified, it lays out the exact set of conditions where we shouldn't
1613     // allow a lambda-expression.
1614     case ConstantEvaluated:
1615       // We don't actually diagnose this case immediately, because we
1616       // could be within a context where we might find out later that
1617       // the expression is potentially evaluated (e.g., for typeid).
1618       ExprEvalContexts.back().Lambdas.push_back(Lambda);
1619       break;
1620 
1621     case PotentiallyEvaluated:
1622     case PotentiallyEvaluatedIfUsed:
1623       break;
1624     }
1625   }
1626 
1627   return MaybeBindToTemporary(Lambda);
1628 }
1629 
BuildBlockForLambdaConversion(SourceLocation CurrentLocation,SourceLocation ConvLocation,CXXConversionDecl * Conv,Expr * Src)1630 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
1631                                                SourceLocation ConvLocation,
1632                                                CXXConversionDecl *Conv,
1633                                                Expr *Src) {
1634   // Make sure that the lambda call operator is marked used.
1635   CXXRecordDecl *Lambda = Conv->getParent();
1636   CXXMethodDecl *CallOperator
1637     = cast<CXXMethodDecl>(
1638         Lambda->lookup(
1639           Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1640   CallOperator->setReferenced();
1641   CallOperator->markUsed(Context);
1642 
1643   ExprResult Init = PerformCopyInitialization(
1644                       InitializedEntity::InitializeBlock(ConvLocation,
1645                                                          Src->getType(),
1646                                                          /*NRVO=*/false),
1647                       CurrentLocation, Src);
1648   if (!Init.isInvalid())
1649     Init = ActOnFinishFullExpr(Init.get());
1650 
1651   if (Init.isInvalid())
1652     return ExprError();
1653 
1654   // Create the new block to be returned.
1655   BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1656 
1657   // Set the type information.
1658   Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1659   Block->setIsVariadic(CallOperator->isVariadic());
1660   Block->setBlockMissingReturnType(false);
1661 
1662   // Add parameters.
1663   SmallVector<ParmVarDecl *, 4> BlockParams;
1664   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1665     ParmVarDecl *From = CallOperator->getParamDecl(I);
1666     BlockParams.push_back(ParmVarDecl::Create(Context, Block,
1667                                               From->getLocStart(),
1668                                               From->getLocation(),
1669                                               From->getIdentifier(),
1670                                               From->getType(),
1671                                               From->getTypeSourceInfo(),
1672                                               From->getStorageClass(),
1673                                               /*DefaultArg=*/nullptr));
1674   }
1675   Block->setParams(BlockParams);
1676 
1677   Block->setIsConversionFromLambda(true);
1678 
1679   // Add capture. The capture uses a fake variable, which doesn't correspond
1680   // to any actual memory location. However, the initializer copy-initializes
1681   // the lambda object.
1682   TypeSourceInfo *CapVarTSI =
1683       Context.getTrivialTypeSourceInfo(Src->getType());
1684   VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
1685                                     ConvLocation, nullptr,
1686                                     Src->getType(), CapVarTSI,
1687                                     SC_None);
1688   BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
1689                              /*Nested=*/false, /*Copy=*/Init.get());
1690   Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
1691 
1692   // Add a fake function body to the block. IR generation is responsible
1693   // for filling in the actual body, which cannot be expressed as an AST.
1694   Block->setBody(new (Context) CompoundStmt(ConvLocation));
1695 
1696   // Create the block literal expression.
1697   Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
1698   ExprCleanupObjects.push_back(Block);
1699   ExprNeedsCleanups = true;
1700 
1701   return BuildBlock;
1702 }
1703