• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for DWARF4 hashing of DIEs.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfDebug.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/CodeGen/AsmPrinter.h"
20 #include "llvm/CodeGen/DIE.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/Dwarf.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/MD5.h"
25 #include "llvm/Support/raw_ostream.h"
26 
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "dwarfdebug"
30 
31 /// \brief Grabs the string in whichever attribute is passed in and returns
32 /// a reference to it.
getDIEStringAttr(const DIE & Die,uint16_t Attr)33 static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) {
34   // Iterate through all the attributes until we find the one we're
35   // looking for, if we can't find it return an empty string.
36   for (const auto &V : Die.values())
37     if (V.getAttribute() == Attr)
38       return V.getDIEString().getString();
39 
40   return StringRef("");
41 }
42 
43 /// \brief Adds the string in \p Str to the hash. This also hashes
44 /// a trailing NULL with the string.
addString(StringRef Str)45 void DIEHash::addString(StringRef Str) {
46   DEBUG(dbgs() << "Adding string " << Str << " to hash.\n");
47   Hash.update(Str);
48   Hash.update(makeArrayRef((uint8_t)'\0'));
49 }
50 
51 // FIXME: The LEB128 routines are copied and only slightly modified out of
52 // LEB128.h.
53 
54 /// \brief Adds the unsigned in \p Value to the hash encoded as a ULEB128.
addULEB128(uint64_t Value)55 void DIEHash::addULEB128(uint64_t Value) {
56   DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
57   do {
58     uint8_t Byte = Value & 0x7f;
59     Value >>= 7;
60     if (Value != 0)
61       Byte |= 0x80; // Mark this byte to show that more bytes will follow.
62     Hash.update(Byte);
63   } while (Value != 0);
64 }
65 
addSLEB128(int64_t Value)66 void DIEHash::addSLEB128(int64_t Value) {
67   DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
68   bool More;
69   do {
70     uint8_t Byte = Value & 0x7f;
71     Value >>= 7;
72     More = !((((Value == 0) && ((Byte & 0x40) == 0)) ||
73               ((Value == -1) && ((Byte & 0x40) != 0))));
74     if (More)
75       Byte |= 0x80; // Mark this byte to show that more bytes will follow.
76     Hash.update(Byte);
77   } while (More);
78 }
79 
80 /// \brief Including \p Parent adds the context of Parent to the hash..
addParentContext(const DIE & Parent)81 void DIEHash::addParentContext(const DIE &Parent) {
82 
83   DEBUG(dbgs() << "Adding parent context to hash...\n");
84 
85   // [7.27.2] For each surrounding type or namespace beginning with the
86   // outermost such construct...
87   SmallVector<const DIE *, 1> Parents;
88   const DIE *Cur = &Parent;
89   while (Cur->getParent()) {
90     Parents.push_back(Cur);
91     Cur = Cur->getParent();
92   }
93   assert(Cur->getTag() == dwarf::DW_TAG_compile_unit ||
94          Cur->getTag() == dwarf::DW_TAG_type_unit);
95 
96   // Reverse iterate over our list to go from the outermost construct to the
97   // innermost.
98   for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(),
99                                                       E = Parents.rend();
100        I != E; ++I) {
101     const DIE &Die = **I;
102 
103     // ... Append the letter "C" to the sequence...
104     addULEB128('C');
105 
106     // ... Followed by the DWARF tag of the construct...
107     addULEB128(Die.getTag());
108 
109     // ... Then the name, taken from the DW_AT_name attribute.
110     StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name);
111     DEBUG(dbgs() << "... adding context: " << Name << "\n");
112     if (!Name.empty())
113       addString(Name);
114   }
115 }
116 
117 // Collect all of the attributes for a particular DIE in single structure.
