• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <assert.h>
12 #include <stdio.h>
13 #include <limits.h>
14 
15 #include "vpx/vpx_encoder.h"
16 #include "vpx_dsp/bitwriter_buffer.h"
17 #include "vpx_dsp/vpx_dsp_common.h"
18 #include "vpx_mem/vpx_mem.h"
19 #include "vpx_ports/mem_ops.h"
20 #include "vpx_ports/system_state.h"
21 
22 #include "vp9/common/vp9_entropy.h"
23 #include "vp9/common/vp9_entropymode.h"
24 #include "vp9/common/vp9_entropymv.h"
25 #include "vp9/common/vp9_mvref_common.h"
26 #include "vp9/common/vp9_pred_common.h"
27 #include "vp9/common/vp9_seg_common.h"
28 #include "vp9/common/vp9_tile_common.h"
29 
30 #include "vp9/encoder/vp9_cost.h"
31 #include "vp9/encoder/vp9_bitstream.h"
32 #include "vp9/encoder/vp9_encodemv.h"
33 #include "vp9/encoder/vp9_mcomp.h"
34 #include "vp9/encoder/vp9_segmentation.h"
35 #include "vp9/encoder/vp9_subexp.h"
36 #include "vp9/encoder/vp9_tokenize.h"
37 
38 static const struct vp9_token intra_mode_encodings[INTRA_MODES] = {
39   {0, 1}, {6, 3}, {28, 5}, {30, 5}, {58, 6}, {59, 6}, {126, 7}, {127, 7},
40   {62, 6}, {2, 2}};
41 static const struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS] =
42   {{0, 1}, {2, 2}, {3, 2}};
43 static const struct vp9_token partition_encodings[PARTITION_TYPES] =
44   {{0, 1}, {2, 2}, {6, 3}, {7, 3}};
45 static const struct vp9_token inter_mode_encodings[INTER_MODES] =
46   {{2, 2}, {6, 3}, {0, 1}, {7, 3}};
47 
write_intra_mode(vpx_writer * w,PREDICTION_MODE mode,const vpx_prob * probs)48 static void write_intra_mode(vpx_writer *w, PREDICTION_MODE mode,
49                              const vpx_prob *probs) {
50   vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]);
51 }
52 
write_inter_mode(vpx_writer * w,PREDICTION_MODE mode,const vpx_prob * probs)53 static void write_inter_mode(vpx_writer *w, PREDICTION_MODE mode,
54                              const vpx_prob *probs) {
55   assert(is_inter_mode(mode));
56   vp9_write_token(w, vp9_inter_mode_tree, probs,
57                   &inter_mode_encodings[INTER_OFFSET(mode)]);
58 }
59 
encode_unsigned_max(struct vpx_write_bit_buffer * wb,int data,int max)60 static void encode_unsigned_max(struct vpx_write_bit_buffer *wb,
61                                 int data, int max) {
62   vpx_wb_write_literal(wb, data, get_unsigned_bits(max));
63 }
64 
prob_diff_update(const vpx_tree_index * tree,vpx_prob probs[],const unsigned int counts[],int n,vpx_writer * w)65 static void prob_diff_update(const vpx_tree_index *tree,
66                              vpx_prob probs[/*n - 1*/],
67                              const unsigned int counts[/*n - 1*/],
68                              int n, vpx_writer *w) {
69   int i;
70   unsigned int branch_ct[32][2];
71 
72   // Assuming max number of probabilities <= 32
73   assert(n <= 32);
74 
75   vp9_tree_probs_from_distribution(tree, branch_ct, counts);
76   for (i = 0; i < n - 1; ++i)
77     vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
78 }
79 
write_selected_tx_size(const VP9_COMMON * cm,const MACROBLOCKD * xd,vpx_writer * w)80 static void write_selected_tx_size(const VP9_COMMON *cm,
81                                    const MACROBLOCKD *xd, vpx_writer *w) {
82   TX_SIZE tx_size = xd->mi[0]->mbmi.tx_size;
83   BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
84   const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
85   const vpx_prob *const tx_probs = get_tx_probs2(max_tx_size, xd,
86                                                  &cm->fc->tx_probs);
87   vpx_write(w, tx_size != TX_4X4, tx_probs[0]);
88   if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
89     vpx_write(w, tx_size != TX_8X8, tx_probs[1]);
90     if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
91       vpx_write(w, tx_size != TX_16X16, tx_probs[2]);
92   }
93 }
94 
write_skip(const VP9_COMMON * cm,const MACROBLOCKD * xd,int segment_id,const MODE_INFO * mi,vpx_writer * w)95 static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *xd,
96                       int segment_id, const MODE_INFO *mi, vpx_writer *w) {
97   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
98     return 1;
99   } else {
100     const int skip = mi->mbmi.skip;
101     vpx_write(w, skip, vp9_get_skip_prob(cm, xd));
102     return skip;
103   }
104 }
105 
update_skip_probs(VP9_COMMON * cm,vpx_writer * w,FRAME_COUNTS * counts)106 static void update_skip_probs(VP9_COMMON *cm, vpx_writer *w,
107                               FRAME_COUNTS *counts) {
108   int k;
109 
110   for (k = 0; k < SKIP_CONTEXTS; ++k)
111     vp9_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]);
112 }
113 
update_switchable_interp_probs(VP9_COMMON * cm,vpx_writer * w,FRAME_COUNTS * counts)114 static void update_switchable_interp_probs(VP9_COMMON *cm, vpx_writer *w,
115                                            FRAME_COUNTS *counts) {
116   int j;
117   for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
118     prob_diff_update(vp9_switchable_interp_tree,
119                      cm->fc->switchable_interp_prob[j],
120                      counts->switchable_interp[j], SWITCHABLE_FILTERS, w);
121 }
122 
pack_mb_tokens(vpx_writer * w,TOKENEXTRA ** tp,const TOKENEXTRA * const stop,vpx_bit_depth_t bit_depth)123 static void pack_mb_tokens(vpx_writer *w,
124                            TOKENEXTRA **tp, const TOKENEXTRA *const stop,
125                            vpx_bit_depth_t bit_depth) {
126   TOKENEXTRA *p = *tp;
127 
128   while (p < stop && p->token != EOSB_TOKEN) {
129     const int t = p->token;
130     const struct vp9_token *const a = &vp9_coef_encodings[t];
131     int i = 0;
132     int v = a->value;
133     int n = a->len;
134 #if CONFIG_VP9_HIGHBITDEPTH
135     const vp9_extra_bit *b;
136     if (bit_depth == VPX_BITS_12)
137       b = &vp9_extra_bits_high12[t];
138     else if (bit_depth == VPX_BITS_10)
139       b = &vp9_extra_bits_high10[t];
140     else
141       b = &vp9_extra_bits[t];
142 #else
143     const vp9_extra_bit *const b = &vp9_extra_bits[t];
144     (void) bit_depth;
145 #endif  // CONFIG_VP9_HIGHBITDEPTH
146 
147     /* skip one or two nodes */
148     if (p->skip_eob_node) {
149       n -= p->skip_eob_node;
150       i = 2 * p->skip_eob_node;
151     }
152 
153     // TODO(jbb): expanding this can lead to big gains.  It allows
154     // much better branch prediction and would enable us to avoid numerous
155     // lookups and compares.
