1 //===-- LiveInterval.cpp - Live Interval Representation -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveRange and LiveInterval classes. Given some
11 // numbering of each the machine instructions an interval [i, j) is said to be a
12 // live range for register v if there is no instruction with number j' >= j
13 // such that v is live at j' and there is no instruction with number i' < i such
14 // that v is live at i'. In this implementation ranges can have holes,
15 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each
16 // individual segment is represented as an instance of LiveRange::Segment,
17 // and the whole range is represented as an instance of LiveRange.
18 //
19 //===----------------------------------------------------------------------===//
20
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "RegisterCoalescer.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Target/TargetRegisterInfo.h"
31 #include <algorithm>
32 using namespace llvm;
33
34 namespace {
35 //===----------------------------------------------------------------------===//
36 // Implementation of various methods necessary for calculation of live ranges.
37 // The implementation of the methods abstracts from the concrete type of the
38 // segment collection.
39 //
40 // Implementation of the class follows the Template design pattern. The base
41 // class contains generic algorithms that call collection-specific methods,
42 // which are provided in concrete subclasses. In order to avoid virtual calls
43 // these methods are provided by means of C++ template instantiation.
44 // The base class calls the methods of the subclass through method impl(),
45 // which casts 'this' pointer to the type of the subclass.
46 //
47 //===----------------------------------------------------------------------===//
48
49 template <typename ImplT, typename IteratorT, typename CollectionT>
50 class CalcLiveRangeUtilBase {
51 protected:
52 LiveRange *LR;
53
54 protected:
CalcLiveRangeUtilBase(LiveRange * LR)55 CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
56
57 public:
58 typedef LiveRange::Segment Segment;
59 typedef IteratorT iterator;
60
createDeadDef(SlotIndex Def,VNInfo::Allocator & VNInfoAllocator)61 VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) {
62 assert(!Def.isDead() && "Cannot define a value at the dead slot");
63
64 iterator I = impl().find(Def);
65 if (I == segments().end()) {
66 VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
67 impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
68 return VNI;
69 }
70
71 Segment *S = segmentAt(I);
72 if (SlotIndex::isSameInstr(Def, S->start)) {
73 assert(S->valno->def == S->start && "Inconsistent existing value def");
74
75 // It is possible to have both normal and early-clobber defs of the same
76 // register on an instruction. It doesn't make a lot of sense, but it is
77 // possible to specify in inline assembly.
78 //
79 // Just convert everything to early-clobber.
80 Def = std::min(Def, S->start);
81 if (Def != S->start)
82 S->start = S->valno->def = Def;
83 return S->valno;
84 }
85 assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
86 VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
87 segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
88 return VNI;
89 }
90
extendInBlock(SlotIndex StartIdx,SlotIndex Use)91 VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
92 if (segments().empty())
93 return nullptr;
94 iterator I =
95 impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
96 if (I == segments().begin())
97 return nullptr;
98 --I;
99 if (I->end <= StartIdx)
100 return nullptr;
101 if (I->end < Use)
102 extendSegmentEndTo(I, Use);
103 return I->valno;
104 }
105
106 /// This method is used when we want to extend the segment specified
107 /// by I to end at the specified endpoint. To do this, we should
108 /// merge and eliminate all segments that this will overlap
109 /// with. The iterator is not invalidated.
extendSegmentEndTo(iterator I,SlotIndex NewEnd)110 void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
111 assert(I != segments().end() && "Not a valid segment!");
112 Segment *S = segmentAt(I);
113 VNInfo *ValNo = I->valno;
114
115 // Search for the first segment that we can't merge with.
116 iterator MergeTo = std::next(I);
117 for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
118 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
119
120 // If NewEnd was in the middle of a segment, make sure to get its endpoint.
121 S->end = std::max(NewEnd, std::prev(MergeTo)->end);
122
123 // If the newly formed segment now touches the segment after it and if they
124 // have the same value number, merge the two segments into one segment.
125 if (MergeTo != segments().end() && MergeTo->start <= I->end &&
126 MergeTo->valno == ValNo) {
127 S->end = MergeTo->end;
128 ++MergeTo;
129 }
130
131 // Erase any dead segments.
132 segments().erase(std::next(I), MergeTo);
133 }
134
135 /// This method is used when we want to extend the segment specified
136 /// by I to start at the specified endpoint. To do this, we should
137 /// merge and eliminate all segments that this will overlap with.
extendSegmentStartTo(iterator I,SlotIndex NewStart)138 iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
139 assert(I != segments().end() && "Not a valid segment!");
140 Segment *S = segmentAt(I);
141 VNInfo *ValNo = I->valno;
142
143 // Search for the first segment that we can't merge with.
144 iterator MergeTo = I;
145 do {
146 if (MergeTo == segments().begin()) {
147 S->start = NewStart;
148 segments().erase(MergeTo, I);
149 return I;
150 }
151 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
152 --MergeTo;
153 } while (NewStart <= MergeTo->start);
154
155 // If we start in the middle of another segment, just delete a range and
156 // extend that segment.
157 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
158 segmentAt(MergeTo)->end = S->end;
159 } else {
160 // Otherwise, extend the segment right after.
161 ++MergeTo;
162 Segment *MergeToSeg = segmentAt(MergeTo);
163 MergeToSeg->start = NewStart;
164 MergeToSeg->end = S->end;
165 }
166
167 segments().erase(std::next(MergeTo), std::next(I));
168 return MergeTo;
169 }
170
addSegment(Segment S)171 iterator addSegment(Segment S) {
172 SlotIndex Start = S.start, End = S.end;
173 iterator I = impl().findInsertPos(S);
174
175 // If the inserted segment starts in the middle or right at the end of
176 // another segment, just extend that segment to contain the segment of S.
177 if (I != segments().begin()) {
178 iterator B = std::prev(I);
179 if (S.valno == B->valno) {
180 if (B->start <= Start && B->end >= Start) {
181 extendSegmentEndTo(B, End);
182 return B;
183 }
184 } else {
185 // Check to make sure that we are not overlapping two live segments with
186 // different valno's.
187 assert(B->end <= Start &&
188 "Cannot overlap two segments with differing ValID's"
189 " (did you def the same reg twice in a MachineInstr?)");
190 }
191 }
192
193 // Otherwise, if this segment ends in the middle of, or right next
194 // to, another segment, merge it into that segment.
195 if (I != segments().end()) {
196 if (S.valno == I->valno) {
197 if (I->start <= End) {
198 I = extendSegmentStartTo(I, Start);
199
200 // If S is a complete superset of a segment, we may need to grow its
201 // endpoint as well.
