• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#!/usr/bin/env python
2
3# -*- coding: utf-8 -*-
4# transformations.py
5
6# Copyright (c) 2006, Christoph Gohlke
7# Copyright (c) 2006-2009, The Regents of the University of California
8# All rights reserved.
9#
10# Redistribution and use in source and binary forms, with or without
11# modification, are permitted provided that the following conditions are met:
12#
13# * Redistributions of source code must retain the above copyright
14#   notice, this list of conditions and the following disclaimer.
15# * Redistributions in binary form must reproduce the above copyright
16#   notice, this list of conditions and the following disclaimer in the
17#   documentation and/or other materials provided with the distribution.
18# * Neither the name of the copyright holders nor the names of any
19#   contributors may be used to endorse or promote products derived
20#   from this software without specific prior written permission.
21#
22# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
23# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25# ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32# POSSIBILITY OF SUCH DAMAGE.
33
34"""Homogeneous Transformation Matrices and Quaternions.
35
36A library for calculating 4x4 matrices for translating, rotating, reflecting,
37scaling, shearing, projecting, orthogonalizing, and superimposing arrays of
383D homogeneous coordinates as well as for converting between rotation matrices,
39Euler angles, and quaternions. Also includes an Arcball control object and
40functions to decompose transformation matrices.
41
42:Authors:
43  `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`__,
44  Laboratory for Fluorescence Dynamics, University of California, Irvine
45
46:Version: 20090418
47
48Requirements
49------------
50
51* `Python 2.6 <http://www.python.org>`__
52* `Numpy 1.3 <http://numpy.scipy.org>`__
53* `transformations.c 20090418 <http://www.lfd.uci.edu/~gohlke/>`__
54  (optional implementation of some functions in C)
55
56Notes
57-----
58
59Matrices (M) can be inverted using numpy.linalg.inv(M), concatenated using
60numpy.dot(M0, M1), or used to transform homogeneous coordinates (v) using
61numpy.dot(M, v) for shape (4, \*) "point of arrays", respectively
62numpy.dot(v, M.T) for shape (\*, 4) "array of points".
63
64Calculations are carried out with numpy.float64 precision.
65
66This Python implementation is not optimized for speed.
67
68Vector, point, quaternion, and matrix function arguments are expected to be
69"array like", i.e. tuple, list, or numpy arrays.
70
71Return types are numpy arrays unless specified otherwise.
72
73Angles are in radians unless specified otherwise.
74
75Quaternions ix+jy+kz+w are represented as [x, y, z, w].
76
77Use the transpose of transformation matrices for OpenGL glMultMatrixd().
78
79A triple of Euler angles can be applied/interpreted in 24 ways, which can
80be specified using a 4 character string or encoded 4-tuple:
81
82  *Axes 4-string*: e.g. 'sxyz' or 'ryxy'
83
84  - first character : rotations are applied to 's'tatic or 'r'otating frame
85  - remaining characters : successive rotation axis 'x', 'y', or 'z'
86
87  *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1)
88
89  - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix.
90  - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed
91    by 'z', or 'z' is followed by 'x'. Otherwise odd (1).
92  - repetition : first and last axis are same (1) or different (0).
93  - frame : rotations are applied to static (0) or rotating (1) frame.
94
95References
96----------
97
98(1)  Matrices and transformations. Ronald Goldman.
99     In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990.
100(2)  More matrices and transformations: shear and pseudo-perspective.
101     Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
102(3)  Decomposing a matrix into simple transformations. Spencer Thomas.
103     In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
104(4)  Recovering the data from the transformation matrix. Ronald Goldman.
105     In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991.
106(5)  Euler angle conversion. Ken Shoemake.
107     In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994.
108(6)  Arcball rotation control. Ken Shoemake.
109     In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994.
110(7)  Representing attitude: Euler angles, unit quaternions, and rotation
111     vectors. James Diebel. 2006.
112(8)  A discussion of the solution for the best rotation to relate two sets
113     of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828.
114(9)  Closed-form solution of absolute orientation using unit quaternions.
115     BKP Horn. J Opt Soc Am A. 1987. 4(4), 629-642.
116(10) Quaternions. Ken Shoemake.
117     http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf
118(11) From quaternion to matrix and back. JMP van Waveren. 2005.
119     http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm
120(12) Uniform random rotations. Ken Shoemake.
121     In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992.
122
123
124Examples
125--------
126
127>>> alpha, beta, gamma = 0.123, -1.234, 2.345
128>>> origin, xaxis, yaxis, zaxis = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)
129>>> I = identity_matrix()
130>>> Rx = rotation_matrix(alpha, xaxis)
131>>> Ry = rotation_matrix(beta, yaxis)
132>>> Rz = rotation_matrix(gamma, zaxis)
133>>> R = concatenate_matrices(Rx, Ry, Rz)
134>>> euler = euler_from_matrix(R, 'rxyz')
135>>> numpy.allclose([alpha, beta, gamma], euler)
136True
137>>> Re = euler_matrix(alpha, beta, gamma, 'rxyz')
138>>> is_same_transform(R, Re)
139True
140>>> al, be, ga = euler_from_matrix(Re, 'rxyz')
141>>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz'))
142True
143>>> qx = quaternion_about_axis(alpha, xaxis)
144>>> qy = quaternion_about_axis(beta, yaxis)
145>>> qz = quaternion_about_axis(gamma, zaxis)
146>>> q = quaternion_multiply(qx, qy)
147>>> q = quaternion_multiply(q, qz)
148>>> Rq = quaternion_matrix(q)
149>>> is_same_transform(R, Rq)
150True
151>>> S = scale_matrix(1.23, origin)
152>>> T = translation_matrix((1, 2, 3))
153>>> Z = shear_matrix(beta, xaxis, origin, zaxis)
154>>> R = random_rotation_matrix(numpy.random.rand(3))
155>>> M = concatenate_matrices(T, R, Z, S)
156>>> scale, shear, angles, trans, persp = decompose_matrix(M)
157>>> numpy.allclose(scale, 1.23)
158True
159>>> numpy.allclose(trans, (1, 2, 3))
160True
161>>> numpy.allclose(shear, (0, math.tan(beta), 0))
162True
163>>> is_same_transform(R, euler_matrix(axes='sxyz', *angles))
164True
165>>> M1 = compose_matrix(scale, shear, angles, trans, persp)
166>>> is_same_transform(M, M1)
167True
168
169"""
170
171from __future__ import division
172
173import warnings
174import math
175
176import numpy
177
178# Documentation in HTML format can be generated with Epydoc
179__docformat__ = "restructuredtext en"
180
181
182def identity_matrix():
183    """Return 4x4 identity/unit matrix.
184
185    >>> I = identity_matrix()
186    >>> numpy.allclose(I, numpy.dot(I, I))
187    True
188    >>> numpy.sum(I), numpy.trace(I)
189    (4.0, 4.0)
190    >>> numpy.allclose(I, numpy.identity(4, dtype=numpy.float64))
191    True
192
193    """
194    return numpy.identity(4, dtype=numpy.float64)
195
196
197def translation_matrix(direction):
198    """Return matrix to translate by direction vector.
199
200    >>> v = numpy.random.random(3) - 0.5
201    >>> numpy.allclose(v, translation_matrix(v)[:3, 3])
202    True
203
204    """
205    M = numpy.identity(4)
206    M[:3, 3] = direction[:3]
207    return M
208
209
210def translation_from_matrix(matrix):
211    """Return translation vector from translation matrix.
212
213    >>> v0 = numpy.random.random(3) - 0.5
214    >>> v1 = translation_from_matrix(translation_matrix(v0))
215    >>> numpy.allclose(v0, v1)
216    True
217
218    """
219    return numpy.array(matrix, copy=False)[:3, 3].copy()
220
221
222def reflection_matrix(point, normal):
223    """Return matrix to mirror at plane defined by point and normal vector.
