• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*#define CHASE_CHAIN*/
2 /*
3  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that: (1) source code distributions
8  * retain the above copyright notice and this paragraph in its entirety, (2)
9  * distributions including binary code include the above copyright notice and
10  * this paragraph in its entirety in the documentation or other materials
11  * provided with the distribution, and (3) all advertising materials mentioning
12  * features or use of this software display the following acknowledgement:
13  * ``This product includes software developed by the University of California,
14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15  * the University nor the names of its contributors may be used to endorse
16  * or promote products derived from this software without specific prior
17  * written permission.
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21  */
22 
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26 
27 #ifdef WIN32
28 #include <pcap-stdinc.h>
29 #else /* WIN32 */
30 #if HAVE_INTTYPES_H
31 #include <inttypes.h>
32 #elif HAVE_STDINT_H
33 #include <stdint.h>
34 #endif
35 #ifdef HAVE_SYS_BITYPES_H
36 #include <sys/bitypes.h>
37 #endif
38 #include <sys/types.h>
39 #include <sys/socket.h>
40 #endif /* WIN32 */
41 
42 /*
43  * XXX - why was this included even on UNIX?
44  */
45 #ifdef __MINGW32__
46 #include "ip6_misc.h"
47 #endif
48 
49 #ifndef WIN32
50 
51 #ifdef __NetBSD__
52 #include <sys/param.h>
53 #endif
54 
55 #include <netinet/in.h>
56 #include <arpa/inet.h>
57 
58 #endif /* WIN32 */
59 
60 #include <stdlib.h>
61 #include <string.h>
62 #include <memory.h>
63 #include <setjmp.h>
64 #include <stdarg.h>
65 
66 #ifdef MSDOS
67 #include "pcap-dos.h"
68 #endif
69 
70 #include "pcap-int.h"
71 
72 #include "ethertype.h"
73 #include "nlpid.h"
74 #include "llc.h"
75 #include "gencode.h"
76 #include "ieee80211.h"
77 #include "atmuni31.h"
78 #include "sunatmpos.h"
79 #include "ppp.h"
80 #include "pcap/sll.h"
81 #include "pcap/ipnet.h"
82 #include "arcnet.h"
83 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
84 #include <linux/types.h>
85 #include <linux/if_packet.h>
86 #include <linux/filter.h>
87 #endif
88 #ifdef HAVE_NET_PFVAR_H
89 #include <sys/socket.h>
90 #include <net/if.h>
91 #include <net/pfvar.h>
92 #include <net/if_pflog.h>
93 #endif
94 #ifndef offsetof
95 #define offsetof(s, e) ((size_t)&((s *)0)->e)
96 #endif
97 #ifdef INET6
98 #ifndef WIN32
99 #include <netdb.h>	/* for "struct addrinfo" */
100 #endif /* WIN32 */
101 #endif /*INET6*/
102 #include <pcap/namedb.h>
103 
104 #define ETHERMTU	1500
105 
106 #ifndef ETHERTYPE_TEB
107 #define ETHERTYPE_TEB 0x6558
108 #endif
109 
110 #ifndef IPPROTO_HOPOPTS
111 #define IPPROTO_HOPOPTS 0
112 #endif
113 #ifndef IPPROTO_ROUTING
114 #define IPPROTO_ROUTING 43
115 #endif
116 #ifndef IPPROTO_FRAGMENT
117 #define IPPROTO_FRAGMENT 44
118 #endif
119 #ifndef IPPROTO_DSTOPTS
120 #define IPPROTO_DSTOPTS 60
121 #endif
122 #ifndef IPPROTO_SCTP
123 #define IPPROTO_SCTP 132
124 #endif
125 
126 #define GENEVE_PORT 6081
127 
128 #ifdef HAVE_OS_PROTO_H
129 #include "os-proto.h"
130 #endif
131 
132 #define JMP(c) ((c)|BPF_JMP|BPF_K)
133 
134 /* Locals */
135 static jmp_buf top_ctx;
136 static pcap_t *bpf_pcap;
137 
138 /* Hack for handling VLAN and MPLS stacks. */
139 #ifdef WIN32
140 static u_int	label_stack_depth = (u_int)-1, vlan_stack_depth = (u_int)-1;
141 #else
142 static u_int	label_stack_depth = -1U, vlan_stack_depth = -1U;
143 #endif
144 
145 /* XXX */
146 static int	pcap_fddipad;
147 
148 /* VARARGS */
149 void
bpf_error(const char * fmt,...)150 bpf_error(const char *fmt, ...)
151 {
152 	va_list ap;
153 
154 	va_start(ap, fmt);
155 	if (bpf_pcap != NULL)
156 		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
157 		    fmt, ap);
158 	va_end(ap);
159 	longjmp(top_ctx, 1);
160 	/* NOTREACHED */
161 }
162 
163 static void init_linktype(pcap_t *);
164 
165 static void init_regs(void);
166 static int alloc_reg(void);
167 static void free_reg(int);
168 
169 static struct block *root;
170 
171 /*
172  * Absolute offsets, which are offsets from the beginning of the raw
173  * packet data, are, in the general case, the sum of a variable value
174  * and a constant value; the variable value may be absent, in which
175  * case the offset is only the constant value, and the constant value
176  * may be zero, in which case the offset is only the variable value.
177  *
178  * bpf_abs_offset is a structure containing all that information:
179  *
180  *   is_variable is 1 if there's a variable part.
181  *
182  *   constant_part is the constant part of the value, possibly zero;
183  *
184  *   if is_variable is 1, reg is the register number for a register
185  *   containing the variable value if the register has been assigned,
186  *   and -1 otherwise.
187  */
188 typedef struct {
189 	int	is_variable;
190 	u_int	constant_part;
191 	int	reg;
192 } bpf_abs_offset;
193 
194 /*
195  * Value passed to gen_load_a() to indicate what the offset argument
196  * is relative to the beginning of.
197  */
198 enum e_offrel {
199 	OR_PACKET,		/* full packet data */
200 	OR_LINKHDR,		/* link-layer header */
201 	OR_PREVLINKHDR,		/* previous link-layer header */
202 	OR_LLC,			/* 802.2 LLC header */
203 	OR_PREVMPLSHDR,		/* previous MPLS header */
204 	OR_LINKTYPE,		/* link-layer type */
205 	OR_LINKPL,		/* link-layer payload */
206 	OR_LINKPL_NOSNAP,	/* link-layer payload, with no SNAP header at the link layer */
207 	OR_TRAN_IPV4,		/* transport-layer header, with IPv4 network layer */
208 	OR_TRAN_IPV6		/* transport-layer header, with IPv6 network layer */
209 };
210 
211 #ifdef INET6
212 /*
213  * As errors are handled by a longjmp, anything allocated must be freed
214  * in the longjmp handler, so it must be reachable from that handler.
215  * One thing that's allocated is the result of pcap_nametoaddrinfo();
216  * it must be freed with freeaddrinfo().  This variable points to any
217  * addrinfo structure that would need to be freed.
218  */
219 static struct addrinfo *ai;
220 #endif
221 
222 /*
223  * We divy out chunks of memory rather than call malloc each time so
224  * we don't have to worry about leaking memory.  It's probably
225  * not a big deal if all this memory was wasted but if this ever
226  * goes into a library that would probably not be a good idea.
227  *
228  * XXX - this *is* in a library....
229  */
230 #define NCHUNKS 16
231 #define CHUNK0SIZE 1024
232 struct chunk {
233 	u_int n_left;
234 	void *m;
235 };
236 
237 static struct chunk chunks[NCHUNKS];
238 static int cur_chunk;
239 
240 static void *newchunk(u_int);
241 static void freechunks(void);
242 static inline struct block *new_block(int);
243 static inline struct slist *new_stmt(int);
244 static struct block *gen_retblk(int);
245 static inline void syntax(void);
246 
247 static void backpatch(struct block *, struct block *);
248 static void merge(struct block *, struct block *);
249 static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
250 static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
251 static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
252 static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
253 static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
254 static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
255     bpf_u_int32);
256 static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
257 static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
258     bpf_u_int32, bpf_u_int32, int, bpf_int32);
259 static struct slist *gen_load_absoffsetrel(bpf_abs_offset *, u_int, u_int);
260 static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
261 static struct slist *gen_loadx_iphdrlen(void);
262 static struct block *gen_uncond(int);
263 static inline struct block *gen_true(void);
264 static inline struct block *gen_false(void);
265 static struct block *gen_ether_linktype(int);
266 static struct block *gen_ipnet_linktype(int);
267 static struct block *gen_linux_sll_linktype(int);
268 static struct slist *gen_load_prism_llprefixlen(void);
269 static struct slist *gen_load_avs_llprefixlen(void);
270 static struct slist *gen_load_radiotap_llprefixlen(void);
271 static struct slist *gen_load_ppi_llprefixlen(void);
272 static void insert_compute_vloffsets(struct block *);
273 static struct slist *gen_abs_offset_varpart(bpf_abs_offset *);
274 static int ethertype_to_ppptype(int);
275 static struct block *gen_linktype(int);
276 static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
277 static struct block *gen_llc_linktype(int);
278 static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
279 #ifdef INET6
280 static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
281 #endif
282 static struct block *gen_ahostop(const u_char *, int);
283 static struct block *gen_ehostop(const u_char *, int);
284 static struct block *gen_fhostop(const u_char *, int);
285 static struct block *gen_thostop(const u_char *, int);
286 static struct block *gen_wlanhostop(const u_char *, int);
287 static struct block *gen_ipfchostop(const u_char *, int);
288 static struct block *gen_dnhostop(bpf_u_int32, int);
289 static struct block *gen_mpls_linktype(int);
290 static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
291 #ifdef INET6
292 static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
293 #endif
294 #ifndef INET6
295 static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
296 #endif
297 static struct block *gen_ipfrag(void);
298 static struct block *gen_portatom(int, bpf_int32);
299 static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
300 static struct block *gen_portatom6(int, bpf_int32);
301 static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
302 struct block *gen_portop(int, int, int);
303 static struct block *gen_port(int, int, int);
304 struct block *gen_portrangeop(int, int, int, int);
305 static struct block *gen_portrange(int, int, int, int);
306 struct block *gen_portop6(int, int, int);
307 static struct block *gen_port6(int, int, int);
308 struct block *gen_portrangeop6(int, int, int, int);
309 static struct block *gen_portrange6(int, int, int, int);
310 static int lookup_proto(const char *, int);
311 static struct block *gen_protochain(int, int, int);
312 static struct block *gen_proto(int, int, int);
313 static struct slist *xfer_to_x(struct arth *);
314 static struct slist *xfer_to_a(struct arth *);
315 static struct block *gen_mac_multicast(int);
316 static struct block *gen_len(int, int);
317 static struct block *gen_check_802_11_data_frame(void);
318 static struct block *gen_geneve_ll_check(void);
319 
320 static struct block *gen_ppi_dlt_check(void);
321 static struct block *gen_msg_abbrev(int type);
322 
323 static void *
newchunk(n)324 newchunk(n)
325 	u_int n;
326 {
327 	struct chunk *cp;
328 	int k;
329 	size_t size;
330 
331 #ifndef __NetBSD__
332 	/* XXX Round up to nearest long. */
333 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
334 #else
335 	/* XXX Round up to structure boundary. */
336 	n = ALIGN(n);
337 #endif
338 
339 	cp = &chunks[cur_chunk];
340 	if (n > cp->n_left) {
341 		++cp, k = ++cur_chunk;
342 		if (k >= NCHUNKS)
343 			bpf_error("out of memory");
344 		size = CHUNK0SIZE << k;
345 		cp->m = (void *)malloc(size);
346 		if (cp->m == NULL)
347 			bpf_error("out of memory");
348 		memset((char *)cp->m, 0, size);
349 		cp->n_left = size;
350 		if (n > size)
351 			bpf_error("out of memory");
352 	}
353 	cp->n_left -= n;
354 	return (void *)((char *)cp->m + cp->n_left);
355 }
356 
357 static void
freechunks()358 freechunks()
359 {
360 	int i;
361 
362 	cur_chunk = 0;
363 	for (i = 0; i < NCHUNKS; ++i)
364 		if (chunks[i].m != NULL) {
365 			free(chunks[i].m);
366 			chunks[i].m = NULL;
367 		}
368 }
369 
370 /*
371  * A strdup whose allocations are freed after code generation is over.
372  */
373 char *
sdup(s)374 sdup(s)
375 	register const char *s;
376 {
377 	int n = strlen(s) + 1;
378 	char *cp = newchunk(n);
379 
380 	strlcpy(cp, s, n);
381 	return (cp);
382 }
383 
384 static inline struct block *
new_block(code)385 new_block(code)
386 	int code;
387 {
388 	struct block *p;
389 
390 	p = (struct block *)newchunk(sizeof(*p));
391 	p->s.code = code;
392 	p->head = p;
393 
394 	return p;
395 }
396 
397 static inline struct slist *
new_stmt(code)398 new_stmt(code)
399 	int code;
400 {
401 	struct slist *p;
402 
403 	p = (struct slist *)newchunk(sizeof(*p));
404 	p->s.code = code;
405 
406 	return p;
407 }
408 
409 static struct block *
gen_retblk(v)410 gen_retblk(v)
411 	int v;
412 {
413 	struct block *b = new_block(BPF_RET|BPF_K);
414 
415 	b->s.k = v;
416 	return b;
417 }
418 
419 static inline void
syntax()420 syntax()
421 {
422 	bpf_error("syntax error in filter expression");
423 }
424 
425 static bpf_u_int32 netmask;
426 static int snaplen;
427 int no_optimize;
428 
429 int
pcap_compile(pcap_t * p,struct bpf_program * program,const char * buf,int optimize,bpf_u_int32 mask)430 pcap_compile(pcap_t *p, struct bpf_program *program,
431 	     const char *buf, int optimize, bpf_u_int32 mask)
432 {
433 	extern int n_errors;
434 	const char * volatile xbuf = buf;
435 	u_int len;
436 	int  rc;
437 
438 	/*
439 	 * XXX - single-thread this code path with pthread calls on
440 	 * UN*X, if the platform supports pthreads?  If that requires
441 	 * a separate -lpthread, we might not want to do that.
442 	 */
443 #ifdef WIN32
444 	extern int wsockinit (void);
445 	static int done = 0;
446 
447 	if (!done)
448 		wsockinit();
449 	done = 1;
450 	EnterCriticalSection(&g_PcapCompileCriticalSection);
451 #endif
452 
453 	/*
454 	 * If this pcap_t hasn't been activated, it doesn't have a
455 	 * link-layer type, so we can't use it.
456 	 */
457 	if (!p->activated) {
458 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
459 		    "not-yet-activated pcap_t passed to pcap_compile");
460 		rc = -1;
461 		goto quit;
462 	}
463 	no_optimize = 0;
464 	n_errors = 0;
465 	root = NULL;
466 	bpf_pcap = p;
467 	init_regs();
468 
469 	if (setjmp(top_ctx)) {
470 #ifdef INET6
471 		if (ai != NULL) {
472 			freeaddrinfo(ai);
473 			ai = NULL;
474 		}
475 #endif
476 		lex_cleanup();
477 		freechunks();
478 		rc = -1;
479 		goto quit;
480 	}
481 
482 	netmask = mask;
483 
484 	snaplen = pcap_snapshot(p);
485 	if (snaplen == 0) {
486 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
487 			 "snaplen of 0 rejects all packets");
488 		rc = -1;
489 		goto quit;
490 	}
491 
492 	lex_init(xbuf ? xbuf : "");
493 	init_linktype(p);
494 	(void)pcap_parse();
495 
496 	if (n_errors)
497 		syntax();
498 
499 	if (root == NULL)
500 		root = gen_retblk(snaplen);
501 
502 	if (optimize && !no_optimize) {
503 		bpf_optimize(&root);
504 		if (root == NULL ||
505 		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
506 			bpf_error("expression rejects all packets");
507 	}
508 	program->bf_insns = icode_to_fcode(root, &len);
509 	program->bf_len = len;
510 
511 	lex_cleanup();
512 	freechunks();
513 
514 	rc = 0;  /* We're all okay */
515 
516 quit:
517 
518 #ifdef WIN32
519 	LeaveCriticalSection(&g_PcapCompileCriticalSection);
520 #endif
521 
522 	return (rc);
523 }
524 
525 /*
526  * entry point for using the compiler with no pcap open
527  * pass in all the stuff that is needed explicitly instead.
528  */
529 int
pcap_compile_nopcap(int snaplen_arg,int linktype_arg,struct bpf_program * program,const char * buf,int optimize,bpf_u_int32 mask)530 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
531 		    struct bpf_program *program,
532 	     const char *buf, int optimize, bpf_u_int32 mask)
533 {
534 	pcap_t *p;
535 	int ret;
536 
537 	p = pcap_open_dead(linktype_arg, snaplen_arg);
538 	if (p == NULL)
539 		return (-1);
540 	ret = pcap_compile(p, program, buf, optimize, mask);
541 	pcap_close(p);
542 	return (ret);
543 }
544 
545 /*
546  * Clean up a "struct bpf_program" by freeing all the memory allocated
547  * in it.
548  */
549 void
pcap_freecode(struct bpf_program * program)550 pcap_freecode(struct bpf_program *program)
551 {
552 	program->bf_len = 0;
553 	if (program->bf_insns != NULL) {
554 		free((char *)program->bf_insns);
555 		program->bf_insns = NULL;
556 	}
557 }
558 
559 /*
560  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
561  * which of the jt and jf fields has been resolved and which is a pointer
562  * back to another unresolved block (or nil).  At least one of the fields
563  * in each block is already resolved.
564  */
565 static void
backpatch(list,target)566 backpatch(list, target)
567 	struct block *list, *target;
568 {
569 	struct block *next;
570 
571 	while (list) {
572 		if (!list->sense) {
573 			next = JT(list);
574 			JT(list) = target;
575 		} else {
576 			next = JF(list);
577 			JF(list) = target;
578 		}
579 		list = next;
580 	}
581 }
582 
583 /*
584  * Merge the lists in b0 and b1, using the 'sense' field to indicate
585  * which of jt and jf is the link.
586  */
587 static void
merge(b0,b1)588 merge(b0, b1)
589 	struct block *b0, *b1;
590 {
591 	register struct block **p = &b0;
592 
593 	/* Find end of list. */
594 	while (*p)
595 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
596 
597 	/* Concatenate the lists. */
598 	*p = b1;
599 }
600 
601 void
finish_parse(p)602 finish_parse(p)
603 	struct block *p;
604 {
605 	struct block *ppi_dlt_check;
606 
607 	/*
608 	 * Insert before the statements of the first (root) block any
609 	 * statements needed to load the lengths of any variable-length
610 	 * headers into registers.
611 	 *
612 	 * XXX - a fancier strategy would be to insert those before the
613 	 * statements of all blocks that use those lengths and that
614 	 * have no predecessors that use them, so that we only compute
615 	 * the lengths if we need them.  There might be even better
616 	 * approaches than that.
617 	 *
618 	 * However, those strategies would be more complicated, and
619 	 * as we don't generate code to compute a length if the
620 	 * program has no tests that use the length, and as most
621 	 * tests will probably use those lengths, we would just
622 	 * postpone computing the lengths so that it's not done
623 	 * for tests that fail early, and it's not clear that's
624 	 * worth the effort.
625 	 */
626 	insert_compute_vloffsets(p->head);
627 
628 	/*
629 	 * For DLT_PPI captures, generate a check of the per-packet
630 	 * DLT value to make sure it's DLT_IEEE802_11.
631 	 */
632 	ppi_dlt_check = gen_ppi_dlt_check();
633 	if (ppi_dlt_check != NULL)
634 		gen_and(ppi_dlt_check, p);
635 
636 	backpatch(p, gen_retblk(snaplen));
637 	p->sense = !p->sense;
638 	backpatch(p, gen_retblk(0));
639 	root = p->head;
640 }
641 
642 void
gen_and(b0,b1)643 gen_and(b0, b1)
644 	struct block *b0, *b1;
645 {
646 	backpatch(b0, b1->head);
647 	b0->sense = !b0->sense;
648 	b1->sense = !b1->sense;
649 	merge(b1, b0);
650 	b1->sense = !b1->sense;
651 	b1->head = b0->head;
652 }
653 
654 void
gen_or(b0,b1)655 gen_or(b0, b1)
656 	struct block *b0, *b1;
657 {
658 	b0->sense = !b0->sense;
659 	backpatch(b0, b1->head);
660 	b0->sense = !b0->sense;
661 	merge(b1, b0);
662 	b1->head = b0->head;
663 }
664 
665 void
gen_not(b)666 gen_not(b)
667 	struct block *b;
668 {
669 	b->sense = !b->sense;
670 }
671 
672 static struct block *
gen_cmp(offrel,offset,size,v)673 gen_cmp(offrel, offset, size, v)
674 	enum e_offrel offrel;
675 	u_int offset, size;
676 	bpf_int32 v;
677 {
678 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
679 }
680 
681 static struct block *
gen_cmp_gt(offrel,offset,size,v)682 gen_cmp_gt(offrel, offset, size, v)
683 	enum e_offrel offrel;
684 	u_int offset, size;
685 	bpf_int32 v;
686 {
687 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
688 }
689 
690 static struct block *
gen_cmp_ge(offrel,offset,size,v)691 gen_cmp_ge(offrel, offset, size, v)
692 	enum e_offrel offrel;
693 	u_int offset, size;
694 	bpf_int32 v;
695 {
696 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
697 }
698 
699 static struct block *
gen_cmp_lt(offrel,offset,size,v)700 gen_cmp_lt(offrel, offset, size, v)
701 	enum e_offrel offrel;
702 	u_int offset, size;
703 	bpf_int32 v;
704 {
705 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
706 }
707 
708 static struct block *
gen_cmp_le(offrel,offset,size,v)709 gen_cmp_le(offrel, offset, size, v)
710 	enum e_offrel offrel;
711 	u_int offset, size;
712 	bpf_int32 v;
713 {
714 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
715 }
716 
717 static struct block *
gen_mcmp(offrel,offset,size,v,mask)718 gen_mcmp(offrel, offset, size, v, mask)
719 	enum e_offrel offrel;
720 	u_int offset, size;
721 	bpf_int32 v;
722 	bpf_u_int32 mask;
723 {
724 	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
725 }
726 
727 static struct block *
gen_bcmp(offrel,offset,size,v)728 gen_bcmp(offrel, offset, size, v)
729 	enum e_offrel offrel;
730 	register u_int offset, size;
731 	register const u_char *v;
732 {
733 	register struct block *b, *tmp;
734 
735 	b = NULL;
736 	while (size >= 4) {
737 		register const u_char *p = &v[size - 4];
738 		bpf_int32 w = ((bpf_int32)p[0] << 24) |
739 		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
740 
741 		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
742 		if (b != NULL)
743 			gen_and(b, tmp);
744 		b = tmp;
745 		size -= 4;
746 	}
747 	while (size >= 2) {
748 		register const u_char *p = &v[size - 2];
749 		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
750 
751 		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
752 		if (b != NULL)
753 			gen_and(b, tmp);
754 		b = tmp;
755 		size -= 2;
756 	}
757 	if (size > 0) {
758 		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
759 		if (b != NULL)
760 			gen_and(b, tmp);
761 		b = tmp;
762 	}
763 	return b;
764 }
765 
766 /*
767  * AND the field of size "size" at offset "offset" relative to the header
768  * specified by "offrel" with "mask", and compare it with the value "v"
769  * with the test specified by "jtype"; if "reverse" is true, the test
770  * should test the opposite of "jtype".
771  */
772 static struct block *
gen_ncmp(offrel,offset,size,mask,jtype,reverse,v)773 gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
774 	enum e_offrel offrel;
775 	bpf_int32 v;
776 	bpf_u_int32 offset, size, mask, jtype;
777 	int reverse;
778 {
779 	struct slist *s, *s2;
780 	struct block *b;
781 
782 	s = gen_load_a(offrel, offset, size);
783 
784 	if (mask != 0xffffffff) {
785 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
786 		s2->s.k = mask;
787 		sappend(s, s2);
788 	}
789 
790 	b = new_block(JMP(jtype));
791 	b->stmts = s;
792 	b->s.k = v;
793 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
794 		gen_not(b);
795 	return b;
796 }
797 
798 /*
799  * Various code constructs need to know the layout of the packet.
800  * These variables give the necessary offsets from the beginning
801  * of the packet data.
802  */
803 
804 /*
805  * Absolute offset of the beginning of the link-layer header.
806  */
807 static bpf_abs_offset off_linkhdr;
808 
809 /*
810  * If we're checking a link-layer header for a packet encapsulated in
811  * another protocol layer, this is the equivalent information for the
812  * previous layers' link-layer header from the beginning of the raw
813  * packet data.
814  */
815 static bpf_abs_offset off_prevlinkhdr;
816 
817 /*
818  * This is the equivalent information for the outermost layers' link-layer
819  * header.
820  */
821 static bpf_abs_offset off_outermostlinkhdr;
822 
823 /*
824  * "Push" the current value of the link-layer header type and link-layer
825  * header offset onto a "stack", and set a new value.  (It's not a
826  * full-blown stack; we keep only the top two items.)
827  */
828 #define PUSH_LINKHDR(new_linktype, new_is_variable, new_constant_part, new_reg) \
829 { \
830 	prevlinktype = new_linktype; \
831 	off_prevlinkhdr = off_linkhdr; \
832 	linktype = new_linktype; \
833 	off_linkhdr.is_variable = new_is_variable; \
834 	off_linkhdr.constant_part = new_constant_part; \
835 	off_linkhdr.reg = new_reg; \
836 	is_geneve = 0; \
837 }
838 
839 /*
840  * Absolute offset of the beginning of the link-layer payload.
841  */
842 static bpf_abs_offset off_linkpl;
843 
844 /*
845  * "off_linktype" is the offset to information in the link-layer header
846  * giving the packet type. This is an absolute offset from the beginning
847  * of the packet.
848  *
849  * For Ethernet, it's the offset of the Ethernet type field; this
850  * means that it must have a value that skips VLAN tags.
851  *
852  * For link-layer types that always use 802.2 headers, it's the
853  * offset of the LLC header; this means that it must have a value
854  * that skips VLAN tags.
855  *
856  * For PPP, it's the offset of the PPP type field.
857  *
858  * For Cisco HDLC, it's the offset of the CHDLC type field.
859  *
860  * For BSD loopback, it's the offset of the AF_ value.
861  *
862  * For Linux cooked sockets, it's the offset of the type field.
863  *
864  * off_linktype.constant_part is set to -1 for no encapsulation,
865  * in which case, IP is assumed.
866  */
867 static bpf_abs_offset off_linktype;
868 
869 /*
870  * TRUE if the link layer includes an ATM pseudo-header.
871  */
872 static int is_atm = 0;
873 
874 /*
875  * TRUE if "geneve" appeared in the filter; it causes us to generate
876  * code that checks for a Geneve header and assume that later filters
877  * apply to the encapsulated payload.
878  */
879 static int is_geneve = 0;
880 
881 /*
882  * These are offsets for the ATM pseudo-header.
883  */
884 static u_int off_vpi;
885 static u_int off_vci;
886 static u_int off_proto;
887 
888 /*
889  * These are offsets for the MTP2 fields.
890  */
891 static u_int off_li;
892 static u_int off_li_hsl;
893 
894 /*
895  * These are offsets for the MTP3 fields.
896  */
897 static u_int off_sio;
898 static u_int off_opc;
899 static u_int off_dpc;
900 static u_int off_sls;
901 
902 /*
903  * This is the offset of the first byte after the ATM pseudo_header,
904  * or -1 if there is no ATM pseudo-header.
905  */
906 static u_int off_payload;
907 
908 /*
909  * These are offsets to the beginning of the network-layer header.
910  * They are relative to the beginning of the link-layer payload (i.e.,
911  * they don't include off_linkhdr.constant_part or off_linkpl.constant_part).
912  *
913  * If the link layer never uses 802.2 LLC:
914  *
915  *	"off_nl" and "off_nl_nosnap" are the same.
916  *
917  * If the link layer always uses 802.2 LLC:
918  *
919  *	"off_nl" is the offset if there's a SNAP header following
920  *	the 802.2 header;
921  *
922  *	"off_nl_nosnap" is the offset if there's no SNAP header.
923  *
924  * If the link layer is Ethernet:
925  *
926  *	"off_nl" is the offset if the packet is an Ethernet II packet
927  *	(we assume no 802.3+802.2+SNAP);
928  *
929  *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
930  *	with an 802.2 header following it.
931  */
932 static u_int off_nl;
933 static u_int off_nl_nosnap;
934 
935 static int linktype;
936 static int prevlinktype;
937 static int outermostlinktype;
938 
939 static void
init_linktype(p)940 init_linktype(p)
941 	pcap_t *p;
942 {
943 	pcap_fddipad = p->fddipad;
944 
945 	/*
946 	 * We start out with only one link-layer header.
947 	 */
948 	outermostlinktype = pcap_datalink(p);
949 	off_outermostlinkhdr.constant_part = 0;
950 	off_outermostlinkhdr.is_variable = 0;
951 	off_outermostlinkhdr.reg = -1;
952 
953 	prevlinktype = outermostlinktype;
954 	off_prevlinkhdr.constant_part = 0;
955 	off_prevlinkhdr.is_variable = 0;
956 	off_prevlinkhdr.reg = -1;
957 
958 	linktype = outermostlinktype;
959 	off_linkhdr.constant_part = 0;
960 	off_linkhdr.is_variable = 0;
961 	off_linkhdr.reg = -1;
962 
963 	/*
964 	 * XXX
965 	 */
966 	off_linkpl.constant_part = 0;
967 	off_linkpl.is_variable = 0;
968 	off_linkpl.reg = -1;
969 
970 	off_linktype.constant_part = 0;
971 	off_linktype.is_variable = 0;
972 	off_linktype.reg = -1;
973 
974 	/*
975 	 * Assume it's not raw ATM with a pseudo-header, for now.
976 	 */
977 	is_atm = 0;
978 	off_vpi = -1;
979 	off_vci = -1;
980 	off_proto = -1;
981 	off_payload = -1;
982 
983 	/*
984 	 * And not Geneve.
985 	 */
986 	is_geneve = 0;
987 
988 	/*
989 	 * And assume we're not doing SS7.
990 	 */
991 	off_li = -1;
992 	off_li_hsl = -1;
993 	off_sio = -1;
994 	off_opc = -1;
995 	off_dpc = -1;
996 	off_sls = -1;
997 
998         label_stack_depth = 0;
999         vlan_stack_depth = 0;
1000 
1001 	switch (linktype) {
1002 
1003 	case DLT_ARCNET:
1004 		off_linktype.constant_part = 2;
1005 		off_linkpl.constant_part = 6;
1006 		off_nl = 0;		/* XXX in reality, variable! */
1007 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1008 		break;
1009 
1010 	case DLT_ARCNET_LINUX:
1011 		off_linktype.constant_part = 4;
1012 		off_linkpl.constant_part = 8;
1013 		off_nl = 0;		/* XXX in reality, variable! */
1014 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1015 		break;
1016 
1017 	case DLT_EN10MB:
1018 		off_linktype.constant_part = 12;
1019 		off_linkpl.constant_part = 14;	/* Ethernet header length */
1020 		off_nl = 0;		/* Ethernet II */
1021 		off_nl_nosnap = 3;	/* 802.3+802.2 */
1022 		break;
1023 
1024 	case DLT_SLIP:
1025 		/*
1026 		 * SLIP doesn't have a link level type.  The 16 byte
1027 		 * header is hacked into our SLIP driver.
1028 		 */
1029 		off_linktype.constant_part = -1;
1030 		off_linkpl.constant_part = 16;
1031 		off_nl = 0;
1032 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1033 		break;
1034 
1035 	case DLT_SLIP_BSDOS:
1036 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1037 		off_linktype.constant_part = -1;
1038 		/* XXX end */
1039 		off_linkpl.constant_part = 24;
1040 		off_nl = 0;
1041 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1042 		break;
1043 
1044 	case DLT_NULL:
1045 	case DLT_LOOP:
1046 		off_linktype.constant_part = 0;
1047 		off_linkpl.constant_part = 4;
1048 		off_nl = 0;
1049 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1050 		break;
1051 
1052 	case DLT_ENC:
1053 		off_linktype.constant_part = 0;
1054 		off_linkpl.constant_part = 12;
1055 		off_nl = 0;
1056 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1057 		break;
1058 
1059 	case DLT_PPP:
1060 	case DLT_PPP_PPPD:
1061 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1062 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1063 		off_linktype.constant_part = 2;	/* skip HDLC-like framing */
1064 		off_linkpl.constant_part = 4;	/* skip HDLC-like framing and protocol field */
1065 		off_nl = 0;
1066 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1067 		break;
1068 
1069 	case DLT_PPP_ETHER:
1070 		/*
1071 		 * This does no include the Ethernet header, and
1072 		 * only covers session state.
1073 		 */
1074 		off_linktype.constant_part = 6;
1075 		off_linkpl.constant_part = 8;
1076 		off_nl = 0;
1077 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1078 		break;
1079 
1080 	case DLT_PPP_BSDOS:
1081 		off_linktype.constant_part = 5;
1082 		off_linkpl.constant_part = 24;
1083 		off_nl = 0;
1084 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1085 		break;
1086 
1087 	case DLT_FDDI:
1088 		/*
1089 		 * FDDI doesn't really have a link-level type field.
1090 		 * We set "off_linktype" to the offset of the LLC header.
1091 		 *
1092 		 * To check for Ethernet types, we assume that SSAP = SNAP
1093 		 * is being used and pick out the encapsulated Ethernet type.
1094 		 * XXX - should we generate code to check for SNAP?
1095 		 */
1096 		off_linktype.constant_part = 13;
1097 		off_linktype.constant_part += pcap_fddipad;
1098 		off_linkpl.constant_part = 13;	/* FDDI MAC header length */
1099 		off_linkpl.constant_part += pcap_fddipad;
1100 		off_nl = 8;		/* 802.2+SNAP */
1101 		off_nl_nosnap = 3;	/* 802.2 */
1102 		break;
1103 
1104 	case DLT_IEEE802:
1105 		/*
1106 		 * Token Ring doesn't really have a link-level type field.
1107 		 * We set "off_linktype" to the offset of the LLC header.
1108 		 *
1109 		 * To check for Ethernet types, we assume that SSAP = SNAP
1110 		 * is being used and pick out the encapsulated Ethernet type.
1111 		 * XXX - should we generate code to check for SNAP?
1112 		 *
1113 		 * XXX - the header is actually variable-length.
1114 		 * Some various Linux patched versions gave 38
1115 		 * as "off_linktype" and 40 as "off_nl"; however,
1116 		 * if a token ring packet has *no* routing
1117 		 * information, i.e. is not source-routed, the correct
1118 		 * values are 20 and 22, as they are in the vanilla code.
1119 		 *
1120 		 * A packet is source-routed iff the uppermost bit
1121 		 * of the first byte of the source address, at an
1122 		 * offset of 8, has the uppermost bit set.  If the
1123 		 * packet is source-routed, the total number of bytes
1124 		 * of routing information is 2 plus bits 0x1F00 of
1125 		 * the 16-bit value at an offset of 14 (shifted right
1126 		 * 8 - figure out which byte that is).
1127 		 */
1128 		off_linktype.constant_part = 14;
1129 		off_linkpl.constant_part = 14;	/* Token Ring MAC header length */
1130 		off_nl = 8;		/* 802.2+SNAP */
1131 		off_nl_nosnap = 3;	/* 802.2 */
1132 		break;
1133 
1134 	case DLT_PRISM_HEADER:
1135 	case DLT_IEEE802_11_RADIO_AVS:
1136 	case DLT_IEEE802_11_RADIO:
1137 		off_linkhdr.is_variable = 1;
1138 		/* Fall through, 802.11 doesn't have a variable link
1139 		 * prefix but is otherwise the same. */
1140 
1141 	case DLT_IEEE802_11:
1142 		/*
1143 		 * 802.11 doesn't really have a link-level type field.
1144 		 * We set "off_linktype.constant_part" to the offset of
1145 		 * the LLC header.
1146 		 *
1147 		 * To check for Ethernet types, we assume that SSAP = SNAP
1148 		 * is being used and pick out the encapsulated Ethernet type.
1149 		 * XXX - should we generate code to check for SNAP?
1150 		 *
1151 		 * We also handle variable-length radio headers here.
1152 		 * The Prism header is in theory variable-length, but in
1153 		 * practice it's always 144 bytes long.  However, some
1154 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1155 		 * sometimes or always supply an AVS header, so we
1156 		 * have to check whether the radio header is a Prism
1157 		 * header or an AVS header, so, in practice, it's
1158 		 * variable-length.
1159 		 */
1160 		off_linktype.constant_part = 24;
1161 		off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1162 		off_linkpl.is_variable = 1;
1163 		off_nl = 8;		/* 802.2+SNAP */
1164 		off_nl_nosnap = 3;	/* 802.2 */
1165 		break;
1166 
1167 	case DLT_PPI:
1168 		/*
1169 		 * At the moment we treat PPI the same way that we treat
1170 		 * normal Radiotap encoded packets. The difference is in
1171 		 * the function that generates the code at the beginning
1172 		 * to compute the header length.  Since this code generator
1173 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1174 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1175 		 * generate code to check for this too.