202 if (End > I->end)
203 extendSegmentEndTo(I, End);
204 return I;
205 }
206 } else {
207 // Check to make sure that we are not overlapping two live segments with
208 // different valno's.
209 assert(I->start >= End &&
210 "Cannot overlap two segments with differing ValID's");
211 }
212 }
213
214 // Otherwise, this is just a new segment that doesn't interact with
215 // anything.
216 // Insert it.
217 return segments().insert(I, S);
218 }
219
220 private:
impl()221 ImplT &impl() { return *static_cast<ImplT *>(this); }
222
segments()223 CollectionT &segments() { return impl().segmentsColl(); }
224
segmentAt(iterator I)225 Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
226 };
227
228 //===----------------------------------------------------------------------===//
229 // Instantiation of the methods for calculation of live ranges
230 // based on a segment vector.
231 //===----------------------------------------------------------------------===//
232
233 class CalcLiveRangeUtilVector;
234 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
235 LiveRange::Segments> CalcLiveRangeUtilVectorBase;
236
237 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
238 public:
CalcLiveRangeUtilVector(LiveRange * LR)239 CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
240
241 private:
242 friend CalcLiveRangeUtilVectorBase;
243
segmentsColl()244 LiveRange::Segments &segmentsColl() { return LR->segments; }
245
insertAtEnd(const Segment & S)246 void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
247
find(SlotIndex Pos)248 iterator find(SlotIndex Pos) { return LR->find(Pos); }
249
findInsertPos(Segment S)250 iterator findInsertPos(Segment S) {
251 return std::upper_bound(LR->begin(), LR->end(), S.start);
252 }
253 };
254
255 //===----------------------------------------------------------------------===//
256 // Instantiation of the methods for calculation of live ranges
257 // based on a segment set.
258 //===----------------------------------------------------------------------===//
259
260 class CalcLiveRangeUtilSet;
261 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet,
262 LiveRange::SegmentSet::iterator,
263 LiveRange::SegmentSet> CalcLiveRangeUtilSetBase;
264
265 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
266 public:
CalcLiveRangeUtilSet(LiveRange * LR)267 CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
268
269 private:
270 friend CalcLiveRangeUtilSetBase;
271
segmentsColl()272 LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
273
insertAtEnd(const Segment & S)274 void insertAtEnd(const Segment &S) {
275 LR->segmentSet->insert(LR->segmentSet->end(), S);
276 }
277
find(SlotIndex Pos)278 iterator find(SlotIndex Pos) {
279 iterator I =
280 LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
281 if (I == LR->segmentSet->begin())
282 return I;
283 iterator PrevI = std::prev(I);
284 if (Pos < (*PrevI).end)
285 return PrevI;
286 return I;
287 }
288
findInsertPos(Segment S)289 iterator findInsertPos(Segment S) {
290 iterator I = LR->segmentSet->upper_bound(S);
291 if (I != LR->segmentSet->end() && !(S.start < *I))
292 ++I;
293 return I;
294 }
295 };
296 } // namespace
297
298 //===----------------------------------------------------------------------===//
299 // LiveRange methods
300 //===----------------------------------------------------------------------===//
301
find(SlotIndex Pos)302 LiveRange::iterator LiveRange::find(SlotIndex Pos) {
303 // This algorithm is basically std::upper_bound.
304 // Unfortunately, std::upper_bound cannot be used with mixed types until we
305 // adopt C++0x. Many libraries can do it, but not all.
306 if (empty() || Pos >= endIndex())
307 return end();
308 iterator I = begin();
309 size_t Len = size();
310 do {
311 size_t Mid = Len >> 1;
312 if (Pos < I[Mid].end)
313 Len = Mid;
314 else
315 I += Mid + 1, Len -= Mid + 1;
316 } while (Len);
317 return I;
318 }
319
createDeadDef(SlotIndex Def,VNInfo::Allocator & VNInfoAllocator)320 VNInfo *LiveRange::createDeadDef(SlotIndex Def,
321 VNInfo::Allocator &VNInfoAllocator) {
322 // Use the segment set, if it is available.
323 if (segmentSet != nullptr)
324 return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator);
325 // Otherwise use the segment vector.
326 return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator);
327 }
328
329 // overlaps - Return true if the intersection of the two live ranges is
330 // not empty.
331 //
332 // An example for overlaps():
333 //
334 // 0: A = ...
335 // 4: B = ...
336 // 8: C = A + B ;; last use of A
337 //
338 // The live ranges should look like:
339 //
340 // A = [3, 11)
341 // B = [7, x)
342 // C = [11, y)
343 //
344 // A->overlaps(C) should return false since we want to be able to join
345 // A and C.
346 //
overlapsFrom(const LiveRange & other,const_iterator StartPos) const347 bool LiveRange::overlapsFrom(const LiveRange& other,
348 const_iterator StartPos) const {
349 assert(!empty() && "empty range");
350 const_iterator i = begin();
351 const_iterator ie = end();
352 const_iterator j = StartPos;
353 const_iterator je = other.end();
354
355 assert((StartPos->start <= i->start || StartPos == other.begin()) &&
356 StartPos != other.end() && "Bogus start position hint!");
357
358 if (i->start < j->start) {
359 i = std::upper_bound(i, ie, j->start);
360 if (i != begin()) --i;
361 } else if (j->start < i->start) {
362 ++StartPos;
363 if (StartPos != other.end() && StartPos->start <= i->start) {
364 assert(StartPos < other.end() && i < end());
365 j = std::upper_bound(j, je, i->start);
366 if (j != other.begin()) --j;
367 }
368 } else {
369 return true;
370 }
371
372 if (j == je) return false;
373
374 while (i != ie) {
375 if (i->start > j->start) {
376 std::swap(i, j);
377 std::swap(ie, je);
378 }
379
380 if (i->end > j->start)
381 return true;
382 ++i;
383 }
384
385 return false;
386 }
387
overlaps(const LiveRange & Other,const CoalescerPair & CP,const SlotIndexes & Indexes) const388 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
389 const SlotIndexes &Indexes) const {
390 assert(!empty() && "empty range");
391 if (Other.empty())
392 return false;
393
394 // Use binary searches to find initial positions.
395 const_iterator I = find(Other.beginIndex());
396 const_iterator IE = end();
397 if (I == IE)
398 return false;
399 const_iterator J = Other.find(I->start);
400 const_iterator JE = Other.end();
401 if (J == JE)
402 return false;
403
404 for (;;) {
405 // J has just been advanced to satisfy:
406 assert(J->end >= I->start);
407 // Check for an overlap.
408 if (J->start < I->end) {
409 // I and J are overlapping. Find the later start.