224
225    >>> v0 = numpy.random.random(4) - 0.5
226    >>> v0[3] = 1.0
227    >>> v1 = numpy.random.random(3) - 0.5
228    >>> R = reflection_matrix(v0, v1)
229    >>> numpy.allclose(2., numpy.trace(R))
230    True
231    >>> numpy.allclose(v0, numpy.dot(R, v0))
232    True
233    >>> v2 = v0.copy()
234    >>> v2[:3] += v1
235    >>> v3 = v0.copy()
236    >>> v2[:3] -= v1
237    >>> numpy.allclose(v2, numpy.dot(R, v3))
238    True
239
240    """
241    normal = unit_vector(normal[:3])
242    M = numpy.identity(4)
243    M[:3, :3] -= 2.0 * numpy.outer(normal, normal)
244    M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal
245    return M
246
247
248def reflection_from_matrix(matrix):
249    """Return mirror plane point and normal vector from reflection matrix.
250
251    >>> v0 = numpy.random.random(3) - 0.5
252    >>> v1 = numpy.random.random(3) - 0.5
253    >>> M0 = reflection_matrix(v0, v1)
254    >>> point, normal = reflection_from_matrix(M0)
255    >>> M1 = reflection_matrix(point, normal)
256    >>> is_same_transform(M0, M1)
257    True
258
259    """
260    M = numpy.array(matrix, dtype=numpy.float64, copy=False)
261    # normal: unit eigenvector corresponding to eigenvalue -1
262    l, V = numpy.linalg.eig(M[:3, :3])
263    i = numpy.where(abs(numpy.real(l) + 1.0) < 1e-8)[0]
264    if not len(i):
265        raise ValueError("no unit eigenvector corresponding to eigenvalue -1")
266    normal = numpy.real(V[:, i[0]]).squeeze()
267    # point: any unit eigenvector corresponding to eigenvalue 1
268    l, V = numpy.linalg.eig(M)
269    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
270    if not len(i):
271        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
272    point = numpy.real(V[:, i[-1]]).squeeze()
273    point /= point[3]
274    return point, normal
275
276
277def rotation_matrix(angle, direction, point=None):
278    """Return matrix to rotate about axis defined by point and direction.
279
280    >>> angle = (random.random() - 0.5) * (2*math.pi)
281    >>> direc = numpy.random.random(3) - 0.5
282    >>> point = numpy.random.random(3) - 0.5
283    >>> R0 = rotation_matrix(angle, direc, point)
284    >>> R1 = rotation_matrix(angle-2*math.pi, direc, point)
285    >>> is_same_transform(R0, R1)
286    True
287    >>> R0 = rotation_matrix(angle, direc, point)
288    >>> R1 = rotation_matrix(-angle, -direc, point)
289    >>> is_same_transform(R0, R1)
290    True
291    >>> I = numpy.identity(4, numpy.float64)
292    >>> numpy.allclose(I, rotation_matrix(math.pi*2, direc))
293    True
294    >>> numpy.allclose(2., numpy.trace(rotation_matrix(math.pi/2,
295    ...                                                direc, point)))
296    True
297
298    """
299    sina = math.sin(angle)
300    cosa = math.cos(angle)
301    direction = unit_vector(direction[:3])
302    # rotation matrix around unit vector
303    R = numpy.array(((cosa, 0.0,  0.0),
304                     (0.0,  cosa, 0.0),
305                     (0.0,  0.0,  cosa)), dtype=numpy.float64)
306    R += numpy.outer(direction, direction) * (1.0 - cosa)
307    direction *= sina
308    R += numpy.array((( 0.0,         -direction[2],  direction[1]),
309                      ( direction[2], 0.0,          -direction[0]),
310                      (-direction[1], direction[0],  0.0)),
311                     dtype=numpy.float64)
312    M = numpy.identity(4)
313    M[:3, :3] = R
314    if point is not None:
315        # rotation not around origin
316        point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
317        M[:3, 3] = point - numpy.dot(R, point)
318    return M
319
320
321def rotation_from_matrix(matrix):
322    """Return rotation angle and axis from rotation matrix.
323
324    >>> angle = (random.random() - 0.5) * (2*math.pi)
325    >>> direc = numpy.random.random(3) - 0.5
326    >>> point = numpy.random.random(3) - 0.5
327    >>> R0 = rotation_matrix(angle, direc, point)
328    >>> angle, direc, point = rotation_from_matrix(R0)
329    >>> R1 = rotation_matrix(angle, direc, point)
330    >>> is_same_transform(R0, R1)
331    True
332
333    """
334    R = numpy.array(matrix, dtype=numpy.float64, copy=False)
335    R33 = R[:3, :3]
336    # direction: unit eigenvector of R33 corresponding to eigenvalue of 1
337    l, W = numpy.linalg.eig(R33.T)
338    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
339    if not len(i):
340        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
341    direction = numpy.real(W[:, i[-1]]).squeeze()
342    # point: unit eigenvector of R33 corresponding to eigenvalue of 1
343    l, Q = numpy.linalg.eig(R)
344    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
345    if not len(i):
346        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
347    point = numpy.real(Q[:, i[-1]]).squeeze()
348    point /= point[3]
349    # rotation angle depending on direction
350    cosa = (numpy.trace(R33) - 1.0) / 2.0
351    if abs(direction[2]) > 1e-8:
352        sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2]
353    elif abs(direction[1]) > 1e-8:
354        sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1]
355    else:
356        sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0]
357    angle = math.atan2(sina, cosa)
358    return angle, direction, point
359
360
361def scale_matrix(factor, origin=None, direction=None):
362    """Return matrix to scale by factor around origin in direction.
363
364    Use factor -1 for point symmetry.
365
366    >>> v = (numpy.random.rand(4, 5) - 0.5) * 20.0
367    >>> v[3] = 1.0
368    >>> S = scale_matrix(-1.234)
369    >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3])
370    True
371    >>> factor = random.random() * 10 - 5
372    >>> origin = numpy.random.random(3) - 0.5
373    >>> direct = numpy.random.random(3) - 0.5
374    >>> S = scale_matrix(factor, origin)
375    >>> S = scale_matrix(factor, origin, direct)
376
377    """
378    if direction is None:
379        # uniform scaling
380        M = numpy.array(((factor, 0.0,    0.0,    0.0),
381                         (0.0,    factor, 0.0,    0.0),
382                         (0.0,    0.0,    factor, 0.0),
383                         (0.0,    0.0,    0.0,    1.0)), dtype=numpy.float64)
384        if origin is not None:
385            M[:3, 3] = origin[:3]
386            M[:3, 3] *= 1.0 - factor
387    else:
388        # nonuniform scaling
389        direction = unit_vector(direction[:3])
390        factor = 1.0 - factor
391        M = numpy.identity(4)
392        M[:3, :3] -= factor * numpy.outer(direction, direction)
393        if origin is not None:
394            M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction
395    return M
396
397
398def scale_from_matrix(matrix):
399    """Return scaling factor, origin and direction from scaling matrix.
400
401    >>> factor = random.random() * 10 - 5
402    >>> origin = numpy.random.random(3) - 0.5
403    >>> direct = numpy.random.random(3) - 0.5
404    >>> S0 = scale_matrix(factor, origin)
405    >>> factor, origin, direction = scale_from_matrix(S0)
406    >>> S1 = scale_matrix(factor, origin, direction)
407    >>> is_same_transform(S0, S1)
408    True
409    >>> S0 = scale_matrix(factor, origin, direct)
410    >>> factor, origin, direction = scale_from_matrix(S0)
411    >>> S1 = scale_matrix(factor, origin, direction)
412    >>> is_same_transform(S0, S1)
413    True
414
415    """
416    M = numpy.array(matrix, dtype=numpy.float64, copy=False)
417    M33 = M[:3, :3]
418    factor = numpy.trace(M33) - 2.0
419    try:
420        # direction: unit eigenvector corresponding to eigenvalue factor
421        l, V = numpy.linalg.eig(M33)
422        i = numpy.where(abs(numpy.real(l) - factor) < 1e-8)[0][0]
423        direction = numpy.real(V[:, i]).squeeze()
424        direction /= vector_norm(direction)
425    except IndexError:
426        # uniform scaling
427        factor = (factor + 2.0) / 3.0
428        direction = None
429    # origin: any eigenvector corresponding to eigenvalue 1
430    l, V = numpy.linalg.eig(M)
431    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
432    if not len(i):
433        raise ValueError("no eigenvector corresponding to eigenvalue 1")
434    origin = numpy.real(V[:, i[-1]]).squeeze()
435    origin /= origin[3]
436    return factor, origin, direction
437
438
439def projection_matrix(point, normal, direction=None,
440                      perspective=None, pseudo=False):
441    """Return matrix to project onto plane defined by point and normal.
