• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2  //
3  //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4  //
5  //  By downloading, copying, installing or using the software you agree to this license.
6  //  If you do not agree to this license, do not download, install,
7  //  copy or use the software.
8  //
9  //
10  //                        Intel License Agreement
11  //                For Open Source Computer Vision Library
12  //
13  // Copyright (C) 2000, Intel Corporation, all rights reserved.
14  // Third party copyrights are property of their respective owners.
15  //
16  // Redistribution and use in source and binary forms, with or without modification,
17  // are permitted provided that the following conditions are met:
18  //
19  //   * Redistribution's of source code must retain the above copyright notice,
20  //     this list of conditions and the following disclaimer.
21  //
22  //   * Redistribution's in binary form must reproduce the above copyright notice,
23  //     this list of conditions and the following disclaimer in the documentation
24  //     and/or other materials provided with the distribution.
25  //
26  //   * The name of Intel Corporation may not be used to endorse or promote products
27  //     derived from this software without specific prior written permission.
28  //
29  // This software is provided by the copyright holders and contributors "as is" and
30  // any express or implied warranties, including, but not limited to, the implied
31  // warranties of merchantability and fitness for a particular purpose are disclaimed.
32  // In no event shall the Intel Corporation or contributors be liable for any direct,
33  // indirect, incidental, special, exemplary, or consequential damages
34  // (including, but not limited to, procurement of substitute goods or services;
35  // loss of use, data, or profits; or business interruption) however caused
36  // and on any theory of liability, whether in contract, strict liability,
37  // or tort (including negligence or otherwise) arising in any way out of
38  // the use of this software, even if advised of the possibility of such damage.
39  //
40  //M*/
41 
42 #include "precomp.hpp"
43 
44 #include <limits>
45 #include <utility>
46 #include <algorithm>
47 
48 #include <math.h>
49 
50 namespace cv {
51 
is_smaller(const std::pair<int,float> & p1,const std::pair<int,float> & p2)52 inline bool is_smaller(const std::pair<int, float>& p1, const std::pair<int, float>& p2)
53 {
54     return p1.second < p2.second;
55 }
56 
orderContours(const std::vector<std::vector<Point>> & contours,Point2f point,std::vector<std::pair<int,float>> & order)57 static void orderContours(const std::vector<std::vector<Point> >& contours, Point2f point, std::vector<std::pair<int, float> >& order)
58 {
59     order.clear();
60     size_t i, j, n = contours.size();
61     for(i = 0; i < n; i++)
62     {
63         size_t ni = contours[i].size();
64         double min_dist = std::numeric_limits<double>::max();
65         for(j = 0; j < ni; j++)
66         {
67             double dist = norm(Point2f((float)contours[i][j].x, (float)contours[i][j].y) - point);
68             min_dist = MIN(min_dist, dist);
69         }
70         order.push_back(std::pair<int, float>((int)i, (float)min_dist));
71     }
72 
73     std::sort(order.begin(), order.end(), is_smaller);
74 }
75 
76 // fit second order curve to a set of 2D points
fitCurve2Order(const std::vector<Point2f> &,std::vector<float> &)77 inline void fitCurve2Order(const std::vector<Point2f>& /*points*/, std::vector<float>& /*curve*/)
78 {
79     // TBD
80 }
81 
findCurvesCross(const std::vector<float> &,const std::vector<float> &,Point2f &)82 inline void findCurvesCross(const std::vector<float>& /*curve1*/, const std::vector<float>& /*curve2*/, Point2f& /*cross_point*/)
83 {
84 }
85 
findLinesCrossPoint(Point2f origin1,Point2f dir1,Point2f origin2,Point2f dir2,Point2f & cross_point)86 static void findLinesCrossPoint(Point2f origin1, Point2f dir1, Point2f origin2, Point2f dir2, Point2f& cross_point)
87 {
88     float det = dir2.x*dir1.y - dir2.y*dir1.x;
89     Point2f offset = origin2 - origin1;
90 
91     float alpha = (dir2.x*offset.y - dir2.y*offset.x)/det;
92     cross_point = origin1 + dir1*alpha;
93 }
94 
findCorner(const std::vector<Point2f> & contour,Point2f point,Point2f & corner)95 static void findCorner(const std::vector<Point2f>& contour, Point2f point, Point2f& corner)
96 {
97     // find the nearest point
98     double min_dist = std::numeric_limits<double>::max();
99     int min_idx = -1;
100 
101     // find corner idx
102     for(size_t i = 0; i < contour.size(); i++)
103     {
104         double dist = norm(contour[i] - point);
105         if(dist < min_dist)
106         {
107             min_dist = dist;
108             min_idx = (int)i;
109         }
110     }
111     CV_Assert(min_idx >= 0);
112 
113     // temporary solution, have to make something more precise
114     corner = contour[min_idx];
115     return;
116 }
117 
