• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the target machine instruction set to the code generator.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
15 #define LLVM_TARGET_TARGETINSTRINFO_H
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/CodeGen/MachineCombinerPattern.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/MC/MCInstrInfo.h"
22 #include "llvm/Support/BranchProbability.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24 
25 namespace llvm {
26 
27 class InstrItineraryData;
28 class LiveVariables;
29 class MCAsmInfo;
30 class MachineMemOperand;
31 class MachineRegisterInfo;
32 class MDNode;
33 class MCInst;
34 struct MCSchedModel;
35 class MCSymbolRefExpr;
36 class SDNode;
37 class ScheduleHazardRecognizer;
38 class SelectionDAG;
39 class ScheduleDAG;
40 class TargetRegisterClass;
41 class TargetRegisterInfo;
42 class TargetSubtargetInfo;
43 class TargetSchedModel;
44 class DFAPacketizer;
45 
46 template<class T> class SmallVectorImpl;
47 
48 
49 //---------------------------------------------------------------------------
50 ///
51 /// TargetInstrInfo - Interface to description of machine instruction set
52 ///
53 class TargetInstrInfo : public MCInstrInfo {
54   TargetInstrInfo(const TargetInstrInfo &) = delete;
55   void operator=(const TargetInstrInfo &) = delete;
56 public:
57   TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
58                   unsigned CatchRetOpcode = ~0u)
CallFrameSetupOpcode(CFSetupOpcode)59       : CallFrameSetupOpcode(CFSetupOpcode),
60         CallFrameDestroyOpcode(CFDestroyOpcode),
61         CatchRetOpcode(CatchRetOpcode) {}
62 
63   virtual ~TargetInstrInfo();
64 
isGenericOpcode(unsigned Opc)65   static bool isGenericOpcode(unsigned Opc) {
66     return Opc <= TargetOpcode::GENERIC_OP_END;
67   }
68 
69   /// Given a machine instruction descriptor, returns the register
70   /// class constraint for OpNum, or NULL.
71   const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
72                                          unsigned OpNum,
73                                          const TargetRegisterInfo *TRI,
74                                          const MachineFunction &MF) const;
75 
76   /// Return true if the instruction is trivially rematerializable, meaning it
77   /// has no side effects and requires no operands that aren't always available.
78   /// This means the only allowed uses are constants and unallocatable physical
79   /// registers so that the instructions result is independent of the place
80   /// in the function.
81   bool isTriviallyReMaterializable(const MachineInstr *MI,
82                                    AliasAnalysis *AA = nullptr) const {
83     return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
84            (MI->getDesc().isRematerializable() &&
85             (isReallyTriviallyReMaterializable(MI, AA) ||
86              isReallyTriviallyReMaterializableGeneric(MI, AA)));
87   }
88 
89 protected:
90   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
91   /// set, this hook lets the target specify whether the instruction is actually
92   /// trivially rematerializable, taking into consideration its operands. This
93   /// predicate must return false if the instruction has any side effects other
94   /// than producing a value, or if it requres any address registers that are
95   /// not always available.
96   /// Requirements must be check as stated in isTriviallyReMaterializable() .
isReallyTriviallyReMaterializable(const MachineInstr * MI,AliasAnalysis * AA)97   virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
98                                                  AliasAnalysis *AA) const {
99     return false;
100   }
101 
102   /// This method commutes the operands of the given machine instruction MI.
103   /// The operands to be commuted are specified by their indices OpIdx1 and
104   /// OpIdx2.
105   ///
106   /// If a target has any instructions that are commutable but require
107   /// converting to different instructions or making non-trivial changes
108   /// to commute them, this method can be overloaded to do that.
109   /// The default implementation simply swaps the commutable operands.
110   ///
111   /// If NewMI is false, MI is modified in place and returned; otherwise, a
112   /// new machine instruction is created and returned.
113   ///
114   /// Do not call this method for a non-commutable instruction.
115   /// Even though the instruction is commutable, the method may still
116   /// fail to commute the operands, null pointer is returned in such cases.
117   virtual MachineInstr *commuteInstructionImpl(MachineInstr *MI,
118                                                bool NewMI,
119                                                unsigned OpIdx1,
120                                                unsigned OpIdx2) const;
121 
122   /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
123   /// operand indices to (ResultIdx1, ResultIdx2).
124   /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
125   /// predefined to some indices or be undefined (designated by the special
126   /// value 'CommuteAnyOperandIndex').
127   /// The predefined result indices cannot be re-defined.
128   /// The function returns true iff after the result pair redefinition
129   /// the fixed result pair is equal to or equivalent to the source pair of
130   /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
131   /// the pairs (x,y) and (y,x) are equivalent.
132   static bool fixCommutedOpIndices(unsigned &ResultIdx1,
133                                    unsigned &ResultIdx2,
134                                    unsigned CommutableOpIdx1,
135                                    unsigned CommutableOpIdx2);
136 
137 private:
138   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
139   /// set and the target hook isReallyTriviallyReMaterializable returns false,
140   /// this function does target-independent tests to determine if the
141   /// instruction is really trivially rematerializable.
142   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
143                                                 AliasAnalysis *AA) const;
144 
145 public:
146   /// These methods return the opcode of the frame setup/destroy instructions
147   /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
148   /// order to abstract away the difference between operating with a frame
149   /// pointer and operating without, through the use of these two instructions.
150   ///
getCallFrameSetupOpcode()151   unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
getCallFrameDestroyOpcode()152   unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
153 
getCatchReturnOpcode()154   unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
155 
156   /// Returns the actual stack pointer adjustment made by an instruction
157   /// as part of a call sequence. By default, only call frame setup/destroy
158   /// instructions adjust the stack, but targets may want to override this
159   /// to enable more fine-grained adjustment, or adjust by a different value.
160   virtual int getSPAdjust(const MachineInstr *MI) const;
161 
162   /// Return true if the instruction is a "coalescable" extension instruction.
163   /// That is, it's like a copy where it's legal for the source to overlap the
164   /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
165   /// expected the pre-extension value is available as a subreg of the result
166   /// register. This also returns the sub-register index in SubIdx.
isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx)167   virtual bool isCoalescableExtInstr(const MachineInstr &MI,
168                                      unsigned &SrcReg, unsigned &DstReg,
169                                      unsigned &SubIdx) const {
170     return false;
171   }
172 
173   /// If the specified machine instruction is a direct
174   /// load from a stack slot, return the virtual or physical register number of
175   /// the destination along with the FrameIndex of the loaded stack slot.  If
176   /// not, return 0.  This predicate must return 0 if the instruction has
177   /// any side effects other than loading from the stack slot.
isLoadFromStackSlot(const MachineInstr * MI,int & FrameIndex)178   virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
179                                        int &FrameIndex) const {
180     return 0;
181   }
182 
183   /// Check for post-frame ptr elimination stack locations as well.
184   /// This uses a heuristic so it isn't reliable for correctness.
isLoadFromStackSlotPostFE(const MachineInstr * MI,int & FrameIndex)185   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
186                                              int &FrameIndex) const {
187     return 0;
188   }
189 
190   /// If the specified machine instruction has a load from a stack slot,
191   /// return true along with the FrameIndex of the loaded stack slot and the
192   /// machine mem operand containing the reference.
193   /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
194   /// any instructions that loads from the stack.  This is just a hint, as some
195   /// cases may be missed.