442
443    Using either perspective point, projection direction, or none of both.
444
445    If pseudo is True, perspective projections will preserve relative depth
446    such that Perspective = dot(Orthogonal, PseudoPerspective).
447
448    >>> P = projection_matrix((0, 0, 0), (1, 0, 0))
449    >>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:])
450    True
451    >>> point = numpy.random.random(3) - 0.5
452    >>> normal = numpy.random.random(3) - 0.5
453    >>> direct = numpy.random.random(3) - 0.5
454    >>> persp = numpy.random.random(3) - 0.5
455    >>> P0 = projection_matrix(point, normal)
456    >>> P1 = projection_matrix(point, normal, direction=direct)
457    >>> P2 = projection_matrix(point, normal, perspective=persp)
458    >>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True)
459    >>> is_same_transform(P2, numpy.dot(P0, P3))
460    True
461    >>> P = projection_matrix((3, 0, 0), (1, 1, 0), (1, 0, 0))
462    >>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20.0
463    >>> v0[3] = 1.0
464    >>> v1 = numpy.dot(P, v0)
465    >>> numpy.allclose(v1[1], v0[1])
466    True
467    >>> numpy.allclose(v1[0], 3.0-v1[1])
468    True
469
470    """
471    M = numpy.identity(4)
472    point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
473    normal = unit_vector(normal[:3])
474    if perspective is not None:
475        # perspective projection
476        perspective = numpy.array(perspective[:3], dtype=numpy.float64,
477                                  copy=False)
478        M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective-point, normal)
479        M[:3, :3] -= numpy.outer(perspective, normal)
480        if pseudo:
481            # preserve relative depth
482            M[:3, :3] -= numpy.outer(normal, normal)
483            M[:3, 3] = numpy.dot(point, normal) * (perspective+normal)
484        else:
485            M[:3, 3] = numpy.dot(point, normal) * perspective
486        M[3, :3] = -normal
487        M[3, 3] = numpy.dot(perspective, normal)
488    elif direction is not None:
489        # parallel projection
490        direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False)
491        scale = numpy.dot(direction, normal)
492        M[:3, :3] -= numpy.outer(direction, normal) / scale
493        M[:3, 3] = direction * (numpy.dot(point, normal) / scale)
494    else:
495        # orthogonal projection
496        M[:3, :3] -= numpy.outer(normal, normal)
497        M[:3, 3] = numpy.dot(point, normal) * normal
498    return M
499
500
501def projection_from_matrix(matrix, pseudo=False):
502    """Return projection plane and perspective point from projection matrix.
503
504    Return values are same as arguments for projection_matrix function:
505    point, normal, direction, perspective, and pseudo.
506
507    >>> point = numpy.random.random(3) - 0.5
508    >>> normal = numpy.random.random(3) - 0.5
509    >>> direct = numpy.random.random(3) - 0.5
510    >>> persp = numpy.random.random(3) - 0.5
511    >>> P0 = projection_matrix(point, normal)
512    >>> result = projection_from_matrix(P0)
513    >>> P1 = projection_matrix(*result)
514    >>> is_same_transform(P0, P1)
515    True
516    >>> P0 = projection_matrix(point, normal, direct)
517    >>> result = projection_from_matrix(P0)
518    >>> P1 = projection_matrix(*result)
519    >>> is_same_transform(P0, P1)
520    True
521    >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False)
522    >>> result = projection_from_matrix(P0, pseudo=False)
523    >>> P1 = projection_matrix(*result)
524    >>> is_same_transform(P0, P1)
525    True
526    >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True)
527    >>> result = projection_from_matrix(P0, pseudo=True)
528    >>> P1 = projection_matrix(*result)
529    >>> is_same_transform(P0, P1)
530    True
531
532    """
533    M = numpy.array(matrix, dtype=numpy.float64, copy=False)
534    M33 = M[:3, :3]
535    l, V = numpy.linalg.eig(M)
536    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
537    if not pseudo and len(i):
538        # point: any eigenvector corresponding to eigenvalue 1
539        point = numpy.real(V[:, i[-1]]).squeeze()
540        point /= point[3]
541        # direction: unit eigenvector corresponding to eigenvalue 0
542        l, V = numpy.linalg.eig(M33)
543        i = numpy.where(abs(numpy.real(l)) < 1e-8)[0]
544        if not len(i):
545            raise ValueError("no eigenvector corresponding to eigenvalue 0")
546        direction = numpy.real(V[:, i[0]]).squeeze()
547        direction /= vector_norm(direction)
548        # normal: unit eigenvector of M33.T corresponding to eigenvalue 0
549        l, V = numpy.linalg.eig(M33.T)
550        i = numpy.where(abs(numpy.real(l)) < 1e-8)[0]
551        if len(i):
552            # parallel projection
553            normal = numpy.real(V[:, i[0]]).squeeze()
554            normal /= vector_norm(normal)
555            return point, normal, direction, None, False
556        else:
557            # orthogonal projection, where normal equals direction vector
558            return point, direction, None, None, False
559    else:
560        # perspective projection
561        i = numpy.where(abs(numpy.real(l)) > 1e-8)[0]
562        if not len(i):
563            raise ValueError(
564                "no eigenvector not corresponding to eigenvalue 0")
565        point = numpy.real(V[:, i[-1]]).squeeze()
566        point /= point[3]
567        normal = - M[3, :3]
568        perspective = M[:3, 3] / numpy.dot(point[:3], normal)
569        if pseudo:
570            perspective -= normal
571        return point, normal, None, perspective, pseudo
572
573
574def clip_matrix(left, right, bottom, top, near, far, perspective=False):
575    """Return matrix to obtain normalized device coordinates from frustrum.
576
577    The frustrum bounds are axis-aligned along x (left, right),
578    y (bottom, top) and z (near, far).
579
580    Normalized device coordinates are in range [-1, 1] if coordinates are
581    inside the frustrum.
582
583    If perspective is True the frustrum is a truncated pyramid with the
584    perspective point at origin and direction along z axis, otherwise an
585    orthographic canonical view volume (a box).
586
587    Homogeneous coordinates transformed by the perspective clip matrix
588    need to be dehomogenized (devided by w coordinate).
589
590    >>> frustrum = numpy.random.rand(6)
591    >>> frustrum[1] += frustrum[0]
592    >>> frustrum[3] += frustrum[2]
593    >>> frustrum[5] += frustrum[4]
594    >>> M = clip_matrix(*frustrum, perspective=False)
595    >>> numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0])
596    array([-1., -1., -1.,  1.])
597    >>> numpy.dot(M, [frustrum[1], frustrum[3], frustrum[5], 1.0])
598    array([ 1.,  1.,  1.,  1.])
599    >>> M = clip_matrix(*frustrum, perspective=True)
600    >>> v = numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0])
601    >>> v / v[3]
602    array([-1., -1., -1.,  1.])
603    >>> v = numpy.dot(M, [frustrum[1], frustrum[3], frustrum[4], 1.0])
604    >>> v / v[3]
605    array([ 1.,  1., -1.,  1.])
606
607    """
608    if left >= right or bottom >= top or near >= far:
609        raise ValueError("invalid frustrum")
610    if perspective:
611        if near <= _EPS:
612            raise ValueError("invalid frustrum: near <= 0")
613        t = 2.0 * near
614        M = ((-t/(right-left), 0.0, (right+left)/(right-left), 0.0),
615             (0.0, -t/(top-bottom), (top+bottom)/(top-bottom), 0.0),
616             (0.0, 0.0, -(far+near)/(far-near), t*far/(far-near)),
617             (0.0, 0.0, -1.0, 0.0))
618    else:
619        M = ((2.0/(right-left), 0.0, 0.0, (right+left)/(left-right)),
620             (0.0, 2.0/(top-bottom), 0.0, (top+bottom)/(bottom-top)),
621             (0.0, 0.0, 2.0/(far-near), (far+near)/(near-far)),
622             (0.0, 0.0, 0.0, 1.0))
623    return numpy.array(M, dtype=numpy.float64)
624
625
626def shear_matrix(angle, direction, point, normal):
627    """Return matrix to shear by angle along direction vector on shear plane.
628
629    The shear plane is defined by a point and normal vector. The direction
630    vector must be orthogonal to the plane's normal vector.