156 
157     // If we have a token that's in the constrained set, the coefficient tree
158     // is split into two treed writes.  The first treed write takes care of the
159     // unconstrained nodes.  The second treed write takes care of the
160     // constrained nodes.
161     if (t >= TWO_TOKEN && t < EOB_TOKEN) {
162       int len = UNCONSTRAINED_NODES - p->skip_eob_node;
163       int bits = v >> (n - len);
164       vp9_write_tree(w, vp9_coef_tree, p->context_tree, bits, len, i);
165       vp9_write_tree(w, vp9_coef_con_tree,
166                      vp9_pareto8_full[p->context_tree[PIVOT_NODE] - 1],
167                      v, n - len, 0);
168     } else {
169       vp9_write_tree(w, vp9_coef_tree, p->context_tree, v, n, i);
170     }
171 
172     if (b->base_val) {
173       const int e = p->extra, l = b->len;
174 
175       if (l) {
176         const unsigned char *pb = b->prob;
177         int v = e >> 1;
178         int n = l;              /* number of bits in v, assumed nonzero */
179 
180         do {
181           const int bb = (v >> --n) & 1;
182           vpx_write(w, bb, *pb++);
183         } while (n);
184       }
185 
186       vpx_write_bit(w, e & 1);
187     }
188     ++p;
189   }
190 
191   *tp = p + (p->token == EOSB_TOKEN);
192 }
193 
write_segment_id(vpx_writer * w,const struct segmentation * seg,int segment_id)194 static void write_segment_id(vpx_writer *w, const struct segmentation *seg,
195                              int segment_id) {
196   if (seg->enabled && seg->update_map)
197     vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0);
198 }
199 
200 // This function encodes the reference frame
write_ref_frames(const VP9_COMMON * cm,const MACROBLOCKD * xd,vpx_writer * w)201 static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *xd,
202                              vpx_writer *w) {
203   const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
204   const int is_compound = has_second_ref(mbmi);
205   const int segment_id = mbmi->segment_id;
206 
207   // If segment level coding of this signal is disabled...
208   // or the segment allows multiple reference frame options
209   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
210     assert(!is_compound);
211     assert(mbmi->ref_frame[0] ==
212                get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
213   } else {
214     // does the feature use compound prediction or not
215     // (if not specified at the frame/segment level)
216     if (cm->reference_mode == REFERENCE_MODE_SELECT) {
217       vpx_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd));
218     } else {
219       assert(!is_compound == (cm->reference_mode == SINGLE_REFERENCE));
220     }
221 
222     if (is_compound) {
223       vpx_write(w, mbmi->ref_frame[0] == GOLDEN_FRAME,
224                 vp9_get_pred_prob_comp_ref_p(cm, xd));
225     } else {
226       const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
227       vpx_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd));
228       if (bit0) {
229         const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
230         vpx_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd));
231       }
232     }
233   }
234 }
235 
pack_inter_mode_mvs(VP9_COMP * cpi,const MODE_INFO * mi,vpx_writer * w)236 static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
237                                 vpx_writer *w) {
238   VP9_COMMON *const cm = &cpi->common;
239   const nmv_context *nmvc = &cm->fc->nmvc;
240   const MACROBLOCK *const x = &cpi->td.mb;
241   const MACROBLOCKD *const xd = &x->e_mbd;
242   const struct segmentation *const seg = &cm->seg;
243   const MB_MODE_INFO *const mbmi = &mi->mbmi;
244   const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
245   const PREDICTION_MODE mode = mbmi->mode;
246   const int segment_id = mbmi->segment_id;
247   const BLOCK_SIZE bsize = mbmi->sb_type;
248   const int allow_hp = cm->allow_high_precision_mv;
249   const int is_inter = is_inter_block(mbmi);
250   const int is_compound = has_second_ref(mbmi);
251   int skip, ref;
252 
253   if (seg->update_map) {
254     if (seg->temporal_update) {
255       const int pred_flag = mbmi->seg_id_predicted;
256       vpx_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
257       vpx_write(w, pred_flag, pred_prob);
258       if (!pred_flag)
259         write_segment_id(w, seg, segment_id);
260     } else {
261       write_segment_id(w, seg, segment_id);
262     }
263   }
264 
265   skip = write_skip(cm, xd, segment_id, mi, w);
266 
267   if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
268     vpx_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
269 
270   if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
271       !(is_inter && skip)) {
272     write_selected_tx_size(cm, xd, w);
273   }
274 
275   if (!is_inter) {
276     if (bsize >= BLOCK_8X8) {
277       write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]);
278     } else {
279       int idx, idy;
280       const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
281       const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
282       for (idy = 0; idy < 2; idy += num_4x4_h) {
283         for (idx = 0; idx < 2; idx += num_4x4_w) {
284           const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
285           write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]);
286         }
287       }
288     }
289     write_intra_mode(w, mbmi->uv_mode, cm->fc->uv_mode_prob[mode]);
290   } else {
291     const int mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]];
292     const vpx_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx];
293     write_ref_frames(cm, xd, w);
294 
295     // If segment skip is not enabled code the mode.
