1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "precomp.hpp"
44
45 #if !defined HAVE_CUDA || defined(CUDA_DISABLER)
46
create(double,double,double,int,int,double,int,double,double,bool)47 Ptr<OpticalFlowDual_TVL1> cv::cuda::OpticalFlowDual_TVL1::create(double, double, double, int, int, double, int, double, double, bool) { throw_no_cuda(); return Ptr<OpticalFlowDual_TVL1>(); }
48
49 #else
50
51 using namespace cv;
52 using namespace cv::cuda;
53
54 namespace tvl1flow
55 {
56 void centeredGradient(PtrStepSzf src, PtrStepSzf dx, PtrStepSzf dy, cudaStream_t stream);
57 void warpBackward(PtrStepSzf I0, PtrStepSzf I1, PtrStepSzf I1x, PtrStepSzf I1y,
58 PtrStepSzf u1, PtrStepSzf u2,
59 PtrStepSzf I1w, PtrStepSzf I1wx, PtrStepSzf I1wy,
60 PtrStepSzf grad, PtrStepSzf rho,
61 cudaStream_t stream);
62 void estimateU(PtrStepSzf I1wx, PtrStepSzf I1wy,
63 PtrStepSzf grad, PtrStepSzf rho_c,
64 PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, PtrStepSzf p31, PtrStepSzf p32,
65 PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf u3, PtrStepSzf error,
66 float l_t, float theta, float gamma, bool calcError,
67 cudaStream_t stream);
68 void estimateDualVariables(PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf u3,
69 PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, PtrStepSzf p31, PtrStepSzf p32,
70 float taut, float gamma,
71 cudaStream_t stream);
72 }
73
74 namespace
75 {
76 class OpticalFlowDual_TVL1_Impl : public OpticalFlowDual_TVL1
77 {
78 public:
OpticalFlowDual_TVL1_Impl(double tau,double lambda,double theta,int nscales,int warps,double epsilon,int iterations,double scaleStep,double gamma,bool useInitialFlow)79 OpticalFlowDual_TVL1_Impl(double tau, double lambda, double theta, int nscales, int warps, double epsilon,
80 int iterations, double scaleStep, double gamma, bool useInitialFlow) :
81 tau_(tau), lambda_(lambda), gamma_(gamma), theta_(theta), nscales_(nscales), warps_(warps),
82 epsilon_(epsilon), iterations_(iterations), scaleStep_(scaleStep), useInitialFlow_(useInitialFlow)
83 {
84 }
85
getTau() const86 virtual double getTau() const { return tau_; }
setTau(double tau)87 virtual void setTau(double tau) { tau_ = tau; }
88
getLambda() const89 virtual double getLambda() const { return lambda_; }
setLambda(double lambda)90 virtual void setLambda(double lambda) { lambda_ = lambda; }
91
getGamma() const92 virtual double getGamma() const { return gamma_; }
setGamma(double gamma)93 virtual void setGamma(double gamma) { gamma_ = gamma; }
94
getTheta() const95 virtual double getTheta() const { return theta_; }
setTheta(double theta)96 virtual void setTheta(double theta) { theta_ = theta; }
97
getNumScales() const98 virtual int getNumScales() const { return nscales_; }
setNumScales(int nscales)99 virtual void setNumScales(int nscales) { nscales_ = nscales; }
100
getNumWarps() const101 virtual int getNumWarps() const { return warps_; }
setNumWarps(int warps)102 virtual void setNumWarps(int warps) { warps_ = warps; }
103
getEpsilon() const104 virtual double getEpsilon() const { return epsilon_; }
setEpsilon(double epsilon)105 virtual void setEpsilon(double epsilon) { epsilon_ = epsilon; }
106