196   virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
197                                     const MachineMemOperand *&MMO,
198                                     int &FrameIndex) const;
199 
200   /// If the specified machine instruction is a direct
201   /// store to a stack slot, return the virtual or physical register number of
202   /// the source reg along with the FrameIndex of the loaded stack slot.  If
203   /// not, return 0.  This predicate must return 0 if the instruction has
204   /// any side effects other than storing to the stack slot.
isStoreToStackSlot(const MachineInstr * MI,int & FrameIndex)205   virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
206                                       int &FrameIndex) const {
207     return 0;
208   }
209 
210   /// Check for post-frame ptr elimination stack locations as well.
211   /// This uses a heuristic, so it isn't reliable for correctness.
isStoreToStackSlotPostFE(const MachineInstr * MI,int & FrameIndex)212   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
213                                             int &FrameIndex) const {
214     return 0;
215   }
216 
217   /// If the specified machine instruction has a store to a stack slot,
218   /// return true along with the FrameIndex of the loaded stack slot and the
219   /// machine mem operand containing the reference.
220   /// If not, return false.  Unlike isStoreToStackSlot,
221   /// this returns true for any instructions that stores to the
222   /// stack.  This is just a hint, as some cases may be missed.
223   virtual bool hasStoreToStackSlot(const MachineInstr *MI,
224                                    const MachineMemOperand *&MMO,
225                                    int &FrameIndex) const;
226 
227   /// Return true if the specified machine instruction
228   /// is a copy of one stack slot to another and has no other effect.
229   /// Provide the identity of the two frame indices.
isStackSlotCopy(const MachineInstr * MI,int & DestFrameIndex,int & SrcFrameIndex)230   virtual bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex,
231                                int &SrcFrameIndex) const {
232     return false;
233   }
234 
235   /// Compute the size in bytes and offset within a stack slot of a spilled
236   /// register or subregister.
237   ///
238   /// \param [out] Size in bytes of the spilled value.
239   /// \param [out] Offset in bytes within the stack slot.
240   /// \returns true if both Size and Offset are successfully computed.
241   ///
242   /// Not all subregisters have computable spill slots. For example,
243   /// subregisters registers may not be byte-sized, and a pair of discontiguous
244   /// subregisters has no single offset.
245   ///
246   /// Targets with nontrivial bigendian implementations may need to override
247   /// this, particularly to support spilled vector registers.
248   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
249                                  unsigned &Size, unsigned &Offset,
250                                  const MachineFunction &MF) const;
251 
252   /// Return true if the instruction is as cheap as a move instruction.
253   ///
254   /// Targets for different archs need to override this, and different
255   /// micro-architectures can also be finely tuned inside.
isAsCheapAsAMove(const MachineInstr * MI)256   virtual bool isAsCheapAsAMove(const MachineInstr *MI) const {
257     return MI->isAsCheapAsAMove();
258   }
259 
260   /// Re-issue the specified 'original' instruction at the
261   /// specific location targeting a new destination register.
262   /// The register in Orig->getOperand(0).getReg() will be substituted by
263   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
264   /// SubIdx.
265   virtual void reMaterialize(MachineBasicBlock &MBB,
266                              MachineBasicBlock::iterator MI,
267                              unsigned DestReg, unsigned SubIdx,
268                              const MachineInstr *Orig,
269                              const TargetRegisterInfo &TRI) const;
270 
271   /// Create a duplicate of the Orig instruction in MF. This is like
272   /// MachineFunction::CloneMachineInstr(), but the target may update operands
273   /// that are required to be unique.
274   ///
275   /// The instruction must be duplicable as indicated by isNotDuplicable().
276   virtual MachineInstr *duplicate(MachineInstr *Orig,
277                                   MachineFunction &MF) const;
278 
279   /// This method must be implemented by targets that
280   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
281   /// may be able to convert a two-address instruction into one or more true
282   /// three-address instructions on demand.  This allows the X86 target (for
283   /// example) to convert ADD and SHL instructions into LEA instructions if they
284   /// would require register copies due to two-addressness.
285   ///
286   /// This method returns a null pointer if the transformation cannot be
287   /// performed, otherwise it returns the last new instruction.
288   ///
289   virtual MachineInstr *
convertToThreeAddress(MachineFunction::iterator & MFI,MachineBasicBlock::iterator & MBBI,LiveVariables * LV)290   convertToThreeAddress(MachineFunction::iterator &MFI,
291                    MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
292     return nullptr;
293   }
294 
295   // This constant can be used as an input value of operand index passed to
296   // the method findCommutedOpIndices() to tell the method that the
297   // corresponding operand index is not pre-defined and that the method
298   // can pick any commutable operand.
299   static const unsigned CommuteAnyOperandIndex = ~0U;
300 
301   /// This method commutes the operands of the given machine instruction MI.
302   ///
303   /// The operands to be commuted are specified by their indices OpIdx1 and
304   /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
305   /// 'CommuteAnyOperandIndex', which means that the method is free to choose
306   /// any arbitrarily chosen commutable operand. If both arguments are set to
307   /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
308   /// operands; then commutes them if such operands could be found.
309   ///
310   /// If NewMI is false, MI is modified in place and returned; otherwise, a
311   /// new machine instruction is created and returned.
312   ///
313   /// Do not call this method for a non-commutable instruction or
314   /// for non-commuable operands.
315   /// Even though the instruction is commutable, the method may still
316   /// fail to commute the operands, null pointer is returned in such cases.
317   MachineInstr *
318   commuteInstruction(MachineInstr *MI,
319                      bool NewMI = false,
320                      unsigned OpIdx1 = CommuteAnyOperandIndex,
321                      unsigned OpIdx2 = CommuteAnyOperandIndex) const;
322 
323   /// Returns true iff the routine could find two commutable operands in the
324   /// given machine instruction.
325   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
326   /// If any of the INPUT values is set to the special value
327   /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
328   /// operand, then returns its index in the corresponding argument.
329   /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
330   /// looks for 2 commutable operands.
331   /// If INPUT values refer to some operands of MI, then the method simply
332   /// returns true if the corresponding operands are commutable and returns
333   /// false otherwise.
334   ///
335   /// For example, calling this method this way:
336   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
337   ///     findCommutedOpIndices(MI, Op1, Op2);
338   /// can be interpreted as a query asking to find an operand that would be
339   /// commutable with the operand#1.
340   virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
341                                      unsigned &SrcOpIdx2) const;
342 
343   /// A pair composed of a register and a sub-register index.
344   /// Used to give some type checking when modeling Reg:SubReg.
345   struct RegSubRegPair {
346     unsigned Reg;
347     unsigned SubReg;
348     RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
RegRegSubRegPair349         : Reg(Reg), SubReg(SubReg) {}
350   };
351   /// A pair composed of a pair of a register and a sub-register index,
352   /// and another sub-register index.
353   /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
354   struct RegSubRegPairAndIdx : RegSubRegPair {
355     unsigned SubIdx;
356     RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
357                         unsigned SubIdx = 0)
RegSubRegPairRegSubRegPairAndIdx358         : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
359   };
360 
361   /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
362   /// and \p DefIdx.
363   /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
364   /// the list is modeled as <Reg:SubReg, SubIdx>.
365   /// E.g., REG_SEQUENCE vreg1:sub1, sub0, vreg2, sub1 would produce
366   /// two elements:
367   /// - vreg1:sub1, sub0
368   /// - vreg2<:0>, sub1
369   ///
370   /// \returns true if it is possible to build such an input sequence
371   /// with the pair \p MI, \p DefIdx. False otherwise.
372   ///
373   /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
374   ///
375   /// \note The generic implementation does not provide any support for
376   /// MI.isRegSequenceLike(). In other words, one has to override
377   /// getRegSequenceLikeInputs for target specific instructions.