296     if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
297       if (bsize >= BLOCK_8X8) {
298         write_inter_mode(w, mode, inter_probs);
299       }
300     }
301 
302     if (cm->interp_filter == SWITCHABLE) {
303       const int ctx = vp9_get_pred_context_switchable_interp(xd);
304       vp9_write_token(w, vp9_switchable_interp_tree,
305                       cm->fc->switchable_interp_prob[ctx],
306                       &switchable_interp_encodings[mbmi->interp_filter]);
307       ++cpi->interp_filter_selected[0][mbmi->interp_filter];
308     } else {
309       assert(mbmi->interp_filter == cm->interp_filter);
310     }
311 
312     if (bsize < BLOCK_8X8) {
313       const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
314       const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
315       int idx, idy;
316       for (idy = 0; idy < 2; idy += num_4x4_h) {
317         for (idx = 0; idx < 2; idx += num_4x4_w) {
318           const int j = idy * 2 + idx;
319           const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
320           write_inter_mode(w, b_mode, inter_probs);
321           if (b_mode == NEWMV) {
322             for (ref = 0; ref < 1 + is_compound; ++ref)
323               vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
324                             &mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
325                             nmvc, allow_hp);
326           }
327         }
328       }
329     } else {
330       if (mode == NEWMV) {
331         for (ref = 0; ref < 1 + is_compound; ++ref)
332           vp9_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
333                         &mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0].as_mv, nmvc,
334                         allow_hp);
335       }
336     }
337   }
338 }
339 
write_mb_modes_kf(const VP9_COMMON * cm,const MACROBLOCKD * xd,MODE_INFO ** mi_8x8,vpx_writer * w)340 static void write_mb_modes_kf(const VP9_COMMON *cm, const MACROBLOCKD *xd,
341                               MODE_INFO **mi_8x8, vpx_writer *w) {
342   const struct segmentation *const seg = &cm->seg;
343   const MODE_INFO *const mi = mi_8x8[0];
344   const MODE_INFO *const above_mi = xd->above_mi;
345   const MODE_INFO *const left_mi = xd->left_mi;
346   const MB_MODE_INFO *const mbmi = &mi->mbmi;
347   const BLOCK_SIZE bsize = mbmi->sb_type;
348 
349   if (seg->update_map)
350     write_segment_id(w, seg, mbmi->segment_id);
351 
352   write_skip(cm, xd, mbmi->segment_id, mi, w);
353 
354   if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
355     write_selected_tx_size(cm, xd, w);
356 
357   if (bsize >= BLOCK_8X8) {
358     write_intra_mode(w, mbmi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
359   } else {
360     const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
361     const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
362     int idx, idy;
363 
364     for (idy = 0; idy < 2; idy += num_4x4_h) {
365       for (idx = 0; idx < 2; idx += num_4x4_w) {
366         const int block = idy * 2 + idx;
367         write_intra_mode(w, mi->bmi[block].as_mode,
368                          get_y_mode_probs(mi, above_mi, left_mi, block));
369       }
370     }
371   }
372 
373   write_intra_mode(w, mbmi->uv_mode, vp9_kf_uv_mode_prob[mbmi->mode]);
374 }
375 
write_modes_b(VP9_COMP * cpi,const TileInfo * const tile,vpx_writer * w,TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end,int mi_row,int mi_col)376 static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
377                           vpx_writer *w, TOKENEXTRA **tok,
378                           const TOKENEXTRA *const tok_end,
379                           int mi_row, int mi_col) {
380   const VP9_COMMON *const cm = &cpi->common;
381   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
382   MODE_INFO *m;
383 
384   xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
385   m = xd->mi[0];
386 
387   cpi->td.mb.mbmi_ext = cpi->td.mb.mbmi_ext_base +
388       (mi_row * cm->mi_cols + mi_col);
389 
390   set_mi_row_col(xd, tile,
391                  mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
392                  mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
393                  cm->mi_rows, cm->mi_cols);
394   if (frame_is_intra_only(cm)) {
395     write_mb_modes_kf(cm, xd, xd->mi, w);
396   } else {
397     pack_inter_mode_mvs(cpi, m, w);
398   }
399 
400   assert(*tok < tok_end);
401   pack_mb_tokens(w, tok, tok_end, cm->bit_depth);
402 }
403 
write_partition(const VP9_COMMON * const cm,const MACROBLOCKD * const xd,int hbs,int mi_row,int mi_col,PARTITION_TYPE p,BLOCK_SIZE bsize,vpx_writer * w)404 static void write_partition(const VP9_COMMON *const cm,
405                             const MACROBLOCKD *const xd,
406                             int hbs, int mi_row, int mi_col,
407                             PARTITION_TYPE p, BLOCK_SIZE bsize, vpx_writer *w) {
408   const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
409   const vpx_prob *const probs = xd->partition_probs[ctx];
410   const int has_rows = (mi_row + hbs) < cm->mi_rows;
411   const int has_cols = (mi_col + hbs) < cm->mi_cols;
412 
413   if (has_rows && has_cols) {
414     vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]);
415   } else if (!has_rows && has_cols) {
416     assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
417     vpx_write(w, p == PARTITION_SPLIT, probs[1]);
418   } else if (has_rows && !has_cols) {
419     assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
420     vpx_write(w, p == PARTITION_SPLIT, probs[2]);
421   } else {
422     assert(p == PARTITION_SPLIT);
423   }
424 }
425 
write_modes_sb(VP9_COMP * cpi,const TileInfo * const tile,vpx_writer * w,TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end,int mi_row,int mi_col,BLOCK_SIZE bsize)426 static void write_modes_sb(VP9_COMP *cpi,
427                            const TileInfo *const tile, vpx_writer *w,
428                            TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
429                            int mi_row, int mi_col, BLOCK_SIZE bsize) {
430   const VP9_COMMON *const cm = &cpi->common;
431   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
432 
433   const int bsl = b_width_log2_lookup[bsize];
434   const int bs = (1 << bsl) / 4;
435   PARTITION_TYPE partition;
436   BLOCK_SIZE subsize;
437   const MODE_INFO *m = NULL;
438 
439   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
440     return;
441 
442   m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col];
443 
444   partition = partition_lookup[bsl][m->mbmi.sb_type];
445   write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
446   subsize = get_subsize(bsize, partition);
447   if (subsize < BLOCK_8X8) {
448     write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
449   } else {
450     switch (partition) {
451       case PARTITION_NONE:
