• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the AArch64 addressing mode implementation stuff.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
15 #define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
16 
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
22 
23 namespace llvm {
24 
25 /// AArch64_AM - AArch64 Addressing Mode Stuff
26 namespace AArch64_AM {
27 
28 //===----------------------------------------------------------------------===//
29 // Shifts
30 //
31 
32 enum ShiftExtendType {
33   InvalidShiftExtend = -1,
34   LSL = 0,
35   LSR,
36   ASR,
37   ROR,
38   MSL,
39 
40   UXTB,
41   UXTH,
42   UXTW,
43   UXTX,
44 
45   SXTB,
46   SXTH,
47   SXTW,
48   SXTX,
49 };
50 
51 /// getShiftName - Get the string encoding for the shift type.
getShiftExtendName(AArch64_AM::ShiftExtendType ST)52 static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
53   switch (ST) {
54   default: llvm_unreachable("unhandled shift type!");
55   case AArch64_AM::LSL: return "lsl";
56   case AArch64_AM::LSR: return "lsr";
57   case AArch64_AM::ASR: return "asr";
58   case AArch64_AM::ROR: return "ror";
59   case AArch64_AM::MSL: return "msl";
60   case AArch64_AM::UXTB: return "uxtb";
61   case AArch64_AM::UXTH: return "uxth";
62   case AArch64_AM::UXTW: return "uxtw";
63   case AArch64_AM::UXTX: return "uxtx";
64   case AArch64_AM::SXTB: return "sxtb";
65   case AArch64_AM::SXTH: return "sxth";
66   case AArch64_AM::SXTW: return "sxtw";
67   case AArch64_AM::SXTX: return "sxtx";
68   }
69   return nullptr;
70 }
71 
72 /// getShiftType - Extract the shift type.
getShiftType(unsigned Imm)73 static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
74   switch ((Imm >> 6) & 0x7) {
75   default: return AArch64_AM::InvalidShiftExtend;
76   case 0: return AArch64_AM::LSL;
77   case 1: return AArch64_AM::LSR;
78   case 2: return AArch64_AM::ASR;
79   case 3: return AArch64_AM::ROR;
80   case 4: return AArch64_AM::MSL;
81   }
82 }
83 
84 /// getShiftValue - Extract the shift value.
getShiftValue(unsigned Imm)85 static inline unsigned getShiftValue(unsigned Imm) {
86   return Imm & 0x3f;
87 }
88 
89 /// getShifterImm - Encode the shift type and amount:
90 ///   imm:     6-bit shift amount
91 ///   shifter: 000 ==> lsl
92 ///            001 ==> lsr
93 ///            010 ==> asr
94 ///            011 ==> ror
95 ///            100 ==> msl
96 ///   {8-6}  = shifter
97 ///   {5-0}  = imm
getShifterImm(AArch64_AM::ShiftExtendType ST,unsigned Imm)98 static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
99                                      unsigned Imm) {
100   assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
101   unsigned STEnc = 0;
102   switch (ST) {
103   default:  llvm_unreachable("Invalid shift requested");
104   case AArch64_AM::LSL: STEnc = 0; break;
105   case AArch64_AM::LSR: STEnc = 1; break;
106   case AArch64_AM::ASR: STEnc = 2; break;
107   case AArch64_AM::ROR: STEnc = 3; break;
108   case AArch64_AM::MSL: STEnc = 4; break;
109   }
110   return (STEnc << 6) | (Imm & 0x3f);
111 }
112 
113 //===----------------------------------------------------------------------===//
114 // Extends
115 //
116 
117 /// getArithShiftValue - get the arithmetic shift value.
getArithShiftValue(unsigned Imm)118 static inline unsigned getArithShiftValue(unsigned Imm) {
119   return Imm & 0x7;
120 }
121 
122 /// getExtendType - Extract the extend type for operands of arithmetic ops.
