1 //===-- Function.cpp - Implement the Global object classes ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Function.h"
15 #include "LLVMContextImpl.h"
16 #include "SymbolTableListTraitsImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/CodeGen/ValueTypes.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InstIterator.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/MDBuilder.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Support/ManagedStatic.h"
31 #include "llvm/Support/RWMutex.h"
32 #include "llvm/Support/StringPool.h"
33 #include "llvm/Support/Threading.h"
34 using namespace llvm;
35
36 // Explicit instantiations of SymbolTableListTraits since some of the methods
37 // are not in the public header file...
38 template class llvm::SymbolTableListTraits<Argument>;
39 template class llvm::SymbolTableListTraits<BasicBlock>;
40
41 //===----------------------------------------------------------------------===//
42 // Argument Implementation
43 //===----------------------------------------------------------------------===//
44
anchor()45 void Argument::anchor() { }
46
Argument(Type * Ty,const Twine & Name,Function * Par)47 Argument::Argument(Type *Ty, const Twine &Name, Function *Par)
48 : Value(Ty, Value::ArgumentVal) {
49 Parent = nullptr;
50
51 if (Par)
52 Par->getArgumentList().push_back(this);
53 setName(Name);
54 }
55
setParent(Function * parent)56 void Argument::setParent(Function *parent) {
57 Parent = parent;
58 }
59
60 /// getArgNo - Return the index of this formal argument in its containing
61 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1.
getArgNo() const62 unsigned Argument::getArgNo() const {
63 const Function *F = getParent();
64 assert(F && "Argument is not in a function");
65
66 Function::const_arg_iterator AI = F->arg_begin();
67 unsigned ArgIdx = 0;
68 for (; &*AI != this; ++AI)
69 ++ArgIdx;
70
71 return ArgIdx;
72 }
73
74 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on
75 /// it in its containing function. Also returns true if at least one byte is
76 /// known to be dereferenceable and the pointer is in addrspace(0).
hasNonNullAttr() const77 bool Argument::hasNonNullAttr() const {
78 if (!getType()->isPointerTy()) return false;
79 if (getParent()->getAttributes().
80 hasAttribute(getArgNo()+1, Attribute::NonNull))
81 return true;
82 else if (getDereferenceableBytes() > 0 &&
83 getType()->getPointerAddressSpace() == 0)
84 return true;
85 return false;
86 }
87
88 /// hasByValAttr - Return true if this argument has the byval attribute on it
89 /// in its containing function.
hasByValAttr() const90 bool Argument::hasByValAttr() const {
91 if (!getType()->isPointerTy()) return false;
92 return getParent()->getAttributes().
93 hasAttribute(getArgNo()+1, Attribute::ByVal);
94 }
95
96 /// \brief Return true if this argument has the inalloca attribute on it in
97 /// its containing function.
hasInAllocaAttr() const98 bool Argument::hasInAllocaAttr() const {
99 if (!getType()->isPointerTy()) return false;
100 return getParent()->getAttributes().
101 hasAttribute(getArgNo()+1, Attribute::InAlloca);
102 }
103
hasByValOrInAllocaAttr() const104 bool Argument::hasByValOrInAllocaAttr() const {
105 if (!getType()->isPointerTy()) return false;
106 AttributeSet Attrs = getParent()->getAttributes();
107 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) ||
108 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca);
109 }
110
getParamAlignment() const111 unsigned Argument::getParamAlignment() const {
112 assert(getType()->isPointerTy() && "Only pointers have alignments");
113 return getParent()->getParamAlignment(getArgNo()+1);
114
115 }
116
getDereferenceableBytes() const117 uint64_t Argument::getDereferenceableBytes() const {
118 assert(getType()->isPointerTy() &&
119 "Only pointers have dereferenceable bytes");
120 return getParent()->getDereferenceableBytes(getArgNo()+1);
121 }
122
getDereferenceableOrNullBytes() const123 uint64_t Argument::getDereferenceableOrNullBytes() const {
124 assert(getType()->isPointerTy() &&
125 "Only pointers have dereferenceable bytes");
126 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1);
127 }
128
129 /// hasNestAttr - Return true if this argument has the nest attribute on
130 /// it in its containing function.
hasNestAttr() const131 bool Argument::hasNestAttr() const {
132 if (!getType()->isPointerTy()) return false;
133 return getParent()->getAttributes().
134 hasAttribute(getArgNo()+1, Attribute::Nest);
135 }
136
137 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on
138 /// it in its containing function.
hasNoAliasAttr() const139 bool Argument::hasNoAliasAttr() const {
140 if (!getType()->isPointerTy()) return false;
141 return getParent()->getAttributes().