410 SlotIndex Def = std::max(I->start, J->start);
411 // Allow the overlap if Def is a coalescable copy.
412 if (Def.isBlock() ||
413 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
414 return true;
415 }
416 // Advance the iterator that ends first to check for more overlaps.
417 if (J->end > I->end) {
418 std::swap(I, J);
419 std::swap(IE, JE);
420 }
421 // Advance J until J->end >= I->start.
422 do
423 if (++J == JE)
424 return false;
425 while (J->end < I->start);
426 }
427 }
428
429 /// overlaps - Return true if the live range overlaps an interval specified
430 /// by [Start, End).
overlaps(SlotIndex Start,SlotIndex End) const431 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
432 assert(Start < End && "Invalid range");
433 const_iterator I = std::lower_bound(begin(), end(), End);
434 return I != begin() && (--I)->end > Start;
435 }
436
covers(const LiveRange & Other) const437 bool LiveRange::covers(const LiveRange &Other) const {
438 if (empty())
439 return Other.empty();
440
441 const_iterator I = begin();
442 for (const Segment &O : Other.segments) {
443 I = advanceTo(I, O.start);
444 if (I == end() || I->start > O.start)
445 return false;
446
447 // Check adjacent live segments and see if we can get behind O.end.
448 while (I->end < O.end) {
449 const_iterator Last = I;
450 // Get next segment and abort if it was not adjacent.
451 ++I;
452 if (I == end() || Last->end != I->start)
453 return false;
454 }
455 }
456 return true;
457 }
458
459 /// ValNo is dead, remove it. If it is the largest value number, just nuke it
460 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
461 /// it can be nuked later.
markValNoForDeletion(VNInfo * ValNo)462 void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
463 if (ValNo->id == getNumValNums()-1) {
464 do {
465 valnos.pop_back();
466 } while (!valnos.empty() && valnos.back()->isUnused());
467 } else {
468 ValNo->markUnused();
469 }
470 }
471
472 /// RenumberValues - Renumber all values in order of appearance and delete the
473 /// remaining unused values.
RenumberValues()474 void LiveRange::RenumberValues() {
475 SmallPtrSet<VNInfo*, 8> Seen;
476 valnos.clear();
477 for (const Segment &S : segments) {
478 VNInfo *VNI = S.valno;
479 if (!Seen.insert(VNI).second)
480 continue;
481 assert(!VNI->isUnused() && "Unused valno used by live segment");
482 VNI->id = (unsigned)valnos.size();
483 valnos.push_back(VNI);
484 }
485 }
486
addSegmentToSet(Segment S)487 void LiveRange::addSegmentToSet(Segment S) {
488 CalcLiveRangeUtilSet(this).addSegment(S);
489 }
490
addSegment(Segment S)491 LiveRange::iterator LiveRange::addSegment(Segment S) {
492 // Use the segment set, if it is available.
493 if (segmentSet != nullptr) {
494 addSegmentToSet(S);
495 return end();
496 }
497 // Otherwise use the segment vector.
498 return CalcLiveRangeUtilVector(this).addSegment(S);
499 }
500
append(const Segment S)501 void LiveRange::append(const Segment S) {
502 // Check that the segment belongs to the back of the list.
503 assert(segments.empty() || segments.back().end <= S.start);
504 segments.push_back(S);
505 }
506
507 /// extendInBlock - If this range is live before Kill in the basic
508 /// block that starts at StartIdx, extend it to be live up to Kill and return
509 /// the value. If there is no live range before Kill, return NULL.
extendInBlock(SlotIndex StartIdx,SlotIndex Kill)510 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
511 // Use the segment set, if it is available.
512 if (segmentSet != nullptr)
513 return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
514 // Otherwise use the segment vector.
515 return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
516 }
517
518 /// Remove the specified segment from this range. Note that the segment must
519 /// be in a single Segment in its entirety.
removeSegment(SlotIndex Start,SlotIndex End,bool RemoveDeadValNo)520 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
521 bool RemoveDeadValNo) {
522 // Find the Segment containing this span.
523 iterator I = find(Start);
524 assert(I != end() && "Segment is not in range!");
525 assert(I->containsInterval(Start, End)
526 && "Segment is not entirely in range!");
527
528 // If the span we are removing is at the start of the Segment, adjust it.
529 VNInfo *ValNo = I->valno;
530 if (I->start == Start) {
531 if (I->end == End) {
532 if (RemoveDeadValNo) {
533 // Check if val# is dead.
534 bool isDead = true;
535 for (const_iterator II = begin(), EE = end(); II != EE; ++II)
536 if (II != I && II->valno == ValNo) {
537 isDead = false;
538 break;
539 }
540 if (isDead) {
541 // Now that ValNo is dead, remove it.
542 markValNoForDeletion(ValNo);
543 }
544 }
545
546 segments.erase(I); // Removed the whole Segment.
547 } else
548 I->start = End;
549 return;
550 }
551
552 // Otherwise if the span we are removing is at the end of the Segment,
553 // adjust the other way.
554 if (I->end == End) {
555 I->end = Start;
556 return;
557 }
558
559 // Otherwise, we are splitting the Segment into two pieces.
560 SlotIndex OldEnd = I->end;
561 I->end = Start; // Trim the old segment.
562
563 // Insert the new one.
564 segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
565 }
566
567 /// removeValNo - Remove all the segments defined by the specified value#.
568 /// Also remove the value# from value# list.
removeValNo(VNInfo * ValNo)569 void LiveRange::removeValNo(VNInfo *ValNo) {
570 if (empty()) return;
571 segments.erase(std::remove_if(begin(), end(), [ValNo](const Segment &S) {
572 return S.valno == ValNo;
573 }), end());
574 // Now that ValNo is dead, remove it.
575 markValNoForDeletion(ValNo);
576 }
577
join(LiveRange & Other,const int * LHSValNoAssignments,const int * RHSValNoAssignments,SmallVectorImpl<VNInfo * > & NewVNInfo)578 void LiveRange::join(LiveRange &Other,
579 const int *LHSValNoAssignments,
580 const int *RHSValNoAssignments,
581 SmallVectorImpl<VNInfo *> &NewVNInfo) {
582 verify();
583
584 // Determine if any of our values are mapped. This is uncommon, so we want
585 // to avoid the range scan if not.
586 bool MustMapCurValNos = false;
587 unsigned NumVals = getNumValNums();
588 unsigned NumNewVals = NewVNInfo.size();
589 for (unsigned i = 0; i != NumVals; ++i) {
590 unsigned LHSValID = LHSValNoAssignments[i];
591 if (i != LHSValID ||
592 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
593 MustMapCurValNos = true;
594 break;
595 }
596 }
597
598 // If we have to apply a mapping to our base range assignment, rewrite it now.