getExtendType(unsigned Imm)123 static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
124   assert((Imm & 0x7) == Imm && "invalid immediate!");
125   switch (Imm) {
126   default: llvm_unreachable("Compiler bug!");
127   case 0: return AArch64_AM::UXTB;
128   case 1: return AArch64_AM::UXTH;
129   case 2: return AArch64_AM::UXTW;
130   case 3: return AArch64_AM::UXTX;
131   case 4: return AArch64_AM::SXTB;
132   case 5: return AArch64_AM::SXTH;
133   case 6: return AArch64_AM::SXTW;
134   case 7: return AArch64_AM::SXTX;
135   }
136 }
137 
getArithExtendType(unsigned Imm)138 static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
139   return getExtendType((Imm >> 3) & 0x7);
140 }
141 
142 /// Mapping from extend bits to required operation:
143 ///   shifter: 000 ==> uxtb
144 ///            001 ==> uxth
145 ///            010 ==> uxtw
146 ///            011 ==> uxtx
147 ///            100 ==> sxtb
148 ///            101 ==> sxth
149 ///            110 ==> sxtw
150 ///            111 ==> sxtx
getExtendEncoding(AArch64_AM::ShiftExtendType ET)151 inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
152   switch (ET) {
153   default: llvm_unreachable("Invalid extend type requested");
154   case AArch64_AM::UXTB: return 0; break;
155   case AArch64_AM::UXTH: return 1; break;
156   case AArch64_AM::UXTW: return 2; break;
157   case AArch64_AM::UXTX: return 3; break;
158   case AArch64_AM::SXTB: return 4; break;
159   case AArch64_AM::SXTH: return 5; break;
160   case AArch64_AM::SXTW: return 6; break;
161   case AArch64_AM::SXTX: return 7; break;
162   }
163 }
164 
165 /// getArithExtendImm - Encode the extend type and shift amount for an
166 ///                     arithmetic instruction:
167 ///   imm:     3-bit extend amount
168 ///   {5-3}  = shifter
169 ///   {2-0}  = imm3
getArithExtendImm(AArch64_AM::ShiftExtendType ET,unsigned Imm)170 static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
171                                          unsigned Imm) {
172   assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
173   return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
174 }
175 
176 /// getMemDoShift - Extract the "do shift" flag value for load/store
177 /// instructions.
getMemDoShift(unsigned Imm)178 static inline bool getMemDoShift(unsigned Imm) {
179   return (Imm & 0x1) != 0;
180 }
181 
182 /// getExtendType - Extract the extend type for the offset operand of
183 /// loads/stores.
getMemExtendType(unsigned Imm)184 static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
185   return getExtendType((Imm >> 1) & 0x7);
186 }
187 
188 /// getExtendImm - Encode the extend type and amount for a load/store inst:
189 ///   doshift:     should the offset be scaled by the access size
190 ///   shifter: 000 ==> uxtb
191 ///            001 ==> uxth
192 ///            010 ==> uxtw
193 ///            011 ==> uxtx
194 ///            100 ==> sxtb
195 ///            101 ==> sxth
196 ///            110 ==> sxtw
197 ///            111 ==> sxtx
198 ///   {3-1}  = shifter
199 ///   {0}  = doshift
getMemExtendImm(AArch64_AM::ShiftExtendType ET,bool DoShift)200 static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
201                                        bool DoShift) {
202   return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
203 }
204 
ror(uint64_t elt,unsigned size)205 static inline uint64_t ror(uint64_t elt, unsigned size) {
206   return ((elt & 1) << (size-1)) | (elt >> 1);
207 }
208 
209 /// processLogicalImmediate - Determine if an immediate value can be encoded
210 /// as the immediate operand of a logical instruction for the given register
211 /// size.  If so, return true with "encoding" set to the encoded value in
212 /// the form N:immr:imms.
processLogicalImmediate(uint64_t Imm,unsigned RegSize,uint64_t & Encoding)213 static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize,
214                                            uint64_t &Encoding) {
215   if (Imm == 0ULL || Imm == ~0ULL ||
216       (RegSize != 64 && (Imm >> RegSize != 0 || Imm == ~0U)))
217     return false;
218 
219   // First, determine the element size.
220   unsigned Size = RegSize;
221 
222   do {
223     Size /= 2;
224     uint64_t Mask = (1ULL << Size) - 1;
225 
226     if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
227       Size *= 2;
228       break;
229     }
230   } while (Size > 2);
231 
232   // Second, determine the rotation to make the element be: 0^m 1^n.
233   uint32_t CTO, I;
234   uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
235   Imm &= Mask;
236 
237   if (isShiftedMask_64(Imm)) {
238     I = countTrailingZeros(Imm);
239     assert(I < 64 && "undefined behavior");
240     CTO = countTrailingOnes(Imm >> I);
241   } else {
242     Imm |= ~Mask;
243     if (!isShiftedMask_64(~Imm))
244       return false;
245 
246     unsigned CLO = countLeadingOnes(Imm);
247     I = 64 - CLO;
248     CTO = CLO + countTrailingOnes(Imm) - (64 - Size);
249   }
250 
251   // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
252   // to our target value, where I is the number of RORs to go the opposite
253   // direction.