1176 		 */
1177 		off_linktype.constant_part = 24;
1178 		off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1179 		off_linkpl.is_variable = 1;
1180 		off_linkhdr.is_variable = 1;
1181 		off_nl = 8;		/* 802.2+SNAP */
1182 		off_nl_nosnap = 3;	/* 802.2 */
1183 		break;
1184 
1185 	case DLT_ATM_RFC1483:
1186 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1187 		/*
1188 		 * assume routed, non-ISO PDUs
1189 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1190 		 *
1191 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1192 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1193 		 * latter would presumably be treated the way PPPoE
1194 		 * should be, so you can do "pppoe and udp port 2049"
1195 		 * or "pppoa and tcp port 80" and have it check for
1196 		 * PPPo{A,E} and a PPP protocol of IP and....
1197 		 */
1198 		off_linktype.constant_part = 0;
1199 		off_linkpl.constant_part = 0;	/* packet begins with LLC header */
1200 		off_nl = 8;		/* 802.2+SNAP */
1201 		off_nl_nosnap = 3;	/* 802.2 */
1202 		break;
1203 
1204 	case DLT_SUNATM:
1205 		/*
1206 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1207 		 * pseudo-header.
1208 		 */
1209 		is_atm = 1;
1210 		off_vpi = SUNATM_VPI_POS;
1211 		off_vci = SUNATM_VCI_POS;
1212 		off_proto = PROTO_POS;
1213 		off_payload = SUNATM_PKT_BEGIN_POS;
1214 		off_linktype.constant_part = off_payload;
1215 		off_linkpl.constant_part = off_payload;	/* if LLC-encapsulated */
1216 		off_nl = 8;		/* 802.2+SNAP */
1217 		off_nl_nosnap = 3;	/* 802.2 */
1218 		break;
1219 
1220 	case DLT_RAW:
1221 	case DLT_IPV4:
1222 	case DLT_IPV6:
1223 		off_linktype.constant_part = -1;
1224 		off_linkpl.constant_part = 0;
1225 		off_nl = 0;
1226 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1227 		break;
1228 
1229 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1230 		off_linktype.constant_part = 14;
1231 		off_linkpl.constant_part = 16;
1232 		off_nl = 0;
1233 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1234 		break;
1235 
1236 	case DLT_LTALK:
1237 		/*
1238 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1239 		 * but really it just indicates whether there is a "short" or
1240 		 * "long" DDP packet following.
1241 		 */
1242 		off_linktype.constant_part = -1;
1243 		off_linkpl.constant_part = 0;
1244 		off_nl = 0;
1245 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1246 		break;
1247 
1248 	case DLT_IP_OVER_FC:
1249 		/*
1250 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1251 		 * link-level type field.  We set "off_linktype" to the
1252 		 * offset of the LLC header.
1253 		 *
1254 		 * To check for Ethernet types, we assume that SSAP = SNAP
1255 		 * is being used and pick out the encapsulated Ethernet type.
1256 		 * XXX - should we generate code to check for SNAP? RFC
1257 		 * 2625 says SNAP should be used.
1258 		 */
1259 		off_linktype.constant_part = 16;
1260 		off_linkpl.constant_part = 16;
1261 		off_nl = 8;		/* 802.2+SNAP */
1262 		off_nl_nosnap = 3;	/* 802.2 */
1263 		break;
1264 
1265 	case DLT_FRELAY:
1266 		/*
1267 		 * XXX - we should set this to handle SNAP-encapsulated
1268 		 * frames (NLPID of 0x80).
1269 		 */
1270 		off_linktype.constant_part = -1;
1271 		off_linkpl.constant_part = 0;
1272 		off_nl = 0;
1273 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1274 		break;
1275 
1276                 /*
1277                  * the only BPF-interesting FRF.16 frames are non-control frames;
1278                  * Frame Relay has a variable length link-layer
1279                  * so lets start with offset 4 for now and increments later on (FIXME);
1280                  */
1281 	case DLT_MFR:
1282 		off_linktype.constant_part = -1;
1283 		off_linkpl.constant_part = 0;
1284 		off_nl = 4;
1285 		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1286 		break;
1287 
1288 	case DLT_APPLE_IP_OVER_IEEE1394:
1289 		off_linktype.constant_part = 16;
1290 		off_linkpl.constant_part = 18;
1291 		off_nl = 0;
1292 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1293 		break;
1294 
1295 	case DLT_SYMANTEC_FIREWALL:
1296 		off_linktype.constant_part = 6;
1297 		off_linkpl.constant_part = 44;
1298 		off_nl = 0;		/* Ethernet II */
1299 		off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1300 		break;
1301 
1302 #ifdef HAVE_NET_PFVAR_H
1303 	case DLT_PFLOG:
1304 		off_linktype.constant_part = 0;
1305 		off_linkpl.constant_part = PFLOG_HDRLEN;
1306 		off_nl = 0;
1307 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1308 		break;
1309 #endif
1310 
1311         case DLT_JUNIPER_MFR:
1312         case DLT_JUNIPER_MLFR:
1313         case DLT_JUNIPER_MLPPP:
1314         case DLT_JUNIPER_PPP:
1315         case DLT_JUNIPER_CHDLC:
1316         case DLT_JUNIPER_FRELAY:
1317                 off_linktype.constant_part = 4;
1318 		off_linkpl.constant_part = 4;
1319 		off_nl = 0;
1320 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1321                 break;
1322 
1323 	case DLT_JUNIPER_ATM1:
1324 		off_linktype.constant_part = 4;		/* in reality variable between 4-8 */
1325 		off_linkpl.constant_part = 4;	/* in reality variable between 4-8 */
1326 		off_nl = 0;
1327 		off_nl_nosnap = 10;
1328 		break;
1329 
1330 	case DLT_JUNIPER_ATM2:
1331 		off_linktype.constant_part = 8;		/* in reality variable between 8-12 */
1332 		off_linkpl.constant_part = 8;	/* in reality variable between 8-12 */
1333 		off_nl = 0;
1334 		off_nl_nosnap = 10;
1335 		break;
1336 
1337 		/* frames captured on a Juniper PPPoE service PIC
1338 		 * contain raw ethernet frames */
1339 	case DLT_JUNIPER_PPPOE:
1340         case DLT_JUNIPER_ETHER:
1341         	off_linkpl.constant_part = 14;
1342 		off_linktype.constant_part = 16;
1343 		off_nl = 18;		/* Ethernet II */
1344 		off_nl_nosnap = 21;	/* 802.3+802.2 */
1345 		break;
1346 
1347 	case DLT_JUNIPER_PPPOE_ATM:
1348 		off_linktype.constant_part = 4;
1349 		off_linkpl.constant_part = 6;
1350 		off_nl = 0;
1351 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1352 		break;
1353 
1354 	case DLT_JUNIPER_GGSN:
1355 		off_linktype.constant_part = 6;
1356 		off_linkpl.constant_part = 12;
1357 		off_nl = 0;
1358 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1359 		break;
1360 
1361 	case DLT_JUNIPER_ES:
1362 		off_linktype.constant_part = 6;
1363 		off_linkpl.constant_part = -1;	/* not really a network layer but raw IP addresses */
1364 		off_nl = -1;		/* not really a network layer but raw IP addresses */
1365 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1366 		break;
1367 
1368 	case DLT_JUNIPER_MONITOR:
1369 		off_linktype.constant_part = 12;
1370 		off_linkpl.constant_part = 12;
1371 		off_nl = 0;		/* raw IP/IP6 header */
1372 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1373 		break;
1374 
1375 	case DLT_BACNET_MS_TP:
1376 		off_linktype.constant_part = -1;
1377 		off_linkpl.constant_part = -1;
1378 		off_nl = -1;
1379 		off_nl_nosnap = -1;
1380 		break;
1381 
1382 	case DLT_JUNIPER_SERVICES:
1383 		off_linktype.constant_part = 12;
1384 		off_linkpl.constant_part = -1;	/* L3 proto location dep. on cookie type */
1385 		off_nl = -1;		/* L3 proto location dep. on cookie type */
1386 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1387 		break;
1388 
1389 	case DLT_JUNIPER_VP:
1390 		off_linktype.constant_part = 18;
1391 		off_linkpl.constant_part = -1;
1392 		off_nl = -1;
1393 		off_nl_nosnap = -1;
1394 		break;
1395 
1396 	case DLT_JUNIPER_ST:
1397 		off_linktype.constant_part = 18;
1398 		off_linkpl.constant_part = -1;
1399 		off_nl = -1;
1400 		off_nl_nosnap = -1;
1401 		break;
1402 
1403 	case DLT_JUNIPER_ISM:
1404 		off_linktype.constant_part = 8;
1405 		off_linkpl.constant_part = -1;
1406 		off_nl = -1;
1407 		off_nl_nosnap = -1;
1408 		break;
1409 
1410 	case DLT_JUNIPER_VS:
1411 	case DLT_JUNIPER_SRX_E2E:
1412 	case DLT_JUNIPER_FIBRECHANNEL:
1413 	case DLT_JUNIPER_ATM_CEMIC:
1414 		off_linktype.constant_part = 8;
1415 		off_linkpl.constant_part = -1;
1416 		off_nl = -1;
1417 		off_nl_nosnap = -1;
1418 		break;
1419 
1420 	case DLT_MTP2:
1421 		off_li = 2;
1422 		off_li_hsl = 4;
1423 		off_sio = 3;
1424 		off_opc = 4;
1425 		off_dpc = 4;
1426 		off_sls = 7;
1427 		off_linktype.constant_part = -1;
1428 		off_linkpl.constant_part = -1;
1429 		off_nl = -1;
1430 		off_nl_nosnap = -1;
1431 		break;
1432 
1433 	case DLT_MTP2_WITH_PHDR:
1434 		off_li = 6;
1435 		off_li_hsl = 8;
1436 		off_sio = 7;
1437 		off_opc = 8;
1438 		off_dpc = 8;
1439 		off_sls = 11;
1440 		off_linktype.constant_part = -1;
1441 		off_linkpl.constant_part = -1;
1442 		off_nl = -1;
1443 		off_nl_nosnap = -1;
1444 		break;
1445 
1446 	case DLT_ERF:
1447 		off_li = 22;
1448 		off_li_hsl = 24;
1449 		off_sio = 23;
1450 		off_opc = 24;
1451 		off_dpc = 24;
1452 		off_sls = 27;
1453 		off_linktype.constant_part = -1;
1454 		off_linkpl.constant_part = -1;
1455 		off_nl = -1;
1456 		off_nl_nosnap = -1;
1457 		break;
1458 
1459 	case DLT_PFSYNC:
1460 		off_linktype.constant_part = -1;
1461 		off_linkpl.constant_part = 4;
1462 		off_nl = 0;
1463 		off_nl_nosnap = 0;
1464 		break;
1465 
1466 	case DLT_AX25_KISS:
1467 		/*
1468 		 * Currently, only raw "link[N:M]" filtering is supported.
1469 		 */
1470 		off_linktype.constant_part = -1;	/* variable, min 15, max 71 steps of 7 */
1471 		off_linkpl.constant_part = -1;
1472 		off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1473 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1474 		break;
1475 
1476 	case DLT_IPNET:
1477 		off_linktype.constant_part = 1;
1478 		off_linkpl.constant_part = 24;	/* ipnet header length */
1479 		off_nl = 0;
1480 		off_nl_nosnap = -1;
1481 		break;
1482 
1483 	case DLT_NETANALYZER:
1484 		off_linkhdr.constant_part = 4;	/* Ethernet header is past 4-byte pseudo-header */
1485 		off_linktype.constant_part = off_linkhdr.constant_part + 12;
1486 		off_linkpl.constant_part = off_linkhdr.constant_part + 14;	/* pseudo-header+Ethernet header length */
1487 		off_nl = 0;		/* Ethernet II */
1488 		off_nl_nosnap = 3;	/* 802.3+802.2 */
1489 		break;
1490 
1491 	case DLT_NETANALYZER_TRANSPARENT:
1492 		off_linkhdr.constant_part = 12;	/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1493 		off_linktype.constant_part = off_linkhdr.constant_part + 12;
1494 		off_linkpl.constant_part = off_linkhdr.constant_part + 14;	/* pseudo-header+preamble+SFD+Ethernet header length */
1495 		off_nl = 0;		/* Ethernet II */
1496 		off_nl_nosnap = 3;	/* 802.3+802.2 */
1497 		break;
1498 
1499 	default:
1500 		/*
1501 		 * For values in the range in which we've assigned new
1502 		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1503 		 */
1504 		if (linktype >= DLT_MATCHING_MIN &&
1505 		    linktype <= DLT_MATCHING_MAX) {
1506 			off_linktype.constant_part = -1;
1507 			off_linkpl.constant_part = -1;
1508 			off_nl = -1;
1509 			off_nl_nosnap = -1;
1510 		} else {
1511 			bpf_error("unknown data link type %d", linktype);
1512 		}
1513 		break;
1514 	}
1515 
1516 	off_outermostlinkhdr = off_prevlinkhdr = off_linkhdr;
1517 }
1518 
1519 /*
1520  * Load a value relative to the specified absolute offset.
1521  */
1522 static struct slist *
gen_load_absoffsetrel(bpf_abs_offset * abs_offset,u_int offset,u_int size)1523 gen_load_absoffsetrel(bpf_abs_offset *abs_offset, u_int offset, u_int size)
1524 {
1525 	struct slist *s, *s2;
1526 
1527 	s = gen_abs_offset_varpart(abs_offset);
1528 
1529 	/*
1530 	 * If "s" is non-null, it has code to arrange that the X register
1531 	 * contains the variable part of the absolute offset, so we
1532 	 * generate a load relative to that, with an offset of
1533 	 * abs_offset->constant_part + offset.
1534 	 *
1535 	 * Otherwise, we can do an absolute load with an offset of
1536 	 * abs_offset->constant_part + offset.
1537 	 */
1538 	if (s != NULL) {
1539 		/*
1540 		 * "s" points to a list of statements that puts the
1541 		 * variable part of the absolute offset into the X register.
1542 		 * Do an indirect load, to use the X register as an offset.
1543 		 */
1544 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1545 		s2->s.k = abs_offset->constant_part + offset;
1546 		sappend(s, s2);
1547 	} else {
1548 		/*
1549 		 * There is no variable part of the absolute offset, so
1550 		 * just do an absolute load.
1551 		 */
1552 		s = new_stmt(BPF_LD|BPF_ABS|size);
1553 		s->s.k = abs_offset->constant_part + offset;
1554 	}
1555 	return s;
1556 }
1557 
1558 /*
1559  * Load a value relative to the beginning of the specified header.
1560  */
1561 static struct slist *
gen_load_a(offrel,offset,size)1562 gen_load_a(offrel, offset, size)
1563 	enum e_offrel offrel;
1564 	u_int offset, size;
1565 {
1566 	struct slist *s, *s2;
1567 
1568 	switch (offrel) {
1569 
1570 	case OR_PACKET:
1571                 s = new_stmt(BPF_LD|BPF_ABS|size);
1572                 s->s.k = offset;
1573 		break;
1574 
1575 	case OR_LINKHDR:
1576 		s = gen_load_absoffsetrel(&off_linkhdr, offset, size);
1577 		break;
1578 
1579 	case OR_PREVLINKHDR:
1580 		s = gen_load_absoffsetrel(&off_prevlinkhdr, offset, size);
1581 		break;
1582 
1583 	case OR_LLC:
1584 		s = gen_load_absoffsetrel(&off_linkpl, offset, size);
1585 		break;
1586 
1587 	case OR_PREVMPLSHDR:
1588 		s = gen_load_absoffsetrel(&off_linkpl, off_nl - 4 + offset, size);
1589 		break;
1590 
1591 	case OR_LINKPL:
1592 		s = gen_load_absoffsetrel(&off_linkpl, off_nl + offset, size);
1593 		break;
1594 
1595 	case OR_LINKPL_NOSNAP:
1596 		s = gen_load_absoffsetrel(&off_linkpl, off_nl_nosnap + offset, size);
1597 		break;
1598 
1599 	case OR_LINKTYPE:
1600 		s = gen_load_absoffsetrel(&off_linktype, offset, size);
1601 		break;
1602 
1603 	case OR_TRAN_IPV4:
1604 		/*
1605 		 * Load the X register with the length of the IPv4 header
1606 		 * (plus the offset of the link-layer header, if it's
1607 		 * preceded by a variable-length header such as a radio
1608 		 * header), in bytes.
1609 		 */
1610 		s = gen_loadx_iphdrlen();
1611 
1612 		/*
1613 		 * Load the item at {offset of the link-layer payload} +
1614 		 * {offset, relative to the start of the link-layer
1615 		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1616 		 * {specified offset}.
1617 		 *
1618 		 * If the offset of the link-layer payload is variable,
1619 		 * the variable part of that offset is included in the
1620 		 * value in the X register, and we include the constant
1621 		 * part in the offset of the load.
1622 		 */
1623 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1624 		s2->s.k = off_linkpl.constant_part + off_nl + offset;
1625 		sappend(s, s2);
1626 		break;
1627 
1628 	case OR_TRAN_IPV6:
1629 		s = gen_load_absoffsetrel(&off_linkpl, off_nl + 40 + offset, size);
1630 		break;
1631 
1632 	default:
1633 		abort();
1634 		return NULL;
1635 	}
1636 	return s;
1637 }
1638 
1639 /*
1640  * Generate code to load into the X register the sum of the length of
1641  * the IPv4 header and the variable part of the offset of the link-layer
1642  * payload.
1643  */
1644 static struct slist *
gen_loadx_iphdrlen()1645 gen_loadx_iphdrlen()
1646 {
1647 	struct slist *s, *s2;
1648 
1649 	s = gen_abs_offset_varpart(&off_linkpl);
1650 	if (s != NULL) {
1651 		/*
1652 		 * The offset of the link-layer payload has a variable
1653 		 * part.  "s" points to a list of statements that put
1654 		 * the variable part of that offset into the X register.
1655 		 *
1656 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1657 		 * don't have a constant offset, so we have to load the
1658 		 * value in question into the A register and add to it
1659 		 * the value from the X register.
1660 		 */
1661 		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1662 		s2->s.k = off_linkpl.constant_part + off_nl;
1663 		sappend(s, s2);
1664 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1665 		s2->s.k = 0xf;
1666 		sappend(s, s2);
1667 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1668 		s2->s.k = 2;
1669 		sappend(s, s2);
1670 
1671 		/*
1672 		 * The A register now contains the length of the IP header.
1673 		 * We need to add to it the variable part of the offset of
1674 		 * the link-layer payload, which is still in the X
1675 		 * register, and move the result into the X register.
1676 		 */
1677 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1678 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1679 	} else {
1680 		/*
1681 		 * The offset of the link-layer payload is a constant,
1682 		 * so no code was generated to load the (non-existent)
1683 		 * variable part of that offset.
1684 		 *
1685 		 * This means we can use the 4*([k]&0xf) addressing
1686 		 * mode.  Load the length of the IPv4 header, which
1687 		 * is at an offset of off_nl from the beginning of
1688 		 * the link-layer payload, and thus at an offset of
1689 		 * off_linkpl.constant_part + off_nl from the beginning
1690 		 * of the raw packet data, using that addressing mode.
1691 		 */
1692 		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1693 		s->s.k = off_linkpl.constant_part + off_nl;
1694 	}
1695 	return s;
1696 }
1697 
1698 static struct block *
gen_uncond(rsense)1699 gen_uncond(rsense)
1700 	int rsense;
1701 {
1702 	struct block *b;
1703 	struct slist *s;
1704 
1705 	s = new_stmt(BPF_LD|BPF_IMM);
1706 	s->s.k = !rsense;
1707 	b = new_block(JMP(BPF_JEQ));
1708 	b->stmts = s;
1709 
1710 	return b;
1711 }
1712 
1713 static inline struct block *
gen_true()1714 gen_true()
1715 {
1716 	return gen_uncond(1);
1717 }
1718 
1719 static inline struct block *
gen_false()1720 gen_false()
1721 {
1722 	return gen_uncond(0);
1723 }
1724 
1725 /*
1726  * Byte-swap a 32-bit number.
1727  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1728  * big-endian platforms.)
1729  */
1730 #define	SWAPLONG(y) \
1731 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1732 
1733 /*
1734  * Generate code to match a particular packet type.
1735  *
1736  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1737  * value, if <= ETHERMTU.  We use that to determine whether to
1738  * match the type/length field or to check the type/length field for
1739  * a value <= ETHERMTU to see whether it's a type field and then do
1740  * the appropriate test.
1741  */
1742 static struct block *
gen_ether_linktype(proto)1743 gen_ether_linktype(proto)
1744 	register int proto;
1745 {
1746 	struct block *b0, *b1;
1747 
1748 	switch (proto) {
1749 
1750 	case LLCSAP_ISONS:
1751 	case LLCSAP_IP:
1752 	case LLCSAP_NETBEUI:
1753 		/*
1754 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1755 		 * so we check the DSAP and SSAP.
1756 		 *
1757 		 * LLCSAP_IP checks for IP-over-802.2, rather
1758 		 * than IP-over-Ethernet or IP-over-SNAP.
1759 		 *
1760 		 * XXX - should we check both the DSAP and the
1761 		 * SSAP, like this, or should we check just the
1762 		 * DSAP, as we do for other types <= ETHERMTU
1763 		 * (i.e., other SAP values)?
1764 		 */
1765 		b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1766 		gen_not(b0);
1767 		b1 = gen_cmp(OR_LLC, 0, BPF_H, (bpf_int32)
1768 			     ((proto << 8) | proto));
1769 		gen_and(b0, b1);
1770 		return b1;
1771 
1772 	case LLCSAP_IPX:
1773 		/*
1774 		 * Check for;
1775 		 *
1776 		 *	Ethernet_II frames, which are Ethernet
1777 		 *	frames with a frame type of ETHERTYPE_IPX;
1778 		 *
1779 		 *	Ethernet_802.3 frames, which are 802.3
1780 		 *	frames (i.e., the type/length field is
1781 		 *	a length field, <= ETHERMTU, rather than
1782 		 *	a type field) with the first two bytes
1783 		 *	after the Ethernet/802.3 header being
1784 		 *	0xFFFF;
1785 		 *
1786 		 *	Ethernet_802.2 frames, which are 802.3
1787 		 *	frames with an 802.2 LLC header and
1788 		 *	with the IPX LSAP as the DSAP in the LLC
1789 		 *	header;
1790 		 *
1791 		 *	Ethernet_SNAP frames, which are 802.3
1792 		 *	frames with an LLC header and a SNAP
1793 		 *	header and with an OUI of 0x000000
1794 		 *	(encapsulated Ethernet) and a protocol
1795 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1796 		 *
1797 		 * XXX - should we generate the same code both
1798 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1799 		 */
1800 
1801 		/*
1802 		 * This generates code to check both for the
1803 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1804 		 */
1805 		b0 = gen_cmp(OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1806 		b1 = gen_cmp(OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
1807 		gen_or(b0, b1);
1808 
1809 		/*
1810 		 * Now we add code to check for SNAP frames with
1811 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1812 		 */
1813 		b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1814 		gen_or(b0, b1);
1815 
1816 		/*
1817 		 * Now we generate code to check for 802.3
1818 		 * frames in general.
1819 		 */
1820 		b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1821 		gen_not(b0);
1822 
1823 		/*
1824 		 * Now add the check for 802.3 frames before the
1825 		 * check for Ethernet_802.2 and Ethernet_802.3,
1826 		 * as those checks should only be done on 802.3
1827 		 * frames, not on Ethernet frames.
1828 		 */
1829 		gen_and(b0, b1);
1830 
1831 		/*
1832 		 * Now add the check for Ethernet_II frames, and
1833 		 * do that before checking for the other frame
1834 		 * types.
1835 		 */
1836 		b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
1837 		gen_or(b0, b1);
1838 		return b1;
1839 
1840 	case ETHERTYPE_ATALK:
1841 	case ETHERTYPE_AARP:
1842 		/*
1843 		 * EtherTalk (AppleTalk protocols on Ethernet link
1844 		 * layer) may use 802.2 encapsulation.
1845 		 */
1846 
1847 		/*
1848 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1849 		 * we check for an Ethernet type field less than
1850 		 * 1500, which means it's an 802.3 length field.
1851 		 */
1852 		b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1853 		gen_not(b0);
1854 
1855 		/*
1856 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1857 		 * SNAP packets with an organization code of
1858 		 * 0x080007 (Apple, for Appletalk) and a protocol
1859 		 * type of ETHERTYPE_ATALK (Appletalk).
1860 		 *
1861 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1862 		 * SNAP packets with an organization code of
1863 		 * 0x000000 (encapsulated Ethernet) and a protocol
1864 		 * type of ETHERTYPE_AARP (Appletalk ARP).
1865 		 */
1866 		if (proto == ETHERTYPE_ATALK)
1867 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1868 		else	/* proto == ETHERTYPE_AARP */
1869 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1870 		gen_and(b0, b1);
1871 
1872 		/*
1873 		 * Check for Ethernet encapsulation (Ethertalk
1874 		 * phase 1?); we just check for the Ethernet
1875 		 * protocol type.
1876 		 */
1877 		b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
1878 
1879 		gen_or(b0, b1);
1880 		return b1;
1881 
1882 	default:
1883 		if (proto <= ETHERMTU) {
1884 			/*
1885 			 * This is an LLC SAP value, so the frames
1886 			 * that match would be 802.2 frames.
1887 			 * Check that the frame is an 802.2 frame
1888 			 * (i.e., that the length/type field is
1889 			 * a length field, <= ETHERMTU) and
1890 			 * then check the DSAP.
1891 			 */
1892 			b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1893 			gen_not(b0);
1894 			b1 = gen_cmp(OR_LINKTYPE, 2, BPF_B, (bpf_int32)proto);
1895 			gen_and(b0, b1);
1896 			return b1;
1897 		} else {
1898 			/*
1899 			 * This is an Ethernet type, so compare
1900 			 * the length/type field with it (if
1901 			 * the frame is an 802.2 frame, the length
1902 			 * field will be <= ETHERMTU, and, as
1903 			 * "proto" is > ETHERMTU, this test
1904 			 * will fail and the frame won't match,
1905 			 * which is what we want).
1906 			 */
1907 			return gen_cmp(OR_LINKTYPE, 0, BPF_H,
1908 			    (bpf_int32)proto);
1909 		}
1910 	}
1911 }
1912 
1913 /*
1914  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
1915  * or IPv6 then we have an error.
1916  */
1917 static struct block *
gen_ipnet_linktype(proto)1918 gen_ipnet_linktype(proto)
1919 	register int proto;
1920 {
1921 	switch (proto) {
1922 
1923 	case ETHERTYPE_IP:
1924 		return gen_cmp(OR_LINKTYPE, 0, BPF_B, (bpf_int32)IPH_AF_INET);
1925 		/* NOTREACHED */
1926 
1927 	case ETHERTYPE_IPV6:
1928 		return gen_cmp(OR_LINKTYPE, 0, BPF_B,
1929 		    (bpf_int32)IPH_AF_INET6);
1930 		/* NOTREACHED */
1931 
1932 	default:
1933 		break;
1934 	}
1935 
1936 	return gen_false();
1937 }
1938 
1939 /*
1940  * Generate code to match a particular packet type.
1941  *
1942  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1943  * value, if <= ETHERMTU.  We use that to determine whether to
1944  * match the type field or to check the type field for the special
1945  * LINUX_SLL_P_802_2 value and then do the appropriate test.
1946  */
1947 static struct block *
gen_linux_sll_linktype(proto)1948 gen_linux_sll_linktype(proto)
1949 	register int proto;
1950 {
1951 	struct block *b0, *b1;
1952 
1953 	switch (proto) {
1954 
1955 	case LLCSAP_ISONS:
1956 	case LLCSAP_IP:
1957 	case LLCSAP_NETBEUI:
1958 		/*
1959 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1960 		 * so we check the DSAP and SSAP.
1961 		 *
1962 		 * LLCSAP_IP checks for IP-over-802.2, rather
1963 		 * than IP-over-Ethernet or IP-over-SNAP.
1964 		 *
1965 		 * XXX - should we check both the DSAP and the
1966 		 * SSAP, like this, or should we check just the
1967 		 * DSAP, as we do for other types <= ETHERMTU
1968 		 * (i.e., other SAP values)?
1969 		 */
1970 		b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
1971 		b1 = gen_cmp(OR_LLC, 0, BPF_H, (bpf_int32)
1972 			     ((proto << 8) | proto));
1973 		gen_and(b0, b1);
1974 		return b1;
1975 
1976 	case LLCSAP_IPX:
1977 		/*
1978 		 *	Ethernet_II frames, which are Ethernet
1979 		 *	frames with a frame type of ETHERTYPE_IPX;
1980 		 *
1981 		 *	Ethernet_802.3 frames, which have a frame
1982 		 *	type of LINUX_SLL_P_802_3;
1983 		 *
1984 		 *	Ethernet_802.2 frames, which are 802.3
1985 		 *	frames with an 802.2 LLC header (i.e, have
1986 		 *	a frame type of LINUX_SLL_P_802_2) and
1987 		 *	with the IPX LSAP as the DSAP in the LLC
1988 		 *	header;
1989 		 *
1990 		 *	Ethernet_SNAP frames, which are 802.3
1991 		 *	frames with an LLC header and a SNAP
1992 		 *	header and with an OUI of 0x000000
1993 		 *	(encapsulated Ethernet) and a protocol
1994 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1995 		 *
1996 		 * First, do the checks on LINUX_SLL_P_802_2
1997 		 * frames; generate the check for either
1998 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1999 		 * then put a check for LINUX_SLL_P_802_2 frames
2000 		 * before it.
2001 		 */
2002 		b0 = gen_cmp(OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
2003 		b1 = gen_snap(0x000000, ETHERTYPE_IPX);
2004 		gen_or(b0, b1);
2005 		b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2006 		gen_and(b0, b1);
2007 
2008 		/*
2009 		 * Now check for 802.3 frames and OR that with
2010 		 * the previous test.
2011 		 */
2012 		b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2013 		gen_or(b0, b1);
2014 
2015 		/*
2016 		 * Now add the check for Ethernet_II frames, and
2017 		 * do that before checking for the other frame
2018 		 * types.
2019 		 */
2020 		b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
2021 		gen_or(b0, b1);
2022 		return b1;
2023 
2024 	case ETHERTYPE_ATALK:
2025 	case ETHERTYPE_AARP:
2026 		/*
2027 		 * EtherTalk (AppleTalk protocols on Ethernet link
2028 		 * layer) may use 802.2 encapsulation.
2029 		 */
2030 
2031 		/*
2032 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2033 		 * we check for the 802.2 protocol type in the
2034 		 * "Ethernet type" field.
2035 		 */
2036 		b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2037 
2038 		/*
2039 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2040 		 * SNAP packets with an organization code of
2041 		 * 0x080007 (Apple, for Appletalk) and a protocol
2042 		 * type of ETHERTYPE_ATALK (Appletalk).
2043 		 *
2044 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2045 		 * SNAP packets with an organization code of
2046 		 * 0x000000 (encapsulated Ethernet) and a protocol
2047 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2048 		 */
2049 		if (proto == ETHERTYPE_ATALK)
2050 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2051 		else	/* proto == ETHERTYPE_AARP */
2052 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2053 		gen_and(b0, b1);
2054 
2055 		/*
2056 		 * Check for Ethernet encapsulation (Ethertalk
2057 		 * phase 1?); we just check for the Ethernet
2058 		 * protocol type.
2059 		 */
2060 		b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2061 
2062 		gen_or(b0, b1);
2063 		return b1;
2064 
2065 	default:
2066 		if (proto <= ETHERMTU) {
2067 			/*
2068 			 * This is an LLC SAP value, so the frames
2069 			 * that match would be 802.2 frames.
2070 			 * Check for the 802.2 protocol type
2071 			 * in the "Ethernet type" field, and
2072 			 * then check the DSAP.
2073 			 */
2074 			b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2075 			b1 = gen_cmp(OR_LINKHDR, off_linkpl.constant_part, BPF_B,
2076 			     (bpf_int32)proto);
2077 			gen_and(b0, b1);
2078 			return b1;
2079 		} else {
2080 			/*
2081 			 * This is an Ethernet type, so compare
2082 			 * the length/type field with it (if
2083 			 * the frame is an 802.2 frame, the length
2084 			 * field will be <= ETHERMTU, and, as
2085 			 * "proto" is > ETHERMTU, this test
2086 			 * will fail and the frame won't match,
2087 			 * which is what we want).
2088 			 */
2089 			return gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2090 		}
2091 	}
2092 }
2093 
2094 static struct slist *
gen_load_prism_llprefixlen()2095 gen_load_prism_llprefixlen()
2096 {
2097 	struct slist *s1, *s2;
2098 	struct slist *sjeq_avs_cookie;
2099 	struct slist *sjcommon;
2100 
2101 	/*
2102 	 * This code is not compatible with the optimizer, as
2103 	 * we are generating jmp instructions within a normal
2104 	 * slist of instructions
2105 	 */
2106 	no_optimize = 1;
2107 
2108 	/*
2109 	 * Generate code to load the length of the radio header into
2110 	 * the register assigned to hold that length, if one has been
2111 	 * assigned.  (If one hasn't been assigned, no code we've
2112 	 * generated uses that prefix, so we don't need to generate any
2113 	 * code to load it.)
2114 	 *
2115 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2116 	 * or always use the AVS header rather than the Prism header.
2117 	 * We load a 4-byte big-endian value at the beginning of the
2118 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2119 	 * it's equal to 0x80211000.  If so, that indicates that it's
2120 	 * an AVS header (the masked-out bits are the version number).
2121 	 * Otherwise, it's a Prism header.
2122 	 *
2123 	 * XXX - the Prism header is also, in theory, variable-length,
2124 	 * but no known software generates headers that aren't 144
2125 	 * bytes long.
2126 	 */
2127 	if (off_linkhdr.reg != -1) {
2128 		/*
2129 		 * Load the cookie.
2130 		 */
2131 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2132 		s1->s.k = 0;
2133 
2134 		/*
2135 		 * AND it with 0xFFFFF000.
2136 		 */
2137 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2138 		s2->s.k = 0xFFFFF000;
2139 		sappend(s1, s2);
2140 
2141 		/*
2142 		 * Compare with 0x80211000.
2143 		 */
2144 		sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2145 		sjeq_avs_cookie->s.k = 0x80211000;
2146 		sappend(s1, sjeq_avs_cookie);
2147 
2148 		/*
2149 		 * If it's AVS:
2150 		 *
2151 		 * The 4 bytes at an offset of 4 from the beginning of
2152 		 * the AVS header are the length of the AVS header.
2153 		 * That field is big-endian.
2154 		 */
2155 		s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2156 		s2->s.k = 4;
2157 		sappend(s1, s2);
2158 		sjeq_avs_cookie->s.jt = s2;
2159 
2160 		/*
2161 		 * Now jump to the code to allocate a register
2162 		 * into which to save the header length and
2163 		 * store the length there.  (The "jump always"
2164 		 * instruction needs to have the k field set;
2165 		 * it's added to the PC, so, as we're jumping
2166 		 * over a single instruction, it should be 1.)
2167 		 */
2168 		sjcommon = new_stmt(JMP(BPF_JA));
2169 		sjcommon->s.k = 1;
2170 		sappend(s1, sjcommon);
2171 
2172 		/*
2173 		 * Now for the code that handles the Prism header.
2174 		 * Just load the length of the Prism header (144)
2175 		 * into the A register.  Have the test for an AVS
2176 		 * header branch here if we don't have an AVS header.
2177 		 */
2178 		s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2179 		s2->s.k = 144;
2180 		sappend(s1, s2);
2181 		sjeq_avs_cookie->s.jf = s2;
2182 
2183 		/*
2184 		 * Now allocate a register to hold that value and store
2185 		 * it.  The code for the AVS header will jump here after
2186 		 * loading the length of the AVS header.
2187 		 */
2188 		s2 = new_stmt(BPF_ST);
2189 		s2->s.k = off_linkhdr.reg;
2190 		sappend(s1, s2);
2191 		sjcommon->s.jf = s2;
2192 
2193 		/*
2194 		 * Now move it into the X register.
2195 		 */
2196 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2197 		sappend(s1, s2);
2198 
2199 		return (s1);
2200 	} else
2201 		return (NULL);
2202 }
2203 
2204 static struct slist *
gen_load_avs_llprefixlen()2205 gen_load_avs_llprefixlen()
2206 {
2207 	struct slist *s1, *s2;
2208 
2209 	/*
2210 	 * Generate code to load the length of the AVS header into
2211 	 * the register assigned to hold that length, if one has been
2212 	 * assigned.  (If one hasn't been assigned, no code we've
2213 	 * generated uses that prefix, so we don't need to generate any
2214 	 * code to load it.)
2215 	 */
2216 	if (off_linkhdr.reg != -1) {
2217 		/*
2218 		 * The 4 bytes at an offset of 4 from the beginning of
2219 		 * the AVS header are the length of the AVS header.
2220 		 * That field is big-endian.
2221 		 */
2222 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2223 		s1->s.k = 4;
2224 
2225 		/*
2226 		 * Now allocate a register to hold that value and store
2227 		 * it.
2228 		 */
2229 		s2 = new_stmt(BPF_ST);
2230 		s2->s.k = off_linkhdr.reg;
2231 		sappend(s1, s2);
2232 
2233 		/*
2234 		 * Now move it into the X register.
2235 		 */
2236 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2237 		sappend(s1, s2);
2238 
2239 		return (s1);
2240 	} else
2241 		return (NULL);
2242 }
2243 
2244 static struct slist *
gen_load_radiotap_llprefixlen()2245 gen_load_radiotap_llprefixlen()
2246 {
2247 	struct slist *s1, *s2;
2248 
2249 	/*
2250 	 * Generate code to load the length of the radiotap header into
2251 	 * the register assigned to hold that length, if one has been
2252 	 * assigned.  (If one hasn't been assigned, no code we've
2253 	 * generated uses that prefix, so we don't need to generate any
2254 	 * code to load it.)