collectAttributes(const DIE & Die,DIEAttrs & Attrs)118 void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) {
119 #define COLLECT_ATTR(NAME)                                                     \
120   case dwarf::NAME:                                                            \
121     Attrs.NAME = V;                                                            \
122     break
123 
124   for (const auto &V : Die.values()) {
125     DEBUG(dbgs() << "Attribute: "
126                  << dwarf::AttributeString(V.getAttribute())
127                  << " added.\n");
128     switch (V.getAttribute()) {
129       COLLECT_ATTR(DW_AT_name);
130       COLLECT_ATTR(DW_AT_accessibility);
131       COLLECT_ATTR(DW_AT_address_class);
132       COLLECT_ATTR(DW_AT_allocated);
133       COLLECT_ATTR(DW_AT_artificial);
134       COLLECT_ATTR(DW_AT_associated);
135       COLLECT_ATTR(DW_AT_binary_scale);
136       COLLECT_ATTR(DW_AT_bit_offset);
137       COLLECT_ATTR(DW_AT_bit_size);
138       COLLECT_ATTR(DW_AT_bit_stride);
139       COLLECT_ATTR(DW_AT_byte_size);
140       COLLECT_ATTR(DW_AT_byte_stride);
141       COLLECT_ATTR(DW_AT_const_expr);
142       COLLECT_ATTR(DW_AT_const_value);
143       COLLECT_ATTR(DW_AT_containing_type);
144       COLLECT_ATTR(DW_AT_count);
145       COLLECT_ATTR(DW_AT_data_bit_offset);
146       COLLECT_ATTR(DW_AT_data_location);
147       COLLECT_ATTR(DW_AT_data_member_location);
148       COLLECT_ATTR(DW_AT_decimal_scale);
149       COLLECT_ATTR(DW_AT_decimal_sign);
150       COLLECT_ATTR(DW_AT_default_value);
151       COLLECT_ATTR(DW_AT_digit_count);
152       COLLECT_ATTR(DW_AT_discr);
153       COLLECT_ATTR(DW_AT_discr_list);
154       COLLECT_ATTR(DW_AT_discr_value);
155       COLLECT_ATTR(DW_AT_encoding);
156       COLLECT_ATTR(DW_AT_enum_class);
157       COLLECT_ATTR(DW_AT_endianity);
158       COLLECT_ATTR(DW_AT_explicit);
159       COLLECT_ATTR(DW_AT_is_optional);
160       COLLECT_ATTR(DW_AT_location);
161       COLLECT_ATTR(DW_AT_lower_bound);
162       COLLECT_ATTR(DW_AT_mutable);
163       COLLECT_ATTR(DW_AT_ordering);
164       COLLECT_ATTR(DW_AT_picture_string);
165       COLLECT_ATTR(DW_AT_prototyped);
166       COLLECT_ATTR(DW_AT_small);
167       COLLECT_ATTR(DW_AT_segment);
168       COLLECT_ATTR(DW_AT_string_length);
169       COLLECT_ATTR(DW_AT_threads_scaled);
170       COLLECT_ATTR(DW_AT_upper_bound);
171       COLLECT_ATTR(DW_AT_use_location);
172       COLLECT_ATTR(DW_AT_use_UTF8);
173       COLLECT_ATTR(DW_AT_variable_parameter);
174       COLLECT_ATTR(DW_AT_virtuality);
175       COLLECT_ATTR(DW_AT_visibility);
176       COLLECT_ATTR(DW_AT_vtable_elem_location);
177       COLLECT_ATTR(DW_AT_type);
178     default:
179       break;
180     }
181   }
182 }
183 
hashShallowTypeReference(dwarf::Attribute Attribute,const DIE & Entry,StringRef Name)184 void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute,
185                                        const DIE &Entry, StringRef Name) {
186   // append the letter 'N'
187   addULEB128('N');
188 
189   // the DWARF attribute code (DW_AT_type or DW_AT_friend),
190   addULEB128(Attribute);
191 
192   // the context of the tag,
193   if (const DIE *Parent = Entry.getParent())
194     addParentContext(*Parent);
195 
196   // the letter 'E',
197   addULEB128('E');
198 
199   // and the name of the type.
200   addString(Name);
201 
202   // Currently DW_TAG_friends are not used by Clang, but if they do become so,
203   // here's the relevant spec text to implement:
204   //
205   // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram,
206   // the context is omitted and the name to be used is the ABI-specific name
207   // of the subprogram (e.g., the mangled linker name).
