1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/IdentifierTable.h"
29 