599 if (MustMapCurValNos && !empty()) {
600 // Map the first live range.
601
602 iterator OutIt = begin();
603 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
604 for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
605 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
606 assert(nextValNo && "Huh?");
607
608 // If this live range has the same value # as its immediate predecessor,
609 // and if they are neighbors, remove one Segment. This happens when we
610 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
611 if (OutIt->valno == nextValNo && OutIt->end == I->start) {
612 OutIt->end = I->end;
613 } else {
614 // Didn't merge. Move OutIt to the next segment,
615 ++OutIt;
616 OutIt->valno = nextValNo;
617 if (OutIt != I) {
618 OutIt->start = I->start;
619 OutIt->end = I->end;
620 }
621 }
622 }
623 // If we merge some segments, chop off the end.
624 ++OutIt;
625 segments.erase(OutIt, end());
626 }
627
628 // Rewrite Other values before changing the VNInfo ids.
629 // This can leave Other in an invalid state because we're not coalescing
630 // touching segments that now have identical values. That's OK since Other is
631 // not supposed to be valid after calling join();
632 for (Segment &S : Other.segments)
633 S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
634
635 // Update val# info. Renumber them and make sure they all belong to this
636 // LiveRange now. Also remove dead val#'s.
637 unsigned NumValNos = 0;
638 for (unsigned i = 0; i < NumNewVals; ++i) {
639 VNInfo *VNI = NewVNInfo[i];
640 if (VNI) {
641 if (NumValNos >= NumVals)
642 valnos.push_back(VNI);
643 else
644 valnos[NumValNos] = VNI;
645 VNI->id = NumValNos++; // Renumber val#.
646 }
647 }
648 if (NumNewVals < NumVals)
649 valnos.resize(NumNewVals); // shrinkify
650
651 // Okay, now insert the RHS live segments into the LHS.
652 LiveRangeUpdater Updater(this);
653 for (Segment &S : Other.segments)
654 Updater.add(S);
655 }
656
657 /// Merge all of the segments in RHS into this live range as the specified
658 /// value number. The segments in RHS are allowed to overlap with segments in
659 /// the current range, but only if the overlapping segments have the
660 /// specified value number.
MergeSegmentsInAsValue(const LiveRange & RHS,VNInfo * LHSValNo)661 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
662 VNInfo *LHSValNo) {
663 LiveRangeUpdater Updater(this);
664 for (const Segment &S : RHS.segments)
665 Updater.add(S.start, S.end, LHSValNo);
666 }
667
668 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
669 /// in RHS into this live range as the specified value number.
670 /// The segments in RHS are allowed to overlap with segments in the
671 /// current range, it will replace the value numbers of the overlaped
672 /// segments with the specified value number.
MergeValueInAsValue(const LiveRange & RHS,const VNInfo * RHSValNo,VNInfo * LHSValNo)673 void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
674 const VNInfo *RHSValNo,
675 VNInfo *LHSValNo) {
676 LiveRangeUpdater Updater(this);
677 for (const Segment &S : RHS.segments)
678 if (S.valno == RHSValNo)
679 Updater.add(S.start, S.end, LHSValNo);
680 }
681
682 /// MergeValueNumberInto - This method is called when two value nubmers
683 /// are found to be equivalent. This eliminates V1, replacing all
684 /// segments with the V1 value number with the V2 value number. This can
685 /// cause merging of V1/V2 values numbers and compaction of the value space.
MergeValueNumberInto(VNInfo * V1,VNInfo * V2)686 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
687 assert(V1 != V2 && "Identical value#'s are always equivalent!");
688
689 // This code actually merges the (numerically) larger value number into the
690 // smaller value number, which is likely to allow us to compactify the value
691 // space. The only thing we have to be careful of is to preserve the
692 // instruction that defines the result value.
693
694 // Make sure V2 is smaller than V1.
695 if (V1->id < V2->id) {
696 V1->copyFrom(*V2);
697 std::swap(V1, V2);
698 }
699
700 // Merge V1 segments into V2.
701 for (iterator I = begin(); I != end(); ) {
702 iterator S = I++;
703 if (S->valno != V1) continue; // Not a V1 Segment.
704
705 // Okay, we found a V1 live range. If it had a previous, touching, V2 live
706 // range, extend it.
707 if (S != begin()) {
708 iterator Prev = S-1;
709 if (Prev->valno == V2 && Prev->end == S->start) {
710 Prev->end = S->end;
711
712 // Erase this live-range.
713 segments.erase(S);
714 I = Prev+1;
715 S = Prev;
716 }
717 }
718
719 // Okay, now we have a V1 or V2 live range that is maximally merged forward.
720 // Ensure that it is a V2 live-range.
721 S->valno = V2;
722
723 // If we can merge it into later V2 segments, do so now. We ignore any
724 // following V1 segments, as they will be merged in subsequent iterations
725 // of the loop.
726 if (I != end()) {
727 if (I->start == S->end && I->valno == V2) {
728 S->end = I->end;
729 segments.erase(I);
730 I = S+1;
731 }
732 }
733 }
734
735 // Now that V1 is dead, remove it.
736 markValNoForDeletion(V1);
737
738 return V2;
739 }
740
flushSegmentSet()741 void LiveRange::flushSegmentSet() {
742 assert(segmentSet != nullptr && "segment set must have been created");
743 assert(
744 segments.empty() &&
745 "segment set can be used only initially before switching to the array");
746 segments.append(segmentSet->begin(), segmentSet->end());
747 segmentSet = nullptr;
748 verify();
749 }
750
freeSubRange(SubRange * S)751 void LiveInterval::freeSubRange(SubRange *S) {
752 S->~SubRange();
753 // Memory was allocated with BumpPtr allocator and is not freed here.
754 }
755
removeEmptySubRanges()756 void LiveInterval::removeEmptySubRanges() {
757 SubRange **NextPtr = &SubRanges;
758 SubRange *I = *NextPtr;
759 while (I != nullptr) {
760 if (!I->empty()) {
761 NextPtr = &I->Next;
762 I = *NextPtr;
763 continue;
764 }
765 // Skip empty subranges until we find the first nonempty one.