452         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
453         break;
454       case PARTITION_HORZ:
455         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
456         if (mi_row + bs < cm->mi_rows)
457           write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
458         break;
459       case PARTITION_VERT:
460         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
461         if (mi_col + bs < cm->mi_cols)
462           write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
463         break;
464       case PARTITION_SPLIT:
465         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
466         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
467                        subsize);
468         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
469                        subsize);
470         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
471                        subsize);
472         break;
473       default:
474         assert(0);
475     }
476   }
477 
478   // update partition context
479   if (bsize >= BLOCK_8X8 &&
480       (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
481     update_partition_context(xd, mi_row, mi_col, subsize, bsize);
482 }
483 
write_modes(VP9_COMP * cpi,const TileInfo * const tile,vpx_writer * w,TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end)484 static void write_modes(VP9_COMP *cpi,
485                         const TileInfo *const tile, vpx_writer *w,
486                         TOKENEXTRA **tok, const TOKENEXTRA *const tok_end) {
487   const VP9_COMMON *const cm = &cpi->common;
488   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
489   int mi_row, mi_col;
490 
491   set_partition_probs(cm, xd);
492 
493   for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
494        mi_row += MI_BLOCK_SIZE) {
495     vp9_zero(xd->left_seg_context);
496     for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
497          mi_col += MI_BLOCK_SIZE)
498       write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col,
499                      BLOCK_64X64);
500   }
501 }
502 
build_tree_distribution(VP9_COMP * cpi,TX_SIZE tx_size,vp9_coeff_stats * coef_branch_ct,vp9_coeff_probs_model * coef_probs)503 static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size,
504                                     vp9_coeff_stats *coef_branch_ct,
505                                     vp9_coeff_probs_model *coef_probs) {
506   vp9_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size];
507   unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
508       cpi->common.counts.eob_branch[tx_size];
509   int i, j, k, l, m;
510 
511   for (i = 0; i < PLANE_TYPES; ++i) {
512     for (j = 0; j < REF_TYPES; ++j) {
513       for (k = 0; k < COEF_BANDS; ++k) {
514         for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
515           vp9_tree_probs_from_distribution(vp9_coef_tree,
516                                            coef_branch_ct[i][j][k][l],
517                                            coef_counts[i][j][k][l]);
518           coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
519                                              coef_branch_ct[i][j][k][l][0][0];
520           for (m = 0; m < UNCONSTRAINED_NODES; ++m)
521             coef_probs[i][j][k][l][m] = get_binary_prob(
522                                             coef_branch_ct[i][j][k][l][m][0],
523                                             coef_branch_ct[i][j][k][l][m][1]);
524         }
525       }
526     }
527   }
528 }
529 
update_coef_probs_common(vpx_writer * const bc,VP9_COMP * cpi,TX_SIZE tx_size,vp9_coeff_stats * frame_branch_ct,vp9_coeff_probs_model * new_coef_probs)530 static void update_coef_probs_common(vpx_writer* const bc, VP9_COMP *cpi,
531                                      TX_SIZE tx_size,
532                                      vp9_coeff_stats *frame_branch_ct,
533                                      vp9_coeff_probs_model *new_coef_probs) {
534   vp9_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size];
535   const vpx_prob upd = DIFF_UPDATE_PROB;
536   const int entropy_nodes_update = UNCONSTRAINED_NODES;
537   int i, j, k, l, t;
538   int stepsize = cpi->sf.coeff_prob_appx_step;
539 
540   switch (cpi->sf.use_fast_coef_updates) {
541     case TWO_LOOP: {
542       /* dry run to see if there is any update at all needed */
543       int savings = 0;
544       int update[2] = {0, 0};
545       for (i = 0; i < PLANE_TYPES; ++i) {
546         for (j = 0; j < REF_TYPES; ++j) {
547           for (k = 0; k < COEF_BANDS; ++k) {
548             for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
549               for (t = 0; t < entropy_nodes_update; ++t) {
550                 vpx_prob newp = new_coef_probs[i][j][k][l][t];
551                 const vpx_prob oldp = old_coef_probs[i][j][k][l][t];
552                 int s;
553                 int u = 0;
554                 if (t == PIVOT_NODE)
555                   s = vp9_prob_diff_update_savings_search_model(
556                       frame_branch_ct[i][j][k][l][0],
557                       old_coef_probs[i][j][k][l], &newp, upd, stepsize);
558                 else
559                   s = vp9_prob_diff_update_savings_search(
560                       frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
561                 if (s > 0 && newp != oldp)
562                   u = 1;
563                 if (u)
564                   savings += s - (int)(vp9_cost_zero(upd));
565                 else
566                   savings -= (int)(vp9_cost_zero(upd));
567                 update[u]++;
568               }
569             }
570           }
571         }
572       }
573 
574       // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
575       /* Is coef updated at all */
576       if (update[1] == 0 || savings < 0) {
577         vpx_write_bit(bc, 0);
578         return;
579       }
580       vpx_write_bit(bc, 1);
581       for (i = 0; i < PLANE_TYPES; ++i) {
582         for (j = 0; j < REF_TYPES; ++j) {
583           for (k = 0; k < COEF_BANDS; ++k) {
584             for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
585               // calc probs and branch cts for this frame only
586               for (t = 0; t < entropy_nodes_update; ++t) {
587                 vpx_prob newp = new_coef_probs[i][j][k][l][t];
588                 vpx_prob *oldp = old_coef_probs[i][j][k][l] + t;
589                 const vpx_prob upd = DIFF_UPDATE_PROB;
590                 int s;
591                 int u = 0;
592                 if (t == PIVOT_NODE)
593                   s = vp9_prob_diff_update_savings_search_model(
594                       frame_branch_ct[i][j][k][l][0],
595                       old_coef_probs[i][j][k][l], &newp, upd, stepsize);
596                 else
597                   s = vp9_prob_diff_update_savings_search(
598                       frame_branch_ct[i][j][k][l][t],