378   bool
379   getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
380                        SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
381 
382   /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
383   /// and \p DefIdx.
384   /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
385   /// E.g., EXTRACT_SUBREG vreg1:sub1, sub0, sub1 would produce:
386   /// - vreg1:sub1, sub0
387   ///
388   /// \returns true if it is possible to build such an input sequence
389   /// with the pair \p MI, \p DefIdx. False otherwise.
390   ///
391   /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
392   ///
393   /// \note The generic implementation does not provide any support for
394   /// MI.isExtractSubregLike(). In other words, one has to override
395   /// getExtractSubregLikeInputs for target specific instructions.
396   bool
397   getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
398                          RegSubRegPairAndIdx &InputReg) const;
399 
400   /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
401   /// and \p DefIdx.
402   /// \p [out] BaseReg and \p [out] InsertedReg contain
403   /// the equivalent inputs of INSERT_SUBREG.
404   /// E.g., INSERT_SUBREG vreg0:sub0, vreg1:sub1, sub3 would produce:
405   /// - BaseReg: vreg0:sub0
406   /// - InsertedReg: vreg1:sub1, sub3
407   ///
408   /// \returns true if it is possible to build such an input sequence
409   /// with the pair \p MI, \p DefIdx. False otherwise.
410   ///
411   /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
412   ///
413   /// \note The generic implementation does not provide any support for
414   /// MI.isInsertSubregLike(). In other words, one has to override
415   /// getInsertSubregLikeInputs for target specific instructions.
416   bool
417   getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
418                         RegSubRegPair &BaseReg,
419                         RegSubRegPairAndIdx &InsertedReg) const;
420 
421 
422   /// Return true if two machine instructions would produce identical values.
423   /// By default, this is only true when the two instructions
424   /// are deemed identical except for defs. If this function is called when the
425   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
426   /// aggressive checks.
427   virtual bool produceSameValue(const MachineInstr *MI0,
428                                 const MachineInstr *MI1,
429                                 const MachineRegisterInfo *MRI = nullptr) const;
430 
431   /// Analyze the branching code at the end of MBB, returning
432   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
433   /// implemented for a target).  Upon success, this returns false and returns
434   /// with the following information in various cases:
435   ///
436   /// 1. If this block ends with no branches (it just falls through to its succ)
437   ///    just return false, leaving TBB/FBB null.
438   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
439   ///    the destination block.
440   /// 3. If this block ends with a conditional branch and it falls through to a
441   ///    successor block, it sets TBB to be the branch destination block and a
442   ///    list of operands that evaluate the condition. These operands can be
443   ///    passed to other TargetInstrInfo methods to create new branches.
444   /// 4. If this block ends with a conditional branch followed by an
445   ///    unconditional branch, it returns the 'true' destination in TBB, the
446   ///    'false' destination in FBB, and a list of operands that evaluate the
447   ///    condition.  These operands can be passed to other TargetInstrInfo
448   ///    methods to create new branches.
449   ///
450   /// Note that RemoveBranch and InsertBranch must be implemented to support
451   /// cases where this method returns success.
452   ///
453   /// If AllowModify is true, then this routine is allowed to modify the basic
454   /// block (e.g. delete instructions after the unconditional branch).
455   ///
456   virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
457                              MachineBasicBlock *&FBB,
458                              SmallVectorImpl<MachineOperand> &Cond,
459                              bool AllowModify = false) const {
460     return true;
461   }
462 
463   /// Represents a predicate at the MachineFunction level.  The control flow a
464   /// MachineBranchPredicate represents is:
465   ///
466   ///  Reg <def>= LHS `Predicate` RHS         == ConditionDef
467   ///  if Reg then goto TrueDest else goto FalseDest
468   ///
469   struct MachineBranchPredicate {
470     enum ComparePredicate {
471       PRED_EQ,     // True if two values are equal
472       PRED_NE,     // True if two values are not equal
473       PRED_INVALID // Sentinel value
474     };
475 
476     ComparePredicate Predicate;
477     MachineOperand LHS;
478     MachineOperand RHS;
479     MachineBasicBlock *TrueDest;
480     MachineBasicBlock *FalseDest;
481     MachineInstr *ConditionDef;
482 
483     /// SingleUseCondition is true if ConditionDef is dead except for the
484     /// branch(es) at the end of the basic block.
485     ///
486     bool SingleUseCondition;
487 
MachineBranchPredicateMachineBranchPredicate488     explicit MachineBranchPredicate()
489         : Predicate(PRED_INVALID), LHS(MachineOperand::CreateImm(0)),
490           RHS(MachineOperand::CreateImm(0)), TrueDest(nullptr),
491           FalseDest(nullptr), ConditionDef(nullptr), SingleUseCondition(false) {
492     }
493   };
494 
495   /// Analyze the branching code at the end of MBB and parse it into the
496   /// MachineBranchPredicate structure if possible.  Returns false on success
497   /// and true on failure.
498   ///
499   /// If AllowModify is true, then this routine is allowed to modify the basic
500   /// block (e.g. delete instructions after the unconditional branch).
501   ///
502   virtual bool AnalyzeBranchPredicate(MachineBasicBlock &MBB,
503                                       MachineBranchPredicate &MBP,
504                                       bool AllowModify = false) const {
505     return true;
506   }
507 
508   /// Remove the branching code at the end of the specific MBB.
509   /// This is only invoked in cases where AnalyzeBranch returns success. It
510   /// returns the number of instructions that were removed.
RemoveBranch(MachineBasicBlock & MBB)511   virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
512     llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
513   }
514 
515   /// Insert branch code into the end of the specified MachineBasicBlock.
516   /// The operands to this method are the same as those
517   /// returned by AnalyzeBranch.  This is only invoked in cases where
518   /// AnalyzeBranch returns success. It returns the number of instructions
519   /// inserted.
520   ///
521   /// It is also invoked by tail merging to add unconditional branches in
522   /// cases where AnalyzeBranch doesn't apply because there was no original
523   /// branch to analyze.  At least this much must be implemented, else tail
524   /// merging needs to be disabled.
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,DebugLoc DL)525   virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
526                                 MachineBasicBlock *FBB,
527                                 ArrayRef<MachineOperand> Cond,
528                                 DebugLoc DL) const {
529     llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
530   }
531 
532   /// Delete the instruction OldInst and everything after it, replacing it with
533   /// an unconditional branch to NewDest. This is used by the tail merging pass.
534   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
535                                        MachineBasicBlock *NewDest) const;
536 
537   /// Get an instruction that performs an unconditional branch to the given
538   /// symbol.
539   virtual void
getUnconditionalBranch(MCInst & MI,const MCSymbolRefExpr * BranchTarget)540   getUnconditionalBranch(MCInst &MI,
541                          const MCSymbolRefExpr *BranchTarget) const {
542     llvm_unreachable("Target didn't implement "
543                      "TargetInstrInfo::getUnconditionalBranch!");
544   }
545 
546   /// Get a machine trap instruction.
getTrap(MCInst & MI)547   virtual void getTrap(MCInst &MI) const {
548     llvm_unreachable("Target didn't implement TargetInstrInfo::getTrap!");
549   }
550 
551   /// Get a number of bytes that suffices to hold
552   /// either the instruction returned by getUnconditionalBranch or the
553   /// instruction returned by getTrap. This only makes sense because
554   /// getUnconditionalBranch returns a single, specific instruction. This
555   /// information is needed by the jumptable construction code, since it must
556   /// decide how many bytes to use for a jumptable entry so it can generate the
557   /// right mask.