2255 	 */
2256 	if (off_linkhdr.reg != -1) {
2257 		/*
2258 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2259 		 * of the radiotap header are the length of the radiotap
2260 		 * header; unfortunately, it's little-endian, so we have
2261 		 * to load it a byte at a time and construct the value.
2262 		 */
2263 
2264 		/*
2265 		 * Load the high-order byte, at an offset of 3, shift it
2266 		 * left a byte, and put the result in the X register.
2267 		 */
2268 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2269 		s1->s.k = 3;
2270 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2271 		sappend(s1, s2);
2272 		s2->s.k = 8;
2273 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2274 		sappend(s1, s2);
2275 
2276 		/*
2277 		 * Load the next byte, at an offset of 2, and OR the
2278 		 * value from the X register into it.
2279 		 */
2280 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2281 		sappend(s1, s2);
2282 		s2->s.k = 2;
2283 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2284 		sappend(s1, s2);
2285 
2286 		/*
2287 		 * Now allocate a register to hold that value and store
2288 		 * it.
2289 		 */
2290 		s2 = new_stmt(BPF_ST);
2291 		s2->s.k = off_linkhdr.reg;
2292 		sappend(s1, s2);
2293 
2294 		/*
2295 		 * Now move it into the X register.
2296 		 */
2297 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2298 		sappend(s1, s2);
2299 
2300 		return (s1);
2301 	} else
2302 		return (NULL);
2303 }
2304 
2305 /*
2306  * At the moment we treat PPI as normal Radiotap encoded
2307  * packets. The difference is in the function that generates
2308  * the code at the beginning to compute the header length.
2309  * Since this code generator of PPI supports bare 802.11
2310  * encapsulation only (i.e. the encapsulated DLT should be
2311  * DLT_IEEE802_11) we generate code to check for this too;
2312  * that's done in finish_parse().
2313  */
2314 static struct slist *
gen_load_ppi_llprefixlen()2315 gen_load_ppi_llprefixlen()
2316 {
2317 	struct slist *s1, *s2;
2318 
2319 	/*
2320 	 * Generate code to load the length of the radiotap header
2321 	 * into the register assigned to hold that length, if one has
2322 	 * been assigned.
2323 	 */
2324 	if (off_linkhdr.reg != -1) {
2325 		/*
2326 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2327 		 * of the radiotap header are the length of the radiotap
2328 		 * header; unfortunately, it's little-endian, so we have
2329 		 * to load it a byte at a time and construct the value.
2330 		 */
2331 
2332 		/*
2333 		 * Load the high-order byte, at an offset of 3, shift it
2334 		 * left a byte, and put the result in the X register.
2335 		 */
2336 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2337 		s1->s.k = 3;
2338 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2339 		sappend(s1, s2);
2340 		s2->s.k = 8;
2341 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2342 		sappend(s1, s2);
2343 
2344 		/*
2345 		 * Load the next byte, at an offset of 2, and OR the
2346 		 * value from the X register into it.
2347 		 */
2348 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2349 		sappend(s1, s2);
2350 		s2->s.k = 2;
2351 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2352 		sappend(s1, s2);
2353 
2354 		/*
2355 		 * Now allocate a register to hold that value and store
2356 		 * it.
2357 		 */
2358 		s2 = new_stmt(BPF_ST);
2359 		s2->s.k = off_linkhdr.reg;
2360 		sappend(s1, s2);
2361 
2362 		/*
2363 		 * Now move it into the X register.
2364 		 */
2365 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2366 		sappend(s1, s2);
2367 
2368 		return (s1);
2369 	} else
2370 		return (NULL);
2371 }
2372 
2373 /*
2374  * Load a value relative to the beginning of the link-layer header after the 802.11
2375  * header, i.e. LLC_SNAP.
2376  * The link-layer header doesn't necessarily begin at the beginning
2377  * of the packet data; there might be a variable-length prefix containing
2378  * radio information.
2379  */
2380 static struct slist *
gen_load_802_11_header_len(struct slist * s,struct slist * snext)2381 gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2382 {
2383 	struct slist *s2;
2384 	struct slist *sjset_data_frame_1;
2385 	struct slist *sjset_data_frame_2;
2386 	struct slist *sjset_qos;
2387 	struct slist *sjset_radiotap_flags;
2388 	struct slist *sjset_radiotap_tsft;
2389 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2390 	struct slist *s_roundup;
2391 
2392 	if (off_linkpl.reg == -1) {
2393 		/*
2394 		 * No register has been assigned to the offset of
2395 		 * the link-layer payload, which means nobody needs
2396 		 * it; don't bother computing it - just return
2397 		 * what we already have.
2398 		 */
2399 		return (s);
2400 	}
2401 
2402 	/*
2403 	 * This code is not compatible with the optimizer, as
2404 	 * we are generating jmp instructions within a normal
2405 	 * slist of instructions
2406 	 */
2407 	no_optimize = 1;
2408 
2409 	/*
2410 	 * If "s" is non-null, it has code to arrange that the X register
2411 	 * contains the length of the prefix preceding the link-layer
2412 	 * header.
2413 	 *
2414 	 * Otherwise, the length of the prefix preceding the link-layer
2415 	 * header is "off_outermostlinkhdr.constant_part".
2416 	 */
2417 	if (s == NULL) {
2418 		/*
2419 		 * There is no variable-length header preceding the
2420 		 * link-layer header.
2421 		 *
2422 		 * Load the length of the fixed-length prefix preceding
2423 		 * the link-layer header (if any) into the X register,
2424 		 * and store it in the off_linkpl.reg register.
2425 		 * That length is off_outermostlinkhdr.constant_part.
2426 		 */
2427 		s = new_stmt(BPF_LDX|BPF_IMM);
2428 		s->s.k = off_outermostlinkhdr.constant_part;
2429 	}
2430 
2431 	/*
2432 	 * The X register contains the offset of the beginning of the
2433 	 * link-layer header; add 24, which is the minimum length
2434 	 * of the MAC header for a data frame, to that, and store it
2435 	 * in off_linkpl.reg, and then load the Frame Control field,
2436 	 * which is at the offset in the X register, with an indexed load.
2437 	 */
2438 	s2 = new_stmt(BPF_MISC|BPF_TXA);
2439 	sappend(s, s2);
2440 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2441 	s2->s.k = 24;
2442 	sappend(s, s2);
2443 	s2 = new_stmt(BPF_ST);
2444 	s2->s.k = off_linkpl.reg;
2445 	sappend(s, s2);
2446 
2447 	s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2448 	s2->s.k = 0;
2449 	sappend(s, s2);
2450 
2451 	/*
2452 	 * Check the Frame Control field to see if this is a data frame;
2453 	 * a data frame has the 0x08 bit (b3) in that field set and the
2454 	 * 0x04 bit (b2) clear.
2455 	 */
2456 	sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2457 	sjset_data_frame_1->s.k = 0x08;
2458 	sappend(s, sjset_data_frame_1);
2459 
2460 	/*
2461 	 * If b3 is set, test b2, otherwise go to the first statement of
2462 	 * the rest of the program.
2463 	 */
2464 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2465 	sjset_data_frame_2->s.k = 0x04;
2466 	sappend(s, sjset_data_frame_2);
2467 	sjset_data_frame_1->s.jf = snext;
2468 
2469 	/*
2470 	 * If b2 is not set, this is a data frame; test the QoS bit.
2471 	 * Otherwise, go to the first statement of the rest of the
2472 	 * program.
2473 	 */
2474 	sjset_data_frame_2->s.jt = snext;
2475 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2476 	sjset_qos->s.k = 0x80;	/* QoS bit */
2477 	sappend(s, sjset_qos);
2478 
2479 	/*
2480 	 * If it's set, add 2 to off_linkpl.reg, to skip the QoS
2481 	 * field.
2482 	 * Otherwise, go to the first statement of the rest of the
2483 	 * program.
2484 	 */
2485 	sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2486 	s2->s.k = off_linkpl.reg;
2487 	sappend(s, s2);
2488 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2489 	s2->s.k = 2;
2490 	sappend(s, s2);
2491 	s2 = new_stmt(BPF_ST);
2492 	s2->s.k = off_linkpl.reg;
2493 	sappend(s, s2);
2494 
2495 	/*
2496 	 * If we have a radiotap header, look at it to see whether
2497 	 * there's Atheros padding between the MAC-layer header
2498 	 * and the payload.
2499 	 *
2500 	 * Note: all of the fields in the radiotap header are
2501 	 * little-endian, so we byte-swap all of the values
2502 	 * we test against, as they will be loaded as big-endian
2503 	 * values.
2504 	 */
2505 	if (linktype == DLT_IEEE802_11_RADIO) {
2506 		/*
2507 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2508 		 * in the presence flag?
2509 		 */
2510 		sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2511 		s2->s.k = 4;
2512 		sappend(s, s2);
2513 
2514 		sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2515 		sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2516 		sappend(s, sjset_radiotap_flags);
2517 
2518 		/*
2519 		 * If not, skip all of this.
2520 		 */
2521 		sjset_radiotap_flags->s.jf = snext;
2522 
2523 		/*
2524 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2525 		 */
2526 		sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2527 		    new_stmt(JMP(BPF_JSET));
2528 		sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2529 		sappend(s, sjset_radiotap_tsft);
2530 
2531 		/*
2532 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2533 		 * at an offset of 16 from the beginning of the raw packet
2534 		 * data (8 bytes for the radiotap header and 8 bytes for
2535 		 * the TSFT field).
2536 		 *
2537 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2538 		 * is set.
2539 		 */
2540 		sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2541 		s2->s.k = 16;
2542 		sappend(s, s2);
2543 
2544 		sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2545 		sjset_tsft_datapad->s.k = 0x20;
2546 		sappend(s, sjset_tsft_datapad);
2547 
2548 		/*
2549 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2550 		 * at an offset of 8 from the beginning of the raw packet
2551 		 * data (8 bytes for the radiotap header).
2552 		 *
2553 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2554 		 * is set.
2555 		 */
2556 		sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2557 		s2->s.k = 8;
2558 		sappend(s, s2);
2559 
2560 		sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2561 		sjset_notsft_datapad->s.k = 0x20;
2562 		sappend(s, sjset_notsft_datapad);
2563 
2564 		/*
2565 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2566 		 * set, round the length of the 802.11 header to
2567 		 * a multiple of 4.  Do that by adding 3 and then
2568 		 * dividing by and multiplying by 4, which we do by
2569 		 * ANDing with ~3.
2570 		 */
2571 		s_roundup = new_stmt(BPF_LD|BPF_MEM);
2572 		s_roundup->s.k = off_linkpl.reg;
2573 		sappend(s, s_roundup);
2574 		s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2575 		s2->s.k = 3;
2576 		sappend(s, s2);
2577 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2578 		s2->s.k = ~3;
2579 		sappend(s, s2);
2580 		s2 = new_stmt(BPF_ST);
2581 		s2->s.k = off_linkpl.reg;
2582 		sappend(s, s2);
2583 
2584 		sjset_tsft_datapad->s.jt = s_roundup;
2585 		sjset_tsft_datapad->s.jf = snext;
2586 		sjset_notsft_datapad->s.jt = s_roundup;
2587 		sjset_notsft_datapad->s.jf = snext;
2588 	} else
2589 		sjset_qos->s.jf = snext;
2590 
2591 	return s;
2592 }
2593 
2594 static void
insert_compute_vloffsets(b)2595 insert_compute_vloffsets(b)
2596 	struct block *b;
2597 {
2598 	struct slist *s;
2599 
2600 	/* There is an implicit dependency between the link
2601 	 * payload and link header since the payload computation
2602 	 * includes the variable part of the header. Therefore,
2603 	 * if nobody else has allocated a register for the link
2604 	 * header and we need it, do it now. */
2605 	if (off_linkpl.reg != -1 && off_linkhdr.is_variable &&
2606 	    off_linkhdr.reg == -1)
2607 		off_linkhdr.reg = alloc_reg();
2608 
2609 	/*
2610 	 * For link-layer types that have a variable-length header
2611 	 * preceding the link-layer header, generate code to load
2612 	 * the offset of the link-layer header into the register
2613 	 * assigned to that offset, if any.
2614 	 *
2615 	 * XXX - this, and the next switch statement, won't handle
2616 	 * encapsulation of 802.11 or 802.11+radio information in
2617 	 * some other protocol stack.  That's significantly more
2618 	 * complicated.
2619 	 */
2620 	switch (outermostlinktype) {
2621 
2622 	case DLT_PRISM_HEADER:
2623 		s = gen_load_prism_llprefixlen();
2624 		break;
2625 
2626 	case DLT_IEEE802_11_RADIO_AVS:
2627 		s = gen_load_avs_llprefixlen();
2628 		break;
2629 
2630 	case DLT_IEEE802_11_RADIO:
2631 		s = gen_load_radiotap_llprefixlen();
2632 		break;
2633 
2634 	case DLT_PPI:
2635 		s = gen_load_ppi_llprefixlen();
2636 		break;
2637 
2638 	default:
2639 		s = NULL;
2640 		break;
2641 	}
2642 
2643 	/*
2644 	 * For link-layer types that have a variable-length link-layer
2645 	 * header, generate code to load the offset of the link-layer
2646 	 * payload into the register assigned to that offset, if any.
2647 	 */
2648 	switch (outermostlinktype) {
2649 
2650 	case DLT_IEEE802_11:
2651 	case DLT_PRISM_HEADER:
2652 	case DLT_IEEE802_11_RADIO_AVS:
2653 	case DLT_IEEE802_11_RADIO:
2654 	case DLT_PPI:
2655 		s = gen_load_802_11_header_len(s, b->stmts);
2656 		break;
2657 	}
2658 
2659 	/*
2660 	 * If we have any offset-loading code, append all the
2661 	 * existing statements in the block to those statements,
2662 	 * and make the resulting list the list of statements
2663 	 * for the block.
2664 	 */
2665 	if (s != NULL) {
2666 		sappend(s, b->stmts);
2667 		b->stmts = s;
2668 	}
2669 }
2670 
2671 static struct block *
gen_ppi_dlt_check(void)2672 gen_ppi_dlt_check(void)
2673 {
2674 	struct slist *s_load_dlt;
2675 	struct block *b;
2676 
2677 	if (linktype == DLT_PPI)
2678 	{
2679 		/* Create the statements that check for the DLT
2680 		 */
2681 		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2682 		s_load_dlt->s.k = 4;
2683 
2684 		b = new_block(JMP(BPF_JEQ));
2685 
2686 		b->stmts = s_load_dlt;
2687 		b->s.k = SWAPLONG(DLT_IEEE802_11);
2688 	}
2689 	else
2690 	{
2691 		b = NULL;
2692 	}
2693 
2694 	return b;
2695 }
2696 
2697 /*
2698  * Take an absolute offset, and:
2699  *
2700  *    if it has no variable part, return NULL;
2701  *
2702  *    if it has a variable part, generate code to load the register
2703  *    containing that variable part into the X register, returning
2704  *    a pointer to that code - if no register for that offset has
2705  *    been allocated, allocate it first.
2706  *
2707  * (The code to set that register will be generated later, but will
2708  * be placed earlier in the code sequence.)
2709  */
2710 static struct slist *
gen_abs_offset_varpart(bpf_abs_offset * off)2711 gen_abs_offset_varpart(bpf_abs_offset *off)
2712 {
2713 	struct slist *s;
2714 
2715 	if (off->is_variable) {
2716 		if (off->reg == -1) {
2717 			/*
2718 			 * We haven't yet assigned a register for the
2719 			 * variable part of the offset of the link-layer
2720 			 * header; allocate one.
2721 			 */
2722 			off->reg = alloc_reg();
2723 		}
2724 
2725 		/*
2726 		 * Load the register containing the variable part of the
2727 		 * offset of the link-layer header into the X register.
2728 		 */
2729 		s = new_stmt(BPF_LDX|BPF_MEM);
2730 		s->s.k = off->reg;
2731 		return s;
2732 	} else {
2733 		/*
2734 		 * That offset isn't variable, there's no variable part,
2735 		 * so we don't need to generate any code.
2736 		 */
2737 		return NULL;
2738 	}
2739 }
2740 
2741 /*
2742  * Map an Ethernet type to the equivalent PPP type.
2743  */
2744 static int
ethertype_to_ppptype(proto)2745 ethertype_to_ppptype(proto)
2746 	int proto;
2747 {
2748 	switch (proto) {
2749 
2750 	case ETHERTYPE_IP:
2751 		proto = PPP_IP;
2752 		break;
2753 
2754 	case ETHERTYPE_IPV6:
2755 		proto = PPP_IPV6;
2756 		break;
2757 
2758 	case ETHERTYPE_DN:
2759 		proto = PPP_DECNET;
2760 		break;
2761 
2762 	case ETHERTYPE_ATALK:
2763 		proto = PPP_APPLE;
2764 		break;
2765 
2766 	case ETHERTYPE_NS:
2767 		proto = PPP_NS;
2768 		break;
2769 
2770 	case LLCSAP_ISONS:
2771 		proto = PPP_OSI;
2772 		break;
2773 
2774 	case LLCSAP_8021D:
2775 		/*
2776 		 * I'm assuming the "Bridging PDU"s that go
2777 		 * over PPP are Spanning Tree Protocol
2778 		 * Bridging PDUs.
2779 		 */
2780 		proto = PPP_BRPDU;
2781 		break;
2782 
2783 	case LLCSAP_IPX:
2784 		proto = PPP_IPX;
2785 		break;
2786 	}
2787 	return (proto);
2788 }
2789 
2790 /*
2791  * Generate any tests that, for encapsulation of a link-layer packet
2792  * inside another protocol stack, need to be done to check for those
2793  * link-layer packets (and that haven't already been done by a check
2794  * for that encapsulation).
2795  */
2796 static struct block *
gen_prevlinkhdr_check(void)2797 gen_prevlinkhdr_check(void)
2798 {
2799 	struct block *b0;
2800 
2801 	if (is_geneve)
2802 		return gen_geneve_ll_check();
2803 
2804 	switch (prevlinktype) {
2805 
2806 	case DLT_SUNATM:
2807 		/*
2808 		 * This is LANE-encapsulated Ethernet; check that the LANE
2809 		 * packet doesn't begin with an LE Control marker, i.e.
2810 		 * that it's data, not a control message.
2811 		 *
2812 		 * (We've already generated a test for LANE.)
2813 		 */
2814 		b0 = gen_cmp(OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
2815 		gen_not(b0);
2816 		return b0;
2817 
2818 	default:
2819 		/*
2820 		 * No such tests are necessary.
2821 		 */
2822 		return NULL;
2823 	}
2824 	/*NOTREACHED*/
2825 }
2826 
2827 /*
2828  * Generate code to match a particular packet type by matching the
2829  * link-layer type field or fields in the 802.2 LLC header.
2830  *
2831  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2832  * value, if <= ETHERMTU.
2833  */
2834 static struct block *
gen_linktype(proto)2835 gen_linktype(proto)
2836 	register int proto;
2837 {
2838 	struct block *b0, *b1, *b2;
2839 	const char *description;
2840 
2841 	/* are we checking MPLS-encapsulated packets? */
2842 	if (label_stack_depth > 0) {
2843 		switch (proto) {
2844 		case ETHERTYPE_IP:
2845 		case PPP_IP:
2846 			/* FIXME add other L3 proto IDs */
2847 			return gen_mpls_linktype(Q_IP);
2848 
2849 		case ETHERTYPE_IPV6:
2850 		case PPP_IPV6:
2851 			/* FIXME add other L3 proto IDs */
2852 			return gen_mpls_linktype(Q_IPV6);
2853 
2854 		default:
2855 			bpf_error("unsupported protocol over mpls");
2856 			/* NOTREACHED */
2857 		}
2858 	}
2859 
2860 	switch (linktype) {
2861 
2862 	case DLT_EN10MB:
2863 	case DLT_NETANALYZER:
2864 	case DLT_NETANALYZER_TRANSPARENT:
2865 		/* Geneve has an EtherType regardless of whether there is an
2866 		 * L2 header. */
2867 		if (!is_geneve)
2868 			b0 = gen_prevlinkhdr_check();
2869 		else
2870 			b0 = NULL;
2871 
2872 		b1 = gen_ether_linktype(proto);
2873 		if (b0 != NULL)
2874 			gen_and(b0, b1);
2875 		return b1;
2876 		/*NOTREACHED*/
2877 		break;
2878 
2879 	case DLT_C_HDLC:
2880 		switch (proto) {
2881 
2882 		case LLCSAP_ISONS:
2883 			proto = (proto << 8 | LLCSAP_ISONS);
2884 			/* fall through */
2885 
2886 		default:
2887 			return gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2888 			/*NOTREACHED*/
2889 			break;
2890 		}
2891 		break;
2892 
2893 	case DLT_IEEE802_11:
2894 	case DLT_PRISM_HEADER:
2895 	case DLT_IEEE802_11_RADIO_AVS:
2896 	case DLT_IEEE802_11_RADIO:
2897 	case DLT_PPI:
2898 		/*
2899 		 * Check that we have a data frame.
2900 		 */
2901 		b0 = gen_check_802_11_data_frame();
2902 
2903 		/*
2904 		 * Now check for the specified link-layer type.
2905 		 */
2906 		b1 = gen_llc_linktype(proto);
2907 		gen_and(b0, b1);
2908 		return b1;
2909 		/*NOTREACHED*/
2910 		break;
2911 
2912 	case DLT_FDDI:
2913 		/*
2914 		 * XXX - check for LLC frames.
2915 		 */
2916 		return gen_llc_linktype(proto);
2917 		/*NOTREACHED*/
2918 		break;
2919 
2920 	case DLT_IEEE802:
2921 		/*
2922 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
2923 		 */
2924 		return gen_llc_linktype(proto);
2925 		/*NOTREACHED*/
2926 		break;
2927 
2928 	case DLT_ATM_RFC1483:
2929 	case DLT_ATM_CLIP:
2930 	case DLT_IP_OVER_FC:
2931 		return gen_llc_linktype(proto);
2932 		/*NOTREACHED*/
2933 		break;
2934 
2935 	case DLT_SUNATM:
2936 		/*
2937 		 * Check for an LLC-encapsulated version of this protocol;
2938 		 * if we were checking for LANE, linktype would no longer
2939 		 * be DLT_SUNATM.
2940 		 *
2941 		 * Check for LLC encapsulation and then check the protocol.
2942 		 */
2943 		b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
2944 		b1 = gen_llc_linktype(proto);
2945 		gen_and(b0, b1);
2946 		return b1;
2947 		/*NOTREACHED*/
2948 		break;
2949 
2950 	case DLT_LINUX_SLL:
2951 		return gen_linux_sll_linktype(proto);
2952 		/*NOTREACHED*/
2953 		break;
2954 
2955 	case DLT_SLIP:
2956 	case DLT_SLIP_BSDOS:
2957 	case DLT_RAW:
2958 		/*
2959 		 * These types don't provide any type field; packets
2960 		 * are always IPv4 or IPv6.
2961 		 *
2962 		 * XXX - for IPv4, check for a version number of 4, and,
2963 		 * for IPv6, check for a version number of 6?
2964 		 */
2965 		switch (proto) {
2966 
2967 		case ETHERTYPE_IP:
2968 			/* Check for a version number of 4. */
2969 			return gen_mcmp(OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
2970 
2971 		case ETHERTYPE_IPV6:
2972 			/* Check for a version number of 6. */
2973 			return gen_mcmp(OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
2974 
2975 		default:
2976 			return gen_false();		/* always false */
2977 		}
2978 		/*NOTREACHED*/
2979 		break;
2980 
2981 	case DLT_IPV4:
2982 		/*
2983 		 * Raw IPv4, so no type field.
2984 		 */
2985 		if (proto == ETHERTYPE_IP)
2986 			return gen_true();		/* always true */
2987 
2988 		/* Checking for something other than IPv4; always false */
2989 		return gen_false();
2990 		/*NOTREACHED*/
2991 		break;
2992 
2993 	case DLT_IPV6:
2994 		/*
2995 		 * Raw IPv6, so no type field.
2996 		 */
2997 		if (proto == ETHERTYPE_IPV6)
2998 			return gen_true();		/* always true */
2999 
3000 		/* Checking for something other than IPv6; always false */
3001 		return gen_false();
3002 		/*NOTREACHED*/
3003 		break;
3004 
3005 	case DLT_PPP:
3006 	case DLT_PPP_PPPD:
3007 	case DLT_PPP_SERIAL:
3008 	case DLT_PPP_ETHER:
3009 		/*
3010 		 * We use Ethernet protocol types inside libpcap;
3011 		 * map them to the corresponding PPP protocol types.
3012 		 */
3013 		proto = ethertype_to_ppptype(proto);
3014 		return gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3015 		/*NOTREACHED*/
3016 		break;
3017 
3018 	case DLT_PPP_BSDOS:
3019 		/*
3020 		 * We use Ethernet protocol types inside libpcap;
3021 		 * map them to the corresponding PPP protocol types.
3022 		 */
3023 		switch (proto) {
3024 
3025 		case ETHERTYPE_IP:
3026 			/*
3027 			 * Also check for Van Jacobson-compressed IP.
3028 			 * XXX - do this for other forms of PPP?
3029 			 */
3030 			b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, PPP_IP);
3031 			b1 = gen_cmp(OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3032 			gen_or(b0, b1);
3033 			b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3034 			gen_or(b1, b0);
3035 			return b0;
3036 
3037 		default:
3038 			proto = ethertype_to_ppptype(proto);
3039 			return gen_cmp(OR_LINKTYPE, 0, BPF_H,
3040 				(bpf_int32)proto);
3041 		}
3042 		/*NOTREACHED*/
3043 		break;
3044 
3045 	case DLT_NULL:
3046 	case DLT_LOOP:
3047 	case DLT_ENC:
3048 		/*
3049 		 * For DLT_NULL, the link-layer header is a 32-bit
3050 		 * word containing an AF_ value in *host* byte order,
3051 		 * and for DLT_ENC, the link-layer header begins
3052 		 * with a 32-bit work containing an AF_ value in
3053 		 * host byte order.
3054 		 *
3055 		 * In addition, if we're reading a saved capture file,
3056 		 * the host byte order in the capture may not be the
3057 		 * same as the host byte order on this machine.
3058 		 *
3059 		 * For DLT_LOOP, the link-layer header is a 32-bit
3060 		 * word containing an AF_ value in *network* byte order.
3061 		 *
3062 		 * XXX - AF_ values may, unfortunately, be platform-
3063 		 * dependent; for example, FreeBSD's AF_INET6 is 24
3064 		 * whilst NetBSD's and OpenBSD's is 26.
3065 		 *
3066 		 * This means that, when reading a capture file, just
3067 		 * checking for our AF_INET6 value won't work if the
3068 		 * capture file came from another OS.
3069 		 */
3070 		switch (proto) {
3071 
3072 		case ETHERTYPE_IP:
3073 			proto = AF_INET;
3074 			break;
3075 
3076 #ifdef INET6
3077 		case ETHERTYPE_IPV6:
3078 			proto = AF_INET6;
3079 			break;
3080 #endif
3081 
3082 		default:
3083 			/*
3084 			 * Not a type on which we support filtering.
3085 			 * XXX - support those that have AF_ values
3086 			 * #defined on this platform, at least?
3087 			 */
3088 			return gen_false();
3089 		}
3090 
3091 		if (linktype == DLT_NULL || linktype == DLT_ENC) {
3092 			/*
3093 			 * The AF_ value is in host byte order, but
3094 			 * the BPF interpreter will convert it to
3095 			 * network byte order.
3096 			 *
3097 			 * If this is a save file, and it's from a
3098 			 * machine with the opposite byte order to
3099 			 * ours, we byte-swap the AF_ value.
3100 			 *
3101 			 * Then we run it through "htonl()", and
3102 			 * generate code to compare against the result.
3103 			 */
3104 			if (bpf_pcap->rfile != NULL && bpf_pcap->swapped)
3105 				proto = SWAPLONG(proto);
3106 			proto = htonl(proto);
3107 		}
3108 		return (gen_cmp(OR_LINKHDR, 0, BPF_W, (bpf_int32)proto));
3109 
3110 #ifdef HAVE_NET_PFVAR_H
3111 	case DLT_PFLOG:
3112 		/*
3113 		 * af field is host byte order in contrast to the rest of
3114 		 * the packet.
3115 		 */
3116 		if (proto == ETHERTYPE_IP)
3117 			return (gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, af),
3118 			    BPF_B, (bpf_int32)AF_INET));
3119 		else if (proto == ETHERTYPE_IPV6)
3120 			return (gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, af),
3121 			    BPF_B, (bpf_int32)AF_INET6));
3122 		else
3123 			return gen_false();
3124 		/*NOTREACHED*/
3125 		break;
3126 #endif /* HAVE_NET_PFVAR_H */
3127 
3128 	case DLT_ARCNET:
3129 	case DLT_ARCNET_LINUX:
3130 		/*
3131 		 * XXX should we check for first fragment if the protocol
3132 		 * uses PHDS?
3133 		 */
3134 		switch (proto) {
3135 
3136 		default:
3137 			return gen_false();
3138 
3139 		case ETHERTYPE_IPV6:
3140 			return (gen_cmp(OR_LINKTYPE, 0, BPF_B,
3141 				(bpf_int32)ARCTYPE_INET6));
3142 
3143 		case ETHERTYPE_IP:
3144 			b0 = gen_cmp(OR_LINKTYPE, 0, BPF_B,
3145 				     (bpf_int32)ARCTYPE_IP);
3146 			b1 = gen_cmp(OR_LINKTYPE, 0, BPF_B,
3147 				     (bpf_int32)ARCTYPE_IP_OLD);
3148 			gen_or(b0, b1);
3149 			return (b1);
3150 
3151 		case ETHERTYPE_ARP:
3152 			b0 = gen_cmp(OR_LINKTYPE, 0, BPF_B,
3153 				     (bpf_int32)ARCTYPE_ARP);
3154 			b1 = gen_cmp(OR_LINKTYPE, 0, BPF_B,
3155 				     (bpf_int32)ARCTYPE_ARP_OLD);
3156 			gen_or(b0, b1);
3157 			return (b1);
3158 
3159 		case ETHERTYPE_REVARP:
3160 			return (gen_cmp(OR_LINKTYPE, 0, BPF_B,
3161 					(bpf_int32)ARCTYPE_REVARP));
3162 
3163 		case ETHERTYPE_ATALK:
3164 			return (gen_cmp(OR_LINKTYPE, 0, BPF_B,
3165 					(bpf_int32)ARCTYPE_ATALK));
3166 		}
3167 		/*NOTREACHED*/
3168 		break;
3169 
3170 	case DLT_LTALK:
3171 		switch (proto) {
3172 		case ETHERTYPE_ATALK:
3173 			return gen_true();
3174 		default:
3175 			return gen_false();
3176 		}
3177 		/*NOTREACHED*/
3178 		break;
3179 
3180 	case DLT_FRELAY:
3181 		/*
3182 		 * XXX - assumes a 2-byte Frame Relay header with
3183 		 * DLCI and flags.  What if the address is longer?
3184 		 */
3185 		switch (proto) {
3186 
3187 		case ETHERTYPE_IP:
3188 			/*
3189 			 * Check for the special NLPID for IP.
3190 			 */
3191 			return gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3192 
3193 		case ETHERTYPE_IPV6:
3194 			/*
3195 			 * Check for the special NLPID for IPv6.
3196 			 */
3197 			return gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3198 
3199 		case LLCSAP_ISONS:
3200 			/*
3201 			 * Check for several OSI protocols.
3202 			 *
3203 			 * Frame Relay packets typically have an OSI
3204 			 * NLPID at the beginning; we check for each
3205 			 * of them.
3206 			 *
3207 			 * What we check for is the NLPID and a frame
3208 			 * control field of UI, i.e. 0x03 followed
3209 			 * by the NLPID.
3210 			 */
3211 			b0 = gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3212 			b1 = gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3213 			b2 = gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3214 			gen_or(b1, b2);
3215 			gen_or(b0, b2);
3216 			return b2;
3217 
3218 		default:
3219 			return gen_false();
3220 		}
3221 		/*NOTREACHED*/
3222 		break;
3223 
3224 	case DLT_MFR:
3225 		bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3226 
3227         case DLT_JUNIPER_MFR:
3228         case DLT_JUNIPER_MLFR:
3229         case DLT_JUNIPER_MLPPP:
3230 	case DLT_JUNIPER_ATM1:
3231 	case DLT_JUNIPER_ATM2:
3232 	case DLT_JUNIPER_PPPOE:
3233 	case DLT_JUNIPER_PPPOE_ATM:
3234         case DLT_JUNIPER_GGSN:
3235         case DLT_JUNIPER_ES:
3236         case DLT_JUNIPER_MONITOR:
3237         case DLT_JUNIPER_SERVICES:
3238         case DLT_JUNIPER_ETHER:
3239         case DLT_JUNIPER_PPP:
3240         case DLT_JUNIPER_FRELAY:
3241         case DLT_JUNIPER_CHDLC:
3242         case DLT_JUNIPER_VP:
3243         case DLT_JUNIPER_ST:
3244         case DLT_JUNIPER_ISM:
3245         case DLT_JUNIPER_VS:
3246         case DLT_JUNIPER_SRX_E2E:
3247         case DLT_JUNIPER_FIBRECHANNEL:
3248 	case DLT_JUNIPER_ATM_CEMIC:
3249 
3250 		/* just lets verify the magic number for now -
3251 		 * on ATM we may have up to 6 different encapsulations on the wire
3252 		 * and need a lot of heuristics to figure out that the payload
3253 		 * might be;
3254 		 *
3255 		 * FIXME encapsulation specific BPF_ filters
3256 		 */
3257 		return gen_mcmp(OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3258 
3259 	case DLT_BACNET_MS_TP:
3260 		return gen_mcmp(OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3261 
3262 	case DLT_IPNET:
3263 		return gen_ipnet_linktype(proto);
3264 
3265 	case DLT_LINUX_IRDA:
3266 		bpf_error("IrDA link-layer type filtering not implemented");
3267 
3268 	case DLT_DOCSIS:
3269 		bpf_error("DOCSIS link-layer type filtering not implemented");
3270 
3271 	case DLT_MTP2:
3272 	case DLT_MTP2_WITH_PHDR:
3273 		bpf_error("MTP2 link-layer type filtering not implemented");
3274 
3275 	case DLT_ERF:
3276 		bpf_error("ERF link-layer type filtering not implemented");
3277 
3278 	case DLT_PFSYNC:
3279 		bpf_error("PFSYNC link-layer type filtering not implemented");
3280 
3281 	case DLT_LINUX_LAPD:
3282 		bpf_error("LAPD link-layer type filtering not implemented");
3283 
3284 	case DLT_USB:
3285 	case DLT_USB_LINUX:
3286 	case DLT_USB_LINUX_MMAPPED:
3287 		bpf_error("USB link-layer type filtering not implemented");
3288 
3289 	case DLT_BLUETOOTH_HCI_H4:
3290 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3291 		bpf_error("Bluetooth link-layer type filtering not implemented");
3292 
3293 	case DLT_CAN20B:
3294 	case DLT_CAN_SOCKETCAN:
3295 		bpf_error("CAN link-layer type filtering not implemented");
3296 
3297 	case DLT_IEEE802_15_4:
3298 	case DLT_IEEE802_15_4_LINUX:
3299 	case DLT_IEEE802_15_4_NONASK_PHY:
3300 	case DLT_IEEE802_15_4_NOFCS:
3301 		bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3302 
3303 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3304 		bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3305 
3306 	case DLT_SITA:
3307 		bpf_error("SITA link-layer type filtering not implemented");
3308 
3309 	case DLT_RAIF1:
3310 		bpf_error("RAIF1 link-layer type filtering not implemented");
3311 
3312 	case DLT_IPMB:
3313 		bpf_error("IPMB link-layer type filtering not implemented");
3314 
3315 	case DLT_AX25_KISS:
3316 		bpf_error("AX.25 link-layer type filtering not implemented");
3317 
3318 	case DLT_NFLOG:
3319 		/* Using the fixed-size NFLOG header it is possible to tell only
3320 		 * the address family of the packet, other meaningful data is
3321 		 * either missing or behind TLVs.
3322 		 */
3323 		bpf_error("NFLOG link-layer type filtering not implemented");
3324 
3325 	default:
3326 		/*
3327 		 * Does this link-layer header type have a field
3328 		 * indicating the type of the next protocol?  If
3329 		 * so, off_linktype.constant_part will be the offset of that
3330 		 * field in the packet; if not, it will be -1.
3331 		 */
3332 		if (off_linktype.constant_part != (u_int)-1) {
3333 			/*
3334 			 * Yes; assume it's an Ethernet type.  (If
3335 			 * it's not, it needs to be handled specially
3336 			 * above.)
3337 			 */
3338 			return gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3339 		} else {
3340 			/*
3341 			 * No; report an error.
3342 			 */
3343 			description = pcap_datalink_val_to_description(linktype);
3344 			if (description != NULL) {
3345 				bpf_error("%s link-layer type filtering not implemented",
3346 				    description);
3347 			} else {
3348 				bpf_error("DLT %u link-layer type filtering not implemented",
3349 				    linktype);
3350 			}
3351 		}
3352 		break;
3353 	}
3354 }
3355 
3356 /*
3357  * Check for an LLC SNAP packet with a given organization code and
3358  * protocol type; we check the entire contents of the 802.2 LLC and
3359  * snap headers, checking for DSAP and SSAP of SNAP and a control
3360  * field of 0x03 in the LLC header, and for the specified organization
3361  * code and protocol type in the SNAP header.