142 hasAttribute(getArgNo()+1, Attribute::NoAlias);
143 }
144
145 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute
146 /// on it in its containing function.
hasNoCaptureAttr() const147 bool Argument::hasNoCaptureAttr() const {
148 if (!getType()->isPointerTy()) return false;
149 return getParent()->getAttributes().
150 hasAttribute(getArgNo()+1, Attribute::NoCapture);
151 }
152
153 /// hasSRetAttr - Return true if this argument has the sret attribute on
154 /// it in its containing function.
hasStructRetAttr() const155 bool Argument::hasStructRetAttr() const {
156 if (!getType()->isPointerTy()) return false;
157 return getParent()->getAttributes().
158 hasAttribute(getArgNo()+1, Attribute::StructRet);
159 }
160
161 /// hasReturnedAttr - Return true if this argument has the returned attribute on
162 /// it in its containing function.
hasReturnedAttr() const163 bool Argument::hasReturnedAttr() const {
164 return getParent()->getAttributes().
165 hasAttribute(getArgNo()+1, Attribute::Returned);
166 }
167
168 /// hasZExtAttr - Return true if this argument has the zext attribute on it in
169 /// its containing function.
hasZExtAttr() const170 bool Argument::hasZExtAttr() const {
171 return getParent()->getAttributes().
172 hasAttribute(getArgNo()+1, Attribute::ZExt);
173 }
174
175 /// hasSExtAttr Return true if this argument has the sext attribute on it in its
176 /// containing function.
hasSExtAttr() const177 bool Argument::hasSExtAttr() const {
178 return getParent()->getAttributes().
179 hasAttribute(getArgNo()+1, Attribute::SExt);
180 }
181
182 /// Return true if this argument has the readonly or readnone attribute on it
183 /// in its containing function.
onlyReadsMemory() const184 bool Argument::onlyReadsMemory() const {
185 return getParent()->getAttributes().
186 hasAttribute(getArgNo()+1, Attribute::ReadOnly) ||
187 getParent()->getAttributes().
188 hasAttribute(getArgNo()+1, Attribute::ReadNone);
189 }
190
191 /// addAttr - Add attributes to an argument.
addAttr(AttributeSet AS)192 void Argument::addAttr(AttributeSet AS) {
193 assert(AS.getNumSlots() <= 1 &&
194 "Trying to add more than one attribute set to an argument!");
195 AttrBuilder B(AS, AS.getSlotIndex(0));
196 getParent()->addAttributes(getArgNo() + 1,
197 AttributeSet::get(Parent->getContext(),
198 getArgNo() + 1, B));
199 }
200
201 /// removeAttr - Remove attributes from an argument.
removeAttr(AttributeSet AS)202 void Argument::removeAttr(AttributeSet AS) {
203 assert(AS.getNumSlots() <= 1 &&
204 "Trying to remove more than one attribute set from an argument!");
205 AttrBuilder B(AS, AS.getSlotIndex(0));
206 getParent()->removeAttributes(getArgNo() + 1,
207 AttributeSet::get(Parent->getContext(),
208 getArgNo() + 1, B));
209 }
210
211 //===----------------------------------------------------------------------===//
212 // Helper Methods in Function
213 //===----------------------------------------------------------------------===//
214
isMaterializable() const215 bool Function::isMaterializable() const {
216 return getGlobalObjectSubClassData() & IsMaterializableBit;
217 }
218
setIsMaterializable(bool V)219 void Function::setIsMaterializable(bool V) {
220 setGlobalObjectBit(IsMaterializableBit, V);
221 }
222
getContext() const223 LLVMContext &Function::getContext() const {
224 return getType()->getContext();
225 }
226
getFunctionType() const227 FunctionType *Function::getFunctionType() const { return Ty; }
228
isVarArg() const229 bool Function::isVarArg() const {
230 return getFunctionType()->isVarArg();
231 }
232
getReturnType() const233 Type *Function::getReturnType() const {
234 return getFunctionType()->getReturnType();
235 }
236
removeFromParent()237 void Function::removeFromParent() {
238 getParent()->getFunctionList().remove(getIterator());
239 }
240
eraseFromParent()241 void Function::eraseFromParent() {
242 getParent()->getFunctionList().erase(getIterator());
243 }
244
245 //===----------------------------------------------------------------------===//
246 // Function Implementation
247 //===----------------------------------------------------------------------===//
248
Function(FunctionType * Ty,LinkageTypes Linkage,const Twine & name,Module * ParentModule)249 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
250 Module *ParentModule)
251 : GlobalObject(Ty, Value::FunctionVal,
252 OperandTraits<Function>::op_begin(this), 0, Linkage, name),
253 Ty(Ty) {
254 assert(FunctionType::isValidReturnType(getReturnType()) &&
255 "invalid return type");
256 setGlobalObjectSubClassData(0);
257 SymTab = new ValueSymbolTable();
258
259 // If the function has arguments, mark them as lazily built.