599                       *oldp, &newp, upd);
600                 if (s > 0 && newp != *oldp)
601                   u = 1;
602                 vpx_write(bc, u, upd);
603                 if (u) {
604                   /* send/use new probability */
605                   vp9_write_prob_diff_update(bc, newp, *oldp);
606                   *oldp = newp;
607                 }
608               }
609             }
610           }
611         }
612       }
613       return;
614     }
615 
616     case ONE_LOOP_REDUCED: {
617       int updates = 0;
618       int noupdates_before_first = 0;
619       for (i = 0; i < PLANE_TYPES; ++i) {
620         for (j = 0; j < REF_TYPES; ++j) {
621           for (k = 0; k < COEF_BANDS; ++k) {
622             for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
623               // calc probs and branch cts for this frame only
624               for (t = 0; t < entropy_nodes_update; ++t) {
625                 vpx_prob newp = new_coef_probs[i][j][k][l][t];
626                 vpx_prob *oldp = old_coef_probs[i][j][k][l] + t;
627                 int s;
628                 int u = 0;
629 
630                 if (t == PIVOT_NODE) {
631                   s = vp9_prob_diff_update_savings_search_model(
632                       frame_branch_ct[i][j][k][l][0],
633                       old_coef_probs[i][j][k][l], &newp, upd, stepsize);
634                 } else {
635                   s = vp9_prob_diff_update_savings_search(
636                       frame_branch_ct[i][j][k][l][t],
637                       *oldp, &newp, upd);
638                 }
639 
640                 if (s > 0 && newp != *oldp)
641                   u = 1;
642                 updates += u;
643                 if (u == 0 && updates == 0) {
644                   noupdates_before_first++;
645                   continue;
646                 }
647                 if (u == 1 && updates == 1) {
648                   int v;
649                   // first update
650                   vpx_write_bit(bc, 1);
651                   for (v = 0; v < noupdates_before_first; ++v)
652                     vpx_write(bc, 0, upd);
653                 }
654                 vpx_write(bc, u, upd);
655                 if (u) {
656                   /* send/use new probability */
657                   vp9_write_prob_diff_update(bc, newp, *oldp);
658                   *oldp = newp;
659                 }
660               }
661             }
662           }
663         }
664       }
665       if (updates == 0) {
666         vpx_write_bit(bc, 0);  // no updates
667       }
668       return;
669     }
670     default:
671       assert(0);
672   }
673 }
674 
update_coef_probs(VP9_COMP * cpi,vpx_writer * w)675 static void update_coef_probs(VP9_COMP *cpi, vpx_writer* w) {
676   const TX_MODE tx_mode = cpi->common.tx_mode;
677   const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
678   TX_SIZE tx_size;
679   for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) {
680     vp9_coeff_stats frame_branch_ct[PLANE_TYPES];
681     vp9_coeff_probs_model frame_coef_probs[PLANE_TYPES];
682     if (cpi->td.counts->tx.tx_totals[tx_size] <= 20 ||
683         (tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) {
684       vpx_write_bit(w, 0);
685     } else {
686       build_tree_distribution(cpi, tx_size, frame_branch_ct,
687                               frame_coef_probs);
688       update_coef_probs_common(w, cpi, tx_size, frame_branch_ct,
689                                frame_coef_probs);
690     }
691   }
692 }
693 
encode_loopfilter(struct loopfilter * lf,struct vpx_write_bit_buffer * wb)694 static void encode_loopfilter(struct loopfilter *lf,
695                               struct vpx_write_bit_buffer *wb) {
696   int i;
697 
698   // Encode the loop filter level and type
699   vpx_wb_write_literal(wb, lf->filter_level, 6);
700   vpx_wb_write_literal(wb, lf->sharpness_level, 3);
701 
702   // Write out loop filter deltas applied at the MB level based on mode or
703   // ref frame (if they are enabled).
704   vpx_wb_write_bit(wb, lf->mode_ref_delta_enabled);
705 
706   if (lf->mode_ref_delta_enabled) {
707     vpx_wb_write_bit(wb, lf->mode_ref_delta_update);
708     if (lf->mode_ref_delta_update) {
709       for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
710         const int delta = lf->ref_deltas[i];
711         const int changed = delta != lf->last_ref_deltas[i];
712         vpx_wb_write_bit(wb, changed);
713         if (changed) {
714           lf->last_ref_deltas[i] = delta;
715           vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6);
716           vpx_wb_write_bit(wb, delta < 0);
717         }
718       }
719 
720       for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
721         const int delta = lf->mode_deltas[i];
722         const int changed = delta != lf->last_mode_deltas[i];
723         vpx_wb_write_bit(wb, changed);
724         if (changed) {
725           lf->last_mode_deltas[i] = delta;
726           vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6);
727           vpx_wb_write_bit(wb, delta < 0);
728         }
729       }
730     }
731   }
732 }
733 
write_delta_q(struct vpx_write_bit_buffer * wb,int delta_q)734 static void write_delta_q(struct vpx_write_bit_buffer *wb, int delta_q) {
735   if (delta_q != 0) {
736     vpx_wb_write_bit(wb, 1);
737     vpx_wb_write_literal(wb, abs(delta_q), 4);
738     vpx_wb_write_bit(wb, delta_q < 0);
739   } else {
740     vpx_wb_write_bit(wb, 0);
741   }
742 }
743 
encode_quantization(const VP9_COMMON * const cm,struct vpx_write_bit_buffer * wb)744 static void encode_quantization(const VP9_COMMON *const cm,
745                                 struct vpx_write_bit_buffer *wb) {
746   vpx_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
747   write_delta_q(wb, cm->y_dc_delta_q);
748   write_delta_q(wb, cm->uv_dc_delta_q);
749   write_delta_q(wb, cm->uv_ac_delta_q);
750 }
751 
encode_segmentation(VP9_COMMON * cm,MACROBLOCKD * xd,struct vpx_write_bit_buffer * wb)752 static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd,
753                                 struct vpx_write_bit_buffer *wb) {
754   int i, j;
755 
756   const struct segmentation *seg = &cm->seg;
757 
758   vpx_wb_write_bit(wb, seg->enabled);
759   if (!seg->enabled)
760     return;
761 
762   // Segmentation map
763   vpx_wb_write_bit(wb, seg->update_map);
764   if (seg->update_map) {
765     // Select the coding strategy (temporal or spatial)
766     vp9_choose_segmap_coding_method(cm, xd);
767     // Write out probabilities used to decode unpredicted  macro-block segments
768     for (i = 0; i < SEG_TREE_PROBS; i++) {
769       const int prob = seg->tree_probs[i];
770       const int update = prob != MAX_PROB;
771       vpx_wb_write_bit(wb, update);
772       if (update)
773         vpx_wb_write_literal(wb, prob, 8);
774     }
775 
776     // Write out the chosen coding method.