208 }
209 
hashRepeatedTypeReference(dwarf::Attribute Attribute,unsigned DieNumber)210 void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute,
211                                         unsigned DieNumber) {
212   // a) If T is in the list of [previously hashed types], use the letter
213   // 'R' as the marker
214   addULEB128('R');
215 
216   addULEB128(Attribute);
217 
218   // and use the unsigned LEB128 encoding of [the index of T in the
219   // list] as the attribute value;
220   addULEB128(DieNumber);
221 }
222 
hashDIEEntry(dwarf::Attribute Attribute,dwarf::Tag Tag,const DIE & Entry)223 void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
224                            const DIE &Entry) {
225   assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend "
226                                         "tags. Add support here when there's "
227                                         "a use case");
228   // Step 5
229   // If the tag in Step 3 is one of [the below tags]
230   if ((Tag == dwarf::DW_TAG_pointer_type ||
231        Tag == dwarf::DW_TAG_reference_type ||
232        Tag == dwarf::DW_TAG_rvalue_reference_type ||
233        Tag == dwarf::DW_TAG_ptr_to_member_type) &&
234       // and the referenced type (via the [below attributes])
235       // FIXME: This seems overly restrictive, and causes hash mismatches
236       // there's a decl/def difference in the containing type of a
237       // ptr_to_member_type, but it's what DWARF says, for some reason.
238       Attribute == dwarf::DW_AT_type) {
239     // ... has a DW_AT_name attribute,
240     StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name);
241     if (!Name.empty()) {
242       hashShallowTypeReference(Attribute, Entry, Name);
243       return;
244     }
245   }
246 
247   unsigned &DieNumber = Numbering[&Entry];
248   if (DieNumber) {
249     hashRepeatedTypeReference(Attribute, DieNumber);
250     return;
251   }
252 
253   // otherwise, b) use the letter 'T' as the marker, ...
254   addULEB128('T');
255 
256   addULEB128(Attribute);
257 
258   // ... process the type T recursively by performing Steps 2 through 7, and
259   // use the result as the attribute value.
260   DieNumber = Numbering.size();
261   computeHash(Entry);
262 }
263 
264 // Hash all of the values in a block like set of values. This assumes that
265 // all of the data is going to be added as integers.
hashBlockData(const DIE::const_value_range & Values)266 void DIEHash::hashBlockData(const DIE::const_value_range &Values) {
267   for (const auto &V : Values)
268     Hash.update((uint64_t)V.getDIEInteger().getValue());
269 }
270 
271 // Hash the contents of a loclistptr class.
hashLocList(const DIELocList & LocList)272 void DIEHash::hashLocList(const DIELocList &LocList) {
273   HashingByteStreamer Streamer(*this);
274   DwarfDebug &DD = *AP->getDwarfDebug();
275   const DebugLocStream &Locs = DD.getDebugLocs();
276   for (const auto &Entry : Locs.getEntries(Locs.getList(LocList.getValue())))
277     DD.emitDebugLocEntry(Streamer, Entry);
278 }
279 
280 // Hash an individual attribute \param Attr based on the type of attribute and
281 // the form.
hashAttribute(DIEValue Value,dwarf::Tag Tag)282 void DIEHash::hashAttribute(DIEValue Value, dwarf::Tag Tag) {
283   dwarf::Attribute Attribute = Value.getAttribute();
284 
285   // Other attribute values use the letter 'A' as the marker, and the value
286   // consists of the form code (encoded as an unsigned LEB128 value) followed by
287   // the encoding of the value according to the form code. To ensure
288   // reproducibility of the signature, the set of forms used in the signature
289   // computation is limited to the following: DW_FORM_sdata, DW_FORM_flag,
290   // DW_FORM_string, and DW_FORM_block.
291 
292   switch (Value.getType()) {
293   case DIEValue::isNone:
294     llvm_unreachable("Expected valid DIEValue");
295 
296     // 7.27 Step 3
297     // ... An attribute that refers to another type entry T is processed as
298     // follows:
299   case DIEValue::isEntry:
300     hashDIEEntry(Attribute, Tag, Value.getDIEEntry().getEntry());
301     break;
302   case DIEValue::isInteger: {
303     addULEB128('A');
304     addULEB128(Attribute);
305     switch (Value.getForm()) {
306     case dwarf::DW_FORM_data1:
307     case dwarf::DW_FORM_data2:
308     case dwarf::DW_FORM_data4:
309     case dwarf::DW_FORM_data8:
310     case dwarf::DW_FORM_udata:
311     case dwarf::DW_FORM_sdata:
312       addULEB128(dwarf::DW_FORM_sdata);
313       addSLEB128((int64_t)Value.getDIEInteger().getValue());
314       break;
315     // DW_FORM_flag_present is just flag with a value of one. We still give it a
316     // value so just use the value.