260 if (Ty->getNumParams())
261 setValueSubclassData(1); // Set the "has lazy arguments" bit.
262
263 if (ParentModule)
264 ParentModule->getFunctionList().push_back(this);
265
266 // Ensure intrinsics have the right parameter attributes.
267 // Note, the IntID field will have been set in Value::setName if this function
268 // name is a valid intrinsic ID.
269 if (IntID)
270 setAttributes(Intrinsic::getAttributes(getContext(), IntID));
271 }
272
~Function()273 Function::~Function() {
274 dropAllReferences(); // After this it is safe to delete instructions.
275
276 // Delete all of the method arguments and unlink from symbol table...
277 ArgumentList.clear();
278 delete SymTab;
279
280 // Remove the function from the on-the-side GC table.
281 clearGC();
282 }
283
BuildLazyArguments() const284 void Function::BuildLazyArguments() const {
285 // Create the arguments vector, all arguments start out unnamed.
286 FunctionType *FT = getFunctionType();
287 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
288 assert(!FT->getParamType(i)->isVoidTy() &&
289 "Cannot have void typed arguments!");
290 ArgumentList.push_back(new Argument(FT->getParamType(i)));
291 }
292
293 // Clear the lazy arguments bit.
294 unsigned SDC = getSubclassDataFromValue();
295 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
296 }
297
arg_size() const298 size_t Function::arg_size() const {
299 return getFunctionType()->getNumParams();
300 }
arg_empty() const301 bool Function::arg_empty() const {
302 return getFunctionType()->getNumParams() == 0;
303 }
304
setParent(Module * parent)305 void Function::setParent(Module *parent) {
306 Parent = parent;
307 }
308
309 // dropAllReferences() - This function causes all the subinstructions to "let
310 // go" of all references that they are maintaining. This allows one to
311 // 'delete' a whole class at a time, even though there may be circular
312 // references... first all references are dropped, and all use counts go to
313 // zero. Then everything is deleted for real. Note that no operations are
314 // valid on an object that has "dropped all references", except operator
315 // delete.
316 //
dropAllReferences()317 void Function::dropAllReferences() {
318 setIsMaterializable(false);
319
320 for (iterator I = begin(), E = end(); I != E; ++I)
321 I->dropAllReferences();
322
323 // Delete all basic blocks. They are now unused, except possibly by
324 // blockaddresses, but BasicBlock's destructor takes care of those.
325 while (!BasicBlocks.empty())
326 BasicBlocks.begin()->eraseFromParent();
327
328 // Drop uses of any optional data (real or placeholder).
329 if (getNumOperands()) {
330 User::dropAllReferences();
331 setNumHungOffUseOperands(0);
332 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
333 }
334
335 // Metadata is stored in a side-table.
336 clearMetadata();
337 }
338
addAttribute(unsigned i,Attribute::AttrKind attr)339 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) {
340 AttributeSet PAL = getAttributes();
341 PAL = PAL.addAttribute(getContext(), i, attr);
342 setAttributes(PAL);
343 }
344
addAttributes(unsigned i,AttributeSet attrs)345 void Function::addAttributes(unsigned i, AttributeSet attrs) {
346 AttributeSet PAL = getAttributes();
347 PAL = PAL.addAttributes(getContext(), i, attrs);
348 setAttributes(PAL);
349 }
350
removeAttributes(unsigned i,AttributeSet attrs)351 void Function::removeAttributes(unsigned i, AttributeSet attrs) {
352 AttributeSet PAL = getAttributes();
353 PAL = PAL.removeAttributes(getContext(), i, attrs);
354 setAttributes(PAL);
355 }
356
addDereferenceableAttr(unsigned i,uint64_t Bytes)357 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
358 AttributeSet PAL = getAttributes();
359 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
360 setAttributes(PAL);
361 }
362
addDereferenceableOrNullAttr(unsigned i,uint64_t Bytes)363 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
364 AttributeSet PAL = getAttributes();
365 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
366 setAttributes(PAL);
367 }
368
369 // Maintain the GC name for each function in an on-the-side table. This saves
370 // allocating an additional word in Function for programs which do not use GC
371 // (i.e., most programs) at the cost of increased overhead for clients which do
372 // use GC.