777     vpx_wb_write_bit(wb, seg->temporal_update);
778     if (seg->temporal_update) {
779       for (i = 0; i < PREDICTION_PROBS; i++) {
780         const int prob = seg->pred_probs[i];
781         const int update = prob != MAX_PROB;
782         vpx_wb_write_bit(wb, update);
783         if (update)
784           vpx_wb_write_literal(wb, prob, 8);
785       }
786     }
787   }
788 
789   // Segmentation data
790   vpx_wb_write_bit(wb, seg->update_data);
791   if (seg->update_data) {
792     vpx_wb_write_bit(wb, seg->abs_delta);
793 
794     for (i = 0; i < MAX_SEGMENTS; i++) {
795       for (j = 0; j < SEG_LVL_MAX; j++) {
796         const int active = segfeature_active(seg, i, j);
797         vpx_wb_write_bit(wb, active);
798         if (active) {
799           const int data = get_segdata(seg, i, j);
800           const int data_max = vp9_seg_feature_data_max(j);
801 
802           if (vp9_is_segfeature_signed(j)) {
803             encode_unsigned_max(wb, abs(data), data_max);
804             vpx_wb_write_bit(wb, data < 0);
805           } else {
806             encode_unsigned_max(wb, data, data_max);
807           }
808         }
809       }
810     }
811   }
812 }
813 
encode_txfm_probs(VP9_COMMON * cm,vpx_writer * w,FRAME_COUNTS * counts)814 static void encode_txfm_probs(VP9_COMMON *cm, vpx_writer *w,
815                               FRAME_COUNTS *counts) {
816   // Mode
817   vpx_write_literal(w, VPXMIN(cm->tx_mode, ALLOW_32X32), 2);
818   if (cm->tx_mode >= ALLOW_32X32)
819     vpx_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
820 
821   // Probabilities
822   if (cm->tx_mode == TX_MODE_SELECT) {
823     int i, j;
824     unsigned int ct_8x8p[TX_SIZES - 3][2];
825     unsigned int ct_16x16p[TX_SIZES - 2][2];
826     unsigned int ct_32x32p[TX_SIZES - 1][2];
827 
828 
829     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
830       tx_counts_to_branch_counts_8x8(counts->tx.p8x8[i], ct_8x8p);
831       for (j = 0; j < TX_SIZES - 3; j++)
832         vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p8x8[i][j], ct_8x8p[j]);
833     }
834 
835     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
836       tx_counts_to_branch_counts_16x16(counts->tx.p16x16[i], ct_16x16p);
837       for (j = 0; j < TX_SIZES - 2; j++)
838         vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p16x16[i][j],
839                                   ct_16x16p[j]);
840     }
841 
842     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
843       tx_counts_to_branch_counts_32x32(counts->tx.p32x32[i], ct_32x32p);
844       for (j = 0; j < TX_SIZES - 1; j++)
845         vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p32x32[i][j],
846                                   ct_32x32p[j]);
847     }
848   }
849 }
850 
write_interp_filter(INTERP_FILTER filter,struct vpx_write_bit_buffer * wb)851 static void write_interp_filter(INTERP_FILTER filter,
852                                 struct vpx_write_bit_buffer *wb) {
853   const int filter_to_literal[] = { 1, 0, 2, 3 };
854 
855   vpx_wb_write_bit(wb, filter == SWITCHABLE);
856   if (filter != SWITCHABLE)
857     vpx_wb_write_literal(wb, filter_to_literal[filter], 2);
858 }
859 
fix_interp_filter(VP9_COMMON * cm,FRAME_COUNTS * counts)860 static void fix_interp_filter(VP9_COMMON *cm, FRAME_COUNTS *counts) {
861   if (cm->interp_filter == SWITCHABLE) {
862     // Check to see if only one of the filters is actually used
863     int count[SWITCHABLE_FILTERS];
864     int i, j, c = 0;
865     for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
866       count[i] = 0;
867       for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
868         count[i] += counts->switchable_interp[j][i];
869       c += (count[i] > 0);
870     }
871     if (c == 1) {
872       // Only one filter is used. So set the filter at frame level
873       for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
874         if (count[i]) {
875           cm->interp_filter = i;
876           break;
877         }
878       }
879     }
880   }
881 }
882 
write_tile_info(const VP9_COMMON * const cm,struct vpx_write_bit_buffer * wb)883 static void write_tile_info(const VP9_COMMON *const cm,
884                             struct vpx_write_bit_buffer *wb) {
885   int min_log2_tile_cols, max_log2_tile_cols, ones;
886   vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
887 
888   // columns
889   ones = cm->log2_tile_cols - min_log2_tile_cols;
890   while (ones--)
891     vpx_wb_write_bit(wb, 1);
892 
893   if (cm->log2_tile_cols < max_log2_tile_cols)
894     vpx_wb_write_bit(wb, 0);
895 
896   // rows
897   vpx_wb_write_bit(wb, cm->log2_tile_rows != 0);
898   if (cm->log2_tile_rows != 0)
899     vpx_wb_write_bit(wb, cm->log2_tile_rows != 1);
900 }
901 
get_refresh_mask(VP9_COMP * cpi)902 static int get_refresh_mask(VP9_COMP *cpi) {
903   if (vp9_preserve_existing_gf(cpi)) {
904     // We have decided to preserve the previously existing golden frame as our
905     // new ARF frame. However, in the short term we leave it in the GF slot and,
906     // if we're updating the GF with the current decoded frame, we save it
907     // instead to the ARF slot.
908     // Later, in the function vp9_encoder.c:vp9_update_reference_frames() we
909     // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
910     // there so that it can be done outside of the recode loop.
911     // Note: This is highly specific to the use of ARF as a forward reference,
912     // and this needs to be generalized as other uses are implemented
913     // (like RTC/temporal scalability).