317     case dwarf::DW_FORM_flag_present:
318     case dwarf::DW_FORM_flag:
319       addULEB128(dwarf::DW_FORM_flag);
320       addULEB128((int64_t)Value.getDIEInteger().getValue());
321       break;
322     default:
323       llvm_unreachable("Unknown integer form!");
324     }
325     break;
326   }
327   case DIEValue::isString:
328     addULEB128('A');
329     addULEB128(Attribute);
330     addULEB128(dwarf::DW_FORM_string);
331     addString(Value.getDIEString().getString());
332     break;
333   case DIEValue::isBlock:
334   case DIEValue::isLoc:
335   case DIEValue::isLocList:
336     addULEB128('A');
337     addULEB128(Attribute);
338     addULEB128(dwarf::DW_FORM_block);
339     if (Value.getType() == DIEValue::isBlock) {
340       addULEB128(Value.getDIEBlock().ComputeSize(AP));
341       hashBlockData(Value.getDIEBlock().values());
342     } else if (Value.getType() == DIEValue::isLoc) {
343       addULEB128(Value.getDIELoc().ComputeSize(AP));
344       hashBlockData(Value.getDIELoc().values());
345     } else {
346       // We could add the block length, but that would take
347       // a bit of work and not add a lot of uniqueness
348       // to the hash in some way we could test.
349       hashLocList(Value.getDIELocList());
350     }
351     break;
352     // FIXME: It's uncertain whether or not we should handle this at the moment.
353   case DIEValue::isExpr:
354   case DIEValue::isLabel:
355   case DIEValue::isDelta:
356   case DIEValue::isTypeSignature:
357     llvm_unreachable("Add support for additional value types.");
358   }
359 }
360 
361 // Go through the attributes from \param Attrs in the order specified in 7.27.4
362 // and hash them.
hashAttributes(const DIEAttrs & Attrs,dwarf::Tag Tag)363 void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) {
364 #define ADD_ATTR(ATTR)                                                         \
365   {                                                                            \
366     if (ATTR)                                                                  \
367       hashAttribute(ATTR, Tag);                                                \
368   }
369 
370   ADD_ATTR(Attrs.DW_AT_name);
371   ADD_ATTR(Attrs.DW_AT_accessibility);
372   ADD_ATTR(Attrs.DW_AT_address_class);
373   ADD_ATTR(Attrs.DW_AT_allocated);
374   ADD_ATTR(Attrs.DW_AT_artificial);
375   ADD_ATTR(Attrs.DW_AT_associated);
376   ADD_ATTR(Attrs.DW_AT_binary_scale);
377   ADD_ATTR(Attrs.DW_AT_bit_offset);
378   ADD_ATTR(Attrs.DW_AT_bit_size);
379   ADD_ATTR(Attrs.DW_AT_bit_stride);
380   ADD_ATTR(Attrs.DW_AT_byte_size);
381   ADD_ATTR(Attrs.DW_AT_byte_stride);
382   ADD_ATTR(Attrs.DW_AT_const_expr);
383   ADD_ATTR(Attrs.DW_AT_const_value);
384   ADD_ATTR(Attrs.DW_AT_containing_type);
385   ADD_ATTR(Attrs.DW_AT_count);
386   ADD_ATTR(Attrs.DW_AT_data_bit_offset);
387   ADD_ATTR(Attrs.DW_AT_data_location);
388   ADD_ATTR(Attrs.DW_AT_data_member_location);
389   ADD_ATTR(Attrs.DW_AT_decimal_scale);
390   ADD_ATTR(Attrs.DW_AT_decimal_sign);
391   ADD_ATTR(Attrs.DW_AT_default_value);
392   ADD_ATTR(Attrs.DW_AT_digit_count);
393   ADD_ATTR(Attrs.DW_AT_discr);
394   ADD_ATTR(Attrs.DW_AT_discr_list);
395   ADD_ATTR(Attrs.DW_AT_discr_value);
396   ADD_ATTR(Attrs.DW_AT_encoding);
397   ADD_ATTR(Attrs.DW_AT_enum_class);
398   ADD_ATTR(Attrs.DW_AT_endianity);
399   ADD_ATTR(Attrs.DW_AT_explicit);
400   ADD_ATTR(Attrs.DW_AT_is_optional);
401   ADD_ATTR(Attrs.DW_AT_location);
402   ADD_ATTR(Attrs.DW_AT_lower_bound);
403   ADD_ATTR(Attrs.DW_AT_mutable);
404   ADD_ATTR(Attrs.DW_AT_ordering);
405   ADD_ATTR(Attrs.DW_AT_picture_string);
406   ADD_ATTR(Attrs.DW_AT_prototyped);
407   ADD_ATTR(Attrs.DW_AT_small);
408   ADD_ATTR(Attrs.DW_AT_segment);
409   ADD_ATTR(Attrs.DW_AT_string_length);
410   ADD_ATTR(Attrs.DW_AT_threads_scaled);
411   ADD_ATTR(Attrs.DW_AT_upper_bound);
412   ADD_ATTR(Attrs.DW_AT_use_location);
413   ADD_ATTR(Attrs.DW_AT_use_UTF8);
414   ADD_ATTR(Attrs.DW_AT_variable_parameter);
415   ADD_ATTR(Attrs.DW_AT_virtuality);
416   ADD_ATTR(Attrs.DW_AT_visibility);
417   ADD_ATTR(Attrs.DW_AT_vtable_elem_location);
418   ADD_ATTR(Attrs.DW_AT_type);
419 
420   // FIXME: Add the extended attributes.