373 static DenseMap<const Function*,PooledStringPtr> *GCNames;
374 static StringPool *GCNamePool;
375 static ManagedStatic<sys::SmartRWMutex<true> > GCLock;
376
hasGC() const377 bool Function::hasGC() const {
378 sys::SmartScopedReader<true> Reader(*GCLock);
379 return GCNames && GCNames->count(this);
380 }
381
getGC() const382 const char *Function::getGC() const {
383 assert(hasGC() && "Function has no collector");
384 sys::SmartScopedReader<true> Reader(*GCLock);
385 return *(*GCNames)[this];
386 }
387
setGC(const char * Str)388 void Function::setGC(const char *Str) {
389 sys::SmartScopedWriter<true> Writer(*GCLock);
390 if (!GCNamePool)
391 GCNamePool = new StringPool();
392 if (!GCNames)
393 GCNames = new DenseMap<const Function*,PooledStringPtr>();
394 (*GCNames)[this] = GCNamePool->intern(Str);
395 }
396
clearGC()397 void Function::clearGC() {
398 sys::SmartScopedWriter<true> Writer(*GCLock);
399 if (GCNames) {
400 GCNames->erase(this);
401 if (GCNames->empty()) {
402 delete GCNames;
403 GCNames = nullptr;
404 if (GCNamePool->empty()) {
405 delete GCNamePool;
406 GCNamePool = nullptr;
407 }
408 }
409 }
410 }
411
412 /// Copy all additional attributes (those not needed to create a Function) from
413 /// the Function Src to this one.
copyAttributesFrom(const GlobalValue * Src)414 void Function::copyAttributesFrom(const GlobalValue *Src) {
415 GlobalObject::copyAttributesFrom(Src);
416 const Function *SrcF = dyn_cast<Function>(Src);
417 if (!SrcF)
418 return;
419
420 setCallingConv(SrcF->getCallingConv());
421 setAttributes(SrcF->getAttributes());
422 if (SrcF->hasGC())
423 setGC(SrcF->getGC());
424 else
425 clearGC();
426 if (SrcF->hasPersonalityFn())
427 setPersonalityFn(SrcF->getPersonalityFn());
428 if (SrcF->hasPrefixData())
429 setPrefixData(SrcF->getPrefixData());
430 if (SrcF->hasPrologueData())
431 setPrologueData(SrcF->getPrologueData());
432 }
433
434 /// \brief This does the actual lookup of an intrinsic ID which
435 /// matches the given function name.
lookupIntrinsicID(const ValueName * ValName)436 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) {
437 unsigned Len = ValName->getKeyLength();
438 const char *Name = ValName->getKeyData();
439
440 #define GET_FUNCTION_RECOGNIZER
441 #include "llvm/IR/Intrinsics.gen"
442 #undef GET_FUNCTION_RECOGNIZER
443
444 return Intrinsic::not_intrinsic;
445 }
446
recalculateIntrinsicID()447 void Function::recalculateIntrinsicID() {
448 const ValueName *ValName = this->getValueName();
449 if (!ValName || !isIntrinsic()) {
450 IntID = Intrinsic::not_intrinsic;
451 return;
452 }
453 IntID = lookupIntrinsicID(ValName);
454 }
455
456 /// Returns a stable mangling for the type specified for use in the name
457 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
458 /// of named types is simply their name. Manglings for unnamed types consist
459 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
460 /// combined with the mangling of their component types. A vararg function
461 /// type will have a suffix of 'vararg'. Since function types can contain
462 /// other function types, we close a function type mangling with suffix 'f'
463 /// which can't be confused with it's prefix. This ensures we don't have
464 /// collisions between two unrelated function types. Otherwise, you might
465 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
466 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most
467 /// cases) fall back to the MVT codepath, where they could be mangled to
468 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle
469 /// everything.
getMangledTypeStr(Type * Ty)470 static std::string getMangledTypeStr(Type* Ty) {
471 std::string Result;
472 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
473 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
474 getMangledTypeStr(PTyp->getElementType());
475 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
476 Result += "a" + llvm::utostr(ATyp->getNumElements()) +
477 getMangledTypeStr(ATyp->getElementType());
478 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) {
479 assert(!STyp->isLiteral() && "TODO: implement literal types");
480 Result += STyp->getName();
481 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) {
482 Result += "f_" + getMangledTypeStr(FT->getReturnType());
483 for (size_t i = 0; i < FT->getNumParams(); i++)
484 Result += getMangledTypeStr(FT->getParamType(i));
485 if (FT->isVarArg())
486 Result += "vararg";
487 // Ensure nested function types are distinguishable.