631
632    A point P is transformed by the shear matrix into P" such that
633    the vector P-P" is parallel to the direction vector and its extent is
634    given by the angle of P-P'-P", where P' is the orthogonal projection
635    of P onto the shear plane.
636
637    >>> angle = (random.random() - 0.5) * 4*math.pi
638    >>> direct = numpy.random.random(3) - 0.5
639    >>> point = numpy.random.random(3) - 0.5
640    >>> normal = numpy.cross(direct, numpy.random.random(3))
641    >>> S = shear_matrix(angle, direct, point, normal)
642    >>> numpy.allclose(1.0, numpy.linalg.det(S))
643    True
644
645    """
646    normal = unit_vector(normal[:3])
647    direction = unit_vector(direction[:3])
648    if abs(numpy.dot(normal, direction)) > 1e-6:
649        raise ValueError("direction and normal vectors are not orthogonal")
650    angle = math.tan(angle)
651    M = numpy.identity(4)
652    M[:3, :3] += angle * numpy.outer(direction, normal)
653    M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction
654    return M
655
656
657def shear_from_matrix(matrix):
658    """Return shear angle, direction and plane from shear matrix.
659
660    >>> angle = (random.random() - 0.5) * 4*math.pi
661    >>> direct = numpy.random.random(3) - 0.5
662    >>> point = numpy.random.random(3) - 0.5
663    >>> normal = numpy.cross(direct, numpy.random.random(3))
664    >>> S0 = shear_matrix(angle, direct, point, normal)
665    >>> angle, direct, point, normal = shear_from_matrix(S0)
666    >>> S1 = shear_matrix(angle, direct, point, normal)
667    >>> is_same_transform(S0, S1)
668    True
669
670    """
671    M = numpy.array(matrix, dtype=numpy.float64, copy=False)
672    M33 = M[:3, :3]
673    # normal: cross independent eigenvectors corresponding to the eigenvalue 1
674    l, V = numpy.linalg.eig(M33)
675    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-4)[0]
676    if len(i) < 2:
677        raise ValueError("No two linear independent eigenvectors found %s" % l)
678    V = numpy.real(V[:, i]).squeeze().T
679    lenorm = -1.0
680    for i0, i1 in ((0, 1), (0, 2), (1, 2)):
681        n = numpy.cross(V[i0], V[i1])
682        l = vector_norm(n)
683        if l > lenorm:
684            lenorm = l
685            normal = n
686    normal /= lenorm
687    # direction and angle
688    direction = numpy.dot(M33 - numpy.identity(3), normal)
689    angle = vector_norm(direction)
690    direction /= angle
691    angle = math.atan(angle)
692    # point: eigenvector corresponding to eigenvalue 1
693    l, V = numpy.linalg.eig(M)
694    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
695    if not len(i):
696        raise ValueError("no eigenvector corresponding to eigenvalue 1")
697    point = numpy.real(V[:, i[-1]]).squeeze()
698    point /= point[3]
699    return angle, direction, point, normal
700
701
702def decompose_matrix(matrix):
703    """Return sequence of transformations from transformation matrix.
704
705    matrix : array_like
706        Non-degenerative homogeneous transformation matrix
707
708    Return tuple of:
709        scale : vector of 3 scaling factors
710        shear : list of shear factors for x-y, x-z, y-z axes
711        angles : list of Euler angles about static x, y, z axes
712        translate : translation vector along x, y, z axes
713        perspective : perspective partition of matrix
714
715    Raise ValueError if matrix is of wrong type or degenerative.
716
717    >>> T0 = translation_matrix((1, 2, 3))
718    >>> scale, shear, angles, trans, persp = decompose_matrix(T0)
719    >>> T1 = translation_matrix(trans)
720    >>> numpy.allclose(T0, T1)
721    True
722    >>> S = scale_matrix(0.123)
723    >>> scale, shear, angles, trans, persp = decompose_matrix(S)
724    >>> scale[0]
725    0.123
726    >>> R0 = euler_matrix(1, 2, 3)
727    >>> scale, shear, angles, trans, persp = decompose_matrix(R0)
728    >>> R1 = euler_matrix(*angles)
729    >>> numpy.allclose(R0, R1)
730    True
731
732    """
733    M = numpy.array(matrix, dtype=numpy.float64, copy=True).T
734    if abs(M[3, 3]) < _EPS:
735        raise ValueError("M[3, 3] is zero")
736    M /= M[3, 3]
737    P = M.copy()
738    P[:, 3] = 0, 0, 0, 1
739    if not numpy.linalg.det(P):
740        raise ValueError("Matrix is singular")
741
742    scale = numpy.zeros((3, ), dtype=numpy.float64)
743    shear = [0, 0, 0]
744    angles = [0, 0, 0]
745
746    if any(abs(M[:3, 3]) > _EPS):
747        perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T))
748        M[:, 3] = 0, 0, 0, 1
749    else:
750        perspective = numpy.array((0, 0, 0, 1), dtype=numpy.float64)
751
752    translate = M[3, :3].copy()
753    M[3, :3] = 0
754
755    row = M[:3, :3].copy()
756    scale[0] = vector_norm(row[0])
757    row[0] /= scale[0]
758    shear[0] = numpy.dot(row[0], row[1])
759    row[1] -= row[0] * shear[0]
760    scale[1] = vector_norm(row[1])
761    row[1] /= scale[1]
762    shear[0] /= scale[1]
763    shear[1] = numpy.dot(row[0], row[2])
764    row[2] -= row[0] * shear[1]
765    shear[2] = numpy.dot(row[1], row[2])
766    row[2] -= row[1] * shear[2]
767    scale[2] = vector_norm(row[2])
768    row[2] /= scale[2]
769    shear[1:] /= scale[2]
770
771    if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0:
772        scale *= -1
773        row *= -1
774
775    angles[1] = math.asin(-row[0, 2])
776    if math.cos(angles[1]):
777        angles[0] = math.atan2(row[1, 2], row[2, 2])
778        angles[2] = math.atan2(row[0, 1], row[0, 0])
779    else:
780        #angles[0] = math.atan2(row[1, 0], row[1, 1])
781        angles[0] = math.atan2(-row[2, 1], row[1, 1])
782        angles[2] = 0.0
783
784    return scale, shear, angles, translate, perspective
785
786
787def compose_matrix(scale=None, shear=None, angles=None, translate=None,
788                   perspective=None):
789    """Return transformation matrix from sequence of transformations.
790
791    This is the inverse of the decompose_matrix function.
792
793    Sequence of transformations:
794        scale : vector of 3 scaling factors
795        shear : list of shear factors for x-y, x-z, y-z axes
796        angles : list of Euler angles about static x, y, z axes
797        translate : translation vector along x, y, z axes
798        perspective : perspective partition of matrix
799
800    >>> scale = numpy.random.random(3) - 0.5
801    >>> shear = numpy.random.random(3) - 0.5
802    >>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi)
803    >>> trans = numpy.random.random(3) - 0.5
804    >>> persp = numpy.random.random(4) - 0.5
805    >>> M0 = compose_matrix(scale, shear, angles, trans, persp)
806    >>> result = decompose_matrix(M0)
807    >>> M1 = compose_matrix(*result)
808    >>> is_same_transform(M0, M1)
809    True
810
811    """
812    M = numpy.identity(4)
813    if perspective is not None:
814        P = numpy.identity(4)
815        P[3, :] = perspective[:4]
816        M = numpy.dot(M, P)
817    if translate is not None:
818        T = numpy.identity(4)
819        T[:3, 3] = translate[:3]
820        M = numpy.dot(M, T)
821    if angles is not None:
822        R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz')
823        M = numpy.dot(M, R)
824    if shear is not None:
825        Z = numpy.identity(4)
826        Z[1, 2] = shear[2]
827        Z[0, 2] = shear[1]
828        Z[0, 1] = shear[0]
829        M = numpy.dot(M, Z)
830    if scale is not None:
831        S = numpy.identity(4)
832        S[0, 0] = scale[0]
833        S[1, 1] = scale[1]
834        S[2, 2] = scale[2]
835        M = numpy.dot(M, S)
836    M /= M[3, 3]
837    return M
838
839
840def orthogonalization_matrix(lengths, angles):
841    """Return orthogonalization matrix for crystallographic cell coordinates.