558   ///
559   /// Note that if the jumptable instruction requires alignment, then that
560   /// alignment should be factored into this required bound so that the
561   /// resulting bound gives the right alignment for the instruction.
getJumpInstrTableEntryBound()562   virtual unsigned getJumpInstrTableEntryBound() const {
563     // This method gets called by LLVMTargetMachine always, so it can't fail
564     // just because there happens to be no implementation for this target.
565     // Any code that tries to use a jumptable annotation without defining
566     // getUnconditionalBranch on the appropriate Target will fail anyway, and
567     // the value returned here won't matter in that case.
568     return 0;
569   }
570 
571   /// Return true if it's legal to split the given basic
572   /// block at the specified instruction (i.e. instruction would be the start
573   /// of a new basic block).
isLegalToSplitMBBAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI)574   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
575                                    MachineBasicBlock::iterator MBBI) const {
576     return true;
577   }
578 
579   /// Return true if it's profitable to predicate
580   /// instructions with accumulated instruction latency of "NumCycles"
581   /// of the specified basic block, where the probability of the instructions
582   /// being executed is given by Probability, and Confidence is a measure
583   /// of our confidence that it will be properly predicted.
584   virtual
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability)585   bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
586                            unsigned ExtraPredCycles,
587                            BranchProbability Probability) const {
588     return false;
589   }
590 
591   /// Second variant of isProfitableToIfCvt. This one
592   /// checks for the case where two basic blocks from true and false path
593   /// of a if-then-else (diamond) are predicated on mutally exclusive
594   /// predicates, where the probability of the true path being taken is given
595   /// by Probability, and Confidence is a measure of our confidence that it
596   /// will be properly predicted.
597   virtual bool
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumTCycles,unsigned ExtraTCycles,MachineBasicBlock & FMBB,unsigned NumFCycles,unsigned ExtraFCycles,BranchProbability Probability)598   isProfitableToIfCvt(MachineBasicBlock &TMBB,
599                       unsigned NumTCycles, unsigned ExtraTCycles,
600                       MachineBasicBlock &FMBB,
601                       unsigned NumFCycles, unsigned ExtraFCycles,
602                       BranchProbability Probability) const {
603     return false;
604   }
605 
606   /// Return true if it's profitable for if-converter to duplicate instructions
607   /// of specified accumulated instruction latencies in the specified MBB to
608   /// enable if-conversion.
609   /// The probability of the instructions being executed is given by
610   /// Probability, and Confidence is a measure of our confidence that it
611   /// will be properly predicted.
612   virtual bool
isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,BranchProbability Probability)613   isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
614                             BranchProbability Probability) const {
615     return false;
616   }
617 
618   /// Return true if it's profitable to unpredicate
619   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
620   /// exclusive predicates.
621   /// e.g.
622   ///   subeq  r0, r1, #1
623   ///   addne  r0, r1, #1
624   /// =>
625   ///   sub    r0, r1, #1
626   ///   addne  r0, r1, #1
627   ///
628   /// This may be profitable is conditional instructions are always executed.
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB)629   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
630                                          MachineBasicBlock &FMBB) const {
631     return false;
632   }
633 
634   /// Return true if it is possible to insert a select
635   /// instruction that chooses between TrueReg and FalseReg based on the
636   /// condition code in Cond.
637   ///
638   /// When successful, also return the latency in cycles from TrueReg,
639   /// FalseReg, and Cond to the destination register. In most cases, a select
640   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
641   ///
642   /// Some x86 implementations have 2-cycle cmov instructions.
643   ///
644   /// @param MBB         Block where select instruction would be inserted.
645   /// @param Cond        Condition returned by AnalyzeBranch.
646   /// @param TrueReg     Virtual register to select when Cond is true.
647   /// @param FalseReg    Virtual register to select when Cond is false.
648   /// @param CondCycles  Latency from Cond+Branch to select output.
649   /// @param TrueCycles  Latency from TrueReg to select output.
650   /// @param FalseCycles Latency from FalseReg to select output.
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles)651   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
652                                ArrayRef<MachineOperand> Cond,
653                                unsigned TrueReg, unsigned FalseReg,
654                                int &CondCycles,
655                                int &TrueCycles, int &FalseCycles) const {
656     return false;
657   }
658 
659   /// Insert a select instruction into MBB before I that will copy TrueReg to
660   /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
661   ///
662   /// This function can only be called after canInsertSelect() returned true.
663   /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
664   /// that the same flags or registers required by Cond are available at the
665   /// insertion point.
666   ///
667   /// @param MBB      Block where select instruction should be inserted.
668   /// @param I        Insertion point.
669   /// @param DL       Source location for debugging.
670   /// @param DstReg   Virtual register to be defined by select instruction.
671   /// @param Cond     Condition as computed by AnalyzeBranch.
672   /// @param TrueReg  Virtual register to copy when Cond is true.
673   /// @param FalseReg Virtual register to copy when Cons is false.
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned DstReg,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg)674   virtual void insertSelect(MachineBasicBlock &MBB,
675                             MachineBasicBlock::iterator I, DebugLoc DL,
676                             unsigned DstReg, ArrayRef<MachineOperand> Cond,
677                             unsigned TrueReg, unsigned FalseReg) const {
678     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
679   }
680 
681   /// Analyze the given select instruction, returning true if
682   /// it cannot be understood. It is assumed that MI->isSelect() is true.
683   ///
684   /// When successful, return the controlling condition and the operands that
685   /// determine the true and false result values.
686   ///
687   ///   Result = SELECT Cond, TrueOp, FalseOp
688   ///
689   /// Some targets can optimize select instructions, for example by predicating
690   /// the instruction defining one of the operands. Such targets should set
691   /// Optimizable.
692   ///
693   /// @param         MI Select instruction to analyze.
694   /// @param Cond    Condition controlling the select.
695   /// @param TrueOp  Operand number of the value selected when Cond is true.
696   /// @param FalseOp Operand number of the value selected when Cond is false.
697   /// @param Optimizable Returned as true if MI is optimizable.
698   /// @returns False on success.
analyzeSelect(const MachineInstr * MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable)699   virtual bool analyzeSelect(const MachineInstr *MI,
700                              SmallVectorImpl<MachineOperand> &Cond,
701                              unsigned &TrueOp, unsigned &FalseOp,
702                              bool &Optimizable) const {
703     assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction");
704     return true;
705   }
706 
707   /// Given a select instruction that was understood by
708   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
709   /// merging it with one of its operands. Returns NULL on failure.
710   ///
711   /// When successful, returns the new select instruction. The client is
712   /// responsible for deleting MI.
713   ///
714   /// If both sides of the select can be optimized, PreferFalse is used to pick
715   /// a side.
716   ///
717   /// @param MI          Optimizable select instruction.
718   /// @param NewMIs     Set that record all MIs in the basic block up to \p
719   /// MI. Has to be updated with any newly created MI or deleted ones.
720   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
721   /// @returns Optimized instruction or NULL.
722   virtual MachineInstr *optimizeSelect(MachineInstr *MI,
723                                        SmallPtrSetImpl<MachineInstr *> &NewMIs,
724                                        bool PreferFalse = false) const {
725     // This function must be implemented if Optimizable is ever set.
726     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
727   }
728 
729   /// Emit instructions to copy a pair of physical registers.
730   ///
731   /// This function should support copies within any legal register class as
732   /// well as any cross-class copies created during instruction selection.