254   assert(Size > I && "I should be smaller than element size");
255   unsigned Immr = (Size - I) & (Size - 1);
256 
257   // If size has a 1 in the n'th bit, create a value that has zeroes in
258   // bits [0, n] and ones above that.
259   uint64_t NImms = ~(Size-1) << 1;
260 
261   // Or the CTO value into the low bits, which must be below the Nth bit
262   // bit mentioned above.
263   NImms |= (CTO-1);
264 
265   // Extract the seventh bit and toggle it to create the N field.
266   unsigned N = ((NImms >> 6) & 1) ^ 1;
267 
268   Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
269   return true;
270 }
271 
272 /// isLogicalImmediate - Return true if the immediate is valid for a logical
273 /// immediate instruction of the given register size. Return false otherwise.
isLogicalImmediate(uint64_t imm,unsigned regSize)274 static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
275   uint64_t encoding;
276   return processLogicalImmediate(imm, regSize, encoding);
277 }
278 
279 /// encodeLogicalImmediate - Return the encoded immediate value for a logical
280 /// immediate instruction of the given register size.
encodeLogicalImmediate(uint64_t imm,unsigned regSize)281 static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
282   uint64_t encoding = 0;
283   bool res = processLogicalImmediate(imm, regSize, encoding);
284   assert(res && "invalid logical immediate");
285   (void)res;
286   return encoding;
287 }
288 
289 /// decodeLogicalImmediate - Decode a logical immediate value in the form
290 /// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
291 /// integer value it represents with regSize bits.
decodeLogicalImmediate(uint64_t val,unsigned regSize)292 static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
293   // Extract the N, imms, and immr fields.
294   unsigned N = (val >> 12) & 1;
295   unsigned immr = (val >> 6) & 0x3f;
296   unsigned imms = val & 0x3f;
297 
298   assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
299   int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
300   assert(len >= 0 && "undefined logical immediate encoding");
301   unsigned size = (1 << len);
302   unsigned R = immr & (size - 1);
303   unsigned S = imms & (size - 1);
304   assert(S != size - 1 && "undefined logical immediate encoding");
305   uint64_t pattern = (1ULL << (S + 1)) - 1;
306   for (unsigned i = 0; i < R; ++i)
307     pattern = ror(pattern, size);
308 
309   // Replicate the pattern to fill the regSize.
310   while (size != regSize) {
311     pattern |= (pattern << size);
312     size *= 2;
313   }
314   return pattern;
315 }
316 
317 /// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
318 /// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
319 /// is a valid encoding for an integer value with regSize bits.
isValidDecodeLogicalImmediate(uint64_t val,unsigned regSize)320 static inline bool isValidDecodeLogicalImmediate(uint64_t val,
321                                                  unsigned regSize) {
322   // Extract the N and imms fields needed for checking.
323   unsigned N = (val >> 12) & 1;
324   unsigned imms = val & 0x3f;
325 
326   if (regSize == 32 && N != 0) // undefined logical immediate encoding
327     return false;
328   int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
329   if (len < 0) // undefined logical immediate encoding
330     return false;
331   unsigned size = (1 << len);
332   unsigned S = imms & (size - 1);
333   if (S == size - 1) // undefined logical immediate encoding
334     return false;
335 
336   return true;
337 }
338 
339 //===----------------------------------------------------------------------===//
340 // Floating-point Immediates
341 //
getFPImmFloat(unsigned Imm)342 static inline float getFPImmFloat(unsigned Imm) {
343   // We expect an 8-bit binary encoding of a floating-point number here.
344   union {
345     uint32_t I;
346     float F;
347   } FPUnion;
348 
349   uint8_t Sign = (Imm >> 7) & 0x1;
350   uint8_t Exp = (Imm >> 4) & 0x7;
351   uint8_t Mantissa = Imm & 0xf;
352 
353   //   8-bit FP    iEEEE Float Encoding
354   //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
355   //
356   // where B = NOT(b);
357 
358   FPUnion.I = 0;
359   FPUnion.I |= Sign << 31;
360   FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
361   FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
362   FPUnion.I |= (Exp & 0x3) << 23;
363   FPUnion.I |= Mantissa << 19;
364   return FPUnion.F;
365 }
366 
367 /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
368 /// floating-point value. If the value cannot be represented as an 8-bit
369 /// floating-point value, then return -1.
getFP16Imm(const APInt & Imm)370 static inline int getFP16Imm(const APInt &Imm) {
371   uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
372   int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15;  // -14 to 15
373   int32_t Mantissa = Imm.getZExtValue() & 0x3ff;  // 10 bits
374 
375   // We can handle 4 bits of mantissa.