914     return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
915            (cpi->refresh_golden_frame << cpi->alt_fb_idx);
916   } else {
917     int arf_idx = cpi->alt_fb_idx;
918     if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
919       const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
920       arf_idx = gf_group->arf_update_idx[gf_group->index];
921     }
922     return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
923            (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
924            (cpi->refresh_alt_ref_frame << arf_idx);
925   }
926 }
927 
encode_tiles(VP9_COMP * cpi,uint8_t * data_ptr)928 static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
929   VP9_COMMON *const cm = &cpi->common;
930   vpx_writer residual_bc;
931   int tile_row, tile_col;
932   TOKENEXTRA *tok_end;
933   size_t total_size = 0;
934   const int tile_cols = 1 << cm->log2_tile_cols;
935   const int tile_rows = 1 << cm->log2_tile_rows;
936 
937   memset(cm->above_seg_context, 0,
938          sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(cm->mi_cols));
939 
940   for (tile_row = 0; tile_row < tile_rows; tile_row++) {
941     for (tile_col = 0; tile_col < tile_cols; tile_col++) {
942       int tile_idx = tile_row * tile_cols + tile_col;
943       TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col];
944 
945       tok_end = cpi->tile_tok[tile_row][tile_col] +
946           cpi->tok_count[tile_row][tile_col];
947 
948       if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
949         vpx_start_encode(&residual_bc, data_ptr + total_size + 4);
950       else
951         vpx_start_encode(&residual_bc, data_ptr + total_size);
952 
953       write_modes(cpi, &cpi->tile_data[tile_idx].tile_info,
954                   &residual_bc, &tok, tok_end);
955       assert(tok == tok_end);
956       vpx_stop_encode(&residual_bc);
957       if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
958         // size of this tile
959         mem_put_be32(data_ptr + total_size, residual_bc.pos);
960         total_size += 4;
961       }
962 
963       total_size += residual_bc.pos;
964     }
965   }
966 
967   return total_size;
968 }
969 
write_render_size(const VP9_COMMON * cm,struct vpx_write_bit_buffer * wb)970 static void write_render_size(const VP9_COMMON *cm,
971                               struct vpx_write_bit_buffer *wb) {
972   const int scaling_active = cm->width != cm->render_width ||
973                              cm->height != cm->render_height;
974   vpx_wb_write_bit(wb, scaling_active);
975   if (scaling_active) {
976     vpx_wb_write_literal(wb, cm->render_width - 1, 16);
977     vpx_wb_write_literal(wb, cm->render_height - 1, 16);
978   }
979 }
980 
write_frame_size(const VP9_COMMON * cm,struct vpx_write_bit_buffer * wb)981 static void write_frame_size(const VP9_COMMON *cm,
982                              struct vpx_write_bit_buffer *wb) {
983   vpx_wb_write_literal(wb, cm->width - 1, 16);
984   vpx_wb_write_literal(wb, cm->height - 1, 16);
985 
986   write_render_size(cm, wb);
987 }
988 
write_frame_size_with_refs(VP9_COMP * cpi,struct vpx_write_bit_buffer * wb)989 static void write_frame_size_with_refs(VP9_COMP *cpi,
990                                        struct vpx_write_bit_buffer *wb) {
991   VP9_COMMON *const cm = &cpi->common;
992   int found = 0;
993 
994   MV_REFERENCE_FRAME ref_frame;
995   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
996     YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
997 
998     // Set "found" to 0 for temporal svc and for spatial svc key frame
999     if (cpi->use_svc &&
1000         ((cpi->svc.number_temporal_layers > 1 &&
1001          cpi->oxcf.rc_mode == VPX_CBR) ||
1002         (cpi->svc.number_spatial_layers > 1 &&
1003          cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame) ||
1004         (is_two_pass_svc(cpi) &&
1005          cpi->svc.encode_empty_frame_state == ENCODING &&
1006          cpi->svc.layer_context[0].frames_from_key_frame <
1007          cpi->svc.number_temporal_layers + 1))) {
1008       found = 0;
1009     } else if (cfg != NULL) {
1010       found = cm->width == cfg->y_crop_width &&
1011               cm->height == cfg->y_crop_height;
1012     }
1013     vpx_wb_write_bit(wb, found);
1014     if (found) {
1015       break;
1016     }
1017   }
1018 
1019   if (!found) {
1020     vpx_wb_write_literal(wb, cm->width - 1, 16);
1021     vpx_wb_write_literal(wb, cm->height - 1, 16);
1022   }
1023 
1024   write_render_size(cm, wb);
1025 }
1026 
write_sync_code(struct vpx_write_bit_buffer * wb)1027 static void write_sync_code(struct vpx_write_bit_buffer *wb) {
1028   vpx_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
1029   vpx_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
1030   vpx_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
1031 }
1032 
write_profile(BITSTREAM_PROFILE profile,struct vpx_write_bit_buffer * wb)1033 static void write_profile(BITSTREAM_PROFILE profile,
1034                           struct vpx_write_bit_buffer *wb) {
1035   switch (profile) {
1036     case PROFILE_0:
1037       vpx_wb_write_literal(wb, 0, 2);
1038       break;
1039     case PROFILE_1:
1040       vpx_wb_write_literal(wb, 2, 2);
1041       break;
1042     case PROFILE_2:
1043       vpx_wb_write_literal(wb, 1, 2);
1044       break;
1045     case PROFILE_3:
1046       vpx_wb_write_literal(wb, 6, 3);
1047       break;
1048     default:
1049       assert(0);
1050   }
1051 }
1052 
write_bitdepth_colorspace_sampling(VP9_COMMON * const cm,struct vpx_write_bit_buffer * wb)1053 static void write_bitdepth_colorspace_sampling(
1054     VP9_COMMON *const cm, struct vpx_write_bit_buffer *wb) {
1055   if (cm->profile >= PROFILE_2) {
1056     assert(cm->bit_depth > VPX_BITS_8);
1057     vpx_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1);
1058   }
1059   vpx_wb_write_literal(wb, cm->color_space, 3);
1060   if (cm->color_space != VPX_CS_SRGB) {
1061     // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
1062     vpx_wb_write_bit(wb, cm->color_range);
1063     if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
1064       assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
1065       vpx_wb_write_bit(wb, cm->subsampling_x);
1066       vpx_wb_write_bit(wb, cm->subsampling_y);
1067       vpx_wb_write_bit(wb, 0);  // unused
1068     } else {
1069       assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
1070     }
1071   } else {
1072     assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
1073     vpx_wb_write_bit(wb, 0);  // unused
1074   }
1075 }
1076 
write_uncompressed_header(VP9_COMP * cpi,struct vpx_write_bit_buffer * wb)1077 static void write_uncompressed_header(VP9_COMP *cpi,
1078                                       struct vpx_write_bit_buffer *wb) {
1079   VP9_COMMON *const cm = &cpi->common;
1080   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1081 
1082   vpx_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
1083 
1084   write_profile(cm->profile, wb);
1085 
1086   vpx_wb_write_bit(wb, 0);  // show_existing_frame
1087   vpx_wb_write_bit(wb, cm->frame_type);
1088   vpx_wb_write_bit(wb, cm->show_frame);
1089   vpx_wb_write_bit(wb, cm->error_resilient_mode);
1090 
1091   if (cm->frame_type == KEY_FRAME) {
1092     write_sync_code(wb);
1093     write_bitdepth_colorspace_sampling(cm, wb);
1094     write_frame_size(cm, wb);
1095   } else {
1096     // In spatial svc if it's not error_resilient_mode then we need to code all
1097     // visible frames as invisible. But we need to keep the show_frame flag so
1098     // that the publisher could know whether it is supposed to be visible.