getNumIterations() const107 virtual int getNumIterations() const { return iterations_; }
setNumIterations(int iterations)108 virtual void setNumIterations(int iterations) { iterations_ = iterations; }
109
getScaleStep() const110 virtual double getScaleStep() const { return scaleStep_; }
setScaleStep(double scaleStep)111 virtual void setScaleStep(double scaleStep) { scaleStep_ = scaleStep; }
112
getUseInitialFlow() const113 virtual bool getUseInitialFlow() const { return useInitialFlow_; }
setUseInitialFlow(bool useInitialFlow)114 virtual void setUseInitialFlow(bool useInitialFlow) { useInitialFlow_ = useInitialFlow; }
115
116 virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream);
117
118 private:
119 double tau_;
120 double lambda_;
121 double gamma_;
122 double theta_;
123 int nscales_;
124 int warps_;
125 double epsilon_;
126 int iterations_;
127 double scaleStep_;
128 bool useInitialFlow_;
129
130 private:
131 void calcImpl(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, Stream& stream);
132 void procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2, GpuMat& u3, Stream& stream);
133
134 std::vector<GpuMat> I0s;
135 std::vector<GpuMat> I1s;
136 std::vector<GpuMat> u1s;
137 std::vector<GpuMat> u2s;
138 std::vector<GpuMat> u3s;
139
140 GpuMat I1x_buf;
141 GpuMat I1y_buf;
142
143 GpuMat I1w_buf;
144 GpuMat I1wx_buf;
145 GpuMat I1wy_buf;
146
147 GpuMat grad_buf;
148 GpuMat rho_c_buf;
149
150 GpuMat p11_buf;
151 GpuMat p12_buf;
152 GpuMat p21_buf;
153 GpuMat p22_buf;
154 GpuMat p31_buf;
155 GpuMat p32_buf;
156
157 GpuMat diff_buf;
158 GpuMat norm_buf;
159 };
160
calc(InputArray _frame0,InputArray _frame1,InputOutputArray _flow,Stream & stream)161 void OpticalFlowDual_TVL1_Impl::calc(InputArray _frame0, InputArray _frame1, InputOutputArray _flow, Stream& stream)
162 {
163 const GpuMat frame0 = _frame0.getGpuMat();
164 const GpuMat frame1 = _frame1.getGpuMat();
165
166 BufferPool pool(stream);
167 GpuMat flowx = pool.getBuffer(frame0.size(), CV_32FC1);
168 GpuMat flowy = pool.getBuffer(frame0.size(), CV_32FC1);
169
170 calcImpl(frame0, frame1, flowx, flowy, stream);
171
172 GpuMat flows[] = {flowx, flowy};
173 cuda::merge(flows, 2, _flow, stream);
174 }
175
calcImpl(const GpuMat & I0,const GpuMat & I1,GpuMat & flowx,GpuMat & flowy,Stream & stream)176 void OpticalFlowDual_TVL1_Impl::calcImpl(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, Stream& stream)
177 {
178 CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 );
179 CV_Assert( I0.size() == I1.size() );
180 CV_Assert( I0.type() == I1.type() );
181 CV_Assert( !useInitialFlow_ || (flowx.size() == I0.size() && flowx.type() == CV_32FC1 && flowy.size() == flowx.size() && flowy.type() == flowx.type()) );
182 CV_Assert( nscales_ > 0 );
183
184 // allocate memory for the pyramid structure
185 I0s.resize(nscales_);
186 I1s.resize(nscales_);
187 u1s.resize(nscales_);
188 u2s.resize(nscales_);
189 u3s.resize(nscales_);
190
191 I0.convertTo(I0s[0], CV_32F, I0.depth() == CV_8U ? 1.0 : 255.0, stream);
192 I1.convertTo(I1s[0], CV_32F, I1.depth() == CV_8U ? 1.0 : 255.0, stream);
193
194 if (!useInitialFlow_)
195 {
196 flowx.create(I0.size(), CV_32FC1);
197 flowy.create(I0.size(), CV_32FC1);
198 }
199