3362  */
3363 static struct block *
gen_snap(orgcode,ptype)3364 gen_snap(orgcode, ptype)
3365 	bpf_u_int32 orgcode;
3366 	bpf_u_int32 ptype;
3367 {
3368 	u_char snapblock[8];
3369 
3370 	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3371 	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3372 	snapblock[2] = 0x03;		/* control = UI */
3373 	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3374 	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3375 	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3376 	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3377 	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3378 	return gen_bcmp(OR_LLC, 0, 8, snapblock);
3379 }
3380 
3381 /*
3382  * Generate code to match frames with an LLC header.
3383  */
3384 struct block *
gen_llc(void)3385 gen_llc(void)
3386 {
3387 	struct block *b0, *b1;
3388 
3389 	switch (linktype) {
3390 
3391 	case DLT_EN10MB:
3392 		/*
3393 		 * We check for an Ethernet type field less than
3394 		 * 1500, which means it's an 802.3 length field.
3395 		 */
3396 		b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3397 		gen_not(b0);
3398 
3399 		/*
3400 		 * Now check for the purported DSAP and SSAP not being
3401 		 * 0xFF, to rule out NetWare-over-802.3.
3402 		 */
3403 		b1 = gen_cmp(OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
3404 		gen_not(b1);
3405 		gen_and(b0, b1);
3406 		return b1;
3407 
3408 	case DLT_SUNATM:
3409 		/*
3410 		 * We check for LLC traffic.
3411 		 */
3412 		b0 = gen_atmtype_abbrev(A_LLC);
3413 		return b0;
3414 
3415 	case DLT_IEEE802:	/* Token Ring */
3416 		/*
3417 		 * XXX - check for LLC frames.
3418 		 */
3419 		return gen_true();
3420 
3421 	case DLT_FDDI:
3422 		/*
3423 		 * XXX - check for LLC frames.
3424 		 */
3425 		return gen_true();
3426 
3427 	case DLT_ATM_RFC1483:
3428 		/*
3429 		 * For LLC encapsulation, these are defined to have an
3430 		 * 802.2 LLC header.
3431 		 *
3432 		 * For VC encapsulation, they don't, but there's no
3433 		 * way to check for that; the protocol used on the VC
3434 		 * is negotiated out of band.
3435 		 */
3436 		return gen_true();
3437 
3438 	case DLT_IEEE802_11:
3439 	case DLT_PRISM_HEADER:
3440 	case DLT_IEEE802_11_RADIO:
3441 	case DLT_IEEE802_11_RADIO_AVS:
3442 	case DLT_PPI:
3443 		/*
3444 		 * Check that we have a data frame.
3445 		 */
3446 		b0 = gen_check_802_11_data_frame();
3447 		return b0;
3448 
3449 	default:
3450 		bpf_error("'llc' not supported for linktype %d", linktype);
3451 		/* NOTREACHED */
3452 	}
3453 }
3454 
3455 struct block *
gen_llc_i(void)3456 gen_llc_i(void)
3457 {
3458 	struct block *b0, *b1;
3459 	struct slist *s;
3460 
3461 	/*
3462 	 * Check whether this is an LLC frame.
3463 	 */
3464 	b0 = gen_llc();
3465 
3466 	/*
3467 	 * Load the control byte and test the low-order bit; it must
3468 	 * be clear for I frames.
3469 	 */
3470 	s = gen_load_a(OR_LLC, 2, BPF_B);
3471 	b1 = new_block(JMP(BPF_JSET));
3472 	b1->s.k = 0x01;
3473 	b1->stmts = s;
3474 	gen_not(b1);
3475 	gen_and(b0, b1);
3476 	return b1;
3477 }
3478 
3479 struct block *
gen_llc_s(void)3480 gen_llc_s(void)
3481 {
3482 	struct block *b0, *b1;
3483 
3484 	/*
3485 	 * Check whether this is an LLC frame.
3486 	 */
3487 	b0 = gen_llc();
3488 
3489 	/*
3490 	 * Now compare the low-order 2 bit of the control byte against
3491 	 * the appropriate value for S frames.
3492 	 */
3493 	b1 = gen_mcmp(OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3494 	gen_and(b0, b1);
3495 	return b1;
3496 }
3497 
3498 struct block *
gen_llc_u(void)3499 gen_llc_u(void)
3500 {
3501 	struct block *b0, *b1;
3502 
3503 	/*
3504 	 * Check whether this is an LLC frame.
3505 	 */
3506 	b0 = gen_llc();
3507 
3508 	/*
3509 	 * Now compare the low-order 2 bit of the control byte against
3510 	 * the appropriate value for U frames.
3511 	 */
3512 	b1 = gen_mcmp(OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3513 	gen_and(b0, b1);
3514 	return b1;
3515 }
3516 
3517 struct block *
gen_llc_s_subtype(bpf_u_int32 subtype)3518 gen_llc_s_subtype(bpf_u_int32 subtype)
3519 {
3520 	struct block *b0, *b1;
3521 
3522 	/*
3523 	 * Check whether this is an LLC frame.
3524 	 */
3525 	b0 = gen_llc();
3526 
3527 	/*
3528 	 * Now check for an S frame with the appropriate type.
3529 	 */
3530 	b1 = gen_mcmp(OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3531 	gen_and(b0, b1);
3532 	return b1;
3533 }
3534 
3535 struct block *
gen_llc_u_subtype(bpf_u_int32 subtype)3536 gen_llc_u_subtype(bpf_u_int32 subtype)
3537 {
3538 	struct block *b0, *b1;
3539 
3540 	/*
3541 	 * Check whether this is an LLC frame.
3542 	 */
3543 	b0 = gen_llc();
3544 
3545 	/*
3546 	 * Now check for a U frame with the appropriate type.
3547 	 */
3548 	b1 = gen_mcmp(OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3549 	gen_and(b0, b1);
3550 	return b1;
3551 }
3552 
3553 /*
3554  * Generate code to match a particular packet type, for link-layer types
3555  * using 802.2 LLC headers.
3556  *
3557  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3558  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3559  *
3560  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3561  * value, if <= ETHERMTU.  We use that to determine whether to
3562  * match the DSAP or both DSAP and LSAP or to check the OUI and
3563  * protocol ID in a SNAP header.
3564  */
3565 static struct block *
gen_llc_linktype(proto)3566 gen_llc_linktype(proto)
3567 	int proto;
3568 {
3569 	/*
3570 	 * XXX - handle token-ring variable-length header.
3571 	 */
3572 	switch (proto) {
3573 
3574 	case LLCSAP_IP:
3575 	case LLCSAP_ISONS:
3576 	case LLCSAP_NETBEUI:
3577 		/*
3578 		 * XXX - should we check both the DSAP and the
3579 		 * SSAP, like this, or should we check just the
3580 		 * DSAP, as we do for other SAP values?
3581 		 */
3582 		return gen_cmp(OR_LLC, 0, BPF_H, (bpf_u_int32)
3583 			     ((proto << 8) | proto));
3584 
3585 	case LLCSAP_IPX:
3586 		/*
3587 		 * XXX - are there ever SNAP frames for IPX on
3588 		 * non-Ethernet 802.x networks?
3589 		 */
3590 		return gen_cmp(OR_LLC, 0, BPF_B,
3591 		    (bpf_int32)LLCSAP_IPX);
3592 
3593 	case ETHERTYPE_ATALK:
3594 		/*
3595 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3596 		 * SNAP packets with an organization code of
3597 		 * 0x080007 (Apple, for Appletalk) and a protocol
3598 		 * type of ETHERTYPE_ATALK (Appletalk).
3599 		 *
3600 		 * XXX - check for an organization code of
3601 		 * encapsulated Ethernet as well?
3602 		 */
3603 		return gen_snap(0x080007, ETHERTYPE_ATALK);
3604 
3605 	default:
3606 		/*
3607 		 * XXX - we don't have to check for IPX 802.3
3608 		 * here, but should we check for the IPX Ethertype?
3609 		 */
3610 		if (proto <= ETHERMTU) {
3611 			/*
3612 			 * This is an LLC SAP value, so check
3613 			 * the DSAP.
3614 			 */
3615 			return gen_cmp(OR_LLC, 0, BPF_B, (bpf_int32)proto);
3616 		} else {
3617 			/*
3618 			 * This is an Ethernet type; we assume that it's
3619 			 * unlikely that it'll appear in the right place
3620 			 * at random, and therefore check only the
3621 			 * location that would hold the Ethernet type
3622 			 * in a SNAP frame with an organization code of
3623 			 * 0x000000 (encapsulated Ethernet).
3624 			 *
3625 			 * XXX - if we were to check for the SNAP DSAP and
3626 			 * LSAP, as per XXX, and were also to check for an
3627 			 * organization code of 0x000000 (encapsulated
3628 			 * Ethernet), we'd do
3629 			 *
3630 			 *	return gen_snap(0x000000, proto);
3631 			 *
3632 			 * here; for now, we don't, as per the above.
3633 			 * I don't know whether it's worth the extra CPU
3634 			 * time to do the right check or not.
3635 			 */
3636 			return gen_cmp(OR_LLC, 6, BPF_H, (bpf_int32)proto);
3637 		}
3638 	}
3639 }
3640 
3641 static struct block *
gen_hostop(addr,mask,dir,proto,src_off,dst_off)3642 gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3643 	bpf_u_int32 addr;
3644 	bpf_u_int32 mask;
3645 	int dir, proto;
3646 	u_int src_off, dst_off;
3647 {
3648 	struct block *b0, *b1;
3649 	u_int offset;
3650 
3651 	switch (dir) {
3652 
3653 	case Q_SRC:
3654 		offset = src_off;
3655 		break;
3656 
3657 	case Q_DST:
3658 		offset = dst_off;
3659 		break;
3660 
3661 	case Q_AND:
3662 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3663 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3664 		gen_and(b0, b1);
3665 		return b1;
3666 
3667 	case Q_OR:
3668 	case Q_DEFAULT:
3669 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3670 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3671 		gen_or(b0, b1);
3672 		return b1;
3673 
3674 	default:
3675 		abort();
3676 	}
3677 	b0 = gen_linktype(proto);
3678 	b1 = gen_mcmp(OR_LINKPL, offset, BPF_W, (bpf_int32)addr, mask);
3679 	gen_and(b0, b1);
3680 	return b1;
3681 }
3682 
3683 #ifdef INET6
3684 static struct block *
gen_hostop6(addr,mask,dir,proto,src_off,dst_off)3685 gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3686 	struct in6_addr *addr;
3687 	struct in6_addr *mask;
3688 	int dir, proto;
3689 	u_int src_off, dst_off;
3690 {
3691 	struct block *b0, *b1;
3692 	u_int offset;
3693 	u_int32_t *a, *m;
3694 
3695 	switch (dir) {
3696 
3697 	case Q_SRC:
3698 		offset = src_off;
3699 		break;
3700 
3701 	case Q_DST:
3702 		offset = dst_off;
3703 		break;
3704 
3705 	case Q_AND:
3706 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3707 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3708 		gen_and(b0, b1);
3709 		return b1;
3710 
3711 	case Q_OR:
3712 	case Q_DEFAULT:
3713 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3714 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3715 		gen_or(b0, b1);
3716 		return b1;
3717 
3718 	default:
3719 		abort();
3720 	}
3721 	/* this order is important */
3722 	a = (u_int32_t *)addr;
3723 	m = (u_int32_t *)mask;
3724 	b1 = gen_mcmp(OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3725 	b0 = gen_mcmp(OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3726 	gen_and(b0, b1);
3727 	b0 = gen_mcmp(OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3728 	gen_and(b0, b1);
3729 	b0 = gen_mcmp(OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3730 	gen_and(b0, b1);
3731 	b0 = gen_linktype(proto);
3732 	gen_and(b0, b1);
3733 	return b1;
3734 }
3735 #endif
3736 
3737 static struct block *
gen_ehostop(eaddr,dir)3738 gen_ehostop(eaddr, dir)
3739 	register const u_char *eaddr;
3740 	register int dir;
3741 {
3742 	register struct block *b0, *b1;
3743 
3744 	switch (dir) {
3745 	case Q_SRC:
3746 		return gen_bcmp(OR_LINKHDR, 6, 6, eaddr);
3747 
3748 	case Q_DST:
3749 		return gen_bcmp(OR_LINKHDR, 0, 6, eaddr);
3750 
3751 	case Q_AND:
3752 		b0 = gen_ehostop(eaddr, Q_SRC);
3753 		b1 = gen_ehostop(eaddr, Q_DST);
3754 		gen_and(b0, b1);
3755 		return b1;
3756 
3757 	case Q_DEFAULT:
3758 	case Q_OR:
3759 		b0 = gen_ehostop(eaddr, Q_SRC);
3760 		b1 = gen_ehostop(eaddr, Q_DST);
3761 		gen_or(b0, b1);
3762 		return b1;
3763 
3764 	case Q_ADDR1:
3765 		bpf_error("'addr1' is only supported on 802.11 with 802.11 headers");
3766 		break;
3767 
3768 	case Q_ADDR2:
3769 		bpf_error("'addr2' is only supported on 802.11 with 802.11 headers");
3770 		break;
3771 
3772 	case Q_ADDR3:
3773 		bpf_error("'addr3' is only supported on 802.11 with 802.11 headers");
3774 		break;
3775 
3776 	case Q_ADDR4:
3777 		bpf_error("'addr4' is only supported on 802.11 with 802.11 headers");
3778 		break;
3779 
3780 	case Q_RA:
3781 		bpf_error("'ra' is only supported on 802.11 with 802.11 headers");
3782 		break;
3783 
3784 	case Q_TA:
3785 		bpf_error("'ta' is only supported on 802.11 with 802.11 headers");
3786 		break;
3787 	}
3788 	abort();
3789 	/* NOTREACHED */
3790 }
3791 
3792 /*
3793  * Like gen_ehostop, but for DLT_FDDI
3794  */
3795 static struct block *
gen_fhostop(eaddr,dir)3796 gen_fhostop(eaddr, dir)
3797 	register const u_char *eaddr;
3798 	register int dir;
3799 {
3800 	struct block *b0, *b1;
3801 
3802 	switch (dir) {
3803 	case Q_SRC:
3804 		return gen_bcmp(OR_LINKHDR, 6 + 1 + pcap_fddipad, 6, eaddr);
3805 
3806 	case Q_DST:
3807 		return gen_bcmp(OR_LINKHDR, 0 + 1 + pcap_fddipad, 6, eaddr);
3808 
3809 	case Q_AND:
3810 		b0 = gen_fhostop(eaddr, Q_SRC);
3811 		b1 = gen_fhostop(eaddr, Q_DST);
3812 		gen_and(b0, b1);
3813 		return b1;
3814 
3815 	case Q_DEFAULT:
3816 	case Q_OR:
3817 		b0 = gen_fhostop(eaddr, Q_SRC);
3818 		b1 = gen_fhostop(eaddr, Q_DST);
3819 		gen_or(b0, b1);
3820 		return b1;
3821 
3822 	case Q_ADDR1:
3823 		bpf_error("'addr1' is only supported on 802.11");
3824 		break;
3825 
3826 	case Q_ADDR2:
3827 		bpf_error("'addr2' is only supported on 802.11");
3828 		break;
3829 
3830 	case Q_ADDR3:
3831 		bpf_error("'addr3' is only supported on 802.11");
3832 		break;
3833 
3834 	case Q_ADDR4:
3835 		bpf_error("'addr4' is only supported on 802.11");
3836 		break;
3837 
3838 	case Q_RA:
3839 		bpf_error("'ra' is only supported on 802.11");
3840 		break;
3841 
3842 	case Q_TA:
3843 		bpf_error("'ta' is only supported on 802.11");
3844 		break;
3845 	}
3846 	abort();
3847 	/* NOTREACHED */
3848 }
3849 
3850 /*
3851  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3852  */
3853 static struct block *
gen_thostop(eaddr,dir)3854 gen_thostop(eaddr, dir)
3855 	register const u_char *eaddr;
3856 	register int dir;
3857 {
3858 	register struct block *b0, *b1;
3859 
3860 	switch (dir) {
3861 	case Q_SRC:
3862 		return gen_bcmp(OR_LINKHDR, 8, 6, eaddr);
3863 
3864 	case Q_DST:
3865 		return gen_bcmp(OR_LINKHDR, 2, 6, eaddr);
3866 
3867 	case Q_AND:
3868 		b0 = gen_thostop(eaddr, Q_SRC);
3869 		b1 = gen_thostop(eaddr, Q_DST);
3870 		gen_and(b0, b1);
3871 		return b1;
3872 
3873 	case Q_DEFAULT:
3874 	case Q_OR:
3875 		b0 = gen_thostop(eaddr, Q_SRC);
3876 		b1 = gen_thostop(eaddr, Q_DST);
3877 		gen_or(b0, b1);
3878 		return b1;
3879 
3880 	case Q_ADDR1:
3881 		bpf_error("'addr1' is only supported on 802.11");
3882 		break;
3883 
3884 	case Q_ADDR2:
3885 		bpf_error("'addr2' is only supported on 802.11");
3886 		break;
3887 
3888 	case Q_ADDR3:
3889 		bpf_error("'addr3' is only supported on 802.11");
3890 		break;
3891 
3892 	case Q_ADDR4:
3893 		bpf_error("'addr4' is only supported on 802.11");
3894 		break;
3895 
3896 	case Q_RA:
3897 		bpf_error("'ra' is only supported on 802.11");
3898 		break;
3899 
3900 	case Q_TA:
3901 		bpf_error("'ta' is only supported on 802.11");
3902 		break;
3903 	}
3904 	abort();
3905 	/* NOTREACHED */
3906 }
3907 
3908 /*
3909  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3910  * various 802.11 + radio headers.
3911  */
3912 static struct block *
gen_wlanhostop(eaddr,dir)3913 gen_wlanhostop(eaddr, dir)
3914 	register const u_char *eaddr;
3915 	register int dir;
3916 {
3917 	register struct block *b0, *b1, *b2;
3918 	register struct slist *s;
3919 
3920 #ifdef ENABLE_WLAN_FILTERING_PATCH
3921 	/*
3922 	 * TODO GV 20070613
3923 	 * We need to disable the optimizer because the optimizer is buggy
3924 	 * and wipes out some LD instructions generated by the below
3925 	 * code to validate the Frame Control bits
3926 	 */
3927 	no_optimize = 1;
3928 #endif /* ENABLE_WLAN_FILTERING_PATCH */
3929 
3930 	switch (dir) {
3931 	case Q_SRC:
3932 		/*
3933 		 * Oh, yuk.
3934 		 *
3935 		 *	For control frames, there is no SA.
3936 		 *
3937 		 *	For management frames, SA is at an
3938 		 *	offset of 10 from the beginning of
3939 		 *	the packet.
3940 		 *
3941 		 *	For data frames, SA is at an offset
3942 		 *	of 10 from the beginning of the packet
3943 		 *	if From DS is clear, at an offset of
3944 		 *	16 from the beginning of the packet
3945 		 *	if From DS is set and To DS is clear,
3946 		 *	and an offset of 24 from the beginning
3947 		 *	of the packet if From DS is set and To DS
3948 		 *	is set.
3949 		 */
3950 
3951 		/*
3952 		 * Generate the tests to be done for data frames
3953 		 * with From DS set.
3954 		 *
3955 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
3956 		 */
3957 		s = gen_load_a(OR_LINKHDR, 1, BPF_B);
3958 		b1 = new_block(JMP(BPF_JSET));
3959 		b1->s.k = 0x01;	/* To DS */
3960 		b1->stmts = s;
3961 
3962 		/*
3963 		 * If To DS is set, the SA is at 24.
3964 		 */
3965 		b0 = gen_bcmp(OR_LINKHDR, 24, 6, eaddr);
3966 		gen_and(b1, b0);
3967 
3968 		/*
3969 		 * Now, check for To DS not set, i.e. check
3970 		 * "!(link[1] & 0x01)".
3971 		 */
3972 		s = gen_load_a(OR_LINKHDR, 1, BPF_B);
3973 		b2 = new_block(JMP(BPF_JSET));
3974 		b2->s.k = 0x01;	/* To DS */
3975 		b2->stmts = s;
3976 		gen_not(b2);
3977 
3978 		/*
3979 		 * If To DS is not set, the SA is at 16.
3980 		 */
3981 		b1 = gen_bcmp(OR_LINKHDR, 16, 6, eaddr);
3982 		gen_and(b2, b1);
3983 
3984 		/*
3985 		 * Now OR together the last two checks.  That gives
3986 		 * the complete set of checks for data frames with
3987 		 * From DS set.
3988 		 */
3989 		gen_or(b1, b0);
3990 
3991 		/*
3992 		 * Now check for From DS being set, and AND that with
3993 		 * the ORed-together checks.
3994 		 */
3995 		s = gen_load_a(OR_LINKHDR, 1, BPF_B);
3996 		b1 = new_block(JMP(BPF_JSET));
3997 		b1->s.k = 0x02;	/* From DS */
3998 		b1->stmts = s;
3999 		gen_and(b1, b0);
4000 
4001 		/*
4002 		 * Now check for data frames with From DS not set.
4003 		 */
4004 		s = gen_load_a(OR_LINKHDR, 1, BPF_B);
4005 		b2 = new_block(JMP(BPF_JSET));
4006 		b2->s.k = 0x02;	/* From DS */
4007 		b2->stmts = s;
4008 		gen_not(b2);
4009 
4010 		/*
4011 		 * If From DS isn't set, the SA is at 10.
4012 		 */
4013 		b1 = gen_bcmp(OR_LINKHDR, 10, 6, eaddr);
4014 		gen_and(b2, b1);
4015 
4016 		/*
4017 		 * Now OR together the checks for data frames with
4018 		 * From DS not set and for data frames with From DS
4019 		 * set; that gives the checks done for data frames.
4020 		 */
4021 		gen_or(b1, b0);
4022 
4023 		/*
4024 		 * Now check for a data frame.
4025 		 * I.e, check "link[0] & 0x08".
4026 		 */
4027 		s = gen_load_a(OR_LINKHDR, 0, BPF_B);
4028 		b1 = new_block(JMP(BPF_JSET));
4029 		b1->s.k = 0x08;
4030 		b1->stmts = s;
4031 
4032 		/*
4033 		 * AND that with the checks done for data frames.
4034 		 */
4035 		gen_and(b1, b0);
4036 
4037 		/*
4038 		 * If the high-order bit of the type value is 0, this
4039 		 * is a management frame.
4040 		 * I.e, check "!(link[0] & 0x08)".
4041 		 */
4042 		s = gen_load_a(OR_LINKHDR, 0, BPF_B);
4043 		b2 = new_block(JMP(BPF_JSET));
4044 		b2->s.k = 0x08;
4045 		b2->stmts = s;
4046 		gen_not(b2);
4047 
4048 		/*
4049 		 * For management frames, the SA is at 10.
4050 		 */
4051 		b1 = gen_bcmp(OR_LINKHDR, 10, 6, eaddr);
4052 		gen_and(b2, b1);
4053 
4054 		/*
4055 		 * OR that with the checks done for data frames.
4056 		 * That gives the checks done for management and
4057 		 * data frames.
4058 		 */
4059 		gen_or(b1, b0);
4060 
4061 		/*
4062 		 * If the low-order bit of the type value is 1,
4063 		 * this is either a control frame or a frame
4064 		 * with a reserved type, and thus not a
4065 		 * frame with an SA.
4066 		 *
4067 		 * I.e., check "!(link[0] & 0x04)".
4068 		 */
4069 		s = gen_load_a(OR_LINKHDR, 0, BPF_B);
4070 		b1 = new_block(JMP(BPF_JSET));
4071 		b1->s.k = 0x04;
4072 		b1->stmts = s;
4073 		gen_not(b1);
4074 
4075 		/*
4076 		 * AND that with the checks for data and management
4077 		 * frames.
4078 		 */
4079 		gen_and(b1, b0);
4080 		return b0;
4081 
4082 	case Q_DST:
4083 		/*
4084 		 * Oh, yuk.
4085 		 *
4086 		 *	For control frames, there is no DA.
4087 		 *
4088 		 *	For management frames, DA is at an
4089 		 *	offset of 4 from the beginning of
4090 		 *	the packet.
4091 		 *
4092 		 *	For data frames, DA is at an offset
4093 		 *	of 4 from the beginning of the packet
4094 		 *	if To DS is clear and at an offset of
4095 		 *	16 from the beginning of the packet
4096 		 *	if To DS is set.
4097 		 */
4098 
4099 		/*
4100 		 * Generate the tests to be done for data frames.
4101 		 *
4102 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4103 		 */
4104 		s = gen_load_a(OR_LINKHDR, 1, BPF_B);
4105 		b1 = new_block(JMP(BPF_JSET));
4106 		b1->s.k = 0x01;	/* To DS */
4107 		b1->stmts = s;
4108 
4109 		/*
4110 		 * If To DS is set, the DA is at 16.
4111 		 */
4112 		b0 = gen_bcmp(OR_LINKHDR, 16, 6, eaddr);
4113 		gen_and(b1, b0);
4114 
4115 		/*
4116 		 * Now, check for To DS not set, i.e. check
4117 		 * "!(link[1] & 0x01)".
4118 		 */
4119 		s = gen_load_a(OR_LINKHDR, 1, BPF_B);
4120 		b2 = new_block(JMP(BPF_JSET));
4121 		b2->s.k = 0x01;	/* To DS */
4122 		b2->stmts = s;
4123 		gen_not(b2);
4124 
4125 		/*
4126 		 * If To DS is not set, the DA is at 4.
4127 		 */
4128 		b1 = gen_bcmp(OR_LINKHDR, 4, 6, eaddr);
4129 		gen_and(b2, b1);
4130 
4131 		/*
4132 		 * Now OR together the last two checks.  That gives
4133 		 * the complete set of checks for data frames.
4134 		 */
4135 		gen_or(b1, b0);
4136 
4137 		/*
4138 		 * Now check for a data frame.
4139 		 * I.e, check "link[0] & 0x08".
4140 		 */
4141 		s = gen_load_a(OR_LINKHDR, 0, BPF_B);
4142 		b1 = new_block(JMP(BPF_JSET));
4143 		b1->s.k = 0x08;
4144 		b1->stmts = s;
4145 
4146 		/*
4147 		 * AND that with the checks done for data frames.
4148 		 */
4149 		gen_and(b1, b0);
4150 
4151 		/*
4152 		 * If the high-order bit of the type value is 0, this
4153 		 * is a management frame.
4154 		 * I.e, check "!(link[0] & 0x08)".
4155 		 */
4156 		s = gen_load_a(OR_LINKHDR, 0, BPF_B);
4157 		b2 = new_block(JMP(BPF_JSET));
4158 		b2->s.k = 0x08;
4159 		b2->stmts = s;
4160 		gen_not(b2);
4161 
4162 		/*
4163 		 * For management frames, the DA is at 4.
4164 		 */
4165 		b1 = gen_bcmp(OR_LINKHDR, 4, 6, eaddr);
4166 		gen_and(b2, b1);
4167 
4168 		/*
4169 		 * OR that with the checks done for data frames.
4170 		 * That gives the checks done for management and
4171 		 * data frames.
4172 		 */
4173 		gen_or(b1, b0);
4174 
4175 		/*
4176 		 * If the low-order bit of the type value is 1,
4177 		 * this is either a control frame or a frame
4178 		 * with a reserved type, and thus not a
4179 		 * frame with an SA.
4180 		 *
4181 		 * I.e., check "!(link[0] & 0x04)".
4182 		 */
4183 		s = gen_load_a(OR_LINKHDR, 0, BPF_B);
4184 		b1 = new_block(JMP(BPF_JSET));
4185 		b1->s.k = 0x04;
4186 		b1->stmts = s;
4187 		gen_not(b1);
4188 
4189 		/*
4190 		 * AND that with the checks for data and management
4191 		 * frames.
4192 		 */
4193 		gen_and(b1, b0);
4194 		return b0;
4195 
4196 	case Q_RA:
4197 		/*
4198 		 * Not present in management frames; addr1 in other
4199 		 * frames.
4200 		 */
4201 
4202 		/*
4203 		 * If the high-order bit of the type value is 0, this
4204 		 * is a management frame.
4205 		 * I.e, check "(link[0] & 0x08)".
4206 		 */
4207 		s = gen_load_a(OR_LINKHDR, 0, BPF_B);
4208 		b1 = new_block(JMP(BPF_JSET));
4209 		b1->s.k = 0x08;
4210 		b1->stmts = s;
4211 
4212 		/*
4213 		 * Check addr1.
4214 		 */
4215 		b0 = gen_bcmp(OR_LINKHDR, 4, 6, eaddr);
4216 
4217 		/*
4218 		 * AND that with the check of addr1.
4219 		 */
4220 		gen_and(b1, b0);
4221 		return (b0);
4222 
4223 	case Q_TA:
4224 		/*
4225 		 * Not present in management frames; addr2, if present,
4226 		 * in other frames.
4227 		 */
4228 
4229 		/*
4230 		 * Not present in CTS or ACK control frames.
4231 		 */
4232 		b0 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4233 			IEEE80211_FC0_TYPE_MASK);
4234 		gen_not(b0);
4235 		b1 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4236 			IEEE80211_FC0_SUBTYPE_MASK);
4237 		gen_not(b1);
4238 		b2 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4239 			IEEE80211_FC0_SUBTYPE_MASK);
4240 		gen_not(b2);
4241 		gen_and(b1, b2);
4242 		gen_or(b0, b2);
4243 
4244 		/*
4245 		 * If the high-order bit of the type value is 0, this
4246 		 * is a management frame.
4247 		 * I.e, check "(link[0] & 0x08)".
4248 		 */
4249 		s = gen_load_a(OR_LINKHDR, 0, BPF_B);
4250 		b1 = new_block(JMP(BPF_JSET));
4251 		b1->s.k = 0x08;
4252 		b1->stmts = s;
4253 
4254 		/*
4255 		 * AND that with the check for frames other than
4256 		 * CTS and ACK frames.
4257 		 */
4258 		gen_and(b1, b2);
4259 
4260 		/*
4261 		 * Check addr2.
4262 		 */
4263 		b1 = gen_bcmp(OR_LINKHDR, 10, 6, eaddr);
4264 		gen_and(b2, b1);
4265 		return b1;
4266 
4267 	/*
4268 	 * XXX - add BSSID keyword?
4269 	 */
4270 	case Q_ADDR1:
4271 		return (gen_bcmp(OR_LINKHDR, 4, 6, eaddr));
4272 
4273 	case Q_ADDR2:
4274 		/*
4275 		 * Not present in CTS or ACK control frames.
4276 		 */
4277 		b0 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4278 			IEEE80211_FC0_TYPE_MASK);
4279 		gen_not(b0);
4280 		b1 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4281 			IEEE80211_FC0_SUBTYPE_MASK);
4282 		gen_not(b1);
4283 		b2 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4284 			IEEE80211_FC0_SUBTYPE_MASK);
4285 		gen_not(b2);
4286 		gen_and(b1, b2);
4287 		gen_or(b0, b2);
4288 		b1 = gen_bcmp(OR_LINKHDR, 10, 6, eaddr);
4289 		gen_and(b2, b1);
4290 		return b1;
4291 
4292 	case Q_ADDR3:
4293 		/*
4294 		 * Not present in control frames.
4295 		 */
4296 		b0 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4297 			IEEE80211_FC0_TYPE_MASK);
4298 		gen_not(b0);
4299 		b1 = gen_bcmp(OR_LINKHDR, 16, 6, eaddr);
4300 		gen_and(b0, b1);
4301 		return b1;
4302 
4303 	case Q_ADDR4:
4304 		/*
4305 		 * Present only if the direction mask has both "From DS"
4306 		 * and "To DS" set.  Neither control frames nor management
4307 		 * frames should have both of those set, so we don't
4308 		 * check the frame type.
4309 		 */
4310 		b0 = gen_mcmp(OR_LINKHDR, 1, BPF_B,
4311 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4312 		b1 = gen_bcmp(OR_LINKHDR, 24, 6, eaddr);
4313 		gen_and(b0, b1);
4314 		return b1;
4315 
4316 	case Q_AND:
4317 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4318 		b1 = gen_wlanhostop(eaddr, Q_DST);
4319 		gen_and(b0, b1);
4320 		return b1;
4321 
4322 	case Q_DEFAULT:
4323 	case Q_OR:
4324 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4325 		b1 = gen_wlanhostop(eaddr, Q_DST);
4326 		gen_or(b0, b1);
4327 		return b1;
4328 	}
4329 	abort();
4330 	/* NOTREACHED */
4331 }
4332 
4333 /*
4334  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4335  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4336  * as the RFC states.)
4337  */
4338 static struct block *
gen_ipfchostop(eaddr,dir)4339 gen_ipfchostop(eaddr, dir)
4340 	register const u_char *eaddr;
4341 	register int dir;
4342 {
4343 	register struct block *b0, *b1;
4344 
4345 	switch (dir) {
4346 	case Q_SRC:
4347 		return gen_bcmp(OR_LINKHDR, 10, 6, eaddr);
4348 
4349 	case Q_DST:
4350 		return gen_bcmp(OR_LINKHDR, 2, 6, eaddr);
4351 
4352 	case Q_AND:
4353 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4354 		b1 = gen_ipfchostop(eaddr, Q_DST);
4355 		gen_and(b0, b1);
4356 		return b1;
4357 
4358 	case Q_DEFAULT:
4359 	case Q_OR:
4360 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4361 		b1 = gen_ipfchostop(eaddr, Q_DST);
4362 		gen_or(b0, b1);
4363 		return b1;
4364 
4365 	case Q_ADDR1:
4366 		bpf_error("'addr1' is only supported on 802.11");
4367 		break;
4368 
4369 	case Q_ADDR2:
4370 		bpf_error("'addr2' is only supported on 802.11");
4371 		break;
4372 
4373 	case Q_ADDR3:
4374 		bpf_error("'addr3' is only supported on 802.11");
4375 		break;
4376 
4377 	case Q_ADDR4:
4378 		bpf_error("'addr4' is only supported on 802.11");
4379 		break;
4380 
4381 	case Q_RA:
4382 		bpf_error("'ra' is only supported on 802.11");
4383 		break;
4384 
4385 	case Q_TA:
4386 		bpf_error("'ta' is only supported on 802.11");
4387 		break;
4388 	}
4389 	abort();
4390 	/* NOTREACHED */
4391 }
4392 
4393 /*
4394  * This is quite tricky because there may be pad bytes in front of the
4395  * DECNET header, and then there are two possible data packet formats that
4396  * carry both src and dst addresses, plus 5 packet types in a format that
4397  * carries only the src node, plus 2 types that use a different format and
4398  * also carry just the src node.
4399  *
4400  * Yuck.
4401  *
4402  * Instead of doing those all right, we just look for data packets with
4403  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4404  * will require a lot more hacking.
4405  *
4406  * To add support for filtering on DECNET "areas" (network numbers)
4407  * one would want to add a "mask" argument to this routine.  That would
4408  * make the filter even more inefficient, although one could be clever
4409  * and not generate masking instructions if the mask is 0xFFFF.
4410  */
4411 static struct block *
gen_dnhostop(addr,dir)4412 gen_dnhostop(addr, dir)
4413 	bpf_u_int32 addr;
4414 	int dir;
4415 {
4416 	struct block *b0, *b1, *b2, *tmp;
4417 	u_int offset_lh;	/* offset if long header is received */
4418 	u_int offset_sh;	/* offset if short header is received */
4419 
4420 	switch (dir) {
4421 
4422 	case Q_DST:
4423 		offset_sh = 1;	/* follows flags */
4424 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4425 		break;
4426 
4427 	case Q_SRC:
4428 		offset_sh = 3;	/* follows flags, dstnode */
4429 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4430 		break;
4431 
4432 	case Q_AND:
4433 		/* Inefficient because we do our Calvinball dance twice */
4434 		b0 = gen_dnhostop(addr, Q_SRC);
4435 		b1 = gen_dnhostop(addr, Q_DST);
4436 		gen_and(b0, b1);
4437 		return b1;
4438 
4439 	case Q_OR:
4440 	case Q_DEFAULT:
4441 		/* Inefficient because we do our Calvinball dance twice */
4442 		b0 = gen_dnhostop(addr, Q_SRC);
4443 		b1 = gen_dnhostop(addr, Q_DST);
4444 		gen_or(b0, b1);
4445 		return b1;
4446 
4447 	case Q_ISO:
4448 		bpf_error("ISO host filtering not implemented");
4449 
4450 	default:
4451 		abort();
4452 	}
4453 	b0 = gen_linktype(ETHERTYPE_DN);
4454 	/* Check for pad = 1, long header case */
4455 	tmp = gen_mcmp(OR_LINKPL, 2, BPF_H,
4456 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4457 	b1 = gen_cmp(OR_LINKPL, 2 + 1 + offset_lh,
4458 	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4459 	gen_and(tmp, b1);
4460 	/* Check for pad = 0, long header case */
4461 	tmp = gen_mcmp(OR_LINKPL, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4462 	b2 = gen_cmp(OR_LINKPL, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4463 	gen_and(tmp, b2);
4464 	gen_or(b2, b1);
4465 	/* Check for pad = 1, short header case */
4466 	tmp = gen_mcmp(OR_LINKPL, 2, BPF_H,
4467 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4468 	b2 = gen_cmp(OR_LINKPL, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4469 	gen_and(tmp, b2);
4470 	gen_or(b2, b1);
4471 	/* Check for pad = 0, short header case */
4472 	tmp = gen_mcmp(OR_LINKPL, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4473 	b2 = gen_cmp(OR_LINKPL, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4474 	gen_and(tmp, b2);
4475 	gen_or(b2, b1);
4476 
4477 	/* Combine with test for linktype */
4478 	gen_and(b0, b1);
4479 	return b1;
4480 }
4481 
4482 /*
4483  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4484  * test the bottom-of-stack bit, and then check the version number
4485  * field in the IP header.