766 do {
767 SubRange *Next = I->Next;
768 freeSubRange(I);
769 I = Next;
770 } while (I != nullptr && I->empty());
771 *NextPtr = I;
772 }
773 }
774
clearSubRanges()775 void LiveInterval::clearSubRanges() {
776 for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
777 Next = I->Next;
778 freeSubRange(I);
779 }
780 SubRanges = nullptr;
781 }
782
783 /// Helper function for constructMainRangeFromSubranges(): Search the CFG
784 /// backwards until we find a place covered by a LiveRange segment that actually
785 /// has a valno set.
searchForVNI(const SlotIndexes & Indexes,LiveRange & LR,const MachineBasicBlock * MBB,SmallPtrSetImpl<const MachineBasicBlock * > & Visited)786 static VNInfo *searchForVNI(const SlotIndexes &Indexes, LiveRange &LR,
787 const MachineBasicBlock *MBB,
788 SmallPtrSetImpl<const MachineBasicBlock*> &Visited) {
789 // We start the search at the end of MBB.
790 SlotIndex EndIdx = Indexes.getMBBEndIdx(MBB);
791 // In our use case we can't live the area covered by the live segments without
792 // finding an actual VNI def.
793 LiveRange::iterator I = LR.find(EndIdx.getPrevSlot());
794 assert(I != LR.end());
795 LiveRange::Segment &S = *I;
796 if (S.valno != nullptr)
797 return S.valno;
798
799 VNInfo *VNI = nullptr;
800 // Continue at predecessors (we could even go to idom with domtree available).
801 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
802 // Avoid going in circles.
803 if (!Visited.insert(Pred).second)
804 continue;
805
806 VNI = searchForVNI(Indexes, LR, Pred, Visited);
807 if (VNI != nullptr) {
808 S.valno = VNI;
809 break;
810 }
811 }
812
813 return VNI;
814 }
815
determineMissingVNIs(const SlotIndexes & Indexes,LiveInterval & LI)816 static void determineMissingVNIs(const SlotIndexes &Indexes, LiveInterval &LI) {
817 SmallPtrSet<const MachineBasicBlock*, 5> Visited;
818
819 LiveRange::iterator OutIt;
820 VNInfo *PrevValNo = nullptr;
821 for (LiveRange::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
822 LiveRange::Segment &S = *I;
823 // Determine final VNI if necessary.
824 if (S.valno == nullptr) {
825 // This can only happen at the begin of a basic block.
826 assert(S.start.isBlock() && "valno should only be missing at block begin");
827
828 Visited.clear();
829 const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(S.start);
830 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
831 VNInfo *VNI = searchForVNI(Indexes, LI, Pred, Visited);
832 if (VNI != nullptr) {
833 S.valno = VNI;
834 break;
835 }
836 }
837 assert(S.valno != nullptr && "could not determine valno");
838 }
839 // Merge with previous segment if it has the same VNI.
840 if (PrevValNo == S.valno && OutIt->end == S.start) {
841 OutIt->end = S.end;
842 } else {
843 // Didn't merge. Move OutIt to next segment.
844 if (PrevValNo == nullptr)
845 OutIt = LI.begin();
846 else
847 ++OutIt;
848
849 if (OutIt != I)
850 *OutIt = *I;
851 PrevValNo = S.valno;
852 }
853 }
854 // If we merged some segments chop off the end.
855 ++OutIt;
856 LI.segments.erase(OutIt, LI.end());
857 }
858
constructMainRangeFromSubranges(const SlotIndexes & Indexes,VNInfo::Allocator & VNIAllocator)859 void LiveInterval::constructMainRangeFromSubranges(
860 const SlotIndexes &Indexes, VNInfo::Allocator &VNIAllocator) {
861 // The basic observations on which this algorithm is based:
862 // - Each Def/ValNo in a subrange must have a corresponding def on the main
863 // range, but not further defs/valnos are necessary.
864 // - If any of the subranges is live at a point the main liverange has to be
865 // live too, conversily if no subrange is live the main range mustn't be
866 // live either.
867 // We do this by scanning through all the subranges simultaneously creating new
868 // segments in the main range as segments start/ends come up in the subranges.
869 assert(hasSubRanges() && "expected subranges to be present");
870 assert(segments.empty() && valnos.empty() && "expected empty main range");
871
872 // Collect subrange, iterator pairs for the walk and determine first and last
873 // SlotIndex involved.
874 SmallVector<std::pair<const SubRange*, const_iterator>, 4> SRs;
875 SlotIndex First;
876 SlotIndex Last;
877 for (const SubRange &SR : subranges()) {
878 if (SR.empty())
879 continue;
880 SRs.push_back(std::make_pair(&SR, SR.begin()));
881 if (!First.isValid() || SR.segments.front().start < First)
882 First = SR.segments.front().start;
883 if (!Last.isValid() || SR.segments.back().end > Last)
884 Last = SR.segments.back().end;
885 }
886
887 // Walk over all subranges simultaneously.
888 Segment CurrentSegment;
889 bool ConstructingSegment = false;
890 bool NeedVNIFixup = false;
891 LaneBitmask ActiveMask = 0;
892 SlotIndex Pos = First;
893 while (true) {
894 SlotIndex NextPos = Last;
895 enum {
896 NOTHING,
897 BEGIN_SEGMENT,
898 END_SEGMENT,
899 } Event = NOTHING;
900 // Which subregister lanes are affected by the current event.
901 LaneBitmask EventMask = 0;
902 // Whether a BEGIN_SEGMENT is also a valno definition point.
903 bool IsDef = false;
904 // Find the next begin or end of a subrange segment. Combine masks if we
905 // have multiple begins/ends at the same position. Ends take precedence over
906 // Begins.
907 for (auto &SRP : SRs) {
908 const SubRange &SR = *SRP.first;
909 const_iterator &I = SRP.second;
910 // Advance iterator of subrange to a segment involving Pos; the earlier
911 // segments are already merged at this point.
912 while (I != SR.end() &&
913 (I->end < Pos ||
914 (I->end == Pos && (ActiveMask & SR.LaneMask) == 0)))
915 ++I;
916 if (I == SR.end())
917 continue;
918 if ((ActiveMask & SR.LaneMask) == 0 &&
919 Pos <= I->start && I->start <= NextPos) {
920 // Merge multiple begins at the same position.
921 if (I->start == NextPos && Event == BEGIN_SEGMENT) {
922 EventMask |= SR.LaneMask;
923 IsDef |= I->valno->def == I->start;
924 } else if (I->start < NextPos || Event != END_SEGMENT) {
925 Event = BEGIN_SEGMENT;
926 NextPos = I->start;
927 EventMask = SR.LaneMask;
928 IsDef = I->valno->def == I->start;
929 }
930 }
931 if ((ActiveMask & SR.LaneMask) != 0 &&
932 Pos <= I->end && I->end <= NextPos) {
933 // Merge multiple ends at the same position.
934 if (I->end == NextPos && Event == END_SEGMENT)
935 EventMask |= SR.LaneMask;
936 else {
937 Event = END_SEGMENT;
938 NextPos = I->end;
939 EventMask = SR.LaneMask;
940 }
941 }
942 }
943
944 // Advance scan position.