376   // mantissa = (16+UInt(e:f:g:h))/16.
377   if (Mantissa & 0x3f)
378     return -1;
379   Mantissa >>= 6;
380 
381   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
382   if (Exp < -3 || Exp > 4)
383     return -1;
384   Exp = ((Exp+3) & 0x7) ^ 4;
385 
386   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
387 }
388 
getFP16Imm(const APFloat & FPImm)389 static inline int getFP16Imm(const APFloat &FPImm) {
390   return getFP16Imm(FPImm.bitcastToAPInt());
391 }
392 
393 /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
394 /// floating-point value. If the value cannot be represented as an 8-bit
395 /// floating-point value, then return -1.
getFP32Imm(const APInt & Imm)396 static inline int getFP32Imm(const APInt &Imm) {
397   uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
398   int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
399   int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
400 
401   // We can handle 4 bits of mantissa.
402   // mantissa = (16+UInt(e:f:g:h))/16.
403   if (Mantissa & 0x7ffff)
404     return -1;
405   Mantissa >>= 19;
406   if ((Mantissa & 0xf) != Mantissa)
407     return -1;
408 
409   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
410   if (Exp < -3 || Exp > 4)
411     return -1;
412   Exp = ((Exp+3) & 0x7) ^ 4;
413 
414   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
415 }
416 
getFP32Imm(const APFloat & FPImm)417 static inline int getFP32Imm(const APFloat &FPImm) {
418   return getFP32Imm(FPImm.bitcastToAPInt());
419 }
420 
421 /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
422 /// floating-point value. If the value cannot be represented as an 8-bit
423 /// floating-point value, then return -1.
getFP64Imm(const APInt & Imm)424 static inline int getFP64Imm(const APInt &Imm) {
425   uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
426   int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
427   uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
428 
429   // We can handle 4 bits of mantissa.
430   // mantissa = (16+UInt(e:f:g:h))/16.
431   if (Mantissa & 0xffffffffffffULL)
432     return -1;
433   Mantissa >>= 48;
434   if ((Mantissa & 0xf) != Mantissa)
435     return -1;
436 
437   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
438   if (Exp < -3 || Exp > 4)
439     return -1;
440   Exp = ((Exp+3) & 0x7) ^ 4;
441 
442   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
443 }
444 
getFP64Imm(const APFloat & FPImm)445 static inline int getFP64Imm(const APFloat &FPImm) {
446   return getFP64Imm(FPImm.bitcastToAPInt());
447 }
448 
449 //===--------------------------------------------------------------------===//
450 // AdvSIMD Modified Immediates
451 //===--------------------------------------------------------------------===//
452 
453 // 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
isAdvSIMDModImmType1(uint64_t Imm)454 static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
455   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
456          ((Imm & 0xffffff00ffffff00ULL) == 0);
457 }
458 
encodeAdvSIMDModImmType1(uint64_t Imm)459 static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
460   return (Imm & 0xffULL);
461 }
462 
decodeAdvSIMDModImmType1(uint8_t Imm)463 static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
464   uint64_t EncVal = Imm;
465   return (EncVal << 32) | EncVal;
466 }
467 
468 // 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
isAdvSIMDModImmType2(uint64_t Imm)469 static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
470   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
471          ((Imm & 0xffff00ffffff00ffULL) == 0);
472 }
473 
encodeAdvSIMDModImmType2(uint64_t Imm)474 static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
475   return (Imm & 0xff00ULL) >> 8;
476 }
477 
decodeAdvSIMDModImmType2(uint8_t Imm)478 static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
479   uint64_t EncVal = Imm;
480   return (EncVal << 40) | (EncVal << 8);
481 }
482 
483 // 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
isAdvSIMDModImmType3(uint64_t Imm)484 static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
485   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
486          ((Imm & 0xff00ffffff00ffffULL) == 0);
487 }
488 
encodeAdvSIMDModImmType3(uint64_t Imm)489 static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
490   return (Imm & 0xff0000ULL) >> 16;
491 }
492 
decodeAdvSIMDModImmType3(uint8_t Imm)493 static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
494   uint64_t EncVal = Imm;
495   return (EncVal << 48) | (EncVal << 16);
496 }
497 
498 // abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
isAdvSIMDModImmType4(uint64_t Imm)499 static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
500   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
501          ((Imm & 0x00ffffff00ffffffULL) == 0);
502 }
503 
encodeAdvSIMDModImmType4(uint64_t Imm)504 static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
505   return (Imm & 0xff000000ULL) >> 24;
506 }
507 
decodeAdvSIMDModImmType4(uint8_t Imm)508 static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