4486  */
4487 static struct block *
gen_mpls_linktype(proto)4488 gen_mpls_linktype(proto)
4489 	int proto;
4490 {
4491 	struct block *b0, *b1;
4492 
4493         switch (proto) {
4494 
4495         case Q_IP:
4496                 /* match the bottom-of-stack bit */
4497                 b0 = gen_mcmp(OR_LINKPL, -2, BPF_B, 0x01, 0x01);
4498                 /* match the IPv4 version number */
4499                 b1 = gen_mcmp(OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4500                 gen_and(b0, b1);
4501                 return b1;
4502 
4503        case Q_IPV6:
4504                 /* match the bottom-of-stack bit */
4505                 b0 = gen_mcmp(OR_LINKPL, -2, BPF_B, 0x01, 0x01);
4506                 /* match the IPv4 version number */
4507                 b1 = gen_mcmp(OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4508                 gen_and(b0, b1);
4509                 return b1;
4510 
4511        default:
4512                 abort();
4513         }
4514 }
4515 
4516 static struct block *
gen_host(addr,mask,proto,dir,type)4517 gen_host(addr, mask, proto, dir, type)
4518 	bpf_u_int32 addr;
4519 	bpf_u_int32 mask;
4520 	int proto;
4521 	int dir;
4522 	int type;
4523 {
4524 	struct block *b0, *b1;
4525 	const char *typestr;
4526 
4527 	if (type == Q_NET)
4528 		typestr = "net";
4529 	else
4530 		typestr = "host";
4531 
4532 	switch (proto) {
4533 
4534 	case Q_DEFAULT:
4535 		b0 = gen_host(addr, mask, Q_IP, dir, type);
4536 		/*
4537 		 * Only check for non-IPv4 addresses if we're not
4538 		 * checking MPLS-encapsulated packets.
4539 		 */
4540 		if (label_stack_depth == 0) {
4541 			b1 = gen_host(addr, mask, Q_ARP, dir, type);
4542 			gen_or(b0, b1);
4543 			b0 = gen_host(addr, mask, Q_RARP, dir, type);
4544 			gen_or(b1, b0);
4545 		}
4546 		return b0;
4547 
4548 	case Q_IP:
4549 		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4550 
4551 	case Q_RARP:
4552 		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4553 
4554 	case Q_ARP:
4555 		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4556 
4557 	case Q_TCP:
4558 		bpf_error("'tcp' modifier applied to %s", typestr);
4559 
4560 	case Q_SCTP:
4561 		bpf_error("'sctp' modifier applied to %s", typestr);
4562 
4563 	case Q_UDP:
4564 		bpf_error("'udp' modifier applied to %s", typestr);
4565 
4566 	case Q_ICMP:
4567 		bpf_error("'icmp' modifier applied to %s", typestr);
4568 
4569 	case Q_IGMP:
4570 		bpf_error("'igmp' modifier applied to %s", typestr);
4571 
4572 	case Q_IGRP:
4573 		bpf_error("'igrp' modifier applied to %s", typestr);
4574 
4575 	case Q_PIM:
4576 		bpf_error("'pim' modifier applied to %s", typestr);
4577 
4578 	case Q_VRRP:
4579 		bpf_error("'vrrp' modifier applied to %s", typestr);
4580 
4581 	case Q_CARP:
4582 		bpf_error("'carp' modifier applied to %s", typestr);
4583 
4584 	case Q_ATALK:
4585 		bpf_error("ATALK host filtering not implemented");
4586 
4587 	case Q_AARP:
4588 		bpf_error("AARP host filtering not implemented");
4589 
4590 	case Q_DECNET:
4591 		return gen_dnhostop(addr, dir);
4592 
4593 	case Q_SCA:
4594 		bpf_error("SCA host filtering not implemented");
4595 
4596 	case Q_LAT:
4597 		bpf_error("LAT host filtering not implemented");
4598 
4599 	case Q_MOPDL:
4600 		bpf_error("MOPDL host filtering not implemented");
4601 
4602 	case Q_MOPRC:
4603 		bpf_error("MOPRC host filtering not implemented");
4604 
4605 	case Q_IPV6:
4606 		bpf_error("'ip6' modifier applied to ip host");
4607 
4608 	case Q_ICMPV6:
4609 		bpf_error("'icmp6' modifier applied to %s", typestr);
4610 
4611 	case Q_AH:
4612 		bpf_error("'ah' modifier applied to %s", typestr);
4613 
4614 	case Q_ESP:
4615 		bpf_error("'esp' modifier applied to %s", typestr);
4616 
4617 	case Q_ISO:
4618 		bpf_error("ISO host filtering not implemented");
4619 
4620 	case Q_ESIS:
4621 		bpf_error("'esis' modifier applied to %s", typestr);
4622 
4623 	case Q_ISIS:
4624 		bpf_error("'isis' modifier applied to %s", typestr);
4625 
4626 	case Q_CLNP:
4627 		bpf_error("'clnp' modifier applied to %s", typestr);
4628 
4629 	case Q_STP:
4630 		bpf_error("'stp' modifier applied to %s", typestr);
4631 
4632 	case Q_IPX:
4633 		bpf_error("IPX host filtering not implemented");
4634 
4635 	case Q_NETBEUI:
4636 		bpf_error("'netbeui' modifier applied to %s", typestr);
4637 
4638 	case Q_RADIO:
4639 		bpf_error("'radio' modifier applied to %s", typestr);
4640 
4641 	default:
4642 		abort();
4643 	}
4644 	/* NOTREACHED */
4645 }
4646 
4647 #ifdef INET6
4648 static struct block *
gen_host6(addr,mask,proto,dir,type)4649 gen_host6(addr, mask, proto, dir, type)
4650 	struct in6_addr *addr;
4651 	struct in6_addr *mask;
4652 	int proto;
4653 	int dir;
4654 	int type;
4655 {
4656 	const char *typestr;
4657 
4658 	if (type == Q_NET)
4659 		typestr = "net";
4660 	else
4661 		typestr = "host";
4662 
4663 	switch (proto) {
4664 
4665 	case Q_DEFAULT:
4666 		return gen_host6(addr, mask, Q_IPV6, dir, type);
4667 
4668 	case Q_LINK:
4669 		bpf_error("link-layer modifier applied to ip6 %s", typestr);
4670 
4671 	case Q_IP:
4672 		bpf_error("'ip' modifier applied to ip6 %s", typestr);
4673 
4674 	case Q_RARP:
4675 		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4676 
4677 	case Q_ARP:
4678 		bpf_error("'arp' modifier applied to ip6 %s", typestr);
4679 
4680 	case Q_SCTP:
4681 		bpf_error("'sctp' modifier applied to %s", typestr);
4682 
4683 	case Q_TCP:
4684 		bpf_error("'tcp' modifier applied to %s", typestr);
4685 
4686 	case Q_UDP:
4687 		bpf_error("'udp' modifier applied to %s", typestr);
4688 
4689 	case Q_ICMP:
4690 		bpf_error("'icmp' modifier applied to %s", typestr);
4691 
4692 	case Q_IGMP:
4693 		bpf_error("'igmp' modifier applied to %s", typestr);
4694 
4695 	case Q_IGRP:
4696 		bpf_error("'igrp' modifier applied to %s", typestr);
4697 
4698 	case Q_PIM:
4699 		bpf_error("'pim' modifier applied to %s", typestr);
4700 
4701 	case Q_VRRP:
4702 		bpf_error("'vrrp' modifier applied to %s", typestr);
4703 
4704 	case Q_CARP:
4705 		bpf_error("'carp' modifier applied to %s", typestr);
4706 
4707 	case Q_ATALK:
4708 		bpf_error("ATALK host filtering not implemented");
4709 
4710 	case Q_AARP:
4711 		bpf_error("AARP host filtering not implemented");
4712 
4713 	case Q_DECNET:
4714 		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4715 
4716 	case Q_SCA:
4717 		bpf_error("SCA host filtering not implemented");
4718 
4719 	case Q_LAT:
4720 		bpf_error("LAT host filtering not implemented");
4721 
4722 	case Q_MOPDL:
4723 		bpf_error("MOPDL host filtering not implemented");
4724 
4725 	case Q_MOPRC:
4726 		bpf_error("MOPRC host filtering not implemented");
4727 
4728 	case Q_IPV6:
4729 		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4730 
4731 	case Q_ICMPV6:
4732 		bpf_error("'icmp6' modifier applied to %s", typestr);
4733 
4734 	case Q_AH:
4735 		bpf_error("'ah' modifier applied to %s", typestr);
4736 
4737 	case Q_ESP:
4738 		bpf_error("'esp' modifier applied to %s", typestr);
4739 
4740 	case Q_ISO:
4741 		bpf_error("ISO host filtering not implemented");
4742 
4743 	case Q_ESIS:
4744 		bpf_error("'esis' modifier applied to %s", typestr);
4745 
4746 	case Q_ISIS:
4747 		bpf_error("'isis' modifier applied to %s", typestr);
4748 
4749 	case Q_CLNP:
4750 		bpf_error("'clnp' modifier applied to %s", typestr);
4751 
4752 	case Q_STP:
4753 		bpf_error("'stp' modifier applied to %s", typestr);
4754 
4755 	case Q_IPX:
4756 		bpf_error("IPX host filtering not implemented");
4757 
4758 	case Q_NETBEUI:
4759 		bpf_error("'netbeui' modifier applied to %s", typestr);
4760 
4761 	case Q_RADIO:
4762 		bpf_error("'radio' modifier applied to %s", typestr);
4763 
4764 	default:
4765 		abort();
4766 	}
4767 	/* NOTREACHED */
4768 }
4769 #endif
4770 
4771 #ifndef INET6
4772 static struct block *
gen_gateway(eaddr,alist,proto,dir)4773 gen_gateway(eaddr, alist, proto, dir)
4774 	const u_char *eaddr;
4775 	bpf_u_int32 **alist;
4776 	int proto;
4777 	int dir;
4778 {
4779 	struct block *b0, *b1, *tmp;
4780 
4781 	if (dir != 0)
4782 		bpf_error("direction applied to 'gateway'");
4783 
4784 	switch (proto) {
4785 	case Q_DEFAULT:
4786 	case Q_IP:
4787 	case Q_ARP:
4788 	case Q_RARP:
4789 		switch (linktype) {
4790 		case DLT_EN10MB:
4791 		case DLT_NETANALYZER:
4792 		case DLT_NETANALYZER_TRANSPARENT:
4793 			b1 = gen_prevlinkhdr_check();
4794 			b0 = gen_ehostop(eaddr, Q_OR);
4795 			if (b1 != NULL)
4796 				gen_and(b1, b0);
4797 			break;
4798 		case DLT_FDDI:
4799 			b0 = gen_fhostop(eaddr, Q_OR);
4800 			break;
4801 		case DLT_IEEE802:
4802 			b0 = gen_thostop(eaddr, Q_OR);
4803 			break;
4804 		case DLT_IEEE802_11:
4805 		case DLT_PRISM_HEADER:
4806 		case DLT_IEEE802_11_RADIO_AVS:
4807 		case DLT_IEEE802_11_RADIO:
4808 		case DLT_PPI:
4809 			b0 = gen_wlanhostop(eaddr, Q_OR);
4810 			break;
4811 		case DLT_SUNATM:
4812 			/*
4813 			 * This is LLC-multiplexed traffic; if it were
4814 			 * LANE, linktype would have been set to
4815 			 * DLT_EN10MB.
4816 			 */
4817 			bpf_error(
4818 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4819 			break;
4820 		case DLT_IP_OVER_FC:
4821 			b0 = gen_ipfchostop(eaddr, Q_OR);
4822 			break;
4823 		default:
4824 			bpf_error(
4825 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4826 		}
4827 		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4828 		while (*alist) {
4829 			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4830 			    Q_HOST);
4831 			gen_or(b1, tmp);
4832 			b1 = tmp;
4833 		}
4834 		gen_not(b1);
4835 		gen_and(b0, b1);
4836 		return b1;
4837 	}
4838 	bpf_error("illegal modifier of 'gateway'");
4839 	/* NOTREACHED */
4840 }
4841 #endif
4842 
4843 struct block *
gen_proto_abbrev(proto)4844 gen_proto_abbrev(proto)
4845 	int proto;
4846 {
4847 	struct block *b0;
4848 	struct block *b1;
4849 
4850 	switch (proto) {
4851 
4852 	case Q_SCTP:
4853 		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4854 		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4855 		gen_or(b0, b1);
4856 		break;
4857 
4858 	case Q_TCP:
4859 		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4860 		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4861 		gen_or(b0, b1);
4862 		break;
4863 
4864 	case Q_UDP:
4865 		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4866 		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4867 		gen_or(b0, b1);
4868 		break;
4869 
4870 	case Q_ICMP:
4871 		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4872 		break;
4873 
4874 #ifndef	IPPROTO_IGMP
4875 #define	IPPROTO_IGMP	2
4876 #endif
4877 
4878 	case Q_IGMP:
4879 		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4880 		break;
4881 
4882 #ifndef	IPPROTO_IGRP
4883 #define	IPPROTO_IGRP	9
4884 #endif
4885 	case Q_IGRP:
4886 		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4887 		break;
4888 
4889 #ifndef IPPROTO_PIM
4890 #define IPPROTO_PIM	103
4891 #endif
4892 
4893 	case Q_PIM:
4894 		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4895 		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4896 		gen_or(b0, b1);
4897 		break;
4898 
4899 #ifndef IPPROTO_VRRP
4900 #define IPPROTO_VRRP	112
4901 #endif
4902 
4903 	case Q_VRRP:
4904 		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4905 		break;
4906 
4907 #ifndef IPPROTO_CARP
4908 #define IPPROTO_CARP	112
4909 #endif
4910 
4911 	case Q_CARP:
4912 		b1 = gen_proto(IPPROTO_CARP, Q_IP, Q_DEFAULT);
4913 		break;
4914 
4915 	case Q_IP:
4916 		b1 =  gen_linktype(ETHERTYPE_IP);
4917 		break;
4918 
4919 	case Q_ARP:
4920 		b1 =  gen_linktype(ETHERTYPE_ARP);
4921 		break;
4922 
4923 	case Q_RARP:
4924 		b1 =  gen_linktype(ETHERTYPE_REVARP);
4925 		break;
4926 
4927 	case Q_LINK:
4928 		bpf_error("link layer applied in wrong context");
4929 
4930 	case Q_ATALK:
4931 		b1 =  gen_linktype(ETHERTYPE_ATALK);
4932 		break;
4933 
4934 	case Q_AARP:
4935 		b1 =  gen_linktype(ETHERTYPE_AARP);
4936 		break;
4937 
4938 	case Q_DECNET:
4939 		b1 =  gen_linktype(ETHERTYPE_DN);
4940 		break;
4941 
4942 	case Q_SCA:
4943 		b1 =  gen_linktype(ETHERTYPE_SCA);
4944 		break;
4945 
4946 	case Q_LAT:
4947 		b1 =  gen_linktype(ETHERTYPE_LAT);
4948 		break;
4949 
4950 	case Q_MOPDL:
4951 		b1 =  gen_linktype(ETHERTYPE_MOPDL);
4952 		break;
4953 
4954 	case Q_MOPRC:
4955 		b1 =  gen_linktype(ETHERTYPE_MOPRC);
4956 		break;
4957 
4958 	case Q_IPV6:
4959 		b1 = gen_linktype(ETHERTYPE_IPV6);
4960 		break;
4961 
4962 #ifndef IPPROTO_ICMPV6
4963 #define IPPROTO_ICMPV6	58
4964 #endif
4965 	case Q_ICMPV6:
4966 		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4967 		break;
4968 
4969 #ifndef IPPROTO_AH
4970 #define IPPROTO_AH	51
4971 #endif
4972 	case Q_AH:
4973 		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4974 		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4975 		gen_or(b0, b1);
4976 		break;
4977 
4978 #ifndef IPPROTO_ESP
4979 #define IPPROTO_ESP	50
4980 #endif
4981 	case Q_ESP:
4982 		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4983 		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4984 		gen_or(b0, b1);
4985 		break;
4986 
4987 	case Q_ISO:
4988 		b1 = gen_linktype(LLCSAP_ISONS);
4989 		break;
4990 
4991 	case Q_ESIS:
4992 		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4993 		break;
4994 
4995 	case Q_ISIS:
4996 		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4997 		break;
4998 
4999 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5000 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5001 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5002 		gen_or(b0, b1);
5003 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5004 		gen_or(b0, b1);
5005 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5006 		gen_or(b0, b1);
5007 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5008 		gen_or(b0, b1);
5009 		break;
5010 
5011 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5012 		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5013 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5014 		gen_or(b0, b1);
5015 		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5016 		gen_or(b0, b1);
5017 		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5018 		gen_or(b0, b1);
5019 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5020 		gen_or(b0, b1);
5021 		break;
5022 
5023 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5024 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5025 		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5026 		gen_or(b0, b1);
5027 		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5028 		gen_or(b0, b1);
5029 		break;
5030 
5031 	case Q_ISIS_LSP:
5032 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5033 		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5034 		gen_or(b0, b1);
5035 		break;
5036 
5037 	case Q_ISIS_SNP:
5038 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5039 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5040 		gen_or(b0, b1);
5041 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5042 		gen_or(b0, b1);
5043 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5044 		gen_or(b0, b1);
5045 		break;
5046 
5047 	case Q_ISIS_CSNP:
5048 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5049 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5050 		gen_or(b0, b1);
5051 		break;
5052 
5053 	case Q_ISIS_PSNP:
5054 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5055 		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5056 		gen_or(b0, b1);
5057 		break;
5058 
5059 	case Q_CLNP:
5060 		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5061 		break;
5062 
5063 	case Q_STP:
5064 		b1 = gen_linktype(LLCSAP_8021D);
5065 		break;
5066 
5067 	case Q_IPX:
5068 		b1 = gen_linktype(LLCSAP_IPX);
5069 		break;
5070 
5071 	case Q_NETBEUI:
5072 		b1 = gen_linktype(LLCSAP_NETBEUI);
5073 		break;
5074 
5075 	case Q_RADIO:
5076 		bpf_error("'radio' is not a valid protocol type");
5077 
5078 	default:
5079 		abort();
5080 	}
5081 	return b1;
5082 }
5083 
5084 static struct block *
gen_ipfrag()5085 gen_ipfrag()
5086 {
5087 	struct slist *s;
5088 	struct block *b;
5089 
5090 	/* not IPv4 frag other than the first frag */
5091 	s = gen_load_a(OR_LINKPL, 6, BPF_H);
5092 	b = new_block(JMP(BPF_JSET));
5093 	b->s.k = 0x1fff;
5094 	b->stmts = s;
5095 	gen_not(b);
5096 
5097 	return b;
5098 }
5099 
5100 /*
5101  * Generate a comparison to a port value in the transport-layer header
5102  * at the specified offset from the beginning of that header.
5103  *
5104  * XXX - this handles a variable-length prefix preceding the link-layer
5105  * header, such as the radiotap or AVS radio prefix, but doesn't handle
5106  * variable-length link-layer headers (such as Token Ring or 802.11
5107  * headers).
5108  */
5109 static struct block *
gen_portatom(off,v)5110 gen_portatom(off, v)
5111 	int off;
5112 	bpf_int32 v;
5113 {
5114 	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
5115 }
5116 
5117 static struct block *
gen_portatom6(off,v)5118 gen_portatom6(off, v)
5119 	int off;
5120 	bpf_int32 v;
5121 {
5122 	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
5123 }
5124 
5125 struct block *
gen_portop(port,proto,dir)5126 gen_portop(port, proto, dir)
5127 	int port, proto, dir;
5128 {
5129 	struct block *b0, *b1, *tmp;
5130 
5131 	/* ip proto 'proto' and not a fragment other than the first fragment */
5132 	tmp = gen_cmp(OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
5133 	b0 = gen_ipfrag();
5134 	gen_and(tmp, b0);
5135 
5136 	switch (dir) {
5137 	case Q_SRC:
5138 		b1 = gen_portatom(0, (bpf_int32)port);
5139 		break;
5140 
5141 	case Q_DST:
5142 		b1 = gen_portatom(2, (bpf_int32)port);
5143 		break;
5144 
5145 	case Q_OR:
5146 	case Q_DEFAULT:
5147 		tmp = gen_portatom(0, (bpf_int32)port);
5148 		b1 = gen_portatom(2, (bpf_int32)port);
5149 		gen_or(tmp, b1);
5150 		break;
5151 
5152 	case Q_AND:
5153 		tmp = gen_portatom(0, (bpf_int32)port);
5154 		b1 = gen_portatom(2, (bpf_int32)port);
5155 		gen_and(tmp, b1);
5156 		break;
5157 
5158 	default:
5159 		abort();
5160 	}
5161 	gen_and(b0, b1);
5162 
5163 	return b1;
5164 }
5165 
5166 static struct block *
gen_port(port,ip_proto,dir)5167 gen_port(port, ip_proto, dir)
5168 	int port;
5169 	int ip_proto;
5170 	int dir;
5171 {
5172 	struct block *b0, *b1, *tmp;
5173 
5174 	/*
5175 	 * ether proto ip
5176 	 *
5177 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5178 	 * not LLC encapsulation with LLCSAP_IP.
5179 	 *
5180 	 * For IEEE 802 networks - which includes 802.5 token ring
5181 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5182 	 * says that SNAP encapsulation is used, not LLC encapsulation
5183 	 * with LLCSAP_IP.
5184 	 *
5185 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5186 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5187 	 * encapsulation with LLCSAP_IP.
5188 	 *
5189 	 * So we always check for ETHERTYPE_IP.
5190 	 */
5191 	b0 =  gen_linktype(ETHERTYPE_IP);
5192 
5193 	switch (ip_proto) {
5194 	case IPPROTO_UDP:
5195 	case IPPROTO_TCP:
5196 	case IPPROTO_SCTP:
5197 		b1 = gen_portop(port, ip_proto, dir);
5198 		break;
5199 
5200 	case PROTO_UNDEF:
5201 		tmp = gen_portop(port, IPPROTO_TCP, dir);
5202 		b1 = gen_portop(port, IPPROTO_UDP, dir);
5203 		gen_or(tmp, b1);
5204 		tmp = gen_portop(port, IPPROTO_SCTP, dir);
5205 		gen_or(tmp, b1);
5206 		break;
5207 
5208 	default:
5209 		abort();
5210 	}
5211 	gen_and(b0, b1);
5212 	return b1;
5213 }
5214 
5215 struct block *
gen_portop6(port,proto,dir)5216 gen_portop6(port, proto, dir)
5217 	int port, proto, dir;
5218 {
5219 	struct block *b0, *b1, *tmp;
5220 
5221 	/* ip6 proto 'proto' */
5222 	/* XXX - catch the first fragment of a fragmented packet? */
5223 	b0 = gen_cmp(OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
5224 
5225 	switch (dir) {
5226 	case Q_SRC:
5227 		b1 = gen_portatom6(0, (bpf_int32)port);
5228 		break;
5229 
5230 	case Q_DST:
5231 		b1 = gen_portatom6(2, (bpf_int32)port);
5232 		break;
5233 
5234 	case Q_OR:
5235 	case Q_DEFAULT:
5236 		tmp = gen_portatom6(0, (bpf_int32)port);
5237 		b1 = gen_portatom6(2, (bpf_int32)port);
5238 		gen_or(tmp, b1);
5239 		break;
5240 
5241 	case Q_AND:
5242 		tmp = gen_portatom6(0, (bpf_int32)port);
5243 		b1 = gen_portatom6(2, (bpf_int32)port);
5244 		gen_and(tmp, b1);
5245 		break;
5246 
5247 	default:
5248 		abort();
5249 	}
5250 	gen_and(b0, b1);
5251 
5252 	return b1;
5253 }
5254 
5255 static struct block *
gen_port6(port,ip_proto,dir)5256 gen_port6(port, ip_proto, dir)
5257 	int port;
5258 	int ip_proto;
5259 	int dir;
5260 {
5261 	struct block *b0, *b1, *tmp;
5262 
5263 	/* link proto ip6 */
5264 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5265 
5266 	switch (ip_proto) {
5267 	case IPPROTO_UDP:
5268 	case IPPROTO_TCP:
5269 	case IPPROTO_SCTP:
5270 		b1 = gen_portop6(port, ip_proto, dir);
5271 		break;
5272 
5273 	case PROTO_UNDEF:
5274 		tmp = gen_portop6(port, IPPROTO_TCP, dir);
5275 		b1 = gen_portop6(port, IPPROTO_UDP, dir);
5276 		gen_or(tmp, b1);
5277 		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5278 		gen_or(tmp, b1);
5279 		break;
5280 
5281 	default:
5282 		abort();
5283 	}
5284 	gen_and(b0, b1);
5285 	return b1;
5286 }
5287 
5288 /* gen_portrange code */
5289 static struct block *
gen_portrangeatom(off,v1,v2)5290 gen_portrangeatom(off, v1, v2)
5291 	int off;
5292 	bpf_int32 v1, v2;
5293 {
5294 	struct block *b1, *b2;
5295 
5296 	if (v1 > v2) {
5297 		/*
5298 		 * Reverse the order of the ports, so v1 is the lower one.
5299 		 */
5300 		bpf_int32 vtemp;
5301 
5302 		vtemp = v1;
5303 		v1 = v2;
5304 		v2 = vtemp;
5305 	}
5306 
5307 	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5308 	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5309 
5310 	gen_and(b1, b2);
5311 
5312 	return b2;
5313 }
5314 
5315 struct block *
gen_portrangeop(port1,port2,proto,dir)5316 gen_portrangeop(port1, port2, proto, dir)
5317 	int port1, port2;
5318 	int proto;
5319 	int dir;
5320 {
5321 	struct block *b0, *b1, *tmp;
5322 
5323 	/* ip proto 'proto' and not a fragment other than the first fragment */
5324 	tmp = gen_cmp(OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
5325 	b0 = gen_ipfrag();
5326 	gen_and(tmp, b0);
5327 
5328 	switch (dir) {
5329 	case Q_SRC:
5330 		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5331 		break;
5332 
5333 	case Q_DST:
5334 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5335 		break;
5336 
5337 	case Q_OR:
5338 	case Q_DEFAULT:
5339 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5340 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5341 		gen_or(tmp, b1);
5342 		break;
5343 
5344 	case Q_AND:
5345 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5346 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5347 		gen_and(tmp, b1);
5348 		break;
5349 
5350 	default:
5351 		abort();
5352 	}
5353 	gen_and(b0, b1);
5354 
5355 	return b1;
5356 }
5357 
5358 static struct block *
gen_portrange(port1,port2,ip_proto,dir)5359 gen_portrange(port1, port2, ip_proto, dir)
5360 	int port1, port2;
5361 	int ip_proto;
5362 	int dir;
5363 {
5364 	struct block *b0, *b1, *tmp;
5365 
5366 	/* link proto ip */
5367 	b0 =  gen_linktype(ETHERTYPE_IP);
5368 
5369 	switch (ip_proto) {
5370 	case IPPROTO_UDP:
5371 	case IPPROTO_TCP:
5372 	case IPPROTO_SCTP:
5373 		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5374 		break;
5375 
5376 	case PROTO_UNDEF:
5377 		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5378 		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5379 		gen_or(tmp, b1);
5380 		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5381 		gen_or(tmp, b1);
5382 		break;
5383 
5384 	default:
5385 		abort();
5386 	}
5387 	gen_and(b0, b1);
5388 	return b1;
5389 }
5390 
5391 static struct block *
gen_portrangeatom6(off,v1,v2)5392 gen_portrangeatom6(off, v1, v2)
5393 	int off;
5394 	bpf_int32 v1, v2;
5395 {
5396 	struct block *b1, *b2;
5397 
5398 	if (v1 > v2) {
5399 		/*
5400 		 * Reverse the order of the ports, so v1 is the lower one.
5401 		 */
5402 		bpf_int32 vtemp;
5403 
5404 		vtemp = v1;
5405 		v1 = v2;
5406 		v2 = vtemp;
5407 	}
5408 
5409 	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5410 	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5411 
5412 	gen_and(b1, b2);
5413 
5414 	return b2;
5415 }
5416 
5417 struct block *
gen_portrangeop6(port1,port2,proto,dir)5418 gen_portrangeop6(port1, port2, proto, dir)
5419 	int port1, port2;
5420 	int proto;
5421 	int dir;
5422 {
5423 	struct block *b0, *b1, *tmp;
5424 
5425 	/* ip6 proto 'proto' */
5426 	/* XXX - catch the first fragment of a fragmented packet? */
5427 	b0 = gen_cmp(OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
5428 
5429 	switch (dir) {
5430 	case Q_SRC:
5431 		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5432 		break;
5433 
5434 	case Q_DST:
5435 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5436 		break;
5437 
5438 	case Q_OR:
5439 	case Q_DEFAULT:
5440 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5441 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5442 		gen_or(tmp, b1);
5443 		break;
5444 
5445 	case Q_AND:
5446 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5447 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5448 		gen_and(tmp, b1);
5449 		break;
5450 
5451 	default:
5452 		abort();
5453 	}
5454 	gen_and(b0, b1);
5455 
5456 	return b1;
5457 }
5458 
5459 static struct block *
gen_portrange6(port1,port2,ip_proto,dir)5460 gen_portrange6(port1, port2, ip_proto, dir)
5461 	int port1, port2;
5462 	int ip_proto;
5463 	int dir;
5464 {
5465 	struct block *b0, *b1, *tmp;
5466 
5467 	/* link proto ip6 */
5468 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5469 
5470 	switch (ip_proto) {
5471 	case IPPROTO_UDP:
5472 	case IPPROTO_TCP:
5473 	case IPPROTO_SCTP:
5474 		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5475 		break;
5476 
5477 	case PROTO_UNDEF:
5478 		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5479 		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5480 		gen_or(tmp, b1);
5481 		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5482 		gen_or(tmp, b1);
5483 		break;
5484 
5485 	default:
5486 		abort();
5487 	}
5488 	gen_and(b0, b1);
5489 	return b1;
5490 }
5491 
5492 static int
lookup_proto(name,proto)5493 lookup_proto(name, proto)
5494 	register const char *name;
5495 	register int proto;
5496 {
5497 	register int v;
5498 
5499 	switch (proto) {
5500 
5501 	case Q_DEFAULT:
5502 	case Q_IP:
5503 	case Q_IPV6:
5504 		v = pcap_nametoproto(name);
5505 		if (v == PROTO_UNDEF)
5506 			bpf_error("unknown ip proto '%s'", name);
5507 		break;
5508 
5509 	case Q_LINK:
5510 		/* XXX should look up h/w protocol type based on linktype */
5511 		v = pcap_nametoeproto(name);
5512 		if (v == PROTO_UNDEF) {
5513 			v = pcap_nametollc(name);
5514 			if (v == PROTO_UNDEF)
5515 				bpf_error("unknown ether proto '%s'", name);
5516 		}
5517 		break;
5518 
5519 	case Q_ISO:
5520 		if (strcmp(name, "esis") == 0)
5521 			v = ISO9542_ESIS;
5522 		else if (strcmp(name, "isis") == 0)
5523 			v = ISO10589_ISIS;
5524 		else if (strcmp(name, "clnp") == 0)
5525 			v = ISO8473_CLNP;
5526 		else
5527 			bpf_error("unknown osi proto '%s'", name);
5528 		break;
5529 
5530 	default:
5531 		v = PROTO_UNDEF;
5532 		break;
5533 	}
5534 	return v;
5535 }
5536 
5537 #if 0
5538 struct stmt *
5539 gen_joinsp(s, n)
5540 	struct stmt **s;
5541 	int n;
5542 {
5543 	return NULL;
5544 }
5545 #endif
5546 
5547 static struct block *
gen_protochain(v,proto,dir)5548 gen_protochain(v, proto, dir)
5549 	int v;
5550 	int proto;
5551 	int dir;
5552 {
5553 #ifdef NO_PROTOCHAIN
5554 	return gen_proto(v, proto, dir);
5555 #else
5556 	struct block *b0, *b;
5557 	struct slist *s[100];
5558 	int fix2, fix3, fix4, fix5;
5559 	int ahcheck, again, end;
5560 	int i, max;
5561 	int reg2 = alloc_reg();
5562 
5563 	memset(s, 0, sizeof(s));
5564 	fix2 = fix3 = fix4 = fix5 = 0;
5565 
5566 	switch (proto) {
5567 	case Q_IP:
5568 	case Q_IPV6:
5569 		break;
5570 	case Q_DEFAULT:
5571 		b0 = gen_protochain(v, Q_IP, dir);
5572 		b = gen_protochain(v, Q_IPV6, dir);
5573 		gen_or(b0, b);
5574 		return b;
5575 	default:
5576 		bpf_error("bad protocol applied for 'protochain'");
5577 		/*NOTREACHED*/
5578 	}
5579 
5580 	/*
5581 	 * We don't handle variable-length prefixes before the link-layer
5582 	 * header, or variable-length link-layer headers, here yet.
5583 	 * We might want to add BPF instructions to do the protochain
5584 	 * work, to simplify that and, on platforms that have a BPF
5585 	 * interpreter with the new instructions, let the filtering
5586 	 * be done in the kernel.  (We already require a modified BPF
5587 	 * engine to do the protochain stuff, to support backward
5588 	 * branches, and backward branch support is unlikely to appear
5589 	 * in kernel BPF engines.)
5590 	 */
5591 	if (off_linkpl.is_variable)
5592 		bpf_error("'protochain' not supported with variable length headers");
5593 
5594 	no_optimize = 1; /*this code is not compatible with optimzer yet */
5595 
5596 	/*
5597 	 * s[0] is a dummy entry to protect other BPF insn from damage
5598 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5599 	 * hard to find interdependency made by jump table fixup.