733   ///
734   /// The source and destination registers may overlap, which may require a
735   /// careful implementation when multiple copy instructions are required for
736   /// large registers. See for example the ARM target.
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,DebugLoc DL,unsigned DestReg,unsigned SrcReg,bool KillSrc)737   virtual void copyPhysReg(MachineBasicBlock &MBB,
738                            MachineBasicBlock::iterator MI, DebugLoc DL,
739                            unsigned DestReg, unsigned SrcReg,
740                            bool KillSrc) const {
741     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
742   }
743 
744   /// Store the specified register of the given register class to the specified
745   /// stack frame index. The store instruction is to be added to the given
746   /// machine basic block before the specified machine instruction. If isKill
747   /// is true, the register operand is the last use and must be marked kill.
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)748   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
749                                    MachineBasicBlock::iterator MI,
750                                    unsigned SrcReg, bool isKill, int FrameIndex,
751                                    const TargetRegisterClass *RC,
752                                    const TargetRegisterInfo *TRI) const {
753     llvm_unreachable("Target didn't implement "
754                      "TargetInstrInfo::storeRegToStackSlot!");
755   }
756 
757   /// Load the specified register of the given register class from the specified
758   /// stack frame index. The load instruction is to be added to the given
759   /// machine basic block before the specified machine instruction.
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)760   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
761                                     MachineBasicBlock::iterator MI,
762                                     unsigned DestReg, int FrameIndex,
763                                     const TargetRegisterClass *RC,
764                                     const TargetRegisterInfo *TRI) const {
765     llvm_unreachable("Target didn't implement "
766                      "TargetInstrInfo::loadRegFromStackSlot!");
767   }
768 
769   /// This function is called for all pseudo instructions
770   /// that remain after register allocation. Many pseudo instructions are
771   /// created to help register allocation. This is the place to convert them
772   /// into real instructions. The target can edit MI in place, or it can insert
773   /// new instructions and erase MI. The function should return true if
774   /// anything was changed.
expandPostRAPseudo(MachineBasicBlock::iterator MI)775   virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
776     return false;
777   }
778 
779   /// Attempt to fold a load or store of the specified stack
780   /// slot into the specified machine instruction for the specified operand(s).
781   /// If this is possible, a new instruction is returned with the specified
782   /// operand folded, otherwise NULL is returned.
783   /// The new instruction is inserted before MI, and the client is responsible
784   /// for removing the old instruction.
785   MachineInstr *foldMemoryOperand(MachineBasicBlock::iterator MI,
786                                   ArrayRef<unsigned> Ops, int FrameIndex) const;
787 
788   /// Same as the previous version except it allows folding of any load and
789   /// store from / to any address, not just from a specific stack slot.
790   MachineInstr *foldMemoryOperand(MachineBasicBlock::iterator MI,
791                                   ArrayRef<unsigned> Ops,
792                                   MachineInstr *LoadMI) const;
793 
794   /// Return true when there is potentially a faster code sequence
795   /// for an instruction chain ending in \p Root. All potential patterns are
796   /// returned in the \p Pattern vector. Pattern should be sorted in priority
797   /// order since the pattern evaluator stops checking as soon as it finds a
798   /// faster sequence.
799   /// \param Root - Instruction that could be combined with one of its operands
800   /// \param Patterns - Vector of possible combination patterns
801   virtual bool getMachineCombinerPatterns(
802       MachineInstr &Root,
803       SmallVectorImpl<MachineCombinerPattern> &Patterns) const;
804 
805   /// Return true if the input \P Inst is part of a chain of dependent ops
806   /// that are suitable for reassociation, otherwise return false.
807   /// If the instruction's operands must be commuted to have a previous
808   /// instruction of the same type define the first source operand, \P Commuted
809   /// will be set to true.
810   bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
811 
812   /// Return true when \P Inst is both associative and commutative.
isAssociativeAndCommutative(const MachineInstr & Inst)813   virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
814     return false;
815   }
816 
817   /// Return true when \P Inst has reassociable operands in the same \P MBB.
818   virtual bool hasReassociableOperands(const MachineInstr &Inst,
819                                        const MachineBasicBlock *MBB) const;
820 
821   /// Return true when \P Inst has reassociable sibling.
822   bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
823 
824   /// When getMachineCombinerPatterns() finds patterns, this function generates
825   /// the instructions that could replace the original code sequence. The client
826   /// has to decide whether the actual replacement is beneficial or not.
827   /// \param Root - Instruction that could be combined with one of its operands
828   /// \param Pattern - Combination pattern for Root
829   /// \param InsInstrs - Vector of new instructions that implement P
830   /// \param DelInstrs - Old instructions, including Root, that could be
831   /// replaced by InsInstr
832   /// \param InstrIdxForVirtReg - map of virtual register to instruction in
833   /// InsInstr that defines it
834   virtual void genAlternativeCodeSequence(
835       MachineInstr &Root, MachineCombinerPattern Pattern,
836       SmallVectorImpl<MachineInstr *> &InsInstrs,
837       SmallVectorImpl<MachineInstr *> &DelInstrs,
838       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
839 
840   /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
841   /// reduce critical path length.
842   void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
843                       MachineCombinerPattern Pattern,
844                       SmallVectorImpl<MachineInstr *> &InsInstrs,
845                       SmallVectorImpl<MachineInstr *> &DelInstrs,
846                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
847 
848   /// This is an architecture-specific helper function of reassociateOps.
849   /// Set special operand attributes for new instructions after reassociation.
setSpecialOperandAttr(MachineInstr & OldMI1,MachineInstr & OldMI2,MachineInstr & NewMI1,MachineInstr & NewMI2)850   virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
851                                      MachineInstr &NewMI1,
852                                      MachineInstr &NewMI2) const {
853     return;
854   };
855 
856   /// Return true when a target supports MachineCombiner.
useMachineCombiner()857   virtual bool useMachineCombiner() const { return false; }
858 
859 protected:
860   /// Target-dependent implementation for foldMemoryOperand.
861   /// Target-independent code in foldMemoryOperand will
862   /// take care of adding a MachineMemOperand to the newly created instruction.
863   /// The instruction and any auxiliary instructions necessary will be inserted
864   /// at InsertPt.
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,int FrameIndex)865   virtual MachineInstr *foldMemoryOperandImpl(
866       MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
867       MachineBasicBlock::iterator InsertPt, int FrameIndex) const {
868     return nullptr;
869   }
870 
871   /// Target-dependent implementation for foldMemoryOperand.
872   /// Target-independent code in foldMemoryOperand will
873   /// take care of adding a MachineMemOperand to the newly created instruction.
874   /// The instruction and any auxiliary instructions necessary will be inserted
875   /// at InsertPt.
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,MachineInstr * LoadMI)876   virtual MachineInstr *foldMemoryOperandImpl(
877       MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
878       MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const {
879     return nullptr;
880   }
881 
882   /// \brief Target-dependent implementation of getRegSequenceInputs.
883   ///
884   /// \returns true if it is possible to build the equivalent
885   /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
886   ///
887   /// \pre MI.isRegSequenceLike().
888   ///
889   /// \see TargetInstrInfo::getRegSequenceInputs.
getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs)890   virtual bool getRegSequenceLikeInputs(
891       const MachineInstr &MI, unsigned DefIdx,
892       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
893     return false;
894   }
895 
896   /// \brief Target-dependent implementation of getExtractSubregInputs.
897   ///
898   /// \returns true if it is possible to build the equivalent
899   /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
900   ///
901   /// \pre MI.isExtractSubregLike().