945 Pos = NextPos;
946 if (Event == BEGIN_SEGMENT) {
947 if (ConstructingSegment && IsDef) {
948 // Finish previous segment because we have to start a new one.
949 CurrentSegment.end = Pos;
950 append(CurrentSegment);
951 ConstructingSegment = false;
952 }
953
954 // Start a new segment if necessary.
955 if (!ConstructingSegment) {
956 // Determine value number for the segment.
957 VNInfo *VNI;
958 if (IsDef) {
959 VNI = getNextValue(Pos, VNIAllocator);
960 } else {
961 // We have to reuse an existing value number, if we are lucky
962 // then we already passed one of the predecessor blocks and determined
963 // its value number (with blocks in reverse postorder this would be
964 // always true but we have no such guarantee).
965 assert(Pos.isBlock());
966 const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Pos);
967 // See if any of the predecessor blocks has a lower number and a VNI
968 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
969 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
970 VNI = getVNInfoBefore(PredEnd);
971 if (VNI != nullptr)
972 break;
973 }
974 // Def will come later: We have to do an extra fixup pass.
975 if (VNI == nullptr)
976 NeedVNIFixup = true;
977 }
978
979 // In rare cases we can produce adjacent segments with the same value
980 // number (if they come from different subranges, but happen to have
981 // the same defining instruction). VNIFixup will fix those cases.
982 if (!empty() && segments.back().end == Pos &&
983 segments.back().valno == VNI)
984 NeedVNIFixup = true;
985 CurrentSegment.start = Pos;
986 CurrentSegment.valno = VNI;
987 ConstructingSegment = true;
988 }
989 ActiveMask |= EventMask;
990 } else if (Event == END_SEGMENT) {
991 assert(ConstructingSegment);
992 // Finish segment if no lane is active anymore.
993 ActiveMask &= ~EventMask;
994 if (ActiveMask == 0) {
995 CurrentSegment.end = Pos;
996 append(CurrentSegment);
997 ConstructingSegment = false;
998 }
999 } else {
1000 // We reached the end of the last subranges and can stop.
1001 assert(Event == NOTHING);
1002 break;
1003 }
1004 }
1005
1006 // We might not be able to assign new valnos for all segments if the basic
1007 // block containing the definition comes after a segment using the valno.
1008 // Do a fixup pass for this uncommon case.
1009 if (NeedVNIFixup)
1010 determineMissingVNIs(Indexes, *this);
1011
1012 assert(ActiveMask == 0 && !ConstructingSegment && "all segments ended");
1013 verify();
1014 }
1015
getSize() const1016 unsigned LiveInterval::getSize() const {
1017 unsigned Sum = 0;
1018 for (const Segment &S : segments)
1019 Sum += S.start.distance(S.end);
1020 return Sum;
1021 }
1022
operator <<(raw_ostream & os,const LiveRange::Segment & S)1023 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
1024 return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
1025 }
1026
1027 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1028 void LiveRange::Segment::dump() const {
1029 dbgs() << *this << "\n";
1030 }
1031 #endif
1032
print(raw_ostream & OS) const1033 void LiveRange::print(raw_ostream &OS) const {
1034 if (empty())
1035 OS << "EMPTY";
1036 else {
1037 for (const Segment &S : segments) {
1038 OS << S;
1039 assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
1040 }
1041 }
1042
1043 // Print value number info.
1044 if (getNumValNums()) {
1045 OS << " ";
1046 unsigned vnum = 0;
1047 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
1048 ++i, ++vnum) {
1049 const VNInfo *vni = *i;
1050 if (vnum) OS << " ";
1051 OS << vnum << "@";
1052 if (vni->isUnused()) {
1053 OS << "x";
1054 } else {
1055 OS << vni->def;
1056 if (vni->isPHIDef())
1057 OS << "-phi";
1058 }
1059 }
1060 }
1061 }
1062
print(raw_ostream & OS) const1063 void LiveInterval::print(raw_ostream &OS) const {
1064 OS << PrintReg(reg) << ' ';
1065 super::print(OS);
1066 // Print subranges
1067 for (const SubRange &SR : subranges()) {
1068 OS << " L" << PrintLaneMask(SR.LaneMask) << ' ' << SR;
1069 }
1070 }
1071
1072 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1073 void LiveRange::dump() const {
1074 dbgs() << *this << "\n";
1075 }
1076
dump() const1077 void LiveInterval::dump() const {
1078 dbgs() << *this << "\n";
1079 }
1080 #endif
1081
1082 #ifndef NDEBUG
verify() const1083 void LiveRange::verify() const {
1084 for (const_iterator I = begin(), E = end(); I != E; ++I) {
1085 assert(I->start.isValid());
1086 assert(I->end.isValid());
1087 assert(I->start < I->end);
1088 assert(I->valno != nullptr);
1089 assert(I->valno->id < valnos.size());
1090 assert(I->valno == valnos[I->valno->id]);
1091 if (std::next(I) != E) {
1092 assert(I->end <= std::next(I)->start);
1093 if (I->end == std::next(I)->start)
1094 assert(I->valno != std::next(I)->valno);
1095 }
1096 }
1097 }
1098
verify(const MachineRegisterInfo * MRI) const1099 void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
1100 super::verify();
1101
1102 // Make sure SubRanges are fine and LaneMasks are disjunct.
1103 LaneBitmask Mask = 0;
1104 LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u;
1105 for (const SubRange &SR : subranges()) {
1106 // Subrange lanemask should be disjunct to any previous subrange masks.
1107 assert((Mask & SR.LaneMask) == 0);
1108 Mask |= SR.LaneMask;
1109
1110 // subrange mask should not contained in maximum lane mask for the vreg.
1111 assert((Mask & ~MaxMask) == 0);
1112 // empty subranges must be removed.
1113 assert(!SR.empty());
1114
1115 SR.verify();
1116 // Main liverange should cover subrange.
1117 assert(covers(SR));
1118 }
1119 }
1120 #endif
1121
1122
1123 //===----------------------------------------------------------------------===//
1124 // LiveRangeUpdater class
1125 //===----------------------------------------------------------------------===//
1126 //
1127 // The LiveRangeUpdater class always maintains these invariants:
1128 //
1129 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
1130 // This is the initial state, and the state created by flush().
1131 // In this state, isDirty() returns false.
1132 //
1133 // Otherwise, segments are kept in three separate areas:
1134 //
1135 // 1. [begin; WriteI) at the front of LR.
1136 // 2. [ReadI; end) at the back of LR.