5600 	 */
5601 	i = 0;
5602 	s[i] = new_stmt(0);	/*dummy*/
5603 	i++;
5604 
5605 	switch (proto) {
5606 	case Q_IP:
5607 		b0 = gen_linktype(ETHERTYPE_IP);
5608 
5609 		/* A = ip->ip_p */
5610 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5611 		s[i]->s.k = off_linkpl.constant_part + off_nl + 9;
5612 		i++;
5613 		/* X = ip->ip_hl << 2 */
5614 		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5615 		s[i]->s.k = off_linkpl.constant_part + off_nl;
5616 		i++;
5617 		break;
5618 
5619 	case Q_IPV6:
5620 		b0 = gen_linktype(ETHERTYPE_IPV6);
5621 
5622 		/* A = ip6->ip_nxt */
5623 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5624 		s[i]->s.k = off_linkpl.constant_part + off_nl + 6;
5625 		i++;
5626 		/* X = sizeof(struct ip6_hdr) */
5627 		s[i] = new_stmt(BPF_LDX|BPF_IMM);
5628 		s[i]->s.k = 40;
5629 		i++;
5630 		break;
5631 
5632 	default:
5633 		bpf_error("unsupported proto to gen_protochain");
5634 		/*NOTREACHED*/
5635 	}
5636 
5637 	/* again: if (A == v) goto end; else fall through; */
5638 	again = i;
5639 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5640 	s[i]->s.k = v;
5641 	s[i]->s.jt = NULL;		/*later*/
5642 	s[i]->s.jf = NULL;		/*update in next stmt*/
5643 	fix5 = i;
5644 	i++;
5645 
5646 #ifndef IPPROTO_NONE
5647 #define IPPROTO_NONE	59
5648 #endif
5649 	/* if (A == IPPROTO_NONE) goto end */
5650 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5651 	s[i]->s.jt = NULL;	/*later*/
5652 	s[i]->s.jf = NULL;	/*update in next stmt*/
5653 	s[i]->s.k = IPPROTO_NONE;
5654 	s[fix5]->s.jf = s[i];
5655 	fix2 = i;
5656 	i++;
5657 
5658 	if (proto == Q_IPV6) {
5659 		int v6start, v6end, v6advance, j;
5660 
5661 		v6start = i;
5662 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5663 		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5664 		s[i]->s.jt = NULL;	/*later*/
5665 		s[i]->s.jf = NULL;	/*update in next stmt*/
5666 		s[i]->s.k = IPPROTO_HOPOPTS;
5667 		s[fix2]->s.jf = s[i];
5668 		i++;
5669 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5670 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5671 		s[i]->s.jt = NULL;	/*later*/
5672 		s[i]->s.jf = NULL;	/*update in next stmt*/
5673 		s[i]->s.k = IPPROTO_DSTOPTS;
5674 		i++;
5675 		/* if (A == IPPROTO_ROUTING) goto v6advance */
5676 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5677 		s[i]->s.jt = NULL;	/*later*/
5678 		s[i]->s.jf = NULL;	/*update in next stmt*/
5679 		s[i]->s.k = IPPROTO_ROUTING;
5680 		i++;
5681 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5682 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5683 		s[i]->s.jt = NULL;	/*later*/
5684 		s[i]->s.jf = NULL;	/*later*/
5685 		s[i]->s.k = IPPROTO_FRAGMENT;
5686 		fix3 = i;
5687 		v6end = i;
5688 		i++;
5689 
5690 		/* v6advance: */
5691 		v6advance = i;
5692 
5693 		/*
5694 		 * in short,
5695 		 * A = P[X + packet head];
5696 		 * X = X + (P[X + packet head + 1] + 1) * 8;
5697 		 */
5698 		/* A = P[X + packet head] */
5699 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5700 		s[i]->s.k = off_linkpl.constant_part + off_nl;
5701 		i++;
5702 		/* MEM[reg2] = A */
5703 		s[i] = new_stmt(BPF_ST);
5704 		s[i]->s.k = reg2;
5705 		i++;
5706 		/* A = P[X + packet head + 1]; */
5707 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5708 		s[i]->s.k = off_linkpl.constant_part + off_nl + 1;
5709 		i++;
5710 		/* A += 1 */
5711 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5712 		s[i]->s.k = 1;
5713 		i++;
5714 		/* A *= 8 */
5715 		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5716 		s[i]->s.k = 8;
5717 		i++;
5718 		/* A += X */
5719 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
5720 		s[i]->s.k = 0;
5721 		i++;
5722 		/* X = A; */
5723 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5724 		i++;
5725 		/* A = MEM[reg2] */
5726 		s[i] = new_stmt(BPF_LD|BPF_MEM);
5727 		s[i]->s.k = reg2;
5728 		i++;
5729 
5730 		/* goto again; (must use BPF_JA for backward jump) */
5731 		s[i] = new_stmt(BPF_JMP|BPF_JA);
5732 		s[i]->s.k = again - i - 1;
5733 		s[i - 1]->s.jf = s[i];
5734 		i++;
5735 
5736 		/* fixup */
5737 		for (j = v6start; j <= v6end; j++)
5738 			s[j]->s.jt = s[v6advance];
5739 	} else {
5740 		/* nop */
5741 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5742 		s[i]->s.k = 0;
5743 		s[fix2]->s.jf = s[i];
5744 		i++;
5745 	}
5746 
5747 	/* ahcheck: */
5748 	ahcheck = i;
5749 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5750 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5751 	s[i]->s.jt = NULL;	/*later*/
5752 	s[i]->s.jf = NULL;	/*later*/
5753 	s[i]->s.k = IPPROTO_AH;
5754 	if (fix3)
5755 		s[fix3]->s.jf = s[ahcheck];
5756 	fix4 = i;
5757 	i++;
5758 
5759 	/*
5760 	 * in short,
5761 	 * A = P[X];
5762 	 * X = X + (P[X + 1] + 2) * 4;
5763 	 */
5764 	/* A = X */
5765 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5766 	i++;
5767 	/* A = P[X + packet head]; */
5768 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5769 	s[i]->s.k = off_linkpl.constant_part + off_nl;
5770 	i++;
5771 	/* MEM[reg2] = A */
5772 	s[i] = new_stmt(BPF_ST);
5773 	s[i]->s.k = reg2;
5774 	i++;
5775 	/* A = X */
5776 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5777 	i++;
5778 	/* A += 1 */
5779 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5780 	s[i]->s.k = 1;
5781 	i++;
5782 	/* X = A */
5783 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5784 	i++;
5785 	/* A = P[X + packet head] */
5786 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5787 	s[i]->s.k = off_linkpl.constant_part + off_nl;
5788 	i++;
5789 	/* A += 2 */
5790 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5791 	s[i]->s.k = 2;
5792 	i++;
5793 	/* A *= 4 */
5794 	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5795 	s[i]->s.k = 4;
5796 	i++;
5797 	/* X = A; */
5798 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5799 	i++;
5800 	/* A = MEM[reg2] */
5801 	s[i] = new_stmt(BPF_LD|BPF_MEM);
5802 	s[i]->s.k = reg2;
5803 	i++;
5804 
5805 	/* goto again; (must use BPF_JA for backward jump) */
5806 	s[i] = new_stmt(BPF_JMP|BPF_JA);
5807 	s[i]->s.k = again - i - 1;
5808 	i++;
5809 
5810 	/* end: nop */
5811 	end = i;
5812 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5813 	s[i]->s.k = 0;
5814 	s[fix2]->s.jt = s[end];
5815 	s[fix4]->s.jf = s[end];
5816 	s[fix5]->s.jt = s[end];
5817 	i++;
5818 
5819 	/*
5820 	 * make slist chain
5821 	 */
5822 	max = i;
5823 	for (i = 0; i < max - 1; i++)
5824 		s[i]->next = s[i + 1];
5825 	s[max - 1]->next = NULL;
5826 
5827 	/*
5828 	 * emit final check
5829 	 */
5830 	b = new_block(JMP(BPF_JEQ));
5831 	b->stmts = s[1];	/*remember, s[0] is dummy*/
5832 	b->s.k = v;
5833 
5834 	free_reg(reg2);
5835 
5836 	gen_and(b0, b);
5837 	return b;
5838 #endif
5839 }
5840 
5841 static struct block *
gen_check_802_11_data_frame()5842 gen_check_802_11_data_frame()
5843 {
5844 	struct slist *s;
5845 	struct block *b0, *b1;
5846 
5847 	/*
5848 	 * A data frame has the 0x08 bit (b3) in the frame control field set
5849 	 * and the 0x04 bit (b2) clear.
5850 	 */
5851 	s = gen_load_a(OR_LINKHDR, 0, BPF_B);
5852 	b0 = new_block(JMP(BPF_JSET));
5853 	b0->s.k = 0x08;
5854 	b0->stmts = s;
5855 
5856 	s = gen_load_a(OR_LINKHDR, 0, BPF_B);
5857 	b1 = new_block(JMP(BPF_JSET));
5858 	b1->s.k = 0x04;
5859 	b1->stmts = s;
5860 	gen_not(b1);
5861 
5862 	gen_and(b1, b0);
5863 
5864 	return b0;
5865 }
5866 
5867 /*
5868  * Generate code that checks whether the packet is a packet for protocol
5869  * <proto> and whether the type field in that protocol's header has
5870  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5871  * IP packet and checks the protocol number in the IP header against <v>.
5872  *
5873  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5874  * against Q_IP and Q_IPV6.
5875  */
5876 static struct block *
gen_proto(v,proto,dir)5877 gen_proto(v, proto, dir)
5878 	int v;
5879 	int proto;
5880 	int dir;
5881 {
5882 	struct block *b0, *b1;
5883 #ifndef CHASE_CHAIN
5884 	struct block *b2;
5885 #endif
5886 
5887 	if (dir != Q_DEFAULT)
5888 		bpf_error("direction applied to 'proto'");
5889 
5890 	switch (proto) {
5891 	case Q_DEFAULT:
5892 		b0 = gen_proto(v, Q_IP, dir);
5893 		b1 = gen_proto(v, Q_IPV6, dir);
5894 		gen_or(b0, b1);
5895 		return b1;
5896 
5897 	case Q_IP:
5898 		/*
5899 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5900 		 * not LLC encapsulation with LLCSAP_IP.
5901 		 *
5902 		 * For IEEE 802 networks - which includes 802.5 token ring
5903 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5904 		 * says that SNAP encapsulation is used, not LLC encapsulation
5905 		 * with LLCSAP_IP.
5906 		 *
5907 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5908 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
5909 		 * encapsulation with LLCSAP_IP.
5910 		 *
5911 		 * So we always check for ETHERTYPE_IP.
5912 		 */
5913 		b0 = gen_linktype(ETHERTYPE_IP);
5914 #ifndef CHASE_CHAIN
5915 		b1 = gen_cmp(OR_LINKPL, 9, BPF_B, (bpf_int32)v);
5916 #else
5917 		b1 = gen_protochain(v, Q_IP);
5918 #endif
5919 		gen_and(b0, b1);
5920 		return b1;
5921 
5922 	case Q_ISO:
5923 		switch (linktype) {
5924 
5925 		case DLT_FRELAY:
5926 			/*
5927 			 * Frame Relay packets typically have an OSI
5928 			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5929 			 * generates code to check for all the OSI
5930 			 * NLPIDs, so calling it and then adding a check
5931 			 * for the particular NLPID for which we're
5932 			 * looking is bogus, as we can just check for
5933 			 * the NLPID.
5934 			 *
5935 			 * What we check for is the NLPID and a frame
5936 			 * control field value of UI, i.e. 0x03 followed
5937 			 * by the NLPID.
5938 			 *
5939 			 * XXX - assumes a 2-byte Frame Relay header with
5940 			 * DLCI and flags.  What if the address is longer?
5941 			 *
5942 			 * XXX - what about SNAP-encapsulated frames?
5943 			 */
5944 			return gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
5945 			/*NOTREACHED*/
5946 			break;
5947 
5948 		case DLT_C_HDLC:
5949 			/*
5950 			 * Cisco uses an Ethertype lookalike - for OSI,
5951 			 * it's 0xfefe.
5952 			 */
5953 			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5954 			/* OSI in C-HDLC is stuffed with a fudge byte */
5955 			b1 = gen_cmp(OR_LINKPL_NOSNAP, 1, BPF_B, (long)v);
5956 			gen_and(b0, b1);
5957 			return b1;
5958 
5959 		default:
5960 			b0 = gen_linktype(LLCSAP_ISONS);
5961 			b1 = gen_cmp(OR_LINKPL_NOSNAP, 0, BPF_B, (long)v);
5962 			gen_and(b0, b1);
5963 			return b1;
5964 		}
5965 
5966 	case Q_ISIS:
5967 		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5968 		/*
5969 		 * 4 is the offset of the PDU type relative to the IS-IS
5970 		 * header.
5971 		 */
5972 		b1 = gen_cmp(OR_LINKPL_NOSNAP, 4, BPF_B, (long)v);
5973 		gen_and(b0, b1);
5974 		return b1;
5975 
5976 	case Q_ARP:
5977 		bpf_error("arp does not encapsulate another protocol");
5978 		/* NOTREACHED */
5979 
5980 	case Q_RARP:
5981 		bpf_error("rarp does not encapsulate another protocol");
5982 		/* NOTREACHED */
5983 
5984 	case Q_ATALK:
5985 		bpf_error("atalk encapsulation is not specifiable");
5986 		/* NOTREACHED */
5987 
5988 	case Q_DECNET:
5989 		bpf_error("decnet encapsulation is not specifiable");
5990 		/* NOTREACHED */
5991 
5992 	case Q_SCA:
5993 		bpf_error("sca does not encapsulate another protocol");
5994 		/* NOTREACHED */
5995 
5996 	case Q_LAT:
5997 		bpf_error("lat does not encapsulate another protocol");
5998 		/* NOTREACHED */
5999 
6000 	case Q_MOPRC:
6001 		bpf_error("moprc does not encapsulate another protocol");
6002 		/* NOTREACHED */
6003 
6004 	case Q_MOPDL:
6005 		bpf_error("mopdl does not encapsulate another protocol");
6006 		/* NOTREACHED */
6007 
6008 	case Q_LINK:
6009 		return gen_linktype(v);
6010 
6011 	case Q_UDP:
6012 		bpf_error("'udp proto' is bogus");
6013 		/* NOTREACHED */
6014 
6015 	case Q_TCP:
6016 		bpf_error("'tcp proto' is bogus");
6017 		/* NOTREACHED */
6018 
6019 	case Q_SCTP:
6020 		bpf_error("'sctp proto' is bogus");
6021 		/* NOTREACHED */
6022 
6023 	case Q_ICMP:
6024 		bpf_error("'icmp proto' is bogus");
6025 		/* NOTREACHED */
6026 
6027 	case Q_IGMP:
6028 		bpf_error("'igmp proto' is bogus");
6029 		/* NOTREACHED */
6030 
6031 	case Q_IGRP:
6032 		bpf_error("'igrp proto' is bogus");
6033 		/* NOTREACHED */
6034 
6035 	case Q_PIM:
6036 		bpf_error("'pim proto' is bogus");
6037 		/* NOTREACHED */
6038 
6039 	case Q_VRRP:
6040 		bpf_error("'vrrp proto' is bogus");
6041 		/* NOTREACHED */
6042 
6043 	case Q_CARP:
6044 		bpf_error("'carp proto' is bogus");
6045 		/* NOTREACHED */
6046 
6047 	case Q_IPV6:
6048 		b0 = gen_linktype(ETHERTYPE_IPV6);
6049 #ifndef CHASE_CHAIN
6050 		/*
6051 		 * Also check for a fragment header before the final
6052 		 * header.
6053 		 */
6054 		b2 = gen_cmp(OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6055 		b1 = gen_cmp(OR_LINKPL, 40, BPF_B, (bpf_int32)v);
6056 		gen_and(b2, b1);
6057 		b2 = gen_cmp(OR_LINKPL, 6, BPF_B, (bpf_int32)v);
6058 		gen_or(b2, b1);
6059 #else
6060 		b1 = gen_protochain(v, Q_IPV6);
6061 #endif
6062 		gen_and(b0, b1);
6063 		return b1;
6064 
6065 	case Q_ICMPV6:
6066 		bpf_error("'icmp6 proto' is bogus");
6067 
6068 	case Q_AH:
6069 		bpf_error("'ah proto' is bogus");
6070 
6071 	case Q_ESP:
6072 		bpf_error("'ah proto' is bogus");
6073 
6074 	case Q_STP:
6075 		bpf_error("'stp proto' is bogus");
6076 
6077 	case Q_IPX:
6078 		bpf_error("'ipx proto' is bogus");
6079 
6080 	case Q_NETBEUI:
6081 		bpf_error("'netbeui proto' is bogus");
6082 
6083 	case Q_RADIO:
6084 		bpf_error("'radio proto' is bogus");
6085 
6086 	default:
6087 		abort();
6088 		/* NOTREACHED */
6089 	}
6090 	/* NOTREACHED */
6091 }
6092 
6093 struct block *
gen_scode(name,q)6094 gen_scode(name, q)
6095 	register const char *name;
6096 	struct qual q;
6097 {
6098 	int proto = q.proto;
6099 	int dir = q.dir;
6100 	int tproto;
6101 	u_char *eaddr;
6102 	bpf_u_int32 mask, addr;
6103 #ifndef INET6
6104 	bpf_u_int32 **alist;
6105 #else
6106 	int tproto6;
6107 	struct sockaddr_in *sin4;
6108 	struct sockaddr_in6 *sin6;
6109 	struct addrinfo *res, *res0;
6110 	struct in6_addr mask128;
6111 #endif /*INET6*/
6112 	struct block *b, *tmp;
6113 	int port, real_proto;
6114 	int port1, port2;
6115 
6116 	switch (q.addr) {
6117 
6118 	case Q_NET:
6119 		addr = pcap_nametonetaddr(name);
6120 		if (addr == 0)
6121 			bpf_error("unknown network '%s'", name);
6122 		/* Left justify network addr and calculate its network mask */
6123 		mask = 0xffffffff;
6124 		while (addr && (addr & 0xff000000) == 0) {
6125 			addr <<= 8;
6126 			mask <<= 8;
6127 		}
6128 		return gen_host(addr, mask, proto, dir, q.addr);
6129 
6130 	case Q_DEFAULT:
6131 	case Q_HOST:
6132 		if (proto == Q_LINK) {
6133 			switch (linktype) {
6134 
6135 			case DLT_EN10MB:
6136 			case DLT_NETANALYZER:
6137 			case DLT_NETANALYZER_TRANSPARENT:
6138 				eaddr = pcap_ether_hostton(name);
6139 				if (eaddr == NULL)
6140 					bpf_error(
6141 					    "unknown ether host '%s'", name);
6142 				tmp = gen_prevlinkhdr_check();
6143 				b = gen_ehostop(eaddr, dir);
6144 				if (tmp != NULL)
6145 					gen_and(tmp, b);
6146 				free(eaddr);
6147 				return b;
6148 
6149 			case DLT_FDDI:
6150 				eaddr = pcap_ether_hostton(name);
6151 				if (eaddr == NULL)
6152 					bpf_error(
6153 					    "unknown FDDI host '%s'", name);
6154 				b = gen_fhostop(eaddr, dir);
6155 				free(eaddr);
6156 				return b;
6157 
6158 			case DLT_IEEE802:
6159 				eaddr = pcap_ether_hostton(name);
6160 				if (eaddr == NULL)
6161 					bpf_error(
6162 					    "unknown token ring host '%s'", name);
6163 				b = gen_thostop(eaddr, dir);
6164 				free(eaddr);
6165 				return b;
6166 
6167 			case DLT_IEEE802_11:
6168 			case DLT_PRISM_HEADER:
6169 			case DLT_IEEE802_11_RADIO_AVS:
6170 			case DLT_IEEE802_11_RADIO:
6171 			case DLT_PPI:
6172 				eaddr = pcap_ether_hostton(name);
6173 				if (eaddr == NULL)
6174 					bpf_error(
6175 					    "unknown 802.11 host '%s'", name);
6176 				b = gen_wlanhostop(eaddr, dir);
6177 				free(eaddr);
6178 				return b;
6179 
6180 			case DLT_IP_OVER_FC:
6181 				eaddr = pcap_ether_hostton(name);
6182 				if (eaddr == NULL)
6183 					bpf_error(
6184 					    "unknown Fibre Channel host '%s'", name);
6185 				b = gen_ipfchostop(eaddr, dir);
6186 				free(eaddr);
6187 				return b;
6188 			}
6189 
6190 			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6191 		} else if (proto == Q_DECNET) {
6192 			unsigned short dn_addr = __pcap_nametodnaddr(name);
6193 			/*
6194 			 * I don't think DECNET hosts can be multihomed, so
6195 			 * there is no need to build up a list of addresses
6196 			 */
6197 			return (gen_host(dn_addr, 0, proto, dir, q.addr));
6198 		} else {
6199 #ifndef INET6
6200 			alist = pcap_nametoaddr(name);
6201 			if (alist == NULL || *alist == NULL)
6202 				bpf_error("unknown host '%s'", name);
6203 			tproto = proto;
6204 			if (off_linktype.constant_part == (u_int)-1 &&
6205 			    tproto == Q_DEFAULT)
6206 				tproto = Q_IP;
6207 			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
6208 			while (*alist) {
6209 				tmp = gen_host(**alist++, 0xffffffff,
6210 					       tproto, dir, q.addr);
6211 				gen_or(b, tmp);
6212 				b = tmp;
6213 			}
6214 			return b;
6215 #else
6216 			memset(&mask128, 0xff, sizeof(mask128));
6217 			res0 = res = pcap_nametoaddrinfo(name);
6218 			if (res == NULL)
6219 				bpf_error("unknown host '%s'", name);
6220 			ai = res;
6221 			b = tmp = NULL;
6222 			tproto = tproto6 = proto;
6223 			if (off_linktype.constant_part == -1 &&
6224 			    tproto == Q_DEFAULT) {
6225 				tproto = Q_IP;
6226 				tproto6 = Q_IPV6;
6227 			}
6228 			for (res = res0; res; res = res->ai_next) {
6229 				switch (res->ai_family) {
6230 				case AF_INET:
6231 					if (tproto == Q_IPV6)
6232 						continue;
6233 
6234 					sin4 = (struct sockaddr_in *)
6235 						res->ai_addr;
6236 					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
6237 						0xffffffff, tproto, dir, q.addr);
6238 					break;
6239 				case AF_INET6:
6240 					if (tproto6 == Q_IP)
6241 						continue;
6242 
6243 					sin6 = (struct sockaddr_in6 *)
6244 						res->ai_addr;
6245 					tmp = gen_host6(&sin6->sin6_addr,
6246 						&mask128, tproto6, dir, q.addr);
6247 					break;
6248 				default:
6249 					continue;
6250 				}
6251 				if (b)
6252 					gen_or(b, tmp);
6253 				b = tmp;
6254 			}
6255 			ai = NULL;
6256 			freeaddrinfo(res0);
6257 			if (b == NULL) {
6258 				bpf_error("unknown host '%s'%s", name,
6259 				    (proto == Q_DEFAULT)
6260 					? ""
6261 					: " for specified address family");
6262 			}
6263 			return b;
6264 #endif /*INET6*/
6265 		}
6266 
6267 	case Q_PORT:
6268 		if (proto != Q_DEFAULT &&
6269 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6270 			bpf_error("illegal qualifier of 'port'");
6271 		if (pcap_nametoport(name, &port, &real_proto) == 0)
6272 			bpf_error("unknown port '%s'", name);
6273 		if (proto == Q_UDP) {
6274 			if (real_proto == IPPROTO_TCP)
6275 				bpf_error("port '%s' is tcp", name);
6276 			else if (real_proto == IPPROTO_SCTP)
6277 				bpf_error("port '%s' is sctp", name);
6278 			else
6279 				/* override PROTO_UNDEF */
6280 				real_proto = IPPROTO_UDP;
6281 		}
6282 		if (proto == Q_TCP) {
6283 			if (real_proto == IPPROTO_UDP)
6284 				bpf_error("port '%s' is udp", name);
6285 
6286 			else if (real_proto == IPPROTO_SCTP)
6287 				bpf_error("port '%s' is sctp", name);
6288 			else
6289 				/* override PROTO_UNDEF */
6290 				real_proto = IPPROTO_TCP;
6291 		}
6292 		if (proto == Q_SCTP) {
6293 			if (real_proto == IPPROTO_UDP)
6294 				bpf_error("port '%s' is udp", name);
6295 
6296 			else if (real_proto == IPPROTO_TCP)
6297 				bpf_error("port '%s' is tcp", name);
6298 			else
6299 				/* override PROTO_UNDEF */
6300 				real_proto = IPPROTO_SCTP;
6301 		}
6302 		if (port < 0)
6303 			bpf_error("illegal port number %d < 0", port);
6304 		if (port > 65535)
6305 			bpf_error("illegal port number %d > 65535", port);
6306 		b = gen_port(port, real_proto, dir);
6307 		gen_or(gen_port6(port, real_proto, dir), b);
6308 		return b;
6309 
6310 	case Q_PORTRANGE:
6311 		if (proto != Q_DEFAULT &&
6312 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6313 			bpf_error("illegal qualifier of 'portrange'");
6314 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6315 			bpf_error("unknown port in range '%s'", name);
6316 		if (proto == Q_UDP) {
6317 			if (real_proto == IPPROTO_TCP)
6318 				bpf_error("port in range '%s' is tcp", name);
6319 			else if (real_proto == IPPROTO_SCTP)
6320 				bpf_error("port in range '%s' is sctp", name);
6321 			else
6322 				/* override PROTO_UNDEF */
6323 				real_proto = IPPROTO_UDP;
6324 		}
6325 		if (proto == Q_TCP) {
6326 			if (real_proto == IPPROTO_UDP)
6327 				bpf_error("port in range '%s' is udp", name);
6328 			else if (real_proto == IPPROTO_SCTP)
6329 				bpf_error("port in range '%s' is sctp", name);
6330 			else
6331 				/* override PROTO_UNDEF */
6332 				real_proto = IPPROTO_TCP;
6333 		}
6334 		if (proto == Q_SCTP) {
6335 			if (real_proto == IPPROTO_UDP)
6336 				bpf_error("port in range '%s' is udp", name);
6337 			else if (real_proto == IPPROTO_TCP)
6338 				bpf_error("port in range '%s' is tcp", name);
6339 			else
6340 				/* override PROTO_UNDEF */
6341 				real_proto = IPPROTO_SCTP;
6342 		}
6343 		if (port1 < 0)
6344 			bpf_error("illegal port number %d < 0", port1);
6345 		if (port1 > 65535)
6346 			bpf_error("illegal port number %d > 65535", port1);
6347 		if (port2 < 0)
6348 			bpf_error("illegal port number %d < 0", port2);
6349 		if (port2 > 65535)
6350 			bpf_error("illegal port number %d > 65535", port2);
6351 
6352 		b = gen_portrange(port1, port2, real_proto, dir);
6353 		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6354 		return b;
6355 
6356 	case Q_GATEWAY:
6357 #ifndef INET6
6358 		eaddr = pcap_ether_hostton(name);
6359 		if (eaddr == NULL)
6360 			bpf_error("unknown ether host: %s", name);
6361 
6362 		alist = pcap_nametoaddr(name);
6363 		if (alist == NULL || *alist == NULL)
6364 			bpf_error("unknown host '%s'", name);
6365 		b = gen_gateway(eaddr, alist, proto, dir);
6366 		free(eaddr);
6367 		return b;
6368 #else
6369 		bpf_error("'gateway' not supported in this configuration");
6370 #endif /*INET6*/
6371 
6372 	case Q_PROTO:
6373 		real_proto = lookup_proto(name, proto);
6374 		if (real_proto >= 0)
6375 			return gen_proto(real_proto, proto, dir);
6376 		else
6377 			bpf_error("unknown protocol: %s", name);
6378 
6379 	case Q_PROTOCHAIN:
6380 		real_proto = lookup_proto(name, proto);
6381 		if (real_proto >= 0)
6382 			return gen_protochain(real_proto, proto, dir);
6383 		else
6384 			bpf_error("unknown protocol: %s", name);
6385 
6386 	case Q_UNDEF:
6387 		syntax();
6388 		/* NOTREACHED */
6389 	}
6390 	abort();
6391 	/* NOTREACHED */
6392 }
6393 
6394 struct block *
gen_mcode(s1,s2,masklen,q)6395 gen_mcode(s1, s2, masklen, q)
6396 	register const char *s1, *s2;
6397 	register unsigned int masklen;
6398 	struct qual q;
6399 {
6400 	register int nlen, mlen;
6401 	bpf_u_int32 n, m;
6402 
6403 	nlen = __pcap_atoin(s1, &n);
6404 	/* Promote short ipaddr */
6405 	n <<= 32 - nlen;
6406 
6407 	if (s2 != NULL) {
6408 		mlen = __pcap_atoin(s2, &m);
6409 		/* Promote short ipaddr */
6410 		m <<= 32 - mlen;
6411 		if ((n & ~m) != 0)
6412 			bpf_error("non-network bits set in \"%s mask %s\"",
6413 			    s1, s2);
6414 	} else {
6415 		/* Convert mask len to mask */
6416 		if (masklen > 32)
6417 			bpf_error("mask length must be <= 32");
6418 		if (masklen == 0) {
6419 			/*
6420 			 * X << 32 is not guaranteed by C to be 0; it's
6421 			 * undefined.
6422 			 */
6423 			m = 0;
6424 		} else
6425 			m = 0xffffffff << (32 - masklen);
6426 		if ((n & ~m) != 0)
6427 			bpf_error("non-network bits set in \"%s/%d\"",
6428 			    s1, masklen);
6429 	}
6430 
6431 	switch (q.addr) {
6432 
6433 	case Q_NET:
6434 		return gen_host(n, m, q.proto, q.dir, q.addr);
6435 
6436 	default:
6437 		bpf_error("Mask syntax for networks only");
6438 		/* NOTREACHED */
6439 	}
6440 	/* NOTREACHED */
6441 	return NULL;
6442 }
6443 
6444 struct block *
gen_ncode(s,v,q)6445 gen_ncode(s, v, q)
6446 	register const char *s;
6447 	bpf_u_int32 v;
6448 	struct qual q;
6449 {
6450 	bpf_u_int32 mask;
6451 	int proto = q.proto;
6452 	int dir = q.dir;
6453 	register int vlen;
6454 
6455 	if (s == NULL)
6456 		vlen = 32;
6457 	else if (q.proto == Q_DECNET)
6458 		vlen = __pcap_atodn(s, &v);
6459 	else
6460 		vlen = __pcap_atoin(s, &v);
6461 
6462 	switch (q.addr) {
6463 
6464 	case Q_DEFAULT:
6465 	case Q_HOST:
6466 	case Q_NET:
6467 		if (proto == Q_DECNET)
6468 			return gen_host(v, 0, proto, dir, q.addr);
6469 		else if (proto == Q_LINK) {
6470 			bpf_error("illegal link layer address");
6471 		} else {
6472 			mask = 0xffffffff;
6473 			if (s == NULL && q.addr == Q_NET) {
6474 				/* Promote short net number */
6475 				while (v && (v & 0xff000000) == 0) {
6476 					v <<= 8;
6477 					mask <<= 8;
6478 				}
6479 			} else {
6480 				/* Promote short ipaddr */
6481 				v <<= 32 - vlen;
6482 				mask <<= 32 - vlen;
6483 			}
6484 			return gen_host(v, mask, proto, dir, q.addr);
6485 		}
6486 
6487 	case Q_PORT:
6488 		if (proto == Q_UDP)
6489 			proto = IPPROTO_UDP;
6490 		else if (proto == Q_TCP)
6491 			proto = IPPROTO_TCP;
6492 		else if (proto == Q_SCTP)
6493 			proto = IPPROTO_SCTP;
6494 		else if (proto == Q_DEFAULT)
6495 			proto = PROTO_UNDEF;
6496 		else
6497 			bpf_error("illegal qualifier of 'port'");
6498 
6499 		if (v > 65535)
6500 			bpf_error("illegal port number %u > 65535", v);
6501 
6502 	    {
6503 		struct block *b;
6504 		b = gen_port((int)v, proto, dir);
6505 		gen_or(gen_port6((int)v, proto, dir), b);
6506 		return b;
6507 	    }
6508 
6509 	case Q_PORTRANGE:
6510 		if (proto == Q_UDP)
6511 			proto = IPPROTO_UDP;
6512 		else if (proto == Q_TCP)
6513 			proto = IPPROTO_TCP;
6514 		else if (proto == Q_SCTP)
6515 			proto = IPPROTO_SCTP;
6516 		else if (proto == Q_DEFAULT)
6517 			proto = PROTO_UNDEF;
6518 		else
6519 			bpf_error("illegal qualifier of 'portrange'");
6520 
6521 		if (v > 65535)
6522 			bpf_error("illegal port number %u > 65535", v);
6523 
6524 	    {
6525 		struct block *b;
6526 		b = gen_portrange((int)v, (int)v, proto, dir);
6527 		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6528 		return b;
6529 	    }
6530 
6531 	case Q_GATEWAY:
6532 		bpf_error("'gateway' requires a name");
6533 		/* NOTREACHED */
6534 
6535 	case Q_PROTO:
6536 		return gen_proto((int)v, proto, dir);
6537 
6538 	case Q_PROTOCHAIN:
6539 		return gen_protochain((int)v, proto, dir);
6540 
6541 	case Q_UNDEF:
6542 		syntax();
6543 		/* NOTREACHED */
6544 
6545 	default:
6546 		abort();
6547 		/* NOTREACHED */
6548 	}
6549 	/* NOTREACHED */
6550 }
6551 
6552 #ifdef INET6
6553 struct block *
gen_mcode6(s1,s2,masklen,q)6554 gen_mcode6(s1, s2, masklen, q)
6555 	register const char *s1, *s2;
6556 	register unsigned int masklen;
6557 	struct qual q;
6558 {
6559 	struct addrinfo *res;
6560 	struct in6_addr *addr;
6561 	struct in6_addr mask;
6562 	struct block *b;
6563 	u_int32_t *a, *m;
6564 
6565 	if (s2)
6566 		bpf_error("no mask %s supported", s2);
6567 
6568 	res = pcap_nametoaddrinfo(s1);
6569 	if (!res)
6570 		bpf_error("invalid ip6 address %s", s1);
6571 	ai = res;
6572 	if (res->ai_next)
6573 		bpf_error("%s resolved to multiple address", s1);
6574 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6575 
6576 	if (sizeof(mask) * 8 < masklen)
6577 		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6578 	memset(&mask, 0, sizeof(mask));
6579 	memset(&mask, 0xff, masklen / 8);
6580 	if (masklen % 8) {
6581 		mask.s6_addr[masklen / 8] =
6582 			(0xff << (8 - masklen % 8)) & 0xff;
6583 	}
6584 
6585 	a = (u_int32_t *)addr;
6586 	m = (u_int32_t *)&mask;
6587 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6588 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6589 		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6590 	}
6591 
6592 	switch (q.addr) {
6593 
6594 	case Q_DEFAULT:
6595 	case Q_HOST:
6596 		if (masklen != 128)
6597 			bpf_error("Mask syntax for networks only");
6598 		/* FALLTHROUGH */
6599 
6600 	case Q_NET:
6601 		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6602 		ai = NULL;
6603 		freeaddrinfo(res);
6604 		return b;
6605 
6606 	default:
6607 		bpf_error("invalid qualifier against IPv6 address");
6608 		/* NOTREACHED */
6609 	}
6610 	return NULL;
6611 }
6612 #endif /*INET6*/
6613 
6614 struct block *
gen_ecode(eaddr,q)6615 gen_ecode(eaddr, q)
6616 	register const u_char *eaddr;
6617 	struct qual q;
6618 {
6619 	struct block *b, *tmp;
6620 
6621 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6622 		switch (linktype) {
6623 		case DLT_EN10MB:
6624 		case DLT_NETANALYZER:
6625 		case DLT_NETANALYZER_TRANSPARENT:
6626 			tmp = gen_prevlinkhdr_check();
6627 			b = gen_ehostop(eaddr, (int)q.dir);
6628 			if (tmp != NULL)
6629 				gen_and(tmp, b);
6630 			return b;
6631 		case DLT_FDDI:
6632 			return gen_fhostop(eaddr, (int)q.dir);
6633 		case DLT_IEEE802:
6634 			return gen_thostop(eaddr, (int)q.dir);
6635 		case DLT_IEEE802_11:
6636 		case DLT_PRISM_HEADER:
6637 		case DLT_IEEE802_11_RADIO_AVS:
6638 		case DLT_IEEE802_11_RADIO:
6639 		case DLT_PPI:
6640 			return gen_wlanhostop(eaddr, (int)q.dir);
6641 		case DLT_IP_OVER_FC:
6642 			return gen_ipfchostop(eaddr, (int)q.dir);
6643 		default:
6644 			bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6645 			break;
6646 		}
6647 	}
6648 	bpf_error("ethernet address used in non-ether expression");
6649 	/* NOTREACHED */
6650 	return NULL;
6651 }
6652 
6653 void
sappend(s0,s1)6654 sappend(s0, s1)
6655 	struct slist *s0, *s1;
6656 {
6657 	/*
6658 	 * This is definitely not the best way to do this, but the
6659 	 * lists will rarely get long.
6660 	 */
6661 	while (s0->next)
6662 		s0 = s0->next;
6663 	s0->next = s1;
6664 }
6665 
6666 static struct slist *
xfer_to_x(a)6667 xfer_to_x(a)
6668 	struct arth *a;
6669 {
6670 	struct slist *s;
6671 
6672 	s = new_stmt(BPF_LDX|BPF_MEM);
6673 	s->s.k = a->regno;
6674 	return s;
6675 }
6676 
6677 static struct slist *
xfer_to_a(a)6678 xfer_to_a(a)
6679 	struct arth *a;
6680 {
6681 	struct slist *s;
6682 
6683 	s = new_stmt(BPF_LD|BPF_MEM);
6684 	s->s.k = a->regno;
6685 	return s;
6686 }
6687 
6688 /*
6689  * Modify "index" to use the value stored into its register as an
6690  * offset relative to the beginning of the header for the protocol
6691  * "proto", and allocate a register and put an item "size" bytes long
6692  * (1, 2, or 4) at that offset into that register, making it the register
6693  * for "index".
6694  */
6695 struct arth *
gen_load(proto,inst,size)6696 gen_load(proto, inst, size)
6697 	int proto;
6698 	struct arth *inst;
6699 	int size;
6700 {
6701 	struct slist *s, *tmp;
6702 	struct block *b;
6703 	int regno = alloc_reg();
6704 
6705 	free_reg(inst->regno);
6706 	switch (size) {
6707 
6708 	default:
6709 		bpf_error("data size must be 1, 2, or 4");
6710 
6711 	case 1:
6712 		size = BPF_B;
6713 		break;
6714 
6715 	case 2:
6716 		size = BPF_H;
6717 		break;
6718 
6719 	case 4:
6720 		size = BPF_W;
6721 		break;
6722 	}
6723 	switch (proto) {
6724 	default:
6725 		bpf_error("unsupported index operation");
6726 
6727 	case Q_RADIO:
6728 		/*
6729 		 * The offset is relative to the beginning of the packet
6730 		 * data, if we have a radio header.  (If we don't, this
6731 		 * is an error.)
6732 		 */
6733 		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6734 		    linktype != DLT_IEEE802_11_RADIO &&
6735 		    linktype != DLT_PRISM_HEADER)
6736 			bpf_error("radio information not present in capture");
6737 
6738 		/*
6739 		 * Load into the X register the offset computed into the
6740 		 * register specified by "index".
6741 		 */
6742 		s = xfer_to_x(inst);
6743 
6744 		/*
6745 		 * Load the item at that offset.
6746 		 */
6747 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6748 		sappend(s, tmp);
6749 		sappend(inst->s, s);
6750 		break;
6751 
6752 	case Q_LINK:
6753 		/*
6754 		 * The offset is relative to the beginning of
6755 		 * the link-layer header.
6756 		 *
6757 		 * XXX - what about ATM LANE?  Should the index be
6758 		 * relative to the beginning of the AAL5 frame, so
6759 		 * that 0 refers to the beginning of the LE Control
6760 		 * field, or relative to the beginning of the LAN
6761 		 * frame, so that 0 refers, for Ethernet LANE, to
6762 		 * the beginning of the destination address?