421 }
422 
423 // Add all of the attributes for \param Die to the hash.
addAttributes(const DIE & Die)424 void DIEHash::addAttributes(const DIE &Die) {
425   DIEAttrs Attrs = {};
426   collectAttributes(Die, Attrs);
427   hashAttributes(Attrs, Die.getTag());
428 }
429 
hashNestedType(const DIE & Die,StringRef Name)430 void DIEHash::hashNestedType(const DIE &Die, StringRef Name) {
431   // 7.27 Step 7
432   // ... append the letter 'S',
433   addULEB128('S');
434 
435   // the tag of C,
436   addULEB128(Die.getTag());
437 
438   // and the name.
439   addString(Name);
440 }
441 
442 // Compute the hash of a DIE. This is based on the type signature computation
443 // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a
444 // flattened description of the DIE.
computeHash(const DIE & Die)445 void DIEHash::computeHash(const DIE &Die) {
446   // Append the letter 'D', followed by the DWARF tag of the DIE.
447   addULEB128('D');
448   addULEB128(Die.getTag());
449 
450   // Add each of the attributes of the DIE.
451   addAttributes(Die);
452 
453   // Then hash each of the children of the DIE.
454   for (auto &C : Die.children()) {
455     // 7.27 Step 7
456     // If C is a nested type entry or a member function entry, ...
457     if (isType(C.getTag()) || C.getTag() == dwarf::DW_TAG_subprogram) {
458       StringRef Name = getDIEStringAttr(C, dwarf::DW_AT_name);
459       // ... and has a DW_AT_name attribute
460       if (!Name.empty()) {
461         hashNestedType(C, Name);
462         continue;
463       }
464     }
465     computeHash(C);
466   }
467 
468   // Following the last (or if there are no children), append a zero byte.
469   Hash.update(makeArrayRef((uint8_t)'\0'));
470 }
471 
472 /// This is based on the type signature computation given in section 7.27 of the
473 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
474 /// with the inclusion of the full CU and all top level CU entities.
475 // TODO: Initialize the type chain at 0 instead of 1 for CU signatures.
computeCUSignature(const DIE & Die)476 uint64_t DIEHash::computeCUSignature(const DIE &Die) {
477   Numbering.clear();
478   Numbering[&Die] = 1;
479 
480   // Hash the DIE.
481   computeHash(Die);
482 
483   // Now return the result.
484   MD5::MD5Result Result;
485   Hash.final(Result);
486 
487   // ... take the least significant 8 bytes and return those. Our MD5
488   // implementation always returns its results in little endian, swap bytes
489   // appropriately.
490   return support::endian::read64le(Result + 8);
491 }
492 
493 /// This is based on the type signature computation given in section 7.27 of the
494 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
495 /// with the inclusion of additional forms not specifically called out in the
496 /// standard.
computeTypeSignature(const DIE & Die)497 uint64_t DIEHash::computeTypeSignature(const DIE &Die) {
498   Numbering.clear();
499   Numbering[&Die] = 1;
500 
501   if (const DIE *Parent = Die.getParent())
502     addParentContext(*Parent);
503 
504   // Hash the DIE.
505   computeHash(Die);
506 
507   // Now return the result.
508   MD5::MD5Result Result;
509   Hash.final(Result);
510 
511   // ... take the least significant 8 bytes and return those. Our MD5
512   // implementation always returns its results in little endian, swap bytes
513   // appropriately.
514   return support::endian::read64le(Result + 8);
515 }
516