488 Result += "f";
489 } else if (isa<VectorType>(Ty))
490 Result += "v" + utostr(Ty->getVectorNumElements()) +
491 getMangledTypeStr(Ty->getVectorElementType());
492 else if (Ty)
493 Result += EVT::getEVT(Ty).getEVTString();
494 return Result;
495 }
496
getName(ID id,ArrayRef<Type * > Tys)497 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
498 assert(id < num_intrinsics && "Invalid intrinsic ID!");
499 static const char * const Table[] = {
500 "not_intrinsic",
501 #define GET_INTRINSIC_NAME_TABLE
502 #include "llvm/IR/Intrinsics.gen"
503 #undef GET_INTRINSIC_NAME_TABLE
504 };
505 if (Tys.empty())
506 return Table[id];
507 std::string Result(Table[id]);
508 for (unsigned i = 0; i < Tys.size(); ++i) {
509 Result += "." + getMangledTypeStr(Tys[i]);
510 }
511 return Result;
512 }
513
514
515 /// IIT_Info - These are enumerators that describe the entries returned by the
516 /// getIntrinsicInfoTableEntries function.
517 ///
518 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
519 enum IIT_Info {
520 // Common values should be encoded with 0-15.
521 IIT_Done = 0,
522 IIT_I1 = 1,
523 IIT_I8 = 2,
524 IIT_I16 = 3,
525 IIT_I32 = 4,
526 IIT_I64 = 5,
527 IIT_F16 = 6,
528 IIT_F32 = 7,
529 IIT_F64 = 8,
530 IIT_V2 = 9,
531 IIT_V4 = 10,
532 IIT_V8 = 11,
533 IIT_V16 = 12,
534 IIT_V32 = 13,
535 IIT_PTR = 14,
536 IIT_ARG = 15,
537
538 // Values from 16+ are only encodable with the inefficient encoding.
539 IIT_V64 = 16,
540 IIT_MMX = 17,
541 IIT_TOKEN = 18,
542 IIT_METADATA = 19,
543 IIT_EMPTYSTRUCT = 20,
544 IIT_STRUCT2 = 21,
545 IIT_STRUCT3 = 22,
546 IIT_STRUCT4 = 23,
547 IIT_STRUCT5 = 24,
548 IIT_EXTEND_ARG = 25,
549 IIT_TRUNC_ARG = 26,
550 IIT_ANYPTR = 27,
551 IIT_V1 = 28,
552 IIT_VARARG = 29,
553 IIT_HALF_VEC_ARG = 30,
554 IIT_SAME_VEC_WIDTH_ARG = 31,
555 IIT_PTR_TO_ARG = 32,
556 IIT_VEC_OF_PTRS_TO_ELT = 33,
557 IIT_I128 = 34,
558 IIT_V512 = 35,
559 IIT_V1024 = 36
560 };
561
562
DecodeIITType(unsigned & NextElt,ArrayRef<unsigned char> Infos,SmallVectorImpl<Intrinsic::IITDescriptor> & OutputTable)563 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
564 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
565 IIT_Info Info = IIT_Info(Infos[NextElt++]);
566 unsigned StructElts = 2;
567 using namespace Intrinsic;
568
569 switch (Info) {
570 case IIT_Done:
571 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
572 return;
573 case IIT_VARARG:
574 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
575 return;
576 case IIT_MMX:
577 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
578 return;
579 case IIT_TOKEN:
580 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
581 return;
582 case IIT_METADATA:
583 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
584 return;
585 case IIT_F16:
586 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
587 return;
588 case IIT_F32:
589 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
590 return;
591 case IIT_F64:
592 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
593 return;
594 case IIT_I1:
595 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
596 return;
597 case IIT_I8:
598 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
599 return;
600 case IIT_I16:
601 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
602 return;
603 case IIT_I32:
604 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
605 return;
606 case IIT_I64:
607 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
608 return;
609 case IIT_I128:
610 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
611 return;
612 case IIT_V1:
613 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
614 DecodeIITType(NextElt, Infos, OutputTable);
615 return;
616 case IIT_V2:
617 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
618 DecodeIITType(NextElt, Infos, OutputTable);
619 return;
620 case IIT_V4:
621 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
622 DecodeIITType(NextElt, Infos, OutputTable);
623 return;
624 case IIT_V8:
625 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