902   ///
903   /// \see TargetInstrInfo::getExtractSubregInputs.
getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg)904   virtual bool getExtractSubregLikeInputs(
905       const MachineInstr &MI, unsigned DefIdx,
906       RegSubRegPairAndIdx &InputReg) const {
907     return false;
908   }
909 
910   /// \brief Target-dependent implementation of getInsertSubregInputs.
911   ///
912   /// \returns true if it is possible to build the equivalent
913   /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
914   ///
915   /// \pre MI.isInsertSubregLike().
916   ///
917   /// \see TargetInstrInfo::getInsertSubregInputs.
918   virtual bool
getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg)919   getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
920                             RegSubRegPair &BaseReg,
921                             RegSubRegPairAndIdx &InsertedReg) const {
922     return false;
923   }
924 
925 public:
926   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
927   /// a store or a load and a store into two or more instruction. If this is
928   /// possible, returns true as well as the new instructions by reference.
unfoldMemoryOperand(MachineFunction & MF,MachineInstr * MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs)929   virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
930                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
931                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
932     return false;
933   }
934 
unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes)935   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
936                                    SmallVectorImpl<SDNode*> &NewNodes) const {
937     return false;
938   }
939 
940   /// Returns the opcode of the would be new
941   /// instruction after load / store are unfolded from an instruction of the
942   /// specified opcode. It returns zero if the specified unfolding is not
943   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
944   /// index of the operand which will hold the register holding the loaded
945   /// value.
946   virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
947                                       bool UnfoldLoad, bool UnfoldStore,
948                                       unsigned *LoadRegIndex = nullptr) const {
949     return 0;
950   }
951 
952   /// This is used by the pre-regalloc scheduler to determine if two loads are
953   /// loading from the same base address. It should only return true if the base
954   /// pointers are the same and the only differences between the two addresses
955   /// are the offset. It also returns the offsets by reference.
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2)956   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
957                                     int64_t &Offset1, int64_t &Offset2) const {
958     return false;
959   }
960 
961   /// This is a used by the pre-regalloc scheduler to determine (in conjunction
962   /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
963   /// On some targets if two loads are loading from
964   /// addresses in the same cache line, it's better if they are scheduled
965   /// together. This function takes two integers that represent the load offsets
966   /// from the common base address. It returns true if it decides it's desirable
967   /// to schedule the two loads together. "NumLoads" is the number of loads that
968   /// have already been scheduled after Load1.
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads)969   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
970                                        int64_t Offset1, int64_t Offset2,
971                                        unsigned NumLoads) const {
972     return false;
973   }
974 
975   /// Get the base register and byte offset of an instruction that reads/writes
976   /// memory.
getMemOpBaseRegImmOfs(MachineInstr * MemOp,unsigned & BaseReg,unsigned & Offset,const TargetRegisterInfo * TRI)977   virtual bool getMemOpBaseRegImmOfs(MachineInstr *MemOp, unsigned &BaseReg,
978                                      unsigned &Offset,
979                                      const TargetRegisterInfo *TRI) const {
980     return false;
981   }
982 
enableClusterLoads()983   virtual bool enableClusterLoads() const { return false; }
984 
shouldClusterLoads(MachineInstr * FirstLdSt,MachineInstr * SecondLdSt,unsigned NumLoads)985   virtual bool shouldClusterLoads(MachineInstr *FirstLdSt,
986                                   MachineInstr *SecondLdSt,
987                                   unsigned NumLoads) const {
988     return false;
989   }
990 
991   /// Can this target fuse the given instructions if they are scheduled
992   /// adjacent.
shouldScheduleAdjacent(MachineInstr * First,MachineInstr * Second)993   virtual bool shouldScheduleAdjacent(MachineInstr* First,
994                                       MachineInstr *Second) const {
995     return false;
996   }
997 
998   /// Reverses the branch condition of the specified condition list,
999   /// returning false on success and true if it cannot be reversed.
1000   virtual
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond)1001   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1002     return true;
1003   }
1004 
1005   /// Insert a noop into the instruction stream at the specified point.
1006   virtual void insertNoop(MachineBasicBlock &MBB,
1007                           MachineBasicBlock::iterator MI) const;
1008 
1009 
1010   /// Return the noop instruction to use for a noop.
1011   virtual void getNoopForMachoTarget(MCInst &NopInst) const;
1012 
1013 
1014   /// Returns true if the instruction is already predicated.
isPredicated(const MachineInstr * MI)1015   virtual bool isPredicated(const MachineInstr *MI) const {
1016     return false;
1017   }
1018 
1019   /// Returns true if the instruction is a
1020   /// terminator instruction that has not been predicated.
1021   virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
1022 
1023   /// Convert the instruction into a predicated instruction.
1024   /// It returns true if the operation was successful.
1025   virtual
1026   bool PredicateInstruction(MachineInstr *MI,
1027                             ArrayRef<MachineOperand> Pred) const;
1028 
1029   /// Returns true if the first specified predicate
1030   /// subsumes the second, e.g. GE subsumes GT.
1031   virtual
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2)1032   bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1033                          ArrayRef<MachineOperand> Pred2) const {
1034     return false;
1035   }
1036 
1037   /// If the specified instruction defines any predicate
1038   /// or condition code register(s) used for predication, returns true as well
1039   /// as the definition predicate(s) by reference.
DefinesPredicate(MachineInstr * MI,std::vector<MachineOperand> & Pred)1040   virtual bool DefinesPredicate(MachineInstr *MI,
1041                                 std::vector<MachineOperand> &Pred) const {
1042     return false;
1043   }
1044 
1045   /// Return true if the specified instruction can be predicated.
1046   /// By default, this returns true for every instruction with a
1047   /// PredicateOperand.
isPredicable(MachineInstr * MI)1048   virtual bool isPredicable(MachineInstr *MI) const {
1049     return MI->getDesc().isPredicable();
1050   }
1051 
1052   /// Return true if it's safe to move a machine
1053   /// instruction that defines the specified register class.
isSafeToMoveRegClassDefs(const TargetRegisterClass * RC)1054   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1055     return true;
1056   }
1057 
1058   /// Test if the given instruction should be considered a scheduling boundary.
1059   /// This primarily includes labels and terminators.
1060   virtual bool isSchedulingBoundary(const MachineInstr *MI,
1061                                     const MachineBasicBlock *MBB,
1062                                     const MachineFunction &MF) const;
1063 
1064   /// Measure the specified inline asm to determine an approximation of its
1065   /// length.
1066   virtual unsigned getInlineAsmLength(const char *Str,
1067                                       const MCAsmInfo &MAI) const;
1068 
1069   /// Allocate and return a hazard recognizer to use for this target when
1070   /// scheduling the machine instructions before register allocation.
1071   virtual ScheduleHazardRecognizer*
1072   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1073                                const ScheduleDAG *DAG) const;
1074 
1075   /// Allocate and return a hazard recognizer to use for this target when
1076   /// scheduling the machine instructions before register allocation.
1077   virtual ScheduleHazardRecognizer*
1078   CreateTargetMIHazardRecognizer(const InstrItineraryData*,
1079                                  const ScheduleDAG *DAG) const;
1080 
1081   /// Allocate and return a hazard recognizer to use for this target when
1082   /// scheduling the machine instructions after register allocation.
1083   virtual ScheduleHazardRecognizer*
1084   CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
1085                                      const ScheduleDAG *DAG) const;
1086 
1087   /// Provide a global flag for disabling the PreRA hazard recognizer that
1088   /// targets may choose to honor.