842
843    Angles are expected in degrees.
844
845    The de-orthogonalization matrix is the inverse.
846
847    >>> O = orthogonalization_matrix((10., 10., 10.), (90., 90., 90.))
848    >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
849    True
850    >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
851    >>> numpy.allclose(numpy.sum(O), 43.063229)
852    True
853
854    """
855    a, b, c = lengths
856    angles = numpy.radians(angles)
857    sina, sinb, _ = numpy.sin(angles)
858    cosa, cosb, cosg = numpy.cos(angles)
859    co = (cosa * cosb - cosg) / (sina * sinb)
860    return numpy.array((
861        ( a*sinb*math.sqrt(1.0-co*co),  0.0,    0.0, 0.0),
862        (-a*sinb*co,                    b*sina, 0.0, 0.0),
863        ( a*cosb,                       b*cosa, c,   0.0),
864        ( 0.0,                          0.0,    0.0, 1.0)),
865        dtype=numpy.float64)
866
867
868def superimposition_matrix(v0, v1, scaling=False, usesvd=True):
869    """Return matrix to transform given vector set into second vector set.
870
871    v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 vectors.
872
873    If usesvd is True, the weighted sum of squared deviations (RMSD) is
874    minimized according to the algorithm by W. Kabsch [8]. Otherwise the
875    quaternion based algorithm by B. Horn [9] is used (slower when using
876    this Python implementation).
877
878    The returned matrix performs rotation, translation and uniform scaling
879    (if specified).
880
881    >>> v0 = numpy.random.rand(3, 10)
882    >>> M = superimposition_matrix(v0, v0)
883    >>> numpy.allclose(M, numpy.identity(4))
884    True
885    >>> R = random_rotation_matrix(numpy.random.random(3))
886    >>> v0 = ((1,0,0), (0,1,0), (0,0,1), (1,1,1))
887    >>> v1 = numpy.dot(R, v0)
888    >>> M = superimposition_matrix(v0, v1)
889    >>> numpy.allclose(v1, numpy.dot(M, v0))
890    True
891    >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20.0
892    >>> v0[3] = 1.0
893    >>> v1 = numpy.dot(R, v0)
894    >>> M = superimposition_matrix(v0, v1)
895    >>> numpy.allclose(v1, numpy.dot(M, v0))
896    True
897    >>> S = scale_matrix(random.random())
898    >>> T = translation_matrix(numpy.random.random(3)-0.5)
899    >>> M = concatenate_matrices(T, R, S)
900    >>> v1 = numpy.dot(M, v0)
901    >>> v0[:3] += numpy.random.normal(0.0, 1e-9, 300).reshape(3, -1)
902    >>> M = superimposition_matrix(v0, v1, scaling=True)
903    >>> numpy.allclose(v1, numpy.dot(M, v0))
904    True
905    >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False)
906    >>> numpy.allclose(v1, numpy.dot(M, v0))
907    True
908    >>> v = numpy.empty((4, 100, 3), dtype=numpy.float64)
909    >>> v[:, :, 0] = v0
910    >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False)
911    >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0]))
912    True
913
914    """
915    v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3]
916    v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3]
917
918    if v0.shape != v1.shape or v0.shape[1] < 3:
919        raise ValueError("Vector sets are of wrong shape or type.")
920
921    # move centroids to origin
922    t0 = numpy.mean(v0, axis=1)
923    t1 = numpy.mean(v1, axis=1)
924    v0 = v0 - t0.reshape(3, 1)
925    v1 = v1 - t1.reshape(3, 1)
926
927    if usesvd:
928        # Singular Value Decomposition of covariance matrix
929        u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T))
930        # rotation matrix from SVD orthonormal bases
931        R = numpy.dot(u, vh)
932        if numpy.linalg.det(R) < 0.0:
933            # R does not constitute right handed system
934            R -= numpy.outer(u[:, 2], vh[2, :]*2.0)
935            s[-1] *= -1.0
936        # homogeneous transformation matrix
937        M = numpy.identity(4)
938        M[:3, :3] = R
939    else:
940        # compute symmetric matrix N
941        xx, yy, zz = numpy.sum(v0 * v1, axis=1)
942        xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1)
943        xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1)
944        N = ((xx+yy+zz, yz-zy,    zx-xz,    xy-yx),
945             (yz-zy,    xx-yy-zz, xy+yx,    zx+xz),
946             (zx-xz,    xy+yx,   -xx+yy-zz, yz+zy),
947             (xy-yx,    zx+xz,    yz+zy,   -xx-yy+zz))
948        # quaternion: eigenvector corresponding to most positive eigenvalue
949        l, V = numpy.linalg.eig(N)
950        q = V[:, numpy.argmax(l)]
951        q /= vector_norm(q) # unit quaternion
952        q = numpy.roll(q, -1) # move w component to end
953        # homogeneous transformation matrix
954        M = quaternion_matrix(q)
955
956    # scale: ratio of rms deviations from centroid
957    if scaling:
958        v0 *= v0
959        v1 *= v1
960        M[:3, :3] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0))
961
962    # translation
963    M[:3, 3] = t1
964    T = numpy.identity(4)
965    T[:3, 3] = -t0
966    M = numpy.dot(M, T)
967    return M
968
969
970def euler_matrix(ai, aj, ak, axes='sxyz'):
971    """Return homogeneous rotation matrix from Euler angles and axis sequence.
972
973    ai, aj, ak : Euler's roll, pitch and yaw angles
974    axes : One of 24 axis sequences as string or encoded tuple
975
976    >>> R = euler_matrix(1, 2, 3, 'syxz')
977    >>> numpy.allclose(numpy.sum(R[0]), -1.34786452)
978    True
979    >>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1))
980    >>> numpy.allclose(numpy.sum(R[0]), -0.383436184)
981    True
982    >>> ai, aj, ak = (4.0*math.pi) * (numpy.random.random(3) - 0.5)
983    >>> for axes in _AXES2TUPLE.keys():
984    ...    R = euler_matrix(ai, aj, ak, axes)
985    >>> for axes in _TUPLE2AXES.keys():
986    ...    R = euler_matrix(ai, aj, ak, axes)
987
988    """
989    try:
990        firstaxis, parity, repetition, frame = _AXES2TUPLE[axes]
991    except (AttributeError, KeyError):
992        _ = _TUPLE2AXES[axes]
993        firstaxis, parity, repetition, frame = axes
994
995    i = firstaxis
996    j = _NEXT_AXIS[i+parity]
997    k = _NEXT_AXIS[i-parity+1]
998
999    if frame:
1000        ai, ak = ak, ai
1001    if parity:
1002        ai, aj, ak = -ai, -aj, -ak
1003
1004    si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak)
1005    ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak)
1006    cc, cs = ci*ck, ci*sk
1007    sc, ss = si*ck, si*sk
1008
1009    M = numpy.identity(4)
1010    if repetition:
1011        M[i, i] = cj
1012        M[i, j] = sj*si
1013        M[i, k] = sj*ci
1014        M[j, i] = sj*sk
1015        M[j, j] = -cj*ss+cc
1016        M[j, k] = -cj*cs-sc
1017        M[k, i] = -sj*ck
1018        M[k, j] = cj*sc+cs
1019        M[k, k] = cj*cc-ss
1020    else:
1021        M[i, i] = cj*ck
1022        M[i, j] = sj*sc-cs
1023        M[i, k] = sj*cc+ss
1024        M[j, i] = cj*sk
1025        M[j, j] = sj*ss+cc
1026        M[j, k] = sj*cs-sc
1027        M[k, i] = -sj
1028        M[k, j] = cj*si
1029        M[k, k] = cj*ci
1030    return M
1031
1032
1033def euler_from_matrix(matrix, axes='sxyz'):
1034    """Return Euler angles from rotation matrix for specified axis sequence.