626 DecodeIITType(NextElt, Infos, OutputTable);
627 return;
628 case IIT_V16:
629 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
630 DecodeIITType(NextElt, Infos, OutputTable);
631 return;
632 case IIT_V32:
633 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
634 DecodeIITType(NextElt, Infos, OutputTable);
635 return;
636 case IIT_V64:
637 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
638 DecodeIITType(NextElt, Infos, OutputTable);
639 return;
640 case IIT_V512:
641 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
642 DecodeIITType(NextElt, Infos, OutputTable);
643 return;
644 case IIT_V1024:
645 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
646 DecodeIITType(NextElt, Infos, OutputTable);
647 return;
648 case IIT_PTR:
649 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
650 DecodeIITType(NextElt, Infos, OutputTable);
651 return;
652 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
653 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
654 Infos[NextElt++]));
655 DecodeIITType(NextElt, Infos, OutputTable);
656 return;
657 }
658 case IIT_ARG: {
659 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
660 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
661 return;
662 }
663 case IIT_EXTEND_ARG: {
664 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
665 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
666 ArgInfo));
667 return;
668 }
669 case IIT_TRUNC_ARG: {
670 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
671 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
672 ArgInfo));
673 return;
674 }
675 case IIT_HALF_VEC_ARG: {
676 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
677 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
678 ArgInfo));
679 return;
680 }
681 case IIT_SAME_VEC_WIDTH_ARG: {
682 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
683 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
684 ArgInfo));
685 return;
686 }
687 case IIT_PTR_TO_ARG: {
688 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
689 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
690 ArgInfo));
691 return;
692 }
693 case IIT_VEC_OF_PTRS_TO_ELT: {
694 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
695 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt,
696 ArgInfo));
697 return;
698 }
699 case IIT_EMPTYSTRUCT:
700 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
701 return;
702 case IIT_STRUCT5: ++StructElts; // FALL THROUGH.
703 case IIT_STRUCT4: ++StructElts; // FALL THROUGH.
704 case IIT_STRUCT3: ++StructElts; // FALL THROUGH.
705 case IIT_STRUCT2: {
706 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
707
708 for (unsigned i = 0; i != StructElts; ++i)
709 DecodeIITType(NextElt, Infos, OutputTable);
710 return;
711 }
712 }
713 llvm_unreachable("unhandled");
714 }
715
716
717 #define GET_INTRINSIC_GENERATOR_GLOBAL
718 #include "llvm/IR/Intrinsics.gen"
719 #undef GET_INTRINSIC_GENERATOR_GLOBAL
720
getIntrinsicInfoTableEntries(ID id,SmallVectorImpl<IITDescriptor> & T)721 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
722 SmallVectorImpl<IITDescriptor> &T){
723 // Check to see if the intrinsic's type was expressible by the table.
724 unsigned TableVal = IIT_Table[id-1];
725
726 // Decode the TableVal into an array of IITValues.
727 SmallVector<unsigned char, 8> IITValues;
728 ArrayRef<unsigned char> IITEntries;
729 unsigned NextElt = 0;
730 if ((TableVal >> 31) != 0) {
731 // This is an offset into the IIT_LongEncodingTable.
732 IITEntries = IIT_LongEncodingTable;
733
734 // Strip sentinel bit.
735 NextElt = (TableVal << 1) >> 1;
736 } else {
737 // Decode the TableVal into an array of IITValues. If the entry was encoded
738 // into a single word in the table itself, decode it now.
739 do {
740 IITValues.push_back(TableVal & 0xF);
741 TableVal >>= 4;
742 } while (TableVal);
743
744 IITEntries = IITValues;
745 NextElt = 0;
746 }
747
748 // Okay, decode the table into the output vector of IITDescriptors.