200 u1s[0] = flowx;
201 u2s[0] = flowy;
202 if (gamma_)
203 {
204 u3s[0].create(I0.size(), CV_32FC1);
205 }
206
207 I1x_buf.create(I0.size(), CV_32FC1);
208 I1y_buf.create(I0.size(), CV_32FC1);
209
210 I1w_buf.create(I0.size(), CV_32FC1);
211 I1wx_buf.create(I0.size(), CV_32FC1);
212 I1wy_buf.create(I0.size(), CV_32FC1);
213
214 grad_buf.create(I0.size(), CV_32FC1);
215 rho_c_buf.create(I0.size(), CV_32FC1);
216
217 p11_buf.create(I0.size(), CV_32FC1);
218 p12_buf.create(I0.size(), CV_32FC1);
219 p21_buf.create(I0.size(), CV_32FC1);
220 p22_buf.create(I0.size(), CV_32FC1);
221 if (gamma_)
222 {
223 p31_buf.create(I0.size(), CV_32FC1);
224 p32_buf.create(I0.size(), CV_32FC1);
225 }
226 diff_buf.create(I0.size(), CV_32FC1);
227
228 // create the scales
229 for (int s = 1; s < nscales_; ++s)
230 {
231 cuda::resize(I0s[s-1], I0s[s], Size(), scaleStep_, scaleStep_, INTER_LINEAR, stream);
232 cuda::resize(I1s[s-1], I1s[s], Size(), scaleStep_, scaleStep_, INTER_LINEAR, stream);
233
234 if (I0s[s].cols < 16 || I0s[s].rows < 16)
235 {
236 nscales_ = s;
237 break;
238 }
239
240 if (useInitialFlow_)
241 {
242 cuda::resize(u1s[s-1], u1s[s], Size(), scaleStep_, scaleStep_, INTER_LINEAR, stream);
243 cuda::resize(u2s[s-1], u2s[s], Size(), scaleStep_, scaleStep_, INTER_LINEAR, stream);
244
245 cuda::multiply(u1s[s], Scalar::all(scaleStep_), u1s[s], 1, -1, stream);
246 cuda::multiply(u2s[s], Scalar::all(scaleStep_), u2s[s], 1, -1, stream);
247 }
248 else
249 {
250 u1s[s].create(I0s[s].size(), CV_32FC1);
251 u2s[s].create(I0s[s].size(), CV_32FC1);
252 }
253 if (gamma_)
254 {
255 u3s[s].create(I0s[s].size(), CV_32FC1);
256 }
257 }
258
259 if (!useInitialFlow_)
260 {
261 u1s[nscales_-1].setTo(Scalar::all(0), stream);
262 u2s[nscales_-1].setTo(Scalar::all(0), stream);
263 }
264 if (gamma_)
265 {
266 u3s[nscales_ - 1].setTo(Scalar::all(0), stream);
267 }
268
269 // pyramidal structure for computing the optical flow
270 for (int s = nscales_ - 1; s >= 0; --s)
271 {
272 // compute the optical flow at the current scale
273 procOneScale(I0s[s], I1s[s], u1s[s], u2s[s], u3s[s], stream);
274
275 // if this was the last scale, finish now
276 if (s == 0)
277 break;
278
279 // otherwise, upsample the optical flow
280
281 // zoom the optical flow for the next finer scale
282 cuda::resize(u1s[s], u1s[s - 1], I0s[s - 1].size(), 0, 0, INTER_LINEAR, stream);
283 cuda::resize(u2s[s], u2s[s - 1], I0s[s - 1].size(), 0, 0, INTER_LINEAR, stream);
284 if (gamma_)
285 {
286 cuda::resize(u3s[s], u3s[s - 1], I0s[s - 1].size(), 0, 0, INTER_LINEAR, stream);
287 }
288
289 // scale the optical flow with the appropriate zoom factor
290 cuda::multiply(u1s[s - 1], Scalar::all(1/scaleStep_), u1s[s - 1], 1, -1, stream);
291 cuda::multiply(u2s[s - 1], Scalar::all(1/scaleStep_), u2s[s - 1], 1, -1, stream);
292 }
293 }
294
procOneScale(const GpuMat & I0,const GpuMat & I1,GpuMat & u1,GpuMat & u2,GpuMat & u3,Stream & _stream)295 void OpticalFlowDual_TVL1_Impl::procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2, GpuMat& u3, Stream& _stream)
296 {
297 using namespace tvl1flow;
298
299 cudaStream_t stream = StreamAccessor::getStream(_stream);
300
301 const double scaledEpsilon = epsilon_ * epsilon_ * I0.size().area();