6763 		 */
6764 		s = gen_abs_offset_varpart(&off_linkhdr);
6765 
6766 		/*
6767 		 * If "s" is non-null, it has code to arrange that the
6768 		 * X register contains the length of the prefix preceding
6769 		 * the link-layer header.  Add to it the offset computed
6770 		 * into the register specified by "index", and move that
6771 		 * into the X register.  Otherwise, just load into the X
6772 		 * register the offset computed into the register specified
6773 		 * by "index".
6774 		 */
6775 		if (s != NULL) {
6776 			sappend(s, xfer_to_a(inst));
6777 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6778 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6779 		} else
6780 			s = xfer_to_x(inst);
6781 
6782 		/*
6783 		 * Load the item at the sum of the offset we've put in the
6784 		 * X register and the offset of the start of the link
6785 		 * layer header (which is 0 if the radio header is
6786 		 * variable-length; that header length is what we put
6787 		 * into the X register and then added to the index).
6788 		 */
6789 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6790 		tmp->s.k = off_linkhdr.constant_part;
6791 		sappend(s, tmp);
6792 		sappend(inst->s, s);
6793 		break;
6794 
6795 	case Q_IP:
6796 	case Q_ARP:
6797 	case Q_RARP:
6798 	case Q_ATALK:
6799 	case Q_DECNET:
6800 	case Q_SCA:
6801 	case Q_LAT:
6802 	case Q_MOPRC:
6803 	case Q_MOPDL:
6804 	case Q_IPV6:
6805 		/*
6806 		 * The offset is relative to the beginning of
6807 		 * the network-layer header.
6808 		 * XXX - are there any cases where we want
6809 		 * off_nl_nosnap?
6810 		 */
6811 		s = gen_abs_offset_varpart(&off_linkpl);
6812 
6813 		/*
6814 		 * If "s" is non-null, it has code to arrange that the
6815 		 * X register contains the variable part of the offset
6816 		 * of the link-layer payload.  Add to it the offset
6817 		 * computed into the register specified by "index",
6818 		 * and move that into the X register.  Otherwise, just
6819 		 * load into the X register the offset computed into
6820 		 * the register specified by "index".
6821 		 */
6822 		if (s != NULL) {
6823 			sappend(s, xfer_to_a(inst));
6824 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6825 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6826 		} else
6827 			s = xfer_to_x(inst);
6828 
6829 		/*
6830 		 * Load the item at the sum of the offset we've put in the
6831 		 * X register, the offset of the start of the network
6832 		 * layer header from the beginning of the link-layer
6833 		 * payload, and the constant part of the offset of the
6834 		 * start of the link-layer payload.
6835 		 */
6836 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6837 		tmp->s.k = off_linkpl.constant_part + off_nl;
6838 		sappend(s, tmp);
6839 		sappend(inst->s, s);
6840 
6841 		/*
6842 		 * Do the computation only if the packet contains
6843 		 * the protocol in question.
6844 		 */
6845 		b = gen_proto_abbrev(proto);
6846 		if (inst->b)
6847 			gen_and(inst->b, b);
6848 		inst->b = b;
6849 		break;
6850 
6851 	case Q_SCTP:
6852 	case Q_TCP:
6853 	case Q_UDP:
6854 	case Q_ICMP:
6855 	case Q_IGMP:
6856 	case Q_IGRP:
6857 	case Q_PIM:
6858 	case Q_VRRP:
6859 	case Q_CARP:
6860 		/*
6861 		 * The offset is relative to the beginning of
6862 		 * the transport-layer header.
6863 		 *
6864 		 * Load the X register with the length of the IPv4 header
6865 		 * (plus the offset of the link-layer header, if it's
6866 		 * a variable-length header), in bytes.
6867 		 *
6868 		 * XXX - are there any cases where we want
6869 		 * off_nl_nosnap?
6870 		 * XXX - we should, if we're built with
6871 		 * IPv6 support, generate code to load either
6872 		 * IPv4, IPv6, or both, as appropriate.
6873 		 */
6874 		s = gen_loadx_iphdrlen();
6875 
6876 		/*
6877 		 * The X register now contains the sum of the variable
6878 		 * part of the offset of the link-layer payload and the
6879 		 * length of the network-layer header.
6880 		 *
6881 		 * Load into the A register the offset relative to
6882 		 * the beginning of the transport layer header,
6883 		 * add the X register to that, move that to the
6884 		 * X register, and load with an offset from the
6885 		 * X register equal to the sum of the constant part of
6886 		 * the offset of the link-layer payload and the offset,
6887 		 * relative to the beginning of the link-layer payload,
6888 		 * of the network-layer header.
6889 		 */
6890 		sappend(s, xfer_to_a(inst));
6891 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6892 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6893 		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6894 		tmp->s.k = off_linkpl.constant_part + off_nl;
6895 		sappend(inst->s, s);
6896 
6897 		/*
6898 		 * Do the computation only if the packet contains
6899 		 * the protocol in question - which is true only
6900 		 * if this is an IP datagram and is the first or
6901 		 * only fragment of that datagram.
6902 		 */
6903 		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6904 		if (inst->b)
6905 			gen_and(inst->b, b);
6906 		gen_and(gen_proto_abbrev(Q_IP), b);
6907 		inst->b = b;
6908 		break;
6909 	case Q_ICMPV6:
6910 		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6911 		/*NOTREACHED*/
6912 	}
6913 	inst->regno = regno;
6914 	s = new_stmt(BPF_ST);
6915 	s->s.k = regno;
6916 	sappend(inst->s, s);
6917 
6918 	return inst;
6919 }
6920 
6921 struct block *
gen_relation(code,a0,a1,reversed)6922 gen_relation(code, a0, a1, reversed)
6923 	int code;
6924 	struct arth *a0, *a1;
6925 	int reversed;
6926 {
6927 	struct slist *s0, *s1, *s2;
6928 	struct block *b, *tmp;
6929 
6930 	s0 = xfer_to_x(a1);
6931 	s1 = xfer_to_a(a0);
6932 	if (code == BPF_JEQ) {
6933 		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6934 		b = new_block(JMP(code));
6935 		sappend(s1, s2);
6936 	}
6937 	else
6938 		b = new_block(BPF_JMP|code|BPF_X);
6939 	if (reversed)
6940 		gen_not(b);
6941 
6942 	sappend(s0, s1);
6943 	sappend(a1->s, s0);
6944 	sappend(a0->s, a1->s);
6945 
6946 	b->stmts = a0->s;
6947 
6948 	free_reg(a0->regno);
6949 	free_reg(a1->regno);
6950 
6951 	/* 'and' together protocol checks */
6952 	if (a0->b) {
6953 		if (a1->b) {
6954 			gen_and(a0->b, tmp = a1->b);
6955 		}
6956 		else
6957 			tmp = a0->b;
6958 	} else
6959 		tmp = a1->b;
6960 
6961 	if (tmp)
6962 		gen_and(tmp, b);
6963 
6964 	return b;
6965 }
6966 
6967 struct arth *
gen_loadlen()6968 gen_loadlen()
6969 {
6970 	int regno = alloc_reg();
6971 	struct arth *a = (struct arth *)newchunk(sizeof(*a));
6972 	struct slist *s;
6973 
6974 	s = new_stmt(BPF_LD|BPF_LEN);
6975 	s->next = new_stmt(BPF_ST);
6976 	s->next->s.k = regno;
6977 	a->s = s;
6978 	a->regno = regno;
6979 
6980 	return a;
6981 }
6982 
6983 struct arth *
gen_loadi(val)6984 gen_loadi(val)
6985 	int val;
6986 {
6987 	struct arth *a;
6988 	struct slist *s;
6989 	int reg;
6990 
6991 	a = (struct arth *)newchunk(sizeof(*a));
6992 
6993 	reg = alloc_reg();
6994 
6995 	s = new_stmt(BPF_LD|BPF_IMM);
6996 	s->s.k = val;
6997 	s->next = new_stmt(BPF_ST);
6998 	s->next->s.k = reg;
6999 	a->s = s;
7000 	a->regno = reg;
7001 
7002 	return a;
7003 }
7004 
7005 struct arth *
gen_neg(a)7006 gen_neg(a)
7007 	struct arth *a;
7008 {
7009 	struct slist *s;
7010 
7011 	s = xfer_to_a(a);
7012 	sappend(a->s, s);
7013 	s = new_stmt(BPF_ALU|BPF_NEG);
7014 	s->s.k = 0;
7015 	sappend(a->s, s);
7016 	s = new_stmt(BPF_ST);
7017 	s->s.k = a->regno;
7018 	sappend(a->s, s);
7019 
7020 	return a;
7021 }
7022 
7023 struct arth *
gen_arth(code,a0,a1)7024 gen_arth(code, a0, a1)
7025 	int code;
7026 	struct arth *a0, *a1;
7027 {
7028 	struct slist *s0, *s1, *s2;
7029 
7030 	s0 = xfer_to_x(a1);
7031 	s1 = xfer_to_a(a0);
7032 	s2 = new_stmt(BPF_ALU|BPF_X|code);
7033 
7034 	sappend(s1, s2);
7035 	sappend(s0, s1);
7036 	sappend(a1->s, s0);
7037 	sappend(a0->s, a1->s);
7038 
7039 	free_reg(a0->regno);
7040 	free_reg(a1->regno);
7041 
7042 	s0 = new_stmt(BPF_ST);
7043 	a0->regno = s0->s.k = alloc_reg();
7044 	sappend(a0->s, s0);
7045 
7046 	return a0;
7047 }
7048 
7049 /*
7050  * Here we handle simple allocation of the scratch registers.
7051  * If too many registers are alloc'd, the allocator punts.
7052  */
7053 static int regused[BPF_MEMWORDS];
7054 static int curreg;
7055 
7056 /*
7057  * Initialize the table of used registers and the current register.
7058  */
7059 static void
init_regs()7060 init_regs()
7061 {
7062 	curreg = 0;
7063 	memset(regused, 0, sizeof regused);
7064 }
7065 
7066 /*
7067  * Return the next free register.
7068  */
7069 static int
alloc_reg()7070 alloc_reg()
7071 {
7072 	int n = BPF_MEMWORDS;
7073 
7074 	while (--n >= 0) {
7075 		if (regused[curreg])
7076 			curreg = (curreg + 1) % BPF_MEMWORDS;
7077 		else {
7078 			regused[curreg] = 1;
7079 			return curreg;
7080 		}
7081 	}
7082 	bpf_error("too many registers needed to evaluate expression");
7083 	/* NOTREACHED */
7084 	return 0;
7085 }
7086 
7087 /*
7088  * Return a register to the table so it can
7089  * be used later.
7090  */
7091 static void
free_reg(n)7092 free_reg(n)
7093 	int n;
7094 {
7095 	regused[n] = 0;
7096 }
7097 
7098 static struct block *
gen_len(jmp,n)7099 gen_len(jmp, n)
7100 	int jmp, n;
7101 {
7102 	struct slist *s;
7103 	struct block *b;
7104 
7105 	s = new_stmt(BPF_LD|BPF_LEN);
7106 	b = new_block(JMP(jmp));
7107 	b->stmts = s;
7108 	b->s.k = n;
7109 
7110 	return b;
7111 }
7112 
7113 struct block *
gen_greater(n)7114 gen_greater(n)
7115 	int n;
7116 {
7117 	return gen_len(BPF_JGE, n);
7118 }
7119 
7120 /*
7121  * Actually, this is less than or equal.
7122  */
7123 struct block *
gen_less(n)7124 gen_less(n)
7125 	int n;
7126 {
7127 	struct block *b;
7128 
7129 	b = gen_len(BPF_JGT, n);
7130 	gen_not(b);
7131 
7132 	return b;
7133 }
7134 
7135 /*
7136  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7137  * the beginning of the link-layer header.
7138  * XXX - that means you can't test values in the radiotap header, but
7139  * as that header is difficult if not impossible to parse generally
7140  * without a loop, that might not be a severe problem.  A new keyword
7141  * "radio" could be added for that, although what you'd really want
7142  * would be a way of testing particular radio header values, which
7143  * would generate code appropriate to the radio header in question.
7144  */
7145 struct block *
gen_byteop(op,idx,val)7146 gen_byteop(op, idx, val)
7147 	int op, idx, val;
7148 {
7149 	struct block *b;
7150 	struct slist *s;
7151 
7152 	switch (op) {
7153 	default:
7154 		abort();
7155 
7156 	case '=':
7157 		return gen_cmp(OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7158 
7159 	case '<':
7160 		b = gen_cmp_lt(OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7161 		return b;
7162 
7163 	case '>':
7164 		b = gen_cmp_gt(OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7165 		return b;
7166 
7167 	case '|':
7168 		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
7169 		break;
7170 
7171 	case '&':
7172 		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
7173 		break;
7174 	}
7175 	s->s.k = val;
7176 	b = new_block(JMP(BPF_JEQ));
7177 	b->stmts = s;
7178 	gen_not(b);
7179 
7180 	return b;
7181 }
7182 
7183 static u_char abroadcast[] = { 0x0 };
7184 
7185 struct block *
gen_broadcast(proto)7186 gen_broadcast(proto)
7187 	int proto;
7188 {
7189 	bpf_u_int32 hostmask;
7190 	struct block *b0, *b1, *b2;
7191 	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7192 
7193 	switch (proto) {
7194 
7195 	case Q_DEFAULT:
7196 	case Q_LINK:
7197 		switch (linktype) {
7198 		case DLT_ARCNET:
7199 		case DLT_ARCNET_LINUX:
7200 			return gen_ahostop(abroadcast, Q_DST);
7201 		case DLT_EN10MB:
7202 		case DLT_NETANALYZER:
7203 		case DLT_NETANALYZER_TRANSPARENT:
7204 			b1 = gen_prevlinkhdr_check();
7205 			b0 = gen_ehostop(ebroadcast, Q_DST);
7206 			if (b1 != NULL)
7207 				gen_and(b1, b0);
7208 			return b0;
7209 		case DLT_FDDI:
7210 			return gen_fhostop(ebroadcast, Q_DST);
7211 		case DLT_IEEE802:
7212 			return gen_thostop(ebroadcast, Q_DST);
7213 		case DLT_IEEE802_11:
7214 		case DLT_PRISM_HEADER:
7215 		case DLT_IEEE802_11_RADIO_AVS:
7216 		case DLT_IEEE802_11_RADIO:
7217 		case DLT_PPI:
7218 			return gen_wlanhostop(ebroadcast, Q_DST);
7219 		case DLT_IP_OVER_FC:
7220 			return gen_ipfchostop(ebroadcast, Q_DST);
7221 		default:
7222 			bpf_error("not a broadcast link");
7223 		}
7224 		break;
7225 
7226 	case Q_IP:
7227 		/*
7228 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7229 		 * as an indication that we don't know the netmask, and fail
7230 		 * in that case.
7231 		 */
7232 		if (netmask == PCAP_NETMASK_UNKNOWN)
7233 			bpf_error("netmask not known, so 'ip broadcast' not supported");
7234 		b0 = gen_linktype(ETHERTYPE_IP);
7235 		hostmask = ~netmask;
7236 		b1 = gen_mcmp(OR_LINKPL, 16, BPF_W, (bpf_int32)0, hostmask);
7237 		b2 = gen_mcmp(OR_LINKPL, 16, BPF_W,
7238 			      (bpf_int32)(~0 & hostmask), hostmask);
7239 		gen_or(b1, b2);
7240 		gen_and(b0, b2);
7241 		return b2;
7242 	}
7243 	bpf_error("only link-layer/IP broadcast filters supported");
7244 	/* NOTREACHED */
7245 	return NULL;
7246 }
7247 
7248 /*
7249  * Generate code to test the low-order bit of a MAC address (that's
7250  * the bottom bit of the *first* byte).
7251  */
7252 static struct block *
gen_mac_multicast(offset)7253 gen_mac_multicast(offset)
7254 	int offset;
7255 {
7256 	register struct block *b0;
7257 	register struct slist *s;
7258 
7259 	/* link[offset] & 1 != 0 */
7260 	s = gen_load_a(OR_LINKHDR, offset, BPF_B);
7261 	b0 = new_block(JMP(BPF_JSET));
7262 	b0->s.k = 1;
7263 	b0->stmts = s;
7264 	return b0;
7265 }
7266 
7267 struct block *
gen_multicast(proto)7268 gen_multicast(proto)
7269 	int proto;
7270 {
7271 	register struct block *b0, *b1, *b2;
7272 	register struct slist *s;
7273 
7274 	switch (proto) {
7275 
7276 	case Q_DEFAULT:
7277 	case Q_LINK:
7278 		switch (linktype) {
7279 		case DLT_ARCNET:
7280 		case DLT_ARCNET_LINUX:
7281 			/* all ARCnet multicasts use the same address */
7282 			return gen_ahostop(abroadcast, Q_DST);
7283 		case DLT_EN10MB:
7284 		case DLT_NETANALYZER:
7285 		case DLT_NETANALYZER_TRANSPARENT:
7286 			b1 = gen_prevlinkhdr_check();
7287 			/* ether[0] & 1 != 0 */
7288 			b0 = gen_mac_multicast(0);
7289 			if (b1 != NULL)
7290 				gen_and(b1, b0);
7291 			return b0;
7292 		case DLT_FDDI:
7293 			/*
7294 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7295 			 *
7296 			 * XXX - was that referring to bit-order issues?
7297 			 */
7298 			/* fddi[1] & 1 != 0 */
7299 			return gen_mac_multicast(1);
7300 		case DLT_IEEE802:
7301 			/* tr[2] & 1 != 0 */
7302 			return gen_mac_multicast(2);
7303 		case DLT_IEEE802_11:
7304 		case DLT_PRISM_HEADER:
7305 		case DLT_IEEE802_11_RADIO_AVS:
7306 		case DLT_IEEE802_11_RADIO:
7307 		case DLT_PPI:
7308 			/*
7309 			 * Oh, yuk.
7310 			 *
7311 			 *	For control frames, there is no DA.
7312 			 *
7313 			 *	For management frames, DA is at an
7314 			 *	offset of 4 from the beginning of
7315 			 *	the packet.
7316 			 *
7317 			 *	For data frames, DA is at an offset
7318 			 *	of 4 from the beginning of the packet
7319 			 *	if To DS is clear and at an offset of
7320 			 *	16 from the beginning of the packet
7321 			 *	if To DS is set.
7322 			 */
7323 
7324 			/*
7325 			 * Generate the tests to be done for data frames.
7326 			 *
7327 			 * First, check for To DS set, i.e. "link[1] & 0x01".
7328 			 */
7329 			s = gen_load_a(OR_LINKHDR, 1, BPF_B);
7330 			b1 = new_block(JMP(BPF_JSET));
7331 			b1->s.k = 0x01;	/* To DS */
7332 			b1->stmts = s;
7333 
7334 			/*
7335 			 * If To DS is set, the DA is at 16.
7336 			 */
7337 			b0 = gen_mac_multicast(16);
7338 			gen_and(b1, b0);
7339 
7340 			/*
7341 			 * Now, check for To DS not set, i.e. check
7342 			 * "!(link[1] & 0x01)".
7343 			 */
7344 			s = gen_load_a(OR_LINKHDR, 1, BPF_B);
7345 			b2 = new_block(JMP(BPF_JSET));
7346 			b2->s.k = 0x01;	/* To DS */
7347 			b2->stmts = s;
7348 			gen_not(b2);
7349 
7350 			/*
7351 			 * If To DS is not set, the DA is at 4.
7352 			 */
7353 			b1 = gen_mac_multicast(4);
7354 			gen_and(b2, b1);
7355 
7356 			/*
7357 			 * Now OR together the last two checks.  That gives
7358 			 * the complete set of checks for data frames.
7359 			 */
7360 			gen_or(b1, b0);
7361 
7362 			/*
7363 			 * Now check for a data frame.
7364 			 * I.e, check "link[0] & 0x08".
7365 			 */
7366 			s = gen_load_a(OR_LINKHDR, 0, BPF_B);
7367 			b1 = new_block(JMP(BPF_JSET));
7368 			b1->s.k = 0x08;
7369 			b1->stmts = s;
7370 
7371 			/*
7372 			 * AND that with the checks done for data frames.
7373 			 */
7374 			gen_and(b1, b0);
7375 
7376 			/*
7377 			 * If the high-order bit of the type value is 0, this
7378 			 * is a management frame.
7379 			 * I.e, check "!(link[0] & 0x08)".
7380 			 */
7381 			s = gen_load_a(OR_LINKHDR, 0, BPF_B);
7382 			b2 = new_block(JMP(BPF_JSET));
7383 			b2->s.k = 0x08;
7384 			b2->stmts = s;
7385 			gen_not(b2);
7386 
7387 			/*
7388 			 * For management frames, the DA is at 4.
7389 			 */
7390 			b1 = gen_mac_multicast(4);
7391 			gen_and(b2, b1);
7392 
7393 			/*
7394 			 * OR that with the checks done for data frames.
7395 			 * That gives the checks done for management and
7396 			 * data frames.
7397 			 */
7398 			gen_or(b1, b0);
7399 
7400 			/*
7401 			 * If the low-order bit of the type value is 1,
7402 			 * this is either a control frame or a frame
7403 			 * with a reserved type, and thus not a
7404 			 * frame with an SA.
7405 			 *
7406 			 * I.e., check "!(link[0] & 0x04)".
7407 			 */
7408 			s = gen_load_a(OR_LINKHDR, 0, BPF_B);
7409 			b1 = new_block(JMP(BPF_JSET));
7410 			b1->s.k = 0x04;
7411 			b1->stmts = s;
7412 			gen_not(b1);
7413 
7414 			/*
7415 			 * AND that with the checks for data and management
7416 			 * frames.
7417 			 */
7418 			gen_and(b1, b0);
7419 			return b0;
7420 		case DLT_IP_OVER_FC:
7421 			b0 = gen_mac_multicast(2);
7422 			return b0;
7423 		default:
7424 			break;
7425 		}
7426 		/* Link not known to support multicasts */
7427 		break;
7428 
7429 	case Q_IP:
7430 		b0 = gen_linktype(ETHERTYPE_IP);
7431 		b1 = gen_cmp_ge(OR_LINKPL, 16, BPF_B, (bpf_int32)224);
7432 		gen_and(b0, b1);
7433 		return b1;
7434 
7435 	case Q_IPV6:
7436 		b0 = gen_linktype(ETHERTYPE_IPV6);
7437 		b1 = gen_cmp(OR_LINKPL, 24, BPF_B, (bpf_int32)255);
7438 		gen_and(b0, b1);
7439 		return b1;
7440 	}
7441 	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7442 	/* NOTREACHED */
7443 	return NULL;
7444 }
7445 
7446 /*
7447  * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7448  * Outbound traffic is sent by this machine, while inbound traffic is
7449  * sent by a remote machine (and may include packets destined for a
7450  * unicast or multicast link-layer address we are not subscribing to).
7451  * These are the same definitions implemented by pcap_setdirection().
7452  * Capturing only unicast traffic destined for this host is probably
7453  * better accomplished using a higher-layer filter.
7454  */
7455 struct block *
gen_inbound(dir)7456 gen_inbound(dir)
7457 	int dir;
7458 {
7459 	register struct block *b0;
7460 
7461 	/*
7462 	 * Only some data link types support inbound/outbound qualifiers.
7463 	 */
7464 	switch (linktype) {
7465 	case DLT_SLIP:
7466 		b0 = gen_relation(BPF_JEQ,
7467 			  gen_load(Q_LINK, gen_loadi(0), 1),
7468 			  gen_loadi(0),
7469 			  dir);
7470 		break;
7471 
7472 	case DLT_IPNET:
7473 		if (dir) {
7474 			/* match outgoing packets */
7475 			b0 = gen_cmp(OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
7476 		} else {
7477 			/* match incoming packets */
7478 			b0 = gen_cmp(OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
7479 		}
7480 		break;
7481 
7482 	case DLT_LINUX_SLL:
7483 		/* match outgoing packets */
7484 		b0 = gen_cmp(OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
7485 		if (!dir) {
7486 			/* to filter on inbound traffic, invert the match */
7487 			gen_not(b0);
7488 		}
7489 		break;
7490 
7491 #ifdef HAVE_NET_PFVAR_H
7492 	case DLT_PFLOG:
7493 		b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
7494 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7495 		break;
7496 #endif
7497 
7498 	case DLT_PPP_PPPD:
7499 		if (dir) {
7500 			/* match outgoing packets */
7501 			b0 = gen_cmp(OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
7502 		} else {
7503 			/* match incoming packets */
7504 			b0 = gen_cmp(OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
7505 		}
7506 		break;
7507 
7508         case DLT_JUNIPER_MFR:
7509         case DLT_JUNIPER_MLFR:
7510         case DLT_JUNIPER_MLPPP:
7511 	case DLT_JUNIPER_ATM1:
7512 	case DLT_JUNIPER_ATM2:
7513 	case DLT_JUNIPER_PPPOE:
7514 	case DLT_JUNIPER_PPPOE_ATM:
7515         case DLT_JUNIPER_GGSN:
7516         case DLT_JUNIPER_ES:
7517         case DLT_JUNIPER_MONITOR:
7518         case DLT_JUNIPER_SERVICES:
7519         case DLT_JUNIPER_ETHER:
7520         case DLT_JUNIPER_PPP:
7521         case DLT_JUNIPER_FRELAY:
7522         case DLT_JUNIPER_CHDLC:
7523         case DLT_JUNIPER_VP:
7524         case DLT_JUNIPER_ST:
7525         case DLT_JUNIPER_ISM:
7526         case DLT_JUNIPER_VS:
7527         case DLT_JUNIPER_SRX_E2E:
7528         case DLT_JUNIPER_FIBRECHANNEL:
7529 	case DLT_JUNIPER_ATM_CEMIC:
7530 
7531 		/* juniper flags (including direction) are stored
7532 		 * the byte after the 3-byte magic number */
7533 		if (dir) {
7534 			/* match outgoing packets */
7535 			b0 = gen_mcmp(OR_LINKHDR, 3, BPF_B, 0, 0x01);
7536 		} else {
7537 			/* match incoming packets */
7538 			b0 = gen_mcmp(OR_LINKHDR, 3, BPF_B, 1, 0x01);
7539 		}
7540 		break;
7541 
7542 	default:
7543 		/*
7544 		 * If we have packet meta-data indicating a direction,
7545 		 * check it, otherwise give up as this link-layer type
7546 		 * has nothing in the packet data.
7547 		 */
7548 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7549 		/*
7550 		 * This is Linux with PF_PACKET support.
7551 		 * If this is a *live* capture, we can look at
7552 		 * special meta-data in the filter expression;
7553 		 * if it's a savefile, we can't.
7554 		 */
7555 		if (bpf_pcap->rfile != NULL) {
7556 			/* We have a FILE *, so this is a savefile */
7557 			bpf_error("inbound/outbound not supported on linktype %d when reading savefiles",
7558 			    linktype);
7559 			b0 = NULL;
7560 			/* NOTREACHED */
7561 		}
7562 		/* match outgoing packets */
7563 		b0 = gen_cmp(OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
7564 		             PACKET_OUTGOING);
7565 		if (!dir) {
7566 			/* to filter on inbound traffic, invert the match */
7567 			gen_not(b0);
7568 		}
7569 #else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7570 		bpf_error("inbound/outbound not supported on linktype %d",
7571 		    linktype);
7572 		b0 = NULL;
7573 		/* NOTREACHED */
7574 #endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7575 	}
7576 	return (b0);
7577 }
7578 
7579 #ifdef HAVE_NET_PFVAR_H
7580 /* PF firewall log matched interface */
7581 struct block *
gen_pf_ifname(const char * ifname)7582 gen_pf_ifname(const char *ifname)
7583 {
7584 	struct block *b0;
7585 	u_int len, off;
7586 
7587 	if (linktype != DLT_PFLOG) {
7588 		bpf_error("ifname supported only on PF linktype");
7589 		/* NOTREACHED */
7590 	}
7591 	len = sizeof(((struct pfloghdr *)0)->ifname);
7592 	off = offsetof(struct pfloghdr, ifname);
7593 	if (strlen(ifname) >= len) {
7594 		bpf_error("ifname interface names can only be %d characters",
7595 		    len-1);
7596 		/* NOTREACHED */
7597 	}
7598 	b0 = gen_bcmp(OR_LINKHDR, off, strlen(ifname), (const u_char *)ifname);
7599 	return (b0);
7600 }
7601 
7602 /* PF firewall log ruleset name */
7603 struct block *
gen_pf_ruleset(char * ruleset)7604 gen_pf_ruleset(char *ruleset)
7605 {
7606 	struct block *b0;
7607 
7608 	if (linktype != DLT_PFLOG) {
7609 		bpf_error("ruleset supported only on PF linktype");
7610 		/* NOTREACHED */
7611 	}
7612 
7613 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7614 		bpf_error("ruleset names can only be %ld characters",
7615 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7616 		/* NOTREACHED */
7617 	}
7618 
7619 	b0 = gen_bcmp(OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
7620 	    strlen(ruleset), (const u_char *)ruleset);
7621 	return (b0);
7622 }
7623 
7624 /* PF firewall log rule number */
7625 struct block *
gen_pf_rnr(int rnr)7626 gen_pf_rnr(int rnr)
7627 {
7628 	struct block *b0;
7629 
7630 	if (linktype != DLT_PFLOG) {
7631 		bpf_error("rnr supported only on PF linktype");
7632 		/* NOTREACHED */
7633 	}
7634 
7635 	b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
7636 		 (bpf_int32)rnr);
7637 	return (b0);
7638 }
7639 
7640 /* PF firewall log sub-rule number */
7641 struct block *
gen_pf_srnr(int srnr)7642 gen_pf_srnr(int srnr)
7643 {
7644 	struct block *b0;
7645 
7646 	if (linktype != DLT_PFLOG) {
7647 		bpf_error("srnr supported only on PF linktype");
7648 		/* NOTREACHED */
7649 	}
7650 
7651 	b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
7652 	    (bpf_int32)srnr);
7653 	return (b0);
7654 }
7655 
7656 /* PF firewall log reason code */
7657 struct block *
gen_pf_reason(int reason)7658 gen_pf_reason(int reason)
7659 {
7660 	struct block *b0;
7661 
7662 	if (linktype != DLT_PFLOG) {
7663 		bpf_error("reason supported only on PF linktype");
7664 		/* NOTREACHED */
7665 	}
7666 
7667 	b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
7668 	    (bpf_int32)reason);
7669 	return (b0);
7670 }
7671 
7672 /* PF firewall log action */
7673 struct block *
gen_pf_action(int action)7674 gen_pf_action(int action)
7675 {
7676 	struct block *b0;
7677 
7678 	if (linktype != DLT_PFLOG) {
7679 		bpf_error("action supported only on PF linktype");
7680 		/* NOTREACHED */
7681 	}
7682 
7683 	b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
7684 	    (bpf_int32)action);
7685 	return (b0);
7686 }
7687 #else /* !HAVE_NET_PFVAR_H */
7688 struct block *
gen_pf_ifname(const char * ifname)7689 gen_pf_ifname(const char *ifname)
7690 {
7691 	bpf_error("libpcap was compiled without pf support");
7692 	/* NOTREACHED */
7693 	return (NULL);
7694 }
7695 
7696 struct block *
gen_pf_ruleset(char * ruleset)7697 gen_pf_ruleset(char *ruleset)
7698 {
7699 	bpf_error("libpcap was compiled on a machine without pf support");
7700 	/* NOTREACHED */
7701 	return (NULL);
7702 }
7703 
7704 struct block *
gen_pf_rnr(int rnr)7705 gen_pf_rnr(int rnr)
7706 {
7707 	bpf_error("libpcap was compiled on a machine without pf support");
7708 	/* NOTREACHED */
7709 	return (NULL);
7710 }
7711 
7712 struct block *
gen_pf_srnr(int srnr)7713 gen_pf_srnr(int srnr)
7714 {
7715 	bpf_error("libpcap was compiled on a machine without pf support");
7716 	/* NOTREACHED */
7717 	return (NULL);
7718 }
7719 
7720 struct block *
gen_pf_reason(int reason)7721 gen_pf_reason(int reason)
7722 {
7723 	bpf_error("libpcap was compiled on a machine without pf support");
7724 	/* NOTREACHED */
7725 	return (NULL);
7726 }
7727 
7728 struct block *
gen_pf_action(int action)7729 gen_pf_action(int action)
7730 {
7731 	bpf_error("libpcap was compiled on a machine without pf support");
7732 	/* NOTREACHED */
7733 	return (NULL);
7734 }
7735 #endif /* HAVE_NET_PFVAR_H */
7736 
7737 /* IEEE 802.11 wireless header */
7738 struct block *
gen_p80211_type(int type,int mask)7739 gen_p80211_type(int type, int mask)
7740 {
7741 	struct block *b0;
7742 
7743 	switch (linktype) {
7744 
7745 	case DLT_IEEE802_11:
7746 	case DLT_PRISM_HEADER:
7747 	case DLT_IEEE802_11_RADIO_AVS:
7748 	case DLT_IEEE802_11_RADIO:
7749 		b0 = gen_mcmp(OR_LINKHDR, 0, BPF_B, (bpf_int32)type,
7750 		    (bpf_int32)mask);
7751 		break;
7752 
7753 	default:
7754 		bpf_error("802.11 link-layer types supported only on 802.11");
7755 		/* NOTREACHED */
7756 	}
7757 
7758 	return (b0);
7759 }
7760 
7761 struct block *
gen_p80211_fcdir(int fcdir)7762 gen_p80211_fcdir(int fcdir)
7763 {
7764 	struct block *b0;
7765 
7766 	switch (linktype) {
7767 
7768 	case DLT_IEEE802_11:
7769 	case DLT_PRISM_HEADER:
7770 	case DLT_IEEE802_11_RADIO_AVS:
7771 	case DLT_IEEE802_11_RADIO:
7772 		break;
7773 
7774 	default:
7775 		bpf_error("frame direction supported only with 802.11 headers");
7776 		/* NOTREACHED */
7777 	}
7778 
7779 	b0 = gen_mcmp(OR_LINKHDR, 1, BPF_B, (bpf_int32)fcdir,
7780 		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7781 
7782 	return (b0);
7783 }
7784 
7785 struct block *
gen_acode(eaddr,q)7786 gen_acode(eaddr, q)
7787 	register const u_char *eaddr;
7788 	struct qual q;
7789 {
7790 	switch (linktype) {
7791 
7792 	case DLT_ARCNET:
7793 	case DLT_ARCNET_LINUX:
7794 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7795 		    q.proto == Q_LINK)
7796 			return (gen_ahostop(eaddr, (int)q.dir));
7797 		else {
7798 			bpf_error("ARCnet address used in non-arc expression");
7799 			/* NOTREACHED */
7800 		}
7801 		break;
7802 
7803 	default:
7804 		bpf_error("aid supported only on ARCnet");
7805 		/* NOTREACHED */
7806 	}
7807 	bpf_error("ARCnet address used in non-arc expression");
7808 	/* NOTREACHED */
7809 	return NULL;
7810 }
7811 
7812 static struct block *
gen_ahostop(eaddr,dir)7813 gen_ahostop(eaddr, dir)
7814 	register const u_char *eaddr;
7815 	register int dir;
7816 {
7817 	register struct block *b0, *b1;
7818 
7819 	switch (dir) {
7820 	/* src comes first, different from Ethernet */
7821 	case Q_SRC:
7822 		return gen_bcmp(OR_LINKHDR, 0, 1, eaddr);
7823 
7824 	case Q_DST:
7825 		return gen_bcmp(OR_LINKHDR, 1, 1, eaddr);
7826 
7827 	case Q_AND:
7828 		b0 = gen_ahostop(eaddr, Q_SRC);
7829 		b1 = gen_ahostop(eaddr, Q_DST);
7830 		gen_and(b0, b1);
7831 		return b1;
7832 
7833 	case Q_DEFAULT:
7834 	case Q_OR:
7835 		b0 = gen_ahostop(eaddr, Q_SRC);
7836 		b1 = gen_ahostop(eaddr, Q_DST);
7837 		gen_or(b0, b1);
7838 		return b1;
7839 
7840 	case Q_ADDR1:
7841 		bpf_error("'addr1' is only supported on 802.11");
7842 		break;
7843 
7844 	case Q_ADDR2:
7845 		bpf_error("'addr2' is only supported on 802.11");
7846 		break;
7847 
7848 	case Q_ADDR3:
7849 		bpf_error("'addr3' is only supported on 802.11");
7850 		break;
7851 
7852 	case Q_ADDR4:
7853 		bpf_error("'addr4' is only supported on 802.11");
7854 		break;
7855 
7856 	case Q_RA:
7857 		bpf_error("'ra' is only supported on 802.11");
7858 		break;
7859 
7860 	case Q_TA:
7861 		bpf_error("'ta' is only supported on 802.11");
7862 		break;
7863 	}
7864 	abort();
7865 	/* NOTREACHED */
7866 }
7867 
7868 #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
7869 static struct block *
gen_vlan_bpf_extensions(int vlan_num)7870 gen_vlan_bpf_extensions(int vlan_num)
7871 {
7872         struct block *b0, *b1;
7873         struct slist *s;
7874 
7875         /* generate new filter code based on extracting packet
7876          * metadata */
7877         s = new_stmt(BPF_LD|BPF_B|BPF_ABS);
7878         s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
7879 
7880         b0 = new_block(JMP(BPF_JEQ));
7881         b0->stmts = s;
7882         b0->s.k = 1;
7883 
7884         if (vlan_num >= 0) {
7885                 s = new_stmt(BPF_LD|BPF_B|BPF_ABS);
7886                 s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
7887 
7888                 b1 = new_block(JMP(BPF_JEQ));
7889                 b1->stmts = s;
7890                 b1->s.k = (bpf_int32) vlan_num;
7891 
7892                 gen_and(b0,b1);
7893                 b0 = b1;
7894         }
7895 
7896         return b0;
7897 }
7898 #endif
7899 
7900 static struct block *
gen_vlan_no_bpf_extensions(int vlan_num)7901 gen_vlan_no_bpf_extensions(int vlan_num)
7902 {
7903         struct block *b0, *b1;
7904 
7905         /* check for VLAN, including QinQ */
7906         b0 = gen_linktype(ETHERTYPE_8021Q);
7907         b1 = gen_linktype(ETHERTYPE_8021QINQ);
7908         gen_or(b0,b1);
7909         b0 = b1;
7910 
7911         /* If a specific VLAN is requested, check VLAN id */
7912         if (vlan_num >= 0) {
7913                 b1 = gen_mcmp(OR_LINKPL, 0, BPF_H,
7914                               (bpf_int32)vlan_num, 0x0fff);
7915                 gen_and(b0, b1);
7916                 b0 = b1;
7917         }
7918 
7919 	/*
7920 	 * The payload follows the full header, including the
7921 	 * VLAN tags, so skip past this VLAN tag.