1137 // 3. Spills.
1138 //
1139 // - LR.begin() <= WriteI <= ReadI <= LR.end().
1140 // - Segments in all three areas are fully ordered and coalesced.
1141 // - Segments in area 1 precede and can't coalesce with segments in area 2.
1142 // - Segments in Spills precede and can't coalesce with segments in area 2.
1143 // - No coalescing is possible between segments in Spills and segments in area
1144 // 1, and there are no overlapping segments.
1145 //
1146 // The segments in Spills are not ordered with respect to the segments in area
1147 // 1. They need to be merged.
1148 //
1149 // When they exist, Spills.back().start <= LastStart,
1150 // and WriteI[-1].start <= LastStart.
1151
print(raw_ostream & OS) const1152 void LiveRangeUpdater::print(raw_ostream &OS) const {
1153 if (!isDirty()) {
1154 if (LR)
1155 OS << "Clean updater: " << *LR << '\n';
1156 else
1157 OS << "Null updater.\n";
1158 return;
1159 }
1160 assert(LR && "Can't have null LR in dirty updater.");
1161 OS << " updater with gap = " << (ReadI - WriteI)
1162 << ", last start = " << LastStart
1163 << ":\n Area 1:";
1164 for (const auto &S : make_range(LR->begin(), WriteI))
1165 OS << ' ' << S;
1166 OS << "\n Spills:";
1167 for (unsigned I = 0, E = Spills.size(); I != E; ++I)
1168 OS << ' ' << Spills[I];
1169 OS << "\n Area 2:";
1170 for (const auto &S : make_range(ReadI, LR->end()))
1171 OS << ' ' << S;
1172 OS << '\n';
1173 }
1174
dump() const1175 void LiveRangeUpdater::dump() const
1176 {
1177 print(errs());
1178 }
1179
1180 // Determine if A and B should be coalesced.
coalescable(const LiveRange::Segment & A,const LiveRange::Segment & B)1181 static inline bool coalescable(const LiveRange::Segment &A,
1182 const LiveRange::Segment &B) {
1183 assert(A.start <= B.start && "Unordered live segments.");
1184 if (A.end == B.start)
1185 return A.valno == B.valno;
1186 if (A.end < B.start)
1187 return false;
1188 assert(A.valno == B.valno && "Cannot overlap different values");
1189 return true;
1190 }
1191
add(LiveRange::Segment Seg)1192 void LiveRangeUpdater::add(LiveRange::Segment Seg) {
1193 assert(LR && "Cannot add to a null destination");
1194
1195 // Fall back to the regular add method if the live range
1196 // is using the segment set instead of the segment vector.
1197 if (LR->segmentSet != nullptr) {
1198 LR->addSegmentToSet(Seg);
1199 return;
1200 }
1201
1202 // Flush the state if Start moves backwards.
1203 if (!LastStart.isValid() || LastStart > Seg.start) {
1204 if (isDirty())
1205 flush();
1206 // This brings us to an uninitialized state. Reinitialize.
1207 assert(Spills.empty() && "Leftover spilled segments");
1208 WriteI = ReadI = LR->begin();
1209 }
1210
1211 // Remember start for next time.
1212 LastStart = Seg.start;
1213
1214 // Advance ReadI until it ends after Seg.start.
1215 LiveRange::iterator E = LR->end();
1216 if (ReadI != E && ReadI->end <= Seg.start) {
1217 // First try to close the gap between WriteI and ReadI with spills.
1218 if (ReadI != WriteI)
1219 mergeSpills();
1220 // Then advance ReadI.
1221 if (ReadI == WriteI)
1222 ReadI = WriteI = LR->find(Seg.start);
1223 else
1224 while (ReadI != E && ReadI->end <= Seg.start)
1225 *WriteI++ = *ReadI++;
1226 }
1227
1228 assert(ReadI == E || ReadI->end > Seg.start);
1229
1230 // Check if the ReadI segment begins early.
1231 if (ReadI != E && ReadI->start <= Seg.start) {
1232 assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
1233 // Bail if Seg is completely contained in ReadI.
1234 if (ReadI->end >= Seg.end)
1235 return;
1236 // Coalesce into Seg.
1237 Seg.start = ReadI->start;
1238 ++ReadI;
1239 }
1240
1241 // Coalesce as much as possible from ReadI into Seg.
1242 while (ReadI != E && coalescable(Seg, *ReadI)) {
1243 Seg.end = std::max(Seg.end, ReadI->end);
1244 ++ReadI;
1245 }
1246
1247 // Try coalescing Spills.back() into Seg.
1248 if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
1249 Seg.start = Spills.back().start;
1250 Seg.end = std::max(Spills.back().end, Seg.end);
1251 Spills.pop_back();
1252 }
1253
1254 // Try coalescing Seg into WriteI[-1].
1255 if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
1256 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
1257 return;
1258 }
1259
1260 // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1261 if (WriteI != ReadI) {
1262 *WriteI++ = Seg;
1263 return;
1264 }
1265
1266 // Finally, append to LR or Spills.
1267 if (WriteI == E) {
1268 LR->segments.push_back(Seg);
1269 WriteI = ReadI = LR->end();
1270 } else
1271 Spills.push_back(Seg);
1272 }
1273
1274 // Merge as many spilled segments as possible into the gap between WriteI
1275 // and ReadI. Advance WriteI to reflect the inserted instructions.
mergeSpills()1276 void LiveRangeUpdater::mergeSpills() {
1277 // Perform a backwards merge of Spills and [SpillI;WriteI).
1278 size_t GapSize = ReadI - WriteI;
1279 size_t NumMoved = std::min(Spills.size(), GapSize);
1280 LiveRange::iterator Src = WriteI;
1281 LiveRange::iterator Dst = Src + NumMoved;
1282 LiveRange::iterator SpillSrc = Spills.end();
1283 LiveRange::iterator B = LR->begin();
1284
1285 // This is the new WriteI position after merging spills.
1286 WriteI = Dst;
1287
1288 // Now merge Src and Spills backwards.
1289 while (Src != Dst) {
1290 if (Src != B && Src[-1].start > SpillSrc[-1].start)
1291 *--Dst = *--Src;
1292 else
1293 *--Dst = *--SpillSrc;
1294 }
1295 assert(NumMoved == size_t(Spills.end() - SpillSrc));
1296 Spills.erase(SpillSrc, Spills.end());
1297 }
1298
flush()1299 void LiveRangeUpdater::flush() {
1300 if (!isDirty())
1301 return;
1302 // Clear the dirty state.
1303 LastStart = SlotIndex();
1304
1305 assert(LR && "Cannot add to a null destination");
1306
1307 // Nothing to merge?