1035
1036    axes : One of 24 axis sequences as string or encoded tuple
1037
1038    Note that many Euler angle triplets can describe one matrix.
1039
1040    >>> R0 = euler_matrix(1, 2, 3, 'syxz')
1041    >>> al, be, ga = euler_from_matrix(R0, 'syxz')
1042    >>> R1 = euler_matrix(al, be, ga, 'syxz')
1043    >>> numpy.allclose(R0, R1)
1044    True
1045    >>> angles = (4.0*math.pi) * (numpy.random.random(3) - 0.5)
1046    >>> for axes in _AXES2TUPLE.keys():
1047    ...    R0 = euler_matrix(axes=axes, *angles)
1048    ...    R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes))
1049    ...    if not numpy.allclose(R0, R1): print axes, "failed"
1050
1051    """
1052    try:
1053        firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
1054    except (AttributeError, KeyError):
1055        _ = _TUPLE2AXES[axes]
1056        firstaxis, parity, repetition, frame = axes
1057
1058    i = firstaxis
1059    j = _NEXT_AXIS[i+parity]
1060    k = _NEXT_AXIS[i-parity+1]
1061
1062    M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:3, :3]
1063    if repetition:
1064        sy = math.sqrt(M[i, j]*M[i, j] + M[i, k]*M[i, k])
1065        if sy > _EPS:
1066            ax = math.atan2( M[i, j],  M[i, k])
1067            ay = math.atan2( sy,       M[i, i])
1068            az = math.atan2( M[j, i], -M[k, i])
1069        else:
1070            ax = math.atan2(-M[j, k],  M[j, j])
1071            ay = math.atan2( sy,       M[i, i])
1072            az = 0.0
1073    else:
1074        cy = math.sqrt(M[i, i]*M[i, i] + M[j, i]*M[j, i])
1075        if cy > _EPS:
1076            ax = math.atan2( M[k, j],  M[k, k])
1077            ay = math.atan2(-M[k, i],  cy)
1078            az = math.atan2( M[j, i],  M[i, i])
1079        else:
1080            ax = math.atan2(-M[j, k],  M[j, j])
1081            ay = math.atan2(-M[k, i],  cy)
1082            az = 0.0
1083
1084    if parity:
1085        ax, ay, az = -ax, -ay, -az
1086    if frame:
1087        ax, az = az, ax
1088    return ax, ay, az
1089
1090
1091def euler_from_quaternion(quaternion, axes='sxyz'):
1092    """Return Euler angles from quaternion for specified axis sequence.
1093
1094    >>> angles = euler_from_quaternion([0.06146124, 0, 0, 0.99810947])
1095    >>> numpy.allclose(angles, [0.123, 0, 0])
1096    True
1097
1098    """
1099    return euler_from_matrix(quaternion_matrix(quaternion), axes)
1100
1101
1102def quaternion_from_euler(ai, aj, ak, axes='sxyz'):
1103    """Return quaternion from Euler angles and axis sequence.
1104
1105    ai, aj, ak : Euler's roll, pitch and yaw angles
1106    axes : One of 24 axis sequences as string or encoded tuple
1107
1108    >>> q = quaternion_from_euler(1, 2, 3, 'ryxz')
1109    >>> numpy.allclose(q, [0.310622, -0.718287, 0.444435, 0.435953])
1110    True
1111
1112    """
1113    try:
1114        firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
1115    except (AttributeError, KeyError):
1116        _ = _TUPLE2AXES[axes]
1117        firstaxis, parity, repetition, frame = axes
1118
1119    i = firstaxis
1120    j = _NEXT_AXIS[i+parity]
1121    k = _NEXT_AXIS[i-parity+1]
1122
1123    if frame:
1124        ai, ak = ak, ai
1125    if parity:
1126        aj = -aj
1127
1128    ai /= 2.0
1129    aj /= 2.0
1130    ak /= 2.0
1131    ci = math.cos(ai)
1132    si = math.sin(ai)
1133    cj = math.cos(aj)
1134    sj = math.sin(aj)
1135    ck = math.cos(ak)
1136    sk = math.sin(ak)
1137    cc = ci*ck
1138    cs = ci*sk
1139    sc = si*ck
1140    ss = si*sk
1141
1142    quaternion = numpy.empty((4, ), dtype=numpy.float64)
1143    if repetition:
1144        quaternion[i] = cj*(cs + sc)
1145        quaternion[j] = sj*(cc + ss)
1146        quaternion[k] = sj*(cs - sc)
1147        quaternion[3] = cj*(cc - ss)
1148    else:
1149        quaternion[i] = cj*sc - sj*cs
1150        quaternion[j] = cj*ss + sj*cc
1151        quaternion[k] = cj*cs - sj*sc
1152        quaternion[3] = cj*cc + sj*ss
1153    if parity:
1154        quaternion[j] *= -1
1155
1156    return quaternion
1157
1158
1159def quaternion_about_axis(angle, axis):
1160    """Return quaternion for rotation about axis.
1161
1162    >>> q = quaternion_about_axis(0.123, (1, 0, 0))
1163    >>> numpy.allclose(q, [0.06146124, 0, 0, 0.99810947])
1164    True
1165
1166    """
1167    quaternion = numpy.zeros((4, ), dtype=numpy.float64)
1168    quaternion[:3] = axis[:3]
1169    qlen = vector_norm(quaternion)
1170    if qlen > _EPS:
1171        quaternion *= math.sin(angle/2.0) / qlen
1172    quaternion[3] = math.cos(angle/2.0)
1173    return quaternion
1174
1175
1176def quaternion_matrix(quaternion):
1177    """Return homogeneous rotation matrix from quaternion.
1178
1179    >>> R = quaternion_matrix([0.06146124, 0, 0, 0.99810947])
1180    >>> numpy.allclose(R, rotation_matrix(0.123, (1, 0, 0)))
1181    True
1182
1183    """
1184    q = numpy.array(quaternion[:4], dtype=numpy.float64, copy=True)
1185    nq = numpy.dot(q, q)
1186    if nq < _EPS:
1187        return numpy.identity(4)
1188    q *= math.sqrt(2.0 / nq)
1189    q = numpy.outer(q, q)
1190    return numpy.array((
1191        (1.0-q[1, 1]-q[2, 2],     q[0, 1]-q[2, 3],     q[0, 2]+q[1, 3], 0.0),
1192        (    q[0, 1]+q[2, 3], 1.0-q[0, 0]-q[2, 2],     q[1, 2]-q[0, 3], 0.0),
1193        (    q[0, 2]-q[1, 3],     q[1, 2]+q[0, 3], 1.0-q[0, 0]-q[1, 1], 0.0),
1194        (                0.0,                 0.0,                 0.0, 1.0)
1195        ), dtype=numpy.float64)
1196
1197
1198def quaternion_from_matrix(matrix):
1199    """Return quaternion from rotation matrix.
1200
1201    >>> R = rotation_matrix(0.123, (1, 2, 3))
1202    >>> q = quaternion_from_matrix(R)
1203    >>> numpy.allclose(q, [0.0164262, 0.0328524, 0.0492786, 0.9981095])
1204    True
1205
1206    """
1207    q = numpy.empty((4, ), dtype=numpy.float64)
1208    M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4]
1209    t = numpy.trace(M)
1210    if t > M[3, 3]:
1211        q[3] = t
1212        q[2] = M[1, 0] - M[0, 1]
1213        q[1] = M[0, 2] - M[2, 0]
1214        q[0] = M[2, 1] - M[1, 2]
1215    else:
1216        i, j, k = 0, 1, 2
1217        if M[1, 1] > M[0, 0]:
1218            i, j, k = 1, 2, 0
1219        if M[2, 2] > M[i, i]:
1220            i, j, k = 2, 0, 1
1221        t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
1222        q[i] = t
1223        q[j] = M[i, j] + M[j, i]
1224        q[k] = M[k, i] + M[i, k]
1225        q[3] = M[k, j] - M[j, k]
1226    q *= 0.5 / math.sqrt(t * M[3, 3])
1227    return q
1228
1229
1230def quaternion_multiply(quaternion1, quaternion0):
1231    """Return multiplication of two quaternions.
1232
1233    >>> q = quaternion_multiply([1, -2, 3, 4], [-5, 6, 7, 8])
1234    >>> numpy.allclose(q, [-44, -14, 48, 28])
1235    True
1236
1237    """
1238    x0, y0, z0, w0 = quaternion0
1239    x1, y1, z1, w1 = quaternion1
1240    return numpy.array((
1241         x1*w0 + y1*z0 - z1*y0 + w1*x0,
1242        -x1*z0 + y1*w0 + z1*x0 + w1*y0,
1243         x1*y0 - y1*x0 + z1*w0 + w1*z0,
1244        -x1*x0 - y1*y0 - z1*z0 + w1*w0), dtype=numpy.float64)
1245
1246
1247def quaternion_conjugate(quaternion):
1248    """Return conjugate of quaternion.