749 DecodeIITType(NextElt, IITEntries, T);
750 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
751 DecodeIITType(NextElt, IITEntries, T);
752 }
753
754
DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> & Infos,ArrayRef<Type * > Tys,LLVMContext & Context)755 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
756 ArrayRef<Type*> Tys, LLVMContext &Context) {
757 using namespace Intrinsic;
758 IITDescriptor D = Infos.front();
759 Infos = Infos.slice(1);
760
761 switch (D.Kind) {
762 case IITDescriptor::Void: return Type::getVoidTy(Context);
763 case IITDescriptor::VarArg: return Type::getVoidTy(Context);
764 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
765 case IITDescriptor::Token: return Type::getTokenTy(Context);
766 case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
767 case IITDescriptor::Half: return Type::getHalfTy(Context);
768 case IITDescriptor::Float: return Type::getFloatTy(Context);
769 case IITDescriptor::Double: return Type::getDoubleTy(Context);
770
771 case IITDescriptor::Integer:
772 return IntegerType::get(Context, D.Integer_Width);
773 case IITDescriptor::Vector:
774 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
775 case IITDescriptor::Pointer:
776 return PointerType::get(DecodeFixedType(Infos, Tys, Context),
777 D.Pointer_AddressSpace);
778 case IITDescriptor::Struct: {
779 Type *Elts[5];
780 assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
781 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
782 Elts[i] = DecodeFixedType(Infos, Tys, Context);
783 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
784 }
785
786 case IITDescriptor::Argument:
787 return Tys[D.getArgumentNumber()];
788 case IITDescriptor::ExtendArgument: {
789 Type *Ty = Tys[D.getArgumentNumber()];
790 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
791 return VectorType::getExtendedElementVectorType(VTy);
792
793 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
794 }
795 case IITDescriptor::TruncArgument: {
796 Type *Ty = Tys[D.getArgumentNumber()];
797 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
798 return VectorType::getTruncatedElementVectorType(VTy);
799
800 IntegerType *ITy = cast<IntegerType>(Ty);
801 assert(ITy->getBitWidth() % 2 == 0);
802 return IntegerType::get(Context, ITy->getBitWidth() / 2);
803 }
804 case IITDescriptor::HalfVecArgument:
805 return VectorType::getHalfElementsVectorType(cast<VectorType>(
806 Tys[D.getArgumentNumber()]));
807 case IITDescriptor::SameVecWidthArgument: {
808 Type *EltTy = DecodeFixedType(Infos, Tys, Context);
809 Type *Ty = Tys[D.getArgumentNumber()];
810 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
811 return VectorType::get(EltTy, VTy->getNumElements());
812 }
813 llvm_unreachable("unhandled");
814 }
815 case IITDescriptor::PtrToArgument: {
816 Type *Ty = Tys[D.getArgumentNumber()];
817 return PointerType::getUnqual(Ty);
818 }
819 case IITDescriptor::VecOfPtrsToElt: {
820 Type *Ty = Tys[D.getArgumentNumber()];
821 VectorType *VTy = dyn_cast<VectorType>(Ty);
822 if (!VTy)
823 llvm_unreachable("Expected an argument of Vector Type");
824 Type *EltTy = VTy->getVectorElementType();
825 return VectorType::get(PointerType::getUnqual(EltTy),
826 VTy->getNumElements());
827 }
828 }
829 llvm_unreachable("unhandled");
830 }
831
832
833
getType(LLVMContext & Context,ID id,ArrayRef<Type * > Tys)834 FunctionType *Intrinsic::getType(LLVMContext &Context,
835 ID id, ArrayRef<Type*> Tys) {
836 SmallVector<IITDescriptor, 8> Table;
837 getIntrinsicInfoTableEntries(id, Table);
838
839 ArrayRef<IITDescriptor> TableRef = Table;
840 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
841
842 SmallVector<Type*, 8> ArgTys;
843 while (!TableRef.empty())
844 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
845
846 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
847 // If we see void type as the type of the last argument, it is vararg intrinsic
848 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
849 ArgTys.pop_back();
850 return FunctionType::get(ResultTy, ArgTys, true);
851 }
852 return FunctionType::get(ResultTy, ArgTys, false);
853 }
854
isOverloaded(ID id)855 bool Intrinsic::isOverloaded(ID id) {
856 #define GET_INTRINSIC_OVERLOAD_TABLE
857 #include "llvm/IR/Intrinsics.gen"
858 #undef GET_INTRINSIC_OVERLOAD_TABLE
859 }
860
isLeaf(ID id)861 bool Intrinsic::isLeaf(ID id) {
862 switch (id) {
863 default:
864 return true;
865
866 case Intrinsic::experimental_gc_statepoint:
867 case Intrinsic::experimental_patchpoint_void:
868 case Intrinsic::experimental_patchpoint_i64:
869 return false;
870 }
871 }
872
873 /// This defines the "Intrinsic::getAttributes(ID id)" method.
874 #define GET_INTRINSIC_ATTRIBUTES
875 #include "llvm/IR/Intrinsics.gen"
876 #undef GET_INTRINSIC_ATTRIBUTES
877
getDeclaration(Module * M,ID id,ArrayRef<Type * > Tys)878 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
879 // There can never be multiple globals with the same name of different types,
880 // because intrinsics must be a specific type.