1308 if (Spills.empty()) {
1309 LR->segments.erase(WriteI, ReadI);
1310 LR->verify();
1311 return;
1312 }
1313
1314 // Resize the WriteI - ReadI gap to match Spills.
1315 size_t GapSize = ReadI - WriteI;
1316 if (GapSize < Spills.size()) {
1317 // The gap is too small. Make some room.
1318 size_t WritePos = WriteI - LR->begin();
1319 LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
1320 // This also invalidated ReadI, but it is recomputed below.
1321 WriteI = LR->begin() + WritePos;
1322 } else {
1323 // Shrink the gap if necessary.
1324 LR->segments.erase(WriteI + Spills.size(), ReadI);
1325 }
1326 ReadI = WriteI + Spills.size();
1327 mergeSpills();
1328 LR->verify();
1329 }
1330
Classify(const LiveInterval * LI)1331 unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
1332 // Create initial equivalence classes.
1333 EqClass.clear();
1334 EqClass.grow(LI->getNumValNums());
1335
1336 const VNInfo *used = nullptr, *unused = nullptr;
1337
1338 // Determine connections.
1339 for (const VNInfo *VNI : LI->valnos) {
1340 // Group all unused values into one class.
1341 if (VNI->isUnused()) {
1342 if (unused)
1343 EqClass.join(unused->id, VNI->id);
1344 unused = VNI;
1345 continue;
1346 }
1347 used = VNI;
1348 if (VNI->isPHIDef()) {
1349 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
1350 assert(MBB && "Phi-def has no defining MBB");
1351 // Connect to values live out of predecessors.
1352 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
1353 PE = MBB->pred_end(); PI != PE; ++PI)
1354 if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
1355 EqClass.join(VNI->id, PVNI->id);
1356 } else {
1357 // Normal value defined by an instruction. Check for two-addr redef.
1358 // FIXME: This could be coincidental. Should we really check for a tied
1359 // operand constraint?
1360 // Note that VNI->def may be a use slot for an early clobber def.
1361 if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
1362 EqClass.join(VNI->id, UVNI->id);
1363 }
1364 }
1365
1366 // Lump all the unused values in with the last used value.
1367 if (used && unused)
1368 EqClass.join(used->id, unused->id);
1369
1370 EqClass.compress();
1371 return EqClass.getNumClasses();
1372 }
1373
1374 template<typename LiveRangeT, typename EqClassesT>
DistributeRange(LiveRangeT & LR,LiveRangeT * SplitLRs[],EqClassesT VNIClasses)1375 static void DistributeRange(LiveRangeT &LR, LiveRangeT *SplitLRs[],
1376 EqClassesT VNIClasses) {
1377 // Move segments to new intervals.
1378 LiveRange::iterator J = LR.begin(), E = LR.end();
1379 while (J != E && VNIClasses[J->valno->id] == 0)
1380 ++J;
1381 for (LiveRange::iterator I = J; I != E; ++I) {
1382 if (unsigned eq = VNIClasses[I->valno->id]) {
1383 assert((SplitLRs[eq-1]->empty() || SplitLRs[eq-1]->expiredAt(I->start)) &&
1384 "New intervals should be empty");
1385 SplitLRs[eq-1]->segments.push_back(*I);
1386 } else
1387 *J++ = *I;
1388 }
1389 LR.segments.erase(J, E);
1390
1391 // Transfer VNInfos to their new owners and renumber them.
1392 unsigned j = 0, e = LR.getNumValNums();
1393 while (j != e && VNIClasses[j] == 0)
1394 ++j;
1395 for (unsigned i = j; i != e; ++i) {
1396 VNInfo *VNI = LR.getValNumInfo(i);
1397 if (unsigned eq = VNIClasses[i]) {
1398 VNI->id = SplitLRs[eq-1]->getNumValNums();
1399 SplitLRs[eq-1]->valnos.push_back(VNI);
1400 } else {
1401 VNI->id = j;
1402 LR.valnos[j++] = VNI;
1403 }
1404 }
1405 LR.valnos.resize(j);
1406 }
1407
Distribute(LiveInterval & LI,LiveInterval * LIV[],MachineRegisterInfo & MRI)1408 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
1409 MachineRegisterInfo &MRI) {
1410 // Rewrite instructions.
1411 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
1412 RE = MRI.reg_end(); RI != RE;) {
1413 MachineOperand &MO = *RI;
1414 MachineInstr *MI = RI->getParent();
1415 ++RI;
1416 // DBG_VALUE instructions don't have slot indexes, so get the index of the
1417 // instruction before them.
1418 // Normally, DBG_VALUE instructions are removed before this function is
1419 // called, but it is not a requirement.
1420 SlotIndex Idx;
1421 if (MI->isDebugValue())
1422 Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
1423 else
1424 Idx = LIS.getInstructionIndex(MI);
1425 LiveQueryResult LRQ = LI.Query(Idx);
1426 const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
1427 // In the case of an <undef> use that isn't tied to any def, VNI will be
1428 // NULL. If the use is tied to a def, VNI will be the defined value.
1429 if (!VNI)
1430 continue;
1431 if (unsigned EqClass = getEqClass(VNI))
1432 MO.setReg(LIV[EqClass-1]->reg);
1433 }
1434
1435 // Distribute subregister liveranges.
1436 if (LI.hasSubRanges()) {
1437 unsigned NumComponents = EqClass.getNumClasses();
1438 SmallVector<unsigned, 8> VNIMapping;
1439 SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1440 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1441 for (LiveInterval::SubRange &SR : LI.subranges()) {
1442 // Create new subranges in the split intervals and construct a mapping
1443 // for the VNInfos in the subrange.
1444 unsigned NumValNos = SR.valnos.size();
1445 VNIMapping.clear();
1446 VNIMapping.reserve(NumValNos);
1447 SubRanges.clear();
1448 SubRanges.resize(NumComponents-1, nullptr);
1449 for (unsigned I = 0; I < NumValNos; ++I) {
1450 const VNInfo &VNI = *SR.valnos[I];
1451 const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
1452 assert(MainRangeVNI != nullptr
1453 && "SubRange def must have corresponding main range def");
1454 unsigned ComponentNum = getEqClass(MainRangeVNI);
1455 VNIMapping.push_back(ComponentNum);
1456 if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
1457 SubRanges[ComponentNum-1]
1458 = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
1459 }
1460 }
1461 DistributeRange(SR, SubRanges.data(), VNIMapping);
1462 }
1463 LI.removeEmptySubRanges();
1464 }
1465
1466 // Distribute main liverange.
1467 DistributeRange(LI, LIV, EqClass);
1468 }
1469