1099     // So we will code the show_frame flag as it is. Then code the intra_only
1100     // bit here. This will make the bitstream incompatible. In the player we
1101     // will change to show_frame flag to 0, then add an one byte frame with
1102     // show_existing_frame flag which tells the decoder which frame we want to
1103     // show.
1104     if (!cm->show_frame)
1105       vpx_wb_write_bit(wb, cm->intra_only);
1106 
1107     if (!cm->error_resilient_mode)
1108       vpx_wb_write_literal(wb, cm->reset_frame_context, 2);
1109 
1110     if (cm->intra_only) {
1111       write_sync_code(wb);
1112 
1113       // Note for profile 0, 420 8bpp is assumed.
1114       if (cm->profile > PROFILE_0) {
1115         write_bitdepth_colorspace_sampling(cm, wb);
1116       }
1117 
1118       vpx_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
1119       write_frame_size(cm, wb);
1120     } else {
1121       MV_REFERENCE_FRAME ref_frame;
1122       vpx_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
1123       for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
1124         assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX);
1125         vpx_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame),
1126                              REF_FRAMES_LOG2);
1127         vpx_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
1128       }
1129 
1130       write_frame_size_with_refs(cpi, wb);
1131 
1132       vpx_wb_write_bit(wb, cm->allow_high_precision_mv);
1133 
1134       fix_interp_filter(cm, cpi->td.counts);
1135       write_interp_filter(cm->interp_filter, wb);
1136     }
1137   }
1138 
1139   if (!cm->error_resilient_mode) {
1140     vpx_wb_write_bit(wb, cm->refresh_frame_context);
1141     vpx_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
1142   }
1143 
1144   vpx_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
1145 
1146   encode_loopfilter(&cm->lf, wb);
1147   encode_quantization(cm, wb);
1148   encode_segmentation(cm, xd, wb);
1149 
1150   write_tile_info(cm, wb);
1151 }
1152 
write_compressed_header(VP9_COMP * cpi,uint8_t * data)1153 static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
1154   VP9_COMMON *const cm = &cpi->common;
1155   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1156   FRAME_CONTEXT *const fc = cm->fc;
1157   FRAME_COUNTS *counts = cpi->td.counts;
1158   vpx_writer header_bc;
1159 
1160   vpx_start_encode(&header_bc, data);
1161 
1162   if (xd->lossless)
1163     cm->tx_mode = ONLY_4X4;
1164   else
1165     encode_txfm_probs(cm, &header_bc, counts);
1166 
1167   update_coef_probs(cpi, &header_bc);
1168   update_skip_probs(cm, &header_bc, counts);
1169 
1170   if (!frame_is_intra_only(cm)) {
1171     int i;
1172 
1173     for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
1174       prob_diff_update(vp9_inter_mode_tree, cm->fc->inter_mode_probs[i],
1175                        counts->inter_mode[i], INTER_MODES, &header_bc);
1176 
1177     if (cm->interp_filter == SWITCHABLE)
1178       update_switchable_interp_probs(cm, &header_bc, counts);
1179 
1180     for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
1181       vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
1182                                 counts->intra_inter[i]);
1183 
1184     if (cpi->allow_comp_inter_inter) {
1185       const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
1186       const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
1187 
1188       vpx_write_bit(&header_bc, use_compound_pred);
1189       if (use_compound_pred) {
1190         vpx_write_bit(&header_bc, use_hybrid_pred);
1191         if (use_hybrid_pred)
1192           for (i = 0; i < COMP_INTER_CONTEXTS; i++)
1193             vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
1194                                       counts->comp_inter[i]);
1195       }
1196     }
1197 
1198     if (cm->reference_mode != COMPOUND_REFERENCE) {
1199       for (i = 0; i < REF_CONTEXTS; i++) {
1200         vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
1201                                   counts->single_ref[i][0]);
1202         vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
1203                                   counts->single_ref[i][1]);
1204       }
1205     }
1206 
1207     if (cm->reference_mode != SINGLE_REFERENCE)
1208       for (i = 0; i < REF_CONTEXTS; i++)
1209         vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
1210                                   counts->comp_ref[i]);
1211 
1212     for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
1213       prob_diff_update(vp9_intra_mode_tree, cm->fc->y_mode_prob[i],
1214                        counts->y_mode[i], INTRA_MODES, &header_bc);
1215 
1216     for (i = 0; i < PARTITION_CONTEXTS; ++i)
1217       prob_diff_update(vp9_partition_tree, fc->partition_prob[i],
1218                        counts->partition[i], PARTITION_TYPES, &header_bc);
1219 
1220     vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc,
1221                         &counts->mv);
1222   }
1223 
1224   vpx_stop_encode(&header_bc);
1225   assert(header_bc.pos <= 0xffff);
1226 
1227   return header_bc.pos;
1228 }
1229 
vp9_pack_bitstream(VP9_COMP * cpi,uint8_t * dest,size_t * size)1230 void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
1231   uint8_t *data = dest;
1232   size_t first_part_size, uncompressed_hdr_size;
1233   struct vpx_write_bit_buffer wb = {data, 0};
1234   struct vpx_write_bit_buffer saved_wb;
1235 
1236   write_uncompressed_header(cpi, &wb);
1237   saved_wb = wb;
1238   vpx_wb_write_literal(&wb, 0, 16);  // don't know in advance first part. size
1239 
1240   uncompressed_hdr_size = vpx_wb_bytes_written(&wb);
1241   data += uncompressed_hdr_size;
1242 
1243   vpx_clear_system_state();
1244 
1245   first_part_size = write_compressed_header(cpi, data);
1246   data += first_part_size;
1247   // TODO(jbb): Figure out what to do if first_part_size > 16 bits.
1248   vpx_wb_write_literal(&saved_wb, (int)first_part_size, 16);
1249 
1250   data += encode_tiles(cpi, data);
1251 
1252   *size = data - dest;
1253 }
1254