1089   bool usePreRAHazardRecognizer() const;
1090 
1091   /// For a comparison instruction, return the source registers
1092   /// in SrcReg and SrcReg2 if having two register operands, and the value it
1093   /// compares against in CmpValue. Return true if the comparison instruction
1094   /// can be analyzed.
analyzeCompare(const MachineInstr * MI,unsigned & SrcReg,unsigned & SrcReg2,int & Mask,int & Value)1095   virtual bool analyzeCompare(const MachineInstr *MI,
1096                               unsigned &SrcReg, unsigned &SrcReg2,
1097                               int &Mask, int &Value) const {
1098     return false;
1099   }
1100 
1101   /// See if the comparison instruction can be converted
1102   /// into something more efficient. E.g., on ARM most instructions can set the
1103   /// flags register, obviating the need for a separate CMP.
optimizeCompareInstr(MachineInstr * CmpInstr,unsigned SrcReg,unsigned SrcReg2,int Mask,int Value,const MachineRegisterInfo * MRI)1104   virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
1105                                     unsigned SrcReg, unsigned SrcReg2,
1106                                     int Mask, int Value,
1107                                     const MachineRegisterInfo *MRI) const {
1108     return false;
1109   }
optimizeCondBranch(MachineInstr * MI)1110   virtual bool optimizeCondBranch(MachineInstr *MI) const { return false; }
1111 
1112   /// Try to remove the load by folding it to a register operand at the use.
1113   /// We fold the load instructions if and only if the
1114   /// def and use are in the same BB. We only look at one load and see
1115   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1116   /// defined by the load we are trying to fold. DefMI returns the machine
1117   /// instruction that defines FoldAsLoadDefReg, and the function returns
1118   /// the machine instruction generated due to folding.
optimizeLoadInstr(MachineInstr * MI,const MachineRegisterInfo * MRI,unsigned & FoldAsLoadDefReg,MachineInstr * & DefMI)1119   virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
1120                         const MachineRegisterInfo *MRI,
1121                         unsigned &FoldAsLoadDefReg,
1122                         MachineInstr *&DefMI) const {
1123     return nullptr;
1124   }
1125 
1126   /// 'Reg' is known to be defined by a move immediate instruction,
1127   /// try to fold the immediate into the use instruction.
1128   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1129   /// then the caller may assume that DefMI has been erased from its parent
1130   /// block. The caller may assume that it will not be erased by this
1131   /// function otherwise.
FoldImmediate(MachineInstr * UseMI,MachineInstr * DefMI,unsigned Reg,MachineRegisterInfo * MRI)1132   virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
1133                              unsigned Reg, MachineRegisterInfo *MRI) const {
1134     return false;
1135   }
1136 
1137   /// Return the number of u-operations the given machine
1138   /// instruction will be decoded to on the target cpu. The itinerary's
1139   /// IssueWidth is the number of microops that can be dispatched each
1140   /// cycle. An instruction with zero microops takes no dispatch resources.
1141   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1142                                   const MachineInstr *MI) const;
1143 
1144   /// Return true for pseudo instructions that don't consume any
1145   /// machine resources in their current form. These are common cases that the
1146   /// scheduler should consider free, rather than conservatively handling them
1147   /// as instructions with no itinerary.
isZeroCost(unsigned Opcode)1148   bool isZeroCost(unsigned Opcode) const {
1149     return Opcode <= TargetOpcode::COPY;
1150   }
1151 
1152   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1153                                 SDNode *DefNode, unsigned DefIdx,
1154                                 SDNode *UseNode, unsigned UseIdx) const;
1155 
1156   /// Compute and return the use operand latency of a given pair of def and use.
1157   /// In most cases, the static scheduling itinerary was enough to determine the
1158   /// operand latency. But it may not be possible for instructions with variable
1159   /// number of defs / uses.
1160   ///
1161   /// This is a raw interface to the itinerary that may be directly overridden
1162   /// by a target. Use computeOperandLatency to get the best estimate of
1163   /// latency.
1164   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1165                                 const MachineInstr *DefMI, unsigned DefIdx,
1166                                 const MachineInstr *UseMI,
1167                                 unsigned UseIdx) const;
1168 
1169   /// Compute and return the latency of the given data
1170   /// dependent def and use when the operand indices are already known.
1171   unsigned computeOperandLatency(const InstrItineraryData *ItinData,
1172                                  const MachineInstr *DefMI, unsigned DefIdx,
1173                                  const MachineInstr *UseMI, unsigned UseIdx)
1174     const;
1175 
1176   /// Compute the instruction latency of a given instruction.
1177   /// If the instruction has higher cost when predicated, it's returned via
1178   /// PredCost.
1179   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1180                                    const MachineInstr *MI,
1181                                    unsigned *PredCost = nullptr) const;
1182 
1183   virtual unsigned getPredicationCost(const MachineInstr *MI) const;
1184 
1185   virtual int getInstrLatency(const InstrItineraryData *ItinData,
1186                               SDNode *Node) const;
1187 
1188   /// Return the default expected latency for a def based on it's opcode.
1189   unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1190                              const MachineInstr *DefMI) const;
1191 
1192   int computeDefOperandLatency(const InstrItineraryData *ItinData,
1193                                const MachineInstr *DefMI) const;
1194 
1195   /// Return true if this opcode has high latency to its result.
isHighLatencyDef(int opc)1196   virtual bool isHighLatencyDef(int opc) const { return false; }
1197 
1198   /// Compute operand latency between a def of 'Reg'
1199   /// and a use in the current loop. Return true if the target considered
1200   /// it 'high'. This is used by optimization passes such as machine LICM to
1201   /// determine whether it makes sense to hoist an instruction out even in a
1202   /// high register pressure situation.
1203   virtual
hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr * DefMI,unsigned DefIdx,const MachineInstr * UseMI,unsigned UseIdx)1204   bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1205                              const MachineRegisterInfo *MRI,
1206                              const MachineInstr *DefMI, unsigned DefIdx,
1207                              const MachineInstr *UseMI, unsigned UseIdx) const {
1208     return false;
1209   }
1210 
1211   /// Compute operand latency of a def of 'Reg'. Return true
1212   /// if the target considered it 'low'.
1213   virtual
1214   bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1215                         const MachineInstr *DefMI, unsigned DefIdx) const;
1216 
1217   /// Perform target-specific instruction verification.
1218   virtual
verifyInstruction(const MachineInstr * MI,StringRef & ErrInfo)1219   bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
1220     return true;
1221   }
1222 
1223   /// Return the current execution domain and bit mask of
1224   /// possible domains for instruction.
1225   ///
1226   /// Some micro-architectures have multiple execution domains, and multiple
1227   /// opcodes that perform the same operation in different domains.  For
1228   /// example, the x86 architecture provides the por, orps, and orpd
1229   /// instructions that all do the same thing.  There is a latency penalty if a
1230   /// register is written in one domain and read in another.
1231   ///
1232   /// This function returns a pair (domain, mask) containing the execution
1233   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
1234   /// function can be used to change the opcode to one of the domains in the
1235   /// bit mask.  Instructions whose execution domain can't be changed should
1236   /// return a 0 mask.
1237   ///
1238   /// The execution domain numbers don't have any special meaning except domain
1239   /// 0 is used for instructions that are not associated with any interesting
1240   /// execution domain.
1241   ///
1242   virtual std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr * MI)1243   getExecutionDomain(const MachineInstr *MI) const {
1244     return std::make_pair(0, 0);
1245   }
1246 
1247   /// Change the opcode of MI to execute in Domain.