881 return
882 cast<Function>(M->getOrInsertFunction(getName(id, Tys),
883 getType(M->getContext(), id, Tys)));
884 }
885
886 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
887 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
888 #include "llvm/IR/Intrinsics.gen"
889 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
890
891 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
892 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
893 #include "llvm/IR/Intrinsics.gen"
894 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
895
896 /// hasAddressTaken - returns true if there are any uses of this function
897 /// other than direct calls or invokes to it.
hasAddressTaken(const User ** PutOffender) const898 bool Function::hasAddressTaken(const User* *PutOffender) const {
899 for (const Use &U : uses()) {
900 const User *FU = U.getUser();
901 if (isa<BlockAddress>(FU))
902 continue;
903 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU))
904 return PutOffender ? (*PutOffender = FU, true) : true;
905 ImmutableCallSite CS(cast<Instruction>(FU));
906 if (!CS.isCallee(&U))
907 return PutOffender ? (*PutOffender = FU, true) : true;
908 }
909 return false;
910 }
911
isDefTriviallyDead() const912 bool Function::isDefTriviallyDead() const {
913 // Check the linkage
914 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
915 !hasAvailableExternallyLinkage())
916 return false;
917
918 // Check if the function is used by anything other than a blockaddress.
919 for (const User *U : users())
920 if (!isa<BlockAddress>(U))
921 return false;
922
923 return true;
924 }
925
926 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
927 /// setjmp or other function that gcc recognizes as "returning twice".
callsFunctionThatReturnsTwice() const928 bool Function::callsFunctionThatReturnsTwice() const {
929 for (const_inst_iterator
930 I = inst_begin(this), E = inst_end(this); I != E; ++I) {
931 ImmutableCallSite CS(&*I);
932 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
933 return true;
934 }
935
936 return false;
937 }
938
getPersonalityFn() const939 Constant *Function::getPersonalityFn() const {
940 assert(hasPersonalityFn() && getNumOperands());
941 return cast<Constant>(Op<0>());
942 }
943
setPersonalityFn(Constant * Fn)944 void Function::setPersonalityFn(Constant *Fn) {
945 if (Fn)
946 setHungoffOperand<0>(Fn);
947 setValueSubclassDataBit(3, Fn != nullptr);
948 }
949
getPrefixData() const950 Constant *Function::getPrefixData() const {
951 assert(hasPrefixData() && getNumOperands());
952 return cast<Constant>(Op<1>());
953 }
954
setPrefixData(Constant * PrefixData)955 void Function::setPrefixData(Constant *PrefixData) {
956 if (PrefixData)
957 setHungoffOperand<1>(PrefixData);
958 setValueSubclassDataBit(1, PrefixData != nullptr);
959 }
960
getPrologueData() const961 Constant *Function::getPrologueData() const {
962 assert(hasPrologueData() && getNumOperands());
963 return cast<Constant>(Op<2>());
964 }
965
setPrologueData(Constant * PrologueData)966 void Function::setPrologueData(Constant *PrologueData) {
967 if (PrologueData)
968 setHungoffOperand<2>(PrologueData);
969 setValueSubclassDataBit(2, PrologueData != nullptr);
970 }
971
allocHungoffUselist()972 void Function::allocHungoffUselist() {
973 // If we've already allocated a uselist, stop here.
974 if (getNumOperands())
975 return;
976
977 allocHungoffUses(3, /*IsPhi=*/ false);
978 setNumHungOffUseOperands(3);
979
980 // Initialize the uselist with placeholder operands to allow traversal.
981 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
982 Op<0>().set(CPN);
983 Op<1>().set(CPN);
984 Op<2>().set(CPN);
985 }
986
987 template <int Idx>
setHungoffOperand(Constant * C)988 void Function::setHungoffOperand(Constant *C) {
989 assert(C && "Cannot set hungoff operand to nullptr");
990 allocHungoffUselist();
991 Op<Idx>().set(C);
992 }
993
setValueSubclassDataBit(unsigned Bit,bool On)994 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
995 assert(Bit < 16 && "SubclassData contains only 16 bits");
996 if (On)
997 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
998 else
999 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1000 }
1001
setEntryCount(uint64_t Count)1002 void Function::setEntryCount(uint64_t Count) {
1003 MDBuilder MDB(getContext());
1004 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count));
1005 }
1006
getEntryCount() const1007 Optional<uint64_t> Function::getEntryCount() const {
1008 MDNode *MD = getMetadata(LLVMContext::MD_prof);
1009 if (MD && MD->getOperand(0))
1010 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1011 if (MDS->getString().equals("function_entry_count")) {
1012 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1013 return CI->getValue().getZExtValue();
1014 }
1015 return None;
1016 }
1017