509   uint64_t EncVal = Imm;
510   return (EncVal << 56) | (EncVal << 24);
511 }
512 
513 // 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
isAdvSIMDModImmType5(uint64_t Imm)514 static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
515   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
516          (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
517          ((Imm & 0xff00ff00ff00ff00ULL) == 0);
518 }
519 
encodeAdvSIMDModImmType5(uint64_t Imm)520 static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
521   return (Imm & 0xffULL);
522 }
523 
decodeAdvSIMDModImmType5(uint8_t Imm)524 static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
525   uint64_t EncVal = Imm;
526   return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
527 }
528 
529 // abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
isAdvSIMDModImmType6(uint64_t Imm)530 static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
531   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
532          (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
533          ((Imm & 0x00ff00ff00ff00ffULL) == 0);
534 }
535 
encodeAdvSIMDModImmType6(uint64_t Imm)536 static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
537   return (Imm & 0xff00ULL) >> 8;
538 }
539 
decodeAdvSIMDModImmType6(uint8_t Imm)540 static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
541   uint64_t EncVal = Imm;
542   return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
543 }
544 
545 // 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
isAdvSIMDModImmType7(uint64_t Imm)546 static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
547   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
548          ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
549 }
550 
encodeAdvSIMDModImmType7(uint64_t Imm)551 static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
552   return (Imm & 0xff00ULL) >> 8;
553 }
554 
decodeAdvSIMDModImmType7(uint8_t Imm)555 static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
556   uint64_t EncVal = Imm;
557   return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
558 }
559 
560 // 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
isAdvSIMDModImmType8(uint64_t Imm)561 static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
562   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
563          ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
564 }
565 
decodeAdvSIMDModImmType8(uint8_t Imm)566 static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
567   uint64_t EncVal = Imm;
568   return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
569 }
570 
encodeAdvSIMDModImmType8(uint64_t Imm)571 static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
572   return (Imm & 0x00ff0000ULL) >> 16;
573 }
574 
575 // abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
isAdvSIMDModImmType9(uint64_t Imm)576 static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
577   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
578          ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
579          ((Imm >> 56) == (Imm & 0x000000ffULL));
580 }
581 
encodeAdvSIMDModImmType9(uint64_t Imm)582 static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
583   return (Imm & 0xffULL);
584 }
585 
decodeAdvSIMDModImmType9(uint8_t Imm)586 static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
587   uint64_t EncVal = Imm;
588   EncVal |= (EncVal << 8);
589   EncVal |= (EncVal << 16);
590   EncVal |= (EncVal << 32);
591   return EncVal;
592 }
593 
594 // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
595 // cmode: 1110, op: 1
isAdvSIMDModImmType10(uint64_t Imm)596 static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
597   uint64_t ByteA = Imm & 0xff00000000000000ULL;
598   uint64_t ByteB = Imm & 0x00ff000000000000ULL;
599   uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
600   uint64_t ByteD = Imm & 0x000000ff00000000ULL;
601   uint64_t ByteE = Imm & 0x00000000ff000000ULL;
602   uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
603   uint64_t ByteG = Imm & 0x000000000000ff00ULL;
604   uint64_t ByteH = Imm & 0x00000000000000ffULL;
605 
606   return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
607          (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
608          (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
609          (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
610          (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
611          (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
612          (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
613          (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
614 }
615 
encodeAdvSIMDModImmType10(uint64_t Imm)616 static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
617   uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
618   uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
619   uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
620   uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
621   uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