1248   ///
1249   /// The bit (1 << Domain) must be set in the mask returned from
1250   /// getExecutionDomain(MI).
setExecutionDomain(MachineInstr * MI,unsigned Domain)1251   virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
1252 
1253 
1254   /// Returns the preferred minimum clearance
1255   /// before an instruction with an unwanted partial register update.
1256   ///
1257   /// Some instructions only write part of a register, and implicitly need to
1258   /// read the other parts of the register.  This may cause unwanted stalls
1259   /// preventing otherwise unrelated instructions from executing in parallel in
1260   /// an out-of-order CPU.
1261   ///
1262   /// For example, the x86 instruction cvtsi2ss writes its result to bits
1263   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1264   /// the instruction needs to wait for the old value of the register to become
1265   /// available:
1266   ///
1267   ///   addps %xmm1, %xmm0
1268   ///   movaps %xmm0, (%rax)
1269   ///   cvtsi2ss %rbx, %xmm0
1270   ///
1271   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1272   /// instruction before it can issue, even though the high bits of %xmm0
1273   /// probably aren't needed.
1274   ///
1275   /// This hook returns the preferred clearance before MI, measured in
1276   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
1277   /// instructions before MI.  It should only return a positive value for
1278   /// unwanted dependencies.  If the old bits of the defined register have
1279   /// useful values, or if MI is determined to otherwise read the dependency,
1280   /// the hook should return 0.
1281   ///
1282   /// The unwanted dependency may be handled by:
1283   ///
1284   /// 1. Allocating the same register for an MI def and use.  That makes the
1285   ///    unwanted dependency identical to a required dependency.
1286   ///
1287   /// 2. Allocating a register for the def that has no defs in the previous N
1288   ///    instructions.
1289   ///
1290   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
1291   ///    allows the target to insert a dependency breaking instruction.
1292   ///
1293   virtual unsigned
getPartialRegUpdateClearance(const MachineInstr * MI,unsigned OpNum,const TargetRegisterInfo * TRI)1294   getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
1295                                const TargetRegisterInfo *TRI) const {
1296     // The default implementation returns 0 for no partial register dependency.
1297     return 0;
1298   }
1299 
1300   /// \brief Return the minimum clearance before an instruction that reads an
1301   /// unused register.
1302   ///
1303   /// For example, AVX instructions may copy part of a register operand into
1304   /// the unused high bits of the destination register.
1305   ///
1306   /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
1307   ///
1308   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1309   /// false dependence on any previous write to %xmm0.
1310   ///
1311   /// This hook works similarly to getPartialRegUpdateClearance, except that it
1312   /// does not take an operand index. Instead sets \p OpNum to the index of the
1313   /// unused register.
getUndefRegClearance(const MachineInstr * MI,unsigned & OpNum,const TargetRegisterInfo * TRI)1314   virtual unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
1315                                         const TargetRegisterInfo *TRI) const {
1316     // The default implementation returns 0 for no undef register dependency.
1317     return 0;
1318   }
1319 
1320   /// Insert a dependency-breaking instruction
1321   /// before MI to eliminate an unwanted dependency on OpNum.
1322   ///
1323   /// If it wasn't possible to avoid a def in the last N instructions before MI
1324   /// (see getPartialRegUpdateClearance), this hook will be called to break the
1325   /// unwanted dependency.
1326   ///
1327   /// On x86, an xorps instruction can be used as a dependency breaker:
1328   ///
1329   ///   addps %xmm1, %xmm0
1330   ///   movaps %xmm0, (%rax)
1331   ///   xorps %xmm0, %xmm0
1332   ///   cvtsi2ss %rbx, %xmm0
1333   ///
1334   /// An <imp-kill> operand should be added to MI if an instruction was
1335   /// inserted.  This ties the instructions together in the post-ra scheduler.
1336   ///
1337   virtual void
breakPartialRegDependency(MachineBasicBlock::iterator MI,unsigned OpNum,const TargetRegisterInfo * TRI)1338   breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
1339                             const TargetRegisterInfo *TRI) const {}
1340 
1341   /// Create machine specific model for scheduling.
1342   virtual DFAPacketizer *
CreateTargetScheduleState(const TargetSubtargetInfo &)1343   CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1344     return nullptr;
1345   }
1346 
1347   // Sometimes, it is possible for the target
1348   // to tell, even without aliasing information, that two MIs access different
1349   // memory addresses. This function returns true if two MIs access different
1350   // memory addresses and false otherwise.
1351   virtual bool
1352   areMemAccessesTriviallyDisjoint(MachineInstr *MIa, MachineInstr *MIb,
1353                                   AliasAnalysis *AA = nullptr) const {
1354     assert(MIa && (MIa->mayLoad() || MIa->mayStore()) &&
1355            "MIa must load from or modify a memory location");
1356     assert(MIb && (MIb->mayLoad() || MIb->mayStore()) &&
1357            "MIb must load from or modify a memory location");
1358     return false;
1359   }
1360 
1361   /// \brief Return the value to use for the MachineCSE's LookAheadLimit,
1362   /// which is a heuristic used for CSE'ing phys reg defs.
getMachineCSELookAheadLimit()1363   virtual unsigned getMachineCSELookAheadLimit () const {
1364     // The default lookahead is small to prevent unprofitable quadratic
1365     // behavior.
1366     return 5;
1367   }
1368 
1369   /// Return an array that contains the ids of the target indices (used for the
1370   /// TargetIndex machine operand) and their names.
1371   ///
1372   /// MIR Serialization is able to serialize only the target indices that are
1373   /// defined by this method.
1374   virtual ArrayRef<std::pair<int, const char *>>
getSerializableTargetIndices()1375   getSerializableTargetIndices() const {
1376     return None;
1377   }
1378 
1379   /// Decompose the machine operand's target flags into two values - the direct
1380   /// target flag value and any of bit flags that are applied.
1381   virtual std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned)1382   decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1383     return std::make_pair(0u, 0u);
1384   }
1385 
1386   /// Return an array that contains the direct target flag values and their
1387   /// names.
1388   ///
1389   /// MIR Serialization is able to serialize only the target flags that are
1390   /// defined by this method.
1391   virtual ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags()1392   getSerializableDirectMachineOperandTargetFlags() const {
1393     return None;
1394   }
1395 
1396   /// Return an array that contains the bitmask target flag values and their
1397   /// names.
1398   ///
1399   /// MIR Serialization is able to serialize only the target flags that are
1400   /// defined by this method.
1401   virtual ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags()1402   getSerializableBitmaskMachineOperandTargetFlags() const {
1403     return None;
1404   }
1405 
1406 private:
1407   unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
1408   unsigned CatchRetOpcode;
1409 };
1410 
1411 /// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
1412 template<>
1413 struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
1414   typedef DenseMapInfo<unsigned> RegInfo;
1415 
1416   static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
1417     return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
1418                          RegInfo::getEmptyKey());
1419   }
1420   static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
1421     return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
1422                          RegInfo::getTombstoneKey());
1423   }
1424   /// \brief Reuse getHashValue implementation from
1425   /// std::pair<unsigned, unsigned>.
1426   static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
1427     std::pair<unsigned, unsigned> PairVal =
1428         std::make_pair(Val.Reg, Val.SubReg);
1429     return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
1430   }
1431   static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
1432                       const TargetInstrInfo::RegSubRegPair &RHS) {
1433     return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
1434            RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
1435   }
1436 };
1437 
1438 } // End llvm namespace
1439 
1440 #endif
1441