1249
1250    >>> q0 = random_quaternion()
1251    >>> q1 = quaternion_conjugate(q0)
1252    >>> q1[3] == q0[3] and all(q1[:3] == -q0[:3])
1253    True
1254
1255    """
1256    return numpy.array((-quaternion[0], -quaternion[1],
1257                        -quaternion[2], quaternion[3]), dtype=numpy.float64)
1258
1259
1260def quaternion_inverse(quaternion):
1261    """Return inverse of quaternion.
1262
1263    >>> q0 = random_quaternion()
1264    >>> q1 = quaternion_inverse(q0)
1265    >>> numpy.allclose(quaternion_multiply(q0, q1), [0, 0, 0, 1])
1266    True
1267
1268    """
1269    return quaternion_conjugate(quaternion) / numpy.dot(quaternion, quaternion)
1270
1271
1272def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True):
1273    """Return spherical linear interpolation between two quaternions.
1274
1275    >>> q0 = random_quaternion()
1276    >>> q1 = random_quaternion()
1277    >>> q = quaternion_slerp(q0, q1, 0.0)
1278    >>> numpy.allclose(q, q0)
1279    True
1280    >>> q = quaternion_slerp(q0, q1, 1.0, 1)
1281    >>> numpy.allclose(q, q1)
1282    True
1283    >>> q = quaternion_slerp(q0, q1, 0.5)
1284    >>> angle = math.acos(numpy.dot(q0, q))
1285    >>> numpy.allclose(2.0, math.acos(numpy.dot(q0, q1)) / angle) or \
1286        numpy.allclose(2.0, math.acos(-numpy.dot(q0, q1)) / angle)
1287    True
1288
1289    """
1290    q0 = unit_vector(quat0[:4])
1291    q1 = unit_vector(quat1[:4])
1292    if fraction == 0.0:
1293        return q0
1294    elif fraction == 1.0:
1295        return q1
1296    d = numpy.dot(q0, q1)
1297    if abs(abs(d) - 1.0) < _EPS:
1298        return q0
1299    if shortestpath and d < 0.0:
1300        # invert rotation
1301        d = -d
1302        q1 *= -1.0
1303    angle = math.acos(d) + spin * math.pi
1304    if abs(angle) < _EPS:
1305        return q0
1306    isin = 1.0 / math.sin(angle)
1307    q0 *= math.sin((1.0 - fraction) * angle) * isin
1308    q1 *= math.sin(fraction * angle) * isin
1309    q0 += q1
1310    return q0
1311
1312
1313def random_quaternion(rand=None):
1314    """Return uniform random unit quaternion.
1315
1316    rand: array like or None
1317        Three independent random variables that are uniformly distributed
1318        between 0 and 1.
1319
1320    >>> q = random_quaternion()
1321    >>> numpy.allclose(1.0, vector_norm(q))
1322    True
1323    >>> q = random_quaternion(numpy.random.random(3))
1324    >>> q.shape
1325    (4,)
1326
1327    """
1328    if rand is None:
1329        rand = numpy.random.rand(3)
1330    else:
1331        assert len(rand) == 3
1332    r1 = numpy.sqrt(1.0 - rand[0])
1333    r2 = numpy.sqrt(rand[0])
1334    pi2 = math.pi * 2.0
1335    t1 = pi2 * rand[1]
1336    t2 = pi2 * rand[2]
1337    return numpy.array((numpy.sin(t1)*r1,
1338                        numpy.cos(t1)*r1,
1339                        numpy.sin(t2)*r2,
1340                        numpy.cos(t2)*r2), dtype=numpy.float64)
1341
1342
1343def random_rotation_matrix(rand=None):
1344    """Return uniform random rotation matrix.
1345
1346    rnd: array like
1347        Three independent random variables that are uniformly distributed
1348        between 0 and 1 for each returned quaternion.
1349
1350    >>> R = random_rotation_matrix()
1351    >>> numpy.allclose(numpy.dot(R.T, R), numpy.identity(4))
1352    True
1353
1354    """
1355    return quaternion_matrix(random_quaternion(rand))
1356
1357
1358class Arcball(object):
1359    """Virtual Trackball Control.
1360
1361    >>> ball = Arcball()
1362    >>> ball = Arcball(initial=numpy.identity(4))
1363    >>> ball.place([320, 320], 320)
1364    >>> ball.down([500, 250])
1365    >>> ball.drag([475, 275])
1366    >>> R = ball.matrix()
1367    >>> numpy.allclose(numpy.sum(R), 3.90583455)
1368    True
1369    >>> ball = Arcball(initial=[0, 0, 0, 1])
1370    >>> ball.place([320, 320], 320)
1371    >>> ball.setaxes([1,1,0], [-1, 1, 0])
1372    >>> ball.setconstrain(True)
1373    >>> ball.down([400, 200])
1374    >>> ball.drag([200, 400])
1375    >>> R = ball.matrix()
1376    >>> numpy.allclose(numpy.sum(R), 0.2055924)
1377    True
1378    >>> ball.next()
1379
1380    """
1381
1382    def __init__(self, initial=None):
1383        """Initialize virtual trackball control.
1384
1385        initial : quaternion or rotation matrix
1386
1387        """
1388        self._axis = None
1389        self._axes = None
1390        self._radius = 1.0
1391        self._center = [0.0, 0.0]
1392        self._vdown = numpy.array([0, 0, 1], dtype=numpy.float64)
1393        self._constrain = False
1394
1395        if initial is None:
1396            self._qdown = numpy.array([0, 0, 0, 1], dtype=numpy.float64)
1397        else:
1398            initial = numpy.array(initial, dtype=numpy.float64)
1399            if initial.shape == (4, 4):
1400                self._qdown = quaternion_from_matrix(initial)
1401            elif initial.shape == (4, ):
1402                initial /= vector_norm(initial)
1403                self._qdown = initial
1404            else:
1405                raise ValueError("initial not a quaternion or matrix.")
1406
1407        self._qnow = self._qpre = self._qdown
1408
1409    def place(self, center, radius):
1410        """Place Arcball, e.g. when window size changes.
1411
1412        center : sequence[2]
1413            Window coordinates of trackball center.
1414        radius : float
1415            Radius of trackball in window coordinates.
1416
1417        """
1418        self._radius = float(radius)
1419        self._center[0] = center[0]
1420        self._center[1] = center[1]
1421
1422    def setaxes(self, *axes):
1423        """Set axes to constrain rotations."""
1424        if axes is None:
1425            self._axes = None
1426        else:
1427            self._axes = [unit_vector(axis) for axis in axes]
1428
1429    def setconstrain(self, constrain):
1430        """Set state of constrain to axis mode."""
1431        self._constrain = constrain == True
1432
1433    def getconstrain(self):
1434        """Return state of constrain to axis mode."""
1435        return self._constrain
1436
1437    def down(self, point):
1438        """Set initial cursor window coordinates and pick constrain-axis."""
1439        self._vdown = arcball_map_to_sphere(point, self._center, self._radius)
1440        self._qdown = self._qpre = self._qnow
1441
1442        if self._constrain and self._axes is not None:
1443            self._axis = arcball_nearest_axis(self._vdown, self._axes)
1444            self._vdown = arcball_constrain_to_axis(self._vdown, self._axis)
1445        else:
1446            self._axis = None
1447
1448    def drag(self, point):
1449        """Update current cursor window coordinates."""
1450        vnow = arcball_map_to_sphere(point, self._center, self._radius)
1451
1452        if self._axis is not None:
1453            vnow = arcball_constrain_to_axis(vnow, self._axis)
1454
1455        self._qpre = self._qnow
1456
1457        t = numpy.cross(self._vdown, vnow)
1458        if numpy.dot(t, t) < _EPS:
1459            self._qnow = self._qdown
1460        else:
1461            q = [t[0], t[1], t[2], numpy.dot(self._vdown, vnow)]
1462            self._qnow = quaternion_multiply(q, self._qdown)
1463
1464    def next(self, acceleration=0.0):
1465        """Continue rotation in direction of last drag."""
1466        q = quaternion_slerp(self._qpre, self._qnow, 2.0+acceleration, False)
1467        self._qpre, self._qnow = self._qnow, q
1468
1469    def matrix(self):
1470        """Return homogeneous rotation matrix."""