7922 	 */
7923         off_linkpl.constant_part += 4;
7924 
7925 	/*
7926 	 * The link-layer type information follows the VLAN tags, so
7927 	 * skip past this VLAN tag.
7928 	 */
7929         off_linktype.constant_part += 4;
7930 
7931         return b0;
7932 }
7933 
7934 /*
7935  * support IEEE 802.1Q VLAN trunk over ethernet
7936  */
7937 struct block *
gen_vlan(vlan_num)7938 gen_vlan(vlan_num)
7939 	int vlan_num;
7940 {
7941 	struct	block	*b0;
7942 
7943 	/* can't check for VLAN-encapsulated packets inside MPLS */
7944 	if (label_stack_depth > 0)
7945 		bpf_error("no VLAN match after MPLS");
7946 
7947 	/*
7948 	 * Check for a VLAN packet, and then change the offsets to point
7949 	 * to the type and data fields within the VLAN packet.  Just
7950 	 * increment the offsets, so that we can support a hierarchy, e.g.
7951 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7952 	 * VLAN 100.
7953 	 *
7954 	 * XXX - this is a bit of a kludge.  If we were to split the
7955 	 * compiler into a parser that parses an expression and
7956 	 * generates an expression tree, and a code generator that
7957 	 * takes an expression tree (which could come from our
7958 	 * parser or from some other parser) and generates BPF code,
7959 	 * we could perhaps make the offsets parameters of routines
7960 	 * and, in the handler for an "AND" node, pass to subnodes
7961 	 * other than the VLAN node the adjusted offsets.
7962 	 *
7963 	 * This would mean that "vlan" would, instead of changing the
7964 	 * behavior of *all* tests after it, change only the behavior
7965 	 * of tests ANDed with it.  That would change the documented
7966 	 * semantics of "vlan", which might break some expressions.
7967 	 * However, it would mean that "(vlan and ip) or ip" would check
7968 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7969 	 * checking only for VLAN-encapsulated IP, so that could still
7970 	 * be considered worth doing; it wouldn't break expressions
7971 	 * that are of the form "vlan and ..." or "vlan N and ...",
7972 	 * which I suspect are the most common expressions involving
7973 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
7974 	 * would really want, now, as all the "or ..." tests would
7975 	 * be done assuming a VLAN, even though the "or" could be viewed
7976 	 * as meaning "or, if this isn't a VLAN packet...".
7977 	 */
7978 	switch (linktype) {
7979 
7980 	case DLT_EN10MB:
7981 	case DLT_NETANALYZER:
7982 	case DLT_NETANALYZER_TRANSPARENT:
7983 #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
7984 		/* Verify that this is the outer part of the packet and
7985 		 * not encapsulated somehow. */
7986 		if (vlan_stack_depth == 0 && !off_linkhdr.is_variable &&
7987 		    off_linkhdr.constant_part ==
7988 		    off_outermostlinkhdr.constant_part) {
7989 			/*
7990 			 * Do we need special VLAN handling?
7991 			 */
7992 			if (bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
7993 				b0 = gen_vlan_bpf_extensions(vlan_num);
7994 			else
7995 				b0 = gen_vlan_no_bpf_extensions(vlan_num);
7996 		} else
7997 #endif
7998 			b0 = gen_vlan_no_bpf_extensions(vlan_num);
7999                 break;
8000 
8001 	case DLT_IEEE802_11:
8002 	case DLT_PRISM_HEADER:
8003 	case DLT_IEEE802_11_RADIO_AVS:
8004 	case DLT_IEEE802_11_RADIO:
8005 		b0 = gen_vlan_no_bpf_extensions(vlan_num);
8006 		break;
8007 
8008 	default:
8009 		bpf_error("no VLAN support for data link type %d",
8010 		      linktype);
8011 		/*NOTREACHED*/
8012 	}
8013 
8014         vlan_stack_depth++;
8015 
8016 	return (b0);
8017 }
8018 
8019 /*
8020  * support for MPLS
8021  */
8022 struct block *
gen_mpls(label_num)8023 gen_mpls(label_num)
8024 	int label_num;
8025 {
8026 	struct	block	*b0, *b1;
8027 
8028         if (label_stack_depth > 0) {
8029             /* just match the bottom-of-stack bit clear */
8030             b0 = gen_mcmp(OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
8031         } else {
8032             /*
8033              * We're not in an MPLS stack yet, so check the link-layer
8034              * type against MPLS.
8035              */
8036             switch (linktype) {
8037 
8038             case DLT_C_HDLC: /* fall through */
8039             case DLT_EN10MB:
8040             case DLT_NETANALYZER:
8041             case DLT_NETANALYZER_TRANSPARENT:
8042                     b0 = gen_linktype(ETHERTYPE_MPLS);
8043                     break;
8044 
8045             case DLT_PPP:
8046                     b0 = gen_linktype(PPP_MPLS_UCAST);
8047                     break;
8048 
8049                     /* FIXME add other DLT_s ...
8050                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
8051                      * leave it for now */
8052 
8053             default:
8054                     bpf_error("no MPLS support for data link type %d",
8055                           linktype);
8056                     b0 = NULL;
8057                     /*NOTREACHED*/
8058                     break;
8059             }
8060         }
8061 
8062 	/* If a specific MPLS label is requested, check it */
8063 	if (label_num >= 0) {
8064 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
8065 		b1 = gen_mcmp(OR_LINKPL, 0, BPF_W, (bpf_int32)label_num,
8066 		    0xfffff000); /* only compare the first 20 bits */
8067 		gen_and(b0, b1);
8068 		b0 = b1;
8069 	}
8070 
8071         /*
8072          * Change the offsets to point to the type and data fields within
8073          * the MPLS packet.  Just increment the offsets, so that we
8074          * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
8075          * capture packets with an outer label of 100000 and an inner
8076          * label of 1024.
8077          *
8078          * Increment the MPLS stack depth as well; this indicates that
8079          * we're checking MPLS-encapsulated headers, to make sure higher
8080          * level code generators don't try to match against IP-related
8081          * protocols such as Q_ARP, Q_RARP etc.
8082          *
8083          * XXX - this is a bit of a kludge.  See comments in gen_vlan().
8084          */
8085         off_nl_nosnap += 4;
8086         off_nl += 4;
8087         label_stack_depth++;
8088 	return (b0);
8089 }
8090 
8091 /*
8092  * Support PPPOE discovery and session.
8093  */
8094 struct block *
gen_pppoed()8095 gen_pppoed()
8096 {
8097 	/* check for PPPoE discovery */
8098 	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
8099 }
8100 
8101 struct block *
gen_pppoes(sess_num)8102 gen_pppoes(sess_num)
8103 	int sess_num;
8104 {
8105 	struct block *b0, *b1;
8106 
8107 	/*
8108 	 * Test against the PPPoE session link-layer type.
8109 	 */
8110 	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
8111 
8112 	/* If a specific session is requested, check PPPoE session id */
8113 	if (sess_num >= 0) {
8114 		b1 = gen_mcmp(OR_LINKPL, 0, BPF_W,
8115 		    (bpf_int32)sess_num, 0x0000ffff);
8116 		gen_and(b0, b1);
8117 		b0 = b1;
8118 	}
8119 
8120 	/*
8121 	 * Change the offsets to point to the type and data fields within
8122 	 * the PPP packet, and note that this is PPPoE rather than
8123 	 * raw PPP.
8124 	 *
8125 	 * XXX - this is a bit of a kludge.  If we were to split the
8126 	 * compiler into a parser that parses an expression and
8127 	 * generates an expression tree, and a code generator that
8128 	 * takes an expression tree (which could come from our
8129 	 * parser or from some other parser) and generates BPF code,
8130 	 * we could perhaps make the offsets parameters of routines
8131 	 * and, in the handler for an "AND" node, pass to subnodes
8132 	 * other than the PPPoE node the adjusted offsets.
8133 	 *
8134 	 * This would mean that "pppoes" would, instead of changing the
8135 	 * behavior of *all* tests after it, change only the behavior
8136 	 * of tests ANDed with it.  That would change the documented
8137 	 * semantics of "pppoes", which might break some expressions.
8138 	 * However, it would mean that "(pppoes and ip) or ip" would check
8139 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8140 	 * checking only for VLAN-encapsulated IP, so that could still
8141 	 * be considered worth doing; it wouldn't break expressions
8142 	 * that are of the form "pppoes and ..." which I suspect are the
8143 	 * most common expressions involving "pppoes".  "pppoes or ..."
8144 	 * doesn't necessarily do what the user would really want, now,
8145 	 * as all the "or ..." tests would be done assuming PPPoE, even
8146 	 * though the "or" could be viewed as meaning "or, if this isn't
8147 	 * a PPPoE packet...".
8148 	 *
8149 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
8150 	 * PPPoE header, followed by a PPP packet.
8151 	 *
8152 	 * There is no HDLC encapsulation for the PPP packet (it's
8153 	 * encapsulated in PPPoES instead), so the link-layer type
8154 	 * starts at the first byte of the PPP packet.  For PPPoE,
8155 	 * that offset is relative to the beginning of the total
8156 	 * link-layer payload, including any 802.2 LLC header, so
8157 	 * it's 6 bytes past off_nl.
8158 	 */
8159 	PUSH_LINKHDR(DLT_PPP, off_linkpl.is_variable,
8160 	    off_linkpl.constant_part + off_nl + 6, /* 6 bytes past the PPPoE header */
8161 	    off_linkpl.reg);
8162 
8163 	off_linktype = off_linkhdr;
8164 	off_linkpl.constant_part = off_linkhdr.constant_part + 2;
8165 
8166 	off_nl = 0;
8167 	off_nl_nosnap = 0;	/* no 802.2 LLC */
8168 
8169 	return b0;
8170 }
8171 
8172 /* Check that this is Geneve and the VNI is correct if
8173  * specified. Parameterized to handle both IPv4 and IPv6. */
8174 static struct block *
gen_geneve_check(struct block * (* gen_portfn)(int,int,int),enum e_offrel offrel,int vni)8175 gen_geneve_check(struct block *(*gen_portfn)(int, int, int),
8176 		 enum e_offrel offrel, int vni)
8177 {
8178 	struct block *b0, *b1;
8179 
8180 	b0 = gen_portfn(GENEVE_PORT, IPPROTO_UDP, Q_DST);
8181 
8182 	/* Check that we are operating on version 0. Otherwise, we
8183 	 * can't decode the rest of the fields. The version is 2 bits
8184 	 * in the first byte of the Geneve header. */
8185 	b1 = gen_mcmp(offrel, 8, BPF_B, (bpf_int32)0, 0xc0);
8186 	gen_and(b0, b1);
8187 	b0 = b1;
8188 
8189 	if (vni >= 0) {
8190 		vni <<= 8; /* VNI is in the upper 3 bytes */
8191 		b1 = gen_mcmp(offrel, 12, BPF_W, (bpf_int32)vni,
8192 			      0xffffff00);
8193 		gen_and(b0, b1);
8194 		b0 = b1;
8195 	}
8196 
8197 	return b0;
8198 }
8199 
8200 /* The IPv4 and IPv6 Geneve checks need to do two things:
8201  * - Verify that this actually is Geneve with the right VNI.
8202  * - Place the IP header length (plus variable link prefix if
8203  *   needed) into register A to be used later to compute
8204  *   the inner packet offsets. */
8205 static struct block *
gen_geneve4(int vni)8206 gen_geneve4(int vni)
8207 {
8208 	struct block *b0, *b1;
8209 	struct slist *s, *s1;
8210 
8211 	b0 = gen_geneve_check(gen_port, OR_TRAN_IPV4, vni);
8212 
8213 	/* Load the IP header length into A. */
8214 	s = gen_loadx_iphdrlen();
8215 
8216 	s1 = new_stmt(BPF_MISC|BPF_TXA);
8217 	sappend(s, s1);
8218 
8219 	/* Forcibly append these statements to the true condition
8220 	 * of the protocol check by creating a new block that is
8221 	 * always true and ANDing them. */
8222 	b1 = new_block(BPF_JMP|BPF_JEQ|BPF_X);
8223 	b1->stmts = s;
8224 	b1->s.k = 0;
8225 
8226 	gen_and(b0, b1);
8227 
8228 	return b1;
8229 }
8230 
8231 static struct block *
gen_geneve6(int vni)8232 gen_geneve6(int vni)
8233 {
8234 	struct block *b0, *b1;
8235 	struct slist *s, *s1;
8236 
8237 	b0 = gen_geneve_check(gen_port6, OR_TRAN_IPV6, vni);
8238 
8239 	/* Load the IP header length. We need to account for a
8240 	 * variable length link prefix if there is one. */
8241 	s = gen_abs_offset_varpart(&off_linkpl);
8242 	if (s) {
8243 		s1 = new_stmt(BPF_LD|BPF_IMM);
8244 		s1->s.k = 40;
8245 		sappend(s, s1);
8246 
8247 		s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
8248 		s1->s.k = 0;
8249 		sappend(s, s1);
8250 	} else {
8251 		s = new_stmt(BPF_LD|BPF_IMM);
8252 		s->s.k = 40;;
8253 	}
8254 
8255 	/* Forcibly append these statements to the true condition
8256 	 * of the protocol check by creating a new block that is
8257 	 * always true and ANDing them. */
8258 	s1 = new_stmt(BPF_MISC|BPF_TAX);
8259 	sappend(s, s1);
8260 
8261 	b1 = new_block(BPF_JMP|BPF_JEQ|BPF_X);
8262 	b1->stmts = s;
8263 	b1->s.k = 0;
8264 
8265 	gen_and(b0, b1);
8266 
8267 	return b1;
8268 }
8269 
8270 /* We need to store three values based on the Geneve header::
8271  * - The offset of the linktype.
8272  * - The offset of the end of the Geneve header.
8273  * - The offset of the end of the encapsulated MAC header. */
8274 static struct slist *
gen_geneve_offsets(void)8275 gen_geneve_offsets(void)
8276 {
8277 	struct slist *s, *s1, *s_proto;
8278 
8279 	/* First we need to calculate the offset of the Geneve header
8280 	 * itself. This is composed of the IP header previously calculated
8281 	 * (include any variable link prefix) and stored in A plus the
8282 	 * fixed sized headers (fixed link prefix, MAC length, and UDP
8283 	 * header). */
8284 	s = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
8285 	s->s.k = off_linkpl.constant_part + off_nl + 8;
8286 
8287 	/* Stash this in X since we'll need it later. */
8288 	s1 = new_stmt(BPF_MISC|BPF_TAX);
8289 	sappend(s, s1);
8290 
8291 	/* The EtherType in Geneve is 2 bytes in. Calculate this and
8292 	 * store it. */
8293 	s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
8294 	s1->s.k = 2;
8295 	sappend(s, s1);
8296 
8297 	off_linktype.reg = alloc_reg();
8298 	off_linktype.is_variable = 1;
8299 	off_linktype.constant_part = 0;
8300 
8301 	s1 = new_stmt(BPF_ST);
8302 	s1->s.k = off_linktype.reg;
8303 	sappend(s, s1);
8304 
8305 	/* Load the Geneve option length and mask and shift to get the
8306 	 * number of bytes. It is stored in the first byte of the Geneve
8307 	 * header. */
8308 	s1 = new_stmt(BPF_LD|BPF_IND|BPF_B);
8309 	s1->s.k = 0;
8310 	sappend(s, s1);
8311 
8312 	s1 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
8313 	s1->s.k = 0x3f;
8314 	sappend(s, s1);
8315 
8316 	s1 = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
8317 	s1->s.k = 4;
8318 	sappend(s, s1);
8319 
8320 	/* Add in the rest of the Geneve base header. */
8321 	s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
8322 	s1->s.k = 8;
8323 	sappend(s, s1);
8324 
8325 	/* Add the Geneve header length to its offset and store. */
8326 	s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
8327 	s1->s.k = 0;
8328 	sappend(s, s1);
8329 
8330 	/* Set the encapsulated type as Ethernet. Even though we may
8331 	 * not actually have Ethernet inside there are two reasons this
8332 	 * is useful:
8333 	 * - The linktype field is always in EtherType format regardless
8334 	 *   of whether it is in Geneve or an inner Ethernet frame.
8335 	 * - The only link layer that we have specific support for is
8336 	 *   Ethernet. We will confirm that the packet actually is
8337 	 *   Ethernet at runtime before executing these checks. */
8338 	PUSH_LINKHDR(DLT_EN10MB, 1, 0, alloc_reg());
8339 
8340 	s1 = new_stmt(BPF_ST);
8341 	s1->s.k = off_linkhdr.reg;
8342 	sappend(s, s1);
8343 
8344 	/* Calculate whether we have an Ethernet header or just raw IP/
8345 	 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
8346 	 * and linktype by 14 bytes so that the network header can be found
8347 	 * seamlessly. Otherwise, keep what we've calculated already. */
8348 
8349 	/* We have a bare jmp so we can't use the optimizer. */
8350 	no_optimize = 1;
8351 
8352 	/* Load the EtherType in the Geneve header, 2 bytes in. */
8353 	s1 = new_stmt(BPF_LD|BPF_IND|BPF_H);
8354 	s1->s.k = 2;
8355 	sappend(s, s1);
8356 
8357 	/* Load X with the end of the Geneve header. */
8358 	s1 = new_stmt(BPF_LDX|BPF_MEM);
8359 	s1->s.k = off_linkhdr.reg;
8360 	sappend(s, s1);
8361 
8362 	/* Check if the EtherType is Transparent Ethernet Bridging. At the
8363 	 * end of this check, we should have the total length in X. In
8364 	 * the non-Ethernet case, it's already there. */
8365 	s_proto = new_stmt(JMP(BPF_JEQ));
8366 	s_proto->s.k = ETHERTYPE_TEB;
8367 	sappend(s, s_proto);
8368 
8369 	s1 = new_stmt(BPF_MISC|BPF_TXA);
8370 	sappend(s, s1);
8371 	s_proto->s.jt = s1;
8372 
8373 	/* Since this is Ethernet, use the EtherType of the payload
8374 	 * directly as the linktype. Overwrite what we already have. */
8375 	s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
8376 	s1->s.k = 12;
8377 	sappend(s, s1);
8378 
8379 	s1 = new_stmt(BPF_ST);
8380 	s1->s.k = off_linktype.reg;
8381 	sappend(s, s1);
8382 
8383 	/* Advance two bytes further to get the end of the Ethernet
8384 	 * header. */
8385 	s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
8386 	s1->s.k = 2;
8387 	sappend(s, s1);
8388 
8389 	/* Move the result to X. */
8390 	s1 = new_stmt(BPF_MISC|BPF_TAX);
8391 	sappend(s, s1);
8392 
8393 	/* Store the final result of our linkpl calculation. */
8394 	off_linkpl.reg = alloc_reg();
8395 	off_linkpl.is_variable = 1;
8396 	off_linkpl.constant_part = 0;
8397 
8398 	s1 = new_stmt(BPF_STX);
8399 	s1->s.k = off_linkpl.reg;
8400 	sappend(s, s1);
8401 	s_proto->s.jf = s1;
8402 
8403 	off_nl = 0;
8404 
8405 	return s;
8406 }
8407 
8408 /* Check to see if this is a Geneve packet. */
8409 struct block *
gen_geneve(int vni)8410 gen_geneve(int vni)
8411 {
8412 	struct block *b0, *b1;
8413 	struct slist *s;
8414 
8415 	b0 = gen_geneve4(vni);
8416 	b1 = gen_geneve6(vni);
8417 
8418 	gen_or(b0, b1);
8419 	b0 = b1;
8420 
8421 	/* Later filters should act on the payload of the Geneve frame,
8422 	 * update all of the header pointers. Attach this code so that
8423 	 * it gets executed in the event that the Geneve filter matches. */
8424 	s = gen_geneve_offsets();
8425 
8426 	b1 = gen_true();
8427 	sappend(s, b1->stmts);
8428 	b1->stmts = s;
8429 
8430 	gen_and(b0, b1);
8431 
8432 	is_geneve = 1;
8433 
8434 	return b1;
8435 }
8436 
8437 /* Check that the encapsulated frame has a link layer header
8438  * for Ethernet filters. */
8439 static struct block *
gen_geneve_ll_check()8440 gen_geneve_ll_check()
8441 {
8442 	struct block *b0;
8443 	struct slist *s, *s1;
8444 
8445 	/* The easiest way to see if there is a link layer present
8446 	 * is to check if the link layer header and payload are not
8447 	 * the same. */
8448 
8449 	/* Geneve always generates pure variable offsets so we can
8450 	 * compare only the registers. */
8451 	s = new_stmt(BPF_LD|BPF_MEM);
8452 	s->s.k = off_linkhdr.reg;
8453 
8454 	s1 = new_stmt(BPF_LDX|BPF_MEM);
8455 	s1->s.k = off_linkpl.reg;
8456 	sappend(s, s1);
8457 
8458 	b0 = new_block(BPF_JMP|BPF_JEQ|BPF_X);
8459 	b0->stmts = s;
8460 	b0->s.k = 0;
8461 	gen_not(b0);
8462 
8463 	return b0;
8464 }
8465 
8466 struct block *
gen_atmfield_code(atmfield,jvalue,jtype,reverse)8467 gen_atmfield_code(atmfield, jvalue, jtype, reverse)
8468 	int atmfield;
8469 	bpf_int32 jvalue;
8470 	bpf_u_int32 jtype;
8471 	int reverse;
8472 {
8473 	struct block *b0;
8474 
8475 	switch (atmfield) {
8476 
8477 	case A_VPI:
8478 		if (!is_atm)
8479 			bpf_error("'vpi' supported only on raw ATM");
8480 		if (off_vpi == (u_int)-1)
8481 			abort();
8482 		b0 = gen_ncmp(OR_LINKHDR, off_vpi, BPF_B, 0xffffffff, jtype,
8483 		    reverse, jvalue);
8484 		break;
8485 
8486 	case A_VCI:
8487 		if (!is_atm)
8488 			bpf_error("'vci' supported only on raw ATM");
8489 		if (off_vci == (u_int)-1)
8490 			abort();
8491 		b0 = gen_ncmp(OR_LINKHDR, off_vci, BPF_H, 0xffffffff, jtype,
8492 		    reverse, jvalue);
8493 		break;
8494 
8495 	case A_PROTOTYPE:
8496 		if (off_proto == (u_int)-1)
8497 			abort();	/* XXX - this isn't on FreeBSD */
8498 		b0 = gen_ncmp(OR_LINKHDR, off_proto, BPF_B, 0x0f, jtype,
8499 		    reverse, jvalue);
8500 		break;
8501 
8502 	case A_MSGTYPE:
8503 		if (off_payload == (u_int)-1)
8504 			abort();
8505 		b0 = gen_ncmp(OR_LINKHDR, off_payload + MSG_TYPE_POS, BPF_B,
8506 		    0xffffffff, jtype, reverse, jvalue);
8507 		break;
8508 
8509 	case A_CALLREFTYPE:
8510 		if (!is_atm)
8511 			bpf_error("'callref' supported only on raw ATM");
8512 		if (off_proto == (u_int)-1)
8513 			abort();
8514 		b0 = gen_ncmp(OR_LINKHDR, off_proto, BPF_B, 0xffffffff,
8515 		    jtype, reverse, jvalue);
8516 		break;
8517 
8518 	default:
8519 		abort();
8520 	}
8521 	return b0;
8522 }
8523 
8524 struct block *
gen_atmtype_abbrev(type)8525 gen_atmtype_abbrev(type)
8526 	int type;
8527 {
8528 	struct block *b0, *b1;
8529 
8530 	switch (type) {
8531 
8532 	case A_METAC:
8533 		/* Get all packets in Meta signalling Circuit */
8534 		if (!is_atm)
8535 			bpf_error("'metac' supported only on raw ATM");
8536 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8537 		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
8538 		gen_and(b0, b1);
8539 		break;
8540 
8541 	case A_BCC:
8542 		/* Get all packets in Broadcast Circuit*/
8543 		if (!is_atm)
8544 			bpf_error("'bcc' supported only on raw ATM");
8545 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8546 		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
8547 		gen_and(b0, b1);
8548 		break;
8549 
8550 	case A_OAMF4SC:
8551 		/* Get all cells in Segment OAM F4 circuit*/
8552 		if (!is_atm)
8553 			bpf_error("'oam4sc' supported only on raw ATM");
8554 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8555 		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8556 		gen_and(b0, b1);
8557 		break;
8558 
8559 	case A_OAMF4EC:
8560 		/* Get all cells in End-to-End OAM F4 Circuit*/
8561 		if (!is_atm)
8562 			bpf_error("'oam4ec' supported only on raw ATM");
8563 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8564 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8565 		gen_and(b0, b1);
8566 		break;
8567 
8568 	case A_SC:
8569 		/*  Get all packets in connection Signalling Circuit */
8570 		if (!is_atm)
8571 			bpf_error("'sc' supported only on raw ATM");
8572 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8573 		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
8574 		gen_and(b0, b1);
8575 		break;
8576 
8577 	case A_ILMIC:
8578 		/* Get all packets in ILMI Circuit */
8579 		if (!is_atm)
8580 			bpf_error("'ilmic' supported only on raw ATM");
8581 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8582 		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
8583 		gen_and(b0, b1);
8584 		break;
8585 
8586 	case A_LANE:
8587 		/* Get all LANE packets */
8588 		if (!is_atm)
8589 			bpf_error("'lane' supported only on raw ATM");
8590 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8591 
8592 		/*
8593 		 * Arrange that all subsequent tests assume LANE
8594 		 * rather than LLC-encapsulated packets, and set
8595 		 * the offsets appropriately for LANE-encapsulated
8596 		 * Ethernet.
8597 		 *
8598 		 * We assume LANE means Ethernet, not Token Ring.
8599 		 */
8600 		PUSH_LINKHDR(DLT_EN10MB, 0,
8601 		    off_payload + 2,	/* Ethernet header */
8602 		    -1);
8603 		off_linktype.constant_part = off_linkhdr.constant_part + 12;
8604 		off_linkpl.constant_part = off_linkhdr.constant_part + 14;	/* Ethernet */
8605 		off_nl = 0;			/* Ethernet II */
8606 		off_nl_nosnap = 3;		/* 802.3+802.2 */
8607 		break;
8608 
8609 	case A_LLC:
8610 		/* Get all LLC-encapsulated packets */
8611 		if (!is_atm)
8612 			bpf_error("'llc' supported only on raw ATM");
8613 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8614 		linktype = prevlinktype;
8615 		break;
8616 
8617 	default:
8618 		abort();
8619 	}
8620 	return b1;
8621 }
8622 
8623 /*
8624  * Filtering for MTP2 messages based on li value
8625  * FISU, length is null
8626  * LSSU, length is 1 or 2
8627  * MSU, length is 3 or more
8628  * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
8629  */
8630 struct block *
gen_mtp2type_abbrev(type)8631 gen_mtp2type_abbrev(type)
8632 	int type;
8633 {
8634 	struct block *b0, *b1;
8635 
8636 	switch (type) {
8637 
8638 	case M_FISU:
8639 		if ( (linktype != DLT_MTP2) &&
8640 		     (linktype != DLT_ERF) &&
8641 		     (linktype != DLT_MTP2_WITH_PHDR) )
8642 			bpf_error("'fisu' supported only on MTP2");
8643 		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8644 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8645 		break;
8646 
8647 	case M_LSSU:
8648 		if ( (linktype != DLT_MTP2) &&
8649 		     (linktype != DLT_ERF) &&
8650 		     (linktype != DLT_MTP2_WITH_PHDR) )
8651 			bpf_error("'lssu' supported only on MTP2");
8652 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8653 		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8654 		gen_and(b1, b0);
8655 		break;
8656 
8657 	case M_MSU:
8658 		if ( (linktype != DLT_MTP2) &&
8659 		     (linktype != DLT_ERF) &&
8660 		     (linktype != DLT_MTP2_WITH_PHDR) )
8661 			bpf_error("'msu' supported only on MTP2");
8662 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8663 		break;
8664 
8665 	case MH_FISU:
8666 		if ( (linktype != DLT_MTP2) &&
8667 		     (linktype != DLT_ERF) &&
8668 		     (linktype != DLT_MTP2_WITH_PHDR) )
8669 			bpf_error("'hfisu' supported only on MTP2_HSL");
8670 		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8671 		b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JEQ, 0, 0);
8672 		break;
8673 
8674 	case MH_LSSU:
8675 		if ( (linktype != DLT_MTP2) &&
8676 		     (linktype != DLT_ERF) &&
8677 		     (linktype != DLT_MTP2_WITH_PHDR) )
8678 			bpf_error("'hlssu' supported only on MTP2_HSL");
8679 		b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 1, 0x0100);
8680 		b1 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0);
8681 		gen_and(b1, b0);
8682 		break;
8683 
8684 	case MH_MSU:
8685 		if ( (linktype != DLT_MTP2) &&
8686 		     (linktype != DLT_ERF) &&
8687 		     (linktype != DLT_MTP2_WITH_PHDR) )
8688 			bpf_error("'hmsu' supported only on MTP2_HSL");
8689 		b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0x0100);
8690 		break;
8691 
8692 	default:
8693 		abort();
8694 	}
8695 	return b0;
8696 }
8697 
8698 struct block *
gen_mtp3field_code(mtp3field,jvalue,jtype,reverse)8699 gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8700 	int mtp3field;
8701 	bpf_u_int32 jvalue;
8702 	bpf_u_int32 jtype;
8703 	int reverse;
8704 {
8705 	struct block *b0;
8706 	bpf_u_int32 val1 , val2 , val3;
8707 	u_int newoff_sio=off_sio;
8708 	u_int newoff_opc=off_opc;
8709 	u_int newoff_dpc=off_dpc;
8710 	u_int newoff_sls=off_sls;
8711 
8712 	switch (mtp3field) {
8713 
8714 	case MH_SIO:
8715 		newoff_sio += 3; /* offset for MTP2_HSL */
8716 		/* FALLTHROUGH */
8717 
8718 	case M_SIO:
8719 		if (off_sio == (u_int)-1)
8720 			bpf_error("'sio' supported only on SS7");
8721 		/* sio coded on 1 byte so max value 255 */
8722 		if(jvalue > 255)
8723 		        bpf_error("sio value %u too big; max value = 255",
8724 		            jvalue);
8725 		b0 = gen_ncmp(OR_PACKET, newoff_sio, BPF_B, 0xffffffff,
8726 		    (u_int)jtype, reverse, (u_int)jvalue);
8727 		break;
8728 
8729 	case MH_OPC:
8730 		newoff_opc+=3;
8731         case M_OPC:
8732 	        if (off_opc == (u_int)-1)
8733 			bpf_error("'opc' supported only on SS7");
8734 		/* opc coded on 14 bits so max value 16383 */
8735 		if (jvalue > 16383)
8736 		        bpf_error("opc value %u too big; max value = 16383",
8737 		            jvalue);
8738 		/* the following instructions are made to convert jvalue
8739 		 * to the form used to write opc in an ss7 message*/
8740 		val1 = jvalue & 0x00003c00;
8741 		val1 = val1 >>10;
8742 		val2 = jvalue & 0x000003fc;
8743 		val2 = val2 <<6;
8744 		val3 = jvalue & 0x00000003;
8745 		val3 = val3 <<22;
8746 		jvalue = val1 + val2 + val3;
8747 		b0 = gen_ncmp(OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0f,
8748 		    (u_int)jtype, reverse, (u_int)jvalue);
8749 		break;
8750 
8751 	case MH_DPC:
8752 		newoff_dpc += 3;
8753 		/* FALLTHROUGH */
8754 
8755 	case M_DPC:
8756 	        if (off_dpc == (u_int)-1)
8757 			bpf_error("'dpc' supported only on SS7");
8758 		/* dpc coded on 14 bits so max value 16383 */
8759 		if (jvalue > 16383)
8760 		        bpf_error("dpc value %u too big; max value = 16383",
8761 		            jvalue);
8762 		/* the following instructions are made to convert jvalue
8763 		 * to the forme used to write dpc in an ss7 message*/
8764 		val1 = jvalue & 0x000000ff;
8765 		val1 = val1 << 24;
8766 		val2 = jvalue & 0x00003f00;
8767 		val2 = val2 << 8;
8768 		jvalue = val1 + val2;
8769 		b0 = gen_ncmp(OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000,
8770 		    (u_int)jtype, reverse, (u_int)jvalue);
8771 		break;
8772 
8773 	case MH_SLS:
8774 	  newoff_sls+=3;
8775 	case M_SLS:
8776 	        if (off_sls == (u_int)-1)
8777 			bpf_error("'sls' supported only on SS7");
8778 		/* sls coded on 4 bits so max value 15 */
8779 		if (jvalue > 15)
8780 		         bpf_error("sls value %u too big; max value = 15",
8781 		             jvalue);
8782 		/* the following instruction is made to convert jvalue
8783 		 * to the forme used to write sls in an ss7 message*/
8784 		jvalue = jvalue << 4;
8785 		b0 = gen_ncmp(OR_PACKET, newoff_sls, BPF_B, 0xf0,
8786 		    (u_int)jtype,reverse, (u_int)jvalue);
8787 		break;
8788 
8789 	default:
8790 		abort();
8791 	}
8792 	return b0;
8793 }
8794 
8795 static struct block *
gen_msg_abbrev(type)8796 gen_msg_abbrev(type)
8797 	int type;
8798 {
8799 	struct block *b1;
8800 
8801 	/*
8802 	 * Q.2931 signalling protocol messages for handling virtual circuits
8803 	 * establishment and teardown
8804 	 */
8805 	switch (type) {
8806 
8807 	case A_SETUP:
8808 		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8809 		break;
8810 
8811 	case A_CALLPROCEED:
8812 		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8813 		break;
8814 
8815 	case A_CONNECT:
8816 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8817 		break;
8818 
8819 	case A_CONNECTACK:
8820 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8821 		break;
8822 
8823 	case A_RELEASE:
8824 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8825 		break;
8826 
8827 	case A_RELEASE_DONE:
8828 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8829 		break;
8830 
8831 	default:
8832 		abort();
8833 	}
8834 	return b1;
8835 }
8836 
8837 struct block *
gen_atmmulti_abbrev(type)8838 gen_atmmulti_abbrev(type)
8839 	int type;
8840 {
8841 	struct block *b0, *b1;
8842 
8843 	switch (type) {
8844 
8845 	case A_OAM:
8846 		if (!is_atm)
8847 			bpf_error("'oam' supported only on raw ATM");
8848 		b1 = gen_atmmulti_abbrev(A_OAMF4);
8849 		break;
8850 
8851 	case A_OAMF4:
8852 		if (!is_atm)
8853 			bpf_error("'oamf4' supported only on raw ATM");
8854 		/* OAM F4 type */
8855 		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8856 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8857 		gen_or(b0, b1);
8858 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8859 		gen_and(b0, b1);
8860 		break;
8861 
8862 	case A_CONNECTMSG:
8863 		/*
8864 		 * Get Q.2931 signalling messages for switched
8865 		 * virtual connection
8866 		 */
8867 		if (!is_atm)
8868 			bpf_error("'connectmsg' supported only on raw ATM");
8869 		b0 = gen_msg_abbrev(A_SETUP);
8870 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8871 		gen_or(b0, b1);
8872 		b0 = gen_msg_abbrev(A_CONNECT);
8873 		gen_or(b0, b1);
8874 		b0 = gen_msg_abbrev(A_CONNECTACK);
8875 		gen_or(b0, b1);
8876 		b0 = gen_msg_abbrev(A_RELEASE);
8877 		gen_or(b0, b1);
8878 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8879 		gen_or(b0, b1);
8880 		b0 = gen_atmtype_abbrev(A_SC);
8881 		gen_and(b0, b1);
8882 		break;
8883 
8884 	case A_METACONNECT:
8885 		if (!is_atm)
8886 			bpf_error("'metaconnect' supported only on raw ATM");
8887 		b0 = gen_msg_abbrev(A_SETUP);
8888 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8889 		gen_or(b0, b1);
8890 		b0 = gen_msg_abbrev(A_CONNECT);
8891 		gen_or(b0, b1);
8892 		b0 = gen_msg_abbrev(A_RELEASE);
8893 		gen_or(b0, b1);
8894 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8895 		gen_or(b0, b1);
8896 		b0 = gen_atmtype_abbrev(A_METAC);
8897 		gen_and(b0, b1);
8898 		break;
8899 
8900 	default:
8901 		abort();
8902 	}
8903 	return b1;
8904 }
8905