segment_hist_max(const Mat & hist,int & low_thresh,int & high_thresh)118 static int segment_hist_max(const Mat& hist, int& low_thresh, int& high_thresh)
119 {
120     Mat bw;
121     double total_sum = sum(hist).val[0];
122 
123     double quantile_sum = 0.0;
124     //double min_quantile = 0.2;
125     double low_sum = 0;
126     double max_segment_length = 0;
127     int max_start_x = -1;
128     int max_end_x = -1;
129     int start_x = 0;
130     const double out_of_bells_fraction = 0.1;
131     for(int x = 0; x < hist.size[0]; x++)
132     {
133         quantile_sum += hist.at<float>(x);
134         if(quantile_sum < 0.2*total_sum) continue;
135 
136         if(quantile_sum - low_sum > out_of_bells_fraction*total_sum)
137         {
138             if(max_segment_length < x - start_x)
139             {
140                 max_segment_length = x - start_x;
141                 max_start_x = start_x;
142                 max_end_x = x;
143             }
144 
145             low_sum = quantile_sum;
146             start_x = x;
147         }
148     }
149 
150     if(start_x == -1)
151     {
152         return 0;
153     }
154     else
155     {
156         low_thresh = cvRound(max_start_x + 0.25*(max_end_x - max_start_x));
157         high_thresh = cvRound(max_start_x + 0.75*(max_end_x - max_start_x));
158         return 1;
159     }
160 }
161 
162 }
163 
find4QuadCornerSubpix(InputArray _img,InputOutputArray _corners,Size region_size)164 bool cv::find4QuadCornerSubpix(InputArray _img, InputOutputArray _corners, Size region_size)
165 {
166     Mat img = _img.getMat(), cornersM = _corners.getMat();
167     int ncorners = cornersM.checkVector(2, CV_32F);
168     CV_Assert( ncorners >= 0 );
169     Point2f* corners = cornersM.ptr<Point2f>();
170     const int nbins = 256;
171     float ranges[] = {0, 256};
172     const float* _ranges = ranges;
173     Mat hist;
174 
175     Mat black_comp, white_comp;
176     for(int i = 0; i < ncorners; i++)
177     {
178         int channels = 0;
179         Rect roi(cvRound(corners[i].x - region_size.width), cvRound(corners[i].y - region_size.height),
180             region_size.width*2 + 1, region_size.height*2 + 1);
181         Mat img_roi = img(roi);
182         calcHist(&img_roi, 1, &channels, Mat(), hist, 1, &nbins, &_ranges);
183 
184         int black_thresh = 0, white_thresh = 0;
185         segment_hist_max(hist, black_thresh, white_thresh);
186 
187         threshold(img, black_comp, black_thresh, 255.0, THRESH_BINARY_INV);
188         threshold(img, white_comp, white_thresh, 255.0, THRESH_BINARY);
189 
190         const int erode_count = 1;
191         erode(black_comp, black_comp, Mat(), Point(-1, -1), erode_count);
192         erode(white_comp, white_comp, Mat(), Point(-1, -1), erode_count);
193 
194         std::vector<std::vector<Point> > white_contours, black_contours;
195         std::vector<Vec4i> white_hierarchy, black_hierarchy;
196         findContours(black_comp, black_contours, black_hierarchy, RETR_LIST, CHAIN_APPROX_SIMPLE);
197         findContours(white_comp, white_contours, white_hierarchy, RETR_LIST, CHAIN_APPROX_SIMPLE);
198 
199         if(black_contours.size() < 5 || white_contours.size() < 5) continue;
200 
201         // find two white and black blobs that are close to the input point
202         std::vector<std::pair<int, float> > white_order, black_order;
203         orderContours(black_contours, corners[i], black_order);
204         orderContours(white_contours, corners[i], white_order);
205 
206         const float max_dist = 10.0f;
207         if(black_order[0].second > max_dist || black_order[1].second > max_dist ||
208            white_order[0].second > max_dist || white_order[1].second > max_dist)
209         {
210             continue; // there will be no improvement in this corner position
211         }
212 
213         const std::vector<Point>* quads[4] = {&black_contours[black_order[0].first], &black_contours[black_order[1].first],
214                                          &white_contours[white_order[0].first], &white_contours[white_order[1].first]};
215         std::vector<Point2f> quads_approx[4];
216         Point2f quad_corners[4];
217         for(int k = 0; k < 4; k++)
218         {
219             std::vector<Point2f> temp;
220             for(size_t j = 0; j < quads[k]->size(); j++) temp.push_back((*quads[k])[j]);
221             approxPolyDP(Mat(temp), quads_approx[k], 0.5, true);
222 
223             findCorner(quads_approx[k], corners[i], quad_corners[k]);
224             quad_corners[k] += Point2f(0.5f, 0.5f);
225         }
226 
227         // cross two lines
228         Point2f origin1 = quad_corners[0];
229         Point2f dir1 = quad_corners[1] - quad_corners[0];
230         Point2f origin2 = quad_corners[2];
231         Point2f dir2 = quad_corners[3] - quad_corners[2];
232         double angle = acos(dir1.dot(dir2)/(norm(dir1)*norm(dir2)));
233         if(cvIsNaN(angle) || cvIsInf(angle) || angle < 0.5 || angle > CV_PI - 0.5) continue;
234 
235         findLinesCrossPoint(origin1, dir1, origin2, dir2, corners[i]);
236     }
237 
238     return true;
239 }
240