302
303 CV_DbgAssert( I1.size() == I0.size() );
304 CV_DbgAssert( I1.type() == I0.type() );
305 CV_DbgAssert( u1.size() == I0.size() );
306 CV_DbgAssert( u2.size() == u1.size() );
307
308 GpuMat I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows));
309 GpuMat I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows));
310 centeredGradient(I1, I1x, I1y, stream);
311
312 GpuMat I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows));
313 GpuMat I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows));
314 GpuMat I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows));
315
316 GpuMat grad = grad_buf(Rect(0, 0, I0.cols, I0.rows));
317 GpuMat rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows));
318
319 GpuMat p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows));
320 GpuMat p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows));
321 GpuMat p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows));
322 GpuMat p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows));
323 GpuMat p31, p32;
324 if (gamma_)
325 {
326 p31 = p31_buf(Rect(0, 0, I0.cols, I0.rows));
327 p32 = p32_buf(Rect(0, 0, I0.cols, I0.rows));
328 }
329 p11.setTo(Scalar::all(0), _stream);
330 p12.setTo(Scalar::all(0), _stream);
331 p21.setTo(Scalar::all(0), _stream);
332 p22.setTo(Scalar::all(0), _stream);
333 if (gamma_)
334 {
335 p31.setTo(Scalar::all(0), _stream);
336 p32.setTo(Scalar::all(0), _stream);
337 }
338
339 GpuMat diff = diff_buf(Rect(0, 0, I0.cols, I0.rows));
340
341 const float l_t = static_cast<float>(lambda_ * theta_);
342 const float taut = static_cast<float>(tau_ / theta_);
343
344 for (int warpings = 0; warpings < warps_; ++warpings)
345 {
346 warpBackward(I0, I1, I1x, I1y, u1, u2, I1w, I1wx, I1wy, grad, rho_c, stream);
347
348 double error = std::numeric_limits<double>::max();
349 double prevError = 0.0;
350 for (int n = 0; error > scaledEpsilon && n < iterations_; ++n)
351 {
352 // some tweaks to make sum operation less frequently
353 bool calcError = (epsilon_ > 0) && (n & 0x1) && (prevError < scaledEpsilon);
354 estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, p31, p32, u1, u2, u3, diff, l_t, static_cast<float>(theta_), gamma_, calcError, stream);
355 if (calcError)
356 {
357 _stream.waitForCompletion();
358 error = cuda::sum(diff, norm_buf)[0];
359 prevError = error;
360 }
361 else
362 {
363 error = std::numeric_limits<double>::max();
364 prevError -= scaledEpsilon;
365 }
366
367 estimateDualVariables(u1, u2, u3, p11, p12, p21, p22, p31, p32, taut, gamma_, stream);
368 }
369 }
370 }
371 }
372
create(double tau,double lambda,double theta,int nscales,int warps,double epsilon,int iterations,double scaleStep,double gamma,bool useInitialFlow)373 Ptr<OpticalFlowDual_TVL1> cv::cuda::OpticalFlowDual_TVL1::create(
374 double tau, double lambda, double theta, int nscales, int warps,
375 double epsilon, int iterations, double scaleStep, double gamma, bool useInitialFlow)
376 {
377 return makePtr<OpticalFlowDual_TVL1_Impl>(tau, lambda, theta, nscales, warps,
378 epsilon, iterations, scaleStep, gamma, useInitialFlow);
379 }
380
381 #endif // !defined HAVE_CUDA || defined(CUDA_DISABLER)
382