1471        return quaternion_matrix(self._qnow)
1472
1473
1474def arcball_map_to_sphere(point, center, radius):
1475    """Return unit sphere coordinates from window coordinates."""
1476    v = numpy.array(((point[0] - center[0]) / radius,
1477                     (center[1] - point[1]) / radius,
1478                     0.0), dtype=numpy.float64)
1479    n = v[0]*v[0] + v[1]*v[1]
1480    if n > 1.0:
1481        v /= math.sqrt(n) # position outside of sphere
1482    else:
1483        v[2] = math.sqrt(1.0 - n)
1484    return v
1485
1486
1487def arcball_constrain_to_axis(point, axis):
1488    """Return sphere point perpendicular to axis."""
1489    v = numpy.array(point, dtype=numpy.float64, copy=True)
1490    a = numpy.array(axis, dtype=numpy.float64, copy=True)
1491    v -= a * numpy.dot(a, v) # on plane
1492    n = vector_norm(v)
1493    if n > _EPS:
1494        if v[2] < 0.0:
1495            v *= -1.0
1496        v /= n
1497        return v
1498    if a[2] == 1.0:
1499        return numpy.array([1, 0, 0], dtype=numpy.float64)
1500    return unit_vector([-a[1], a[0], 0])
1501
1502
1503def arcball_nearest_axis(point, axes):
1504    """Return axis, which arc is nearest to point."""
1505    point = numpy.array(point, dtype=numpy.float64, copy=False)
1506    nearest = None
1507    mx = -1.0
1508    for axis in axes:
1509        t = numpy.dot(arcball_constrain_to_axis(point, axis), point)
1510        if t > mx:
1511            nearest = axis
1512            mx = t
1513    return nearest
1514
1515
1516# epsilon for testing whether a number is close to zero
1517_EPS = numpy.finfo(float).eps * 4.0
1518
1519# axis sequences for Euler angles
1520_NEXT_AXIS = [1, 2, 0, 1]
1521
1522# map axes strings to/from tuples of inner axis, parity, repetition, frame
1523_AXES2TUPLE = {
1524    'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0),
1525    'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0),
1526    'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0),
1527    'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0),
1528    'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1),
1529    'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1),
1530    'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1),
1531    'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)}
1532
1533_TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items())
1534
1535# helper functions
1536
1537def vector_norm(data, axis=None, out=None):
1538    """Return length, i.e. eucledian norm, of ndarray along axis.
1539
1540    >>> v = numpy.random.random(3)
1541    >>> n = vector_norm(v)
1542    >>> numpy.allclose(n, numpy.linalg.norm(v))
1543    True
1544    >>> v = numpy.random.rand(6, 5, 3)
1545    >>> n = vector_norm(v, axis=-1)
1546    >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2)))
1547    True
1548    >>> n = vector_norm(v, axis=1)
1549    >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
1550    True
1551    >>> v = numpy.random.rand(5, 4, 3)
1552    >>> n = numpy.empty((5, 3), dtype=numpy.float64)
1553    >>> vector_norm(v, axis=1, out=n)
1554    >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
1555    True
1556    >>> vector_norm([])
1557    0.0
1558    >>> vector_norm([1.0])
1559    1.0
1560
1561    """
1562    data = numpy.array(data, dtype=numpy.float64, copy=True)
1563    if out is None:
1564        if data.ndim == 1:
1565            return math.sqrt(numpy.dot(data, data))
1566        data *= data
1567        out = numpy.atleast_1d(numpy.sum(data, axis=axis))
1568        numpy.sqrt(out, out)
1569        return out
1570    else:
1571        data *= data
1572        numpy.sum(data, axis=axis, out=out)
1573        numpy.sqrt(out, out)
1574
1575
1576def unit_vector(data, axis=None, out=None):
1577    """Return ndarray normalized by length, i.e. eucledian norm, along axis.
1578
1579    >>> v0 = numpy.random.random(3)
1580    >>> v1 = unit_vector(v0)
1581    >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0))
1582    True
1583    >>> v0 = numpy.random.rand(5, 4, 3)
1584    >>> v1 = unit_vector(v0, axis=-1)
1585    >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2)
1586    >>> numpy.allclose(v1, v2)
1587    True
1588    >>> v1 = unit_vector(v0, axis=1)
1589    >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1)
1590    >>> numpy.allclose(v1, v2)
1591    True
1592    >>> v1 = numpy.empty((5, 4, 3), dtype=numpy.float64)
1593    >>> unit_vector(v0, axis=1, out=v1)
1594    >>> numpy.allclose(v1, v2)
1595    True
1596    >>> list(unit_vector([]))
1597    []
1598    >>> list(unit_vector([1.0]))
1599    [1.0]
1600
1601    """
1602    if out is None:
1603        data = numpy.array(data, dtype=numpy.float64, copy=True)
1604        if data.ndim == 1:
1605            data /= math.sqrt(numpy.dot(data, data))
1606            return data
1607    else:
1608        if out is not data:
1609            out[:] = numpy.array(data, copy=False)
1610        data = out
1611    length = numpy.atleast_1d(numpy.sum(data*data, axis))
1612    numpy.sqrt(length, length)
1613    if axis is not None:
1614        length = numpy.expand_dims(length, axis)
1615    data /= length
1616    if out is None:
1617        return data
1618
1619
1620def random_vector(size):
1621    """Return array of random doubles in the half-open interval [0.0, 1.0).
1622
1623    >>> v = random_vector(10000)
1624    >>> numpy.all(v >= 0.0) and numpy.all(v < 1.0)
1625    True
1626    >>> v0 = random_vector(10)
1627    >>> v1 = random_vector(10)
1628    >>> numpy.any(v0 == v1)
1629    False
1630
1631    """
1632    return numpy.random.random(size)
1633
1634
1635def inverse_matrix(matrix):
1636    """Return inverse of square transformation matrix.
1637
1638    >>> M0 = random_rotation_matrix()
1639    >>> M1 = inverse_matrix(M0.T)
1640    >>> numpy.allclose(M1, numpy.linalg.inv(M0.T))
1641    True
1642    >>> for size in range(1, 7):
1643    ...     M0 = numpy.random.rand(size, size)
1644    ...     M1 = inverse_matrix(M0)
1645    ...     if not numpy.allclose(M1, numpy.linalg.inv(M0)): print size
1646
1647    """
1648    return numpy.linalg.inv(matrix)
1649
1650
1651def concatenate_matrices(*matrices):
1652    """Return concatenation of series of transformation matrices.
1653
1654    >>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5
1655    >>> numpy.allclose(M, concatenate_matrices(M))
1656    True
1657    >>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T))
1658    True
1659
1660    """
1661    M = numpy.identity(4)
1662    for i in matrices:
1663        M = numpy.dot(M, i)
1664    return M
1665
1666
1667def is_same_transform(matrix0, matrix1):
1668    """Return True if two matrices perform same transformation.
1669
1670    >>> is_same_transform(numpy.identity(4), numpy.identity(4))
1671    True
1672    >>> is_same_transform(numpy.identity(4), random_rotation_matrix())
1673    False
1674
1675    """
1676    matrix0 = numpy.array(matrix0, dtype=numpy.float64, copy=True)
1677    matrix0 /= matrix0[3, 3]
1678    matrix1 = numpy.array(matrix1, dtype=numpy.float64, copy=True)
1679    matrix1 /= matrix1[3, 3]
1680    return numpy.allclose(matrix0, matrix1)
1681
1682
1683def _import_module(module_name, warn=True, prefix='_py_', ignore='_'):
1684    """Try import all public attributes from module into global namespace.
1685
1686    Existing attributes with name clashes are renamed with prefix.
1687    Attributes starting with underscore are ignored by default.
1688
1689    Return True on successful import.
1690
1691    """
1692    try:
1693        module = __import__(module_name)
1694    except ImportError:
1695        if warn:
1696            warnings.warn("Failed to import module " + module_name)
1697    else:
1698        for attr in dir(module):
1699            if ignore and attr.startswith(ignore):
1700                continue
1701            if prefix:
1702                if attr in globals():
1703                    globals()[prefix + attr] = globals()[attr]
1704                elif warn:
1705                    warnings.warn("No Python implementation of " + attr)
1706            globals()[attr] = getattr(module, attr)
1707        return True
1708