622   uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
623   uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
624   uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
625 
626   uint8_t EncVal = BitA;
627   EncVal <<= 1;
628   EncVal |= BitB;
629   EncVal <<= 1;
630   EncVal |= BitC;
631   EncVal <<= 1;
632   EncVal |= BitD;
633   EncVal <<= 1;
634   EncVal |= BitE;
635   EncVal <<= 1;
636   EncVal |= BitF;
637   EncVal <<= 1;
638   EncVal |= BitG;
639   EncVal <<= 1;
640   EncVal |= BitH;
641   return EncVal;
642 }
643 
decodeAdvSIMDModImmType10(uint8_t Imm)644 static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
645   uint64_t EncVal = 0;
646   if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
647   if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
648   if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
649   if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
650   if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
651   if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
652   if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
653   if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
654   return EncVal;
655 }
656 
657 // aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
isAdvSIMDModImmType11(uint64_t Imm)658 static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
659   uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
660   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
661          (BString == 0x1f || BString == 0x20) &&
662          ((Imm & 0x0007ffff0007ffffULL) == 0);
663 }
664 
encodeAdvSIMDModImmType11(uint64_t Imm)665 static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
666   uint8_t BitA = (Imm & 0x80000000ULL) != 0;
667   uint8_t BitB = (Imm & 0x20000000ULL) != 0;
668   uint8_t BitC = (Imm & 0x01000000ULL) != 0;
669   uint8_t BitD = (Imm & 0x00800000ULL) != 0;
670   uint8_t BitE = (Imm & 0x00400000ULL) != 0;
671   uint8_t BitF = (Imm & 0x00200000ULL) != 0;
672   uint8_t BitG = (Imm & 0x00100000ULL) != 0;
673   uint8_t BitH = (Imm & 0x00080000ULL) != 0;
674 
675   uint8_t EncVal = BitA;
676   EncVal <<= 1;
677   EncVal |= BitB;
678   EncVal <<= 1;
679   EncVal |= BitC;
680   EncVal <<= 1;
681   EncVal |= BitD;
682   EncVal <<= 1;
683   EncVal |= BitE;
684   EncVal <<= 1;
685   EncVal |= BitF;
686   EncVal <<= 1;
687   EncVal |= BitG;
688   EncVal <<= 1;
689   EncVal |= BitH;
690   return EncVal;
691 }
692 
decodeAdvSIMDModImmType11(uint8_t Imm)693 static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
694   uint64_t EncVal = 0;
695   if (Imm & 0x80) EncVal |= 0x80000000ULL;
696   if (Imm & 0x40) EncVal |= 0x3e000000ULL;
697   else            EncVal |= 0x40000000ULL;
698   if (Imm & 0x20) EncVal |= 0x01000000ULL;
699   if (Imm & 0x10) EncVal |= 0x00800000ULL;
700   if (Imm & 0x08) EncVal |= 0x00400000ULL;
701   if (Imm & 0x04) EncVal |= 0x00200000ULL;
702   if (Imm & 0x02) EncVal |= 0x00100000ULL;
703   if (Imm & 0x01) EncVal |= 0x00080000ULL;
704   return (EncVal << 32) | EncVal;
705 }
706 
707 // aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
isAdvSIMDModImmType12(uint64_t Imm)708 static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
709   uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
710   return ((BString == 0xff || BString == 0x100) &&
711          ((Imm & 0x0000ffffffffffffULL) == 0));
712 }
713 
encodeAdvSIMDModImmType12(uint64_t Imm)714 static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
715   uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
716   uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
717   uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
718   uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
719   uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
720   uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
721   uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
722   uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
723 
724   uint8_t EncVal = BitA;
725   EncVal <<= 1;
726   EncVal |= BitB;
727   EncVal <<= 1;
728   EncVal |= BitC;
729   EncVal <<= 1;
730   EncVal |= BitD;
731   EncVal <<= 1;
732   EncVal |= BitE;
733   EncVal <<= 1;
734   EncVal |= BitF;
735   EncVal <<= 1;
736   EncVal |= BitG;
737   EncVal <<= 1;
738   EncVal |= BitH;
739   return EncVal;
740 }
741 
decodeAdvSIMDModImmType12(uint8_t Imm)742 static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
743   uint64_t EncVal = 0;
744   if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
745   if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
746   else            EncVal |= 0x4000000000000000ULL;
747   if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
748   if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
749   if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
750   if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
751   if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
752   if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
753   return (EncVal << 32) | EncVal;
754 }
755 
756 } // end namespace AArch64_AM
757 
758 } // end namespace llvm
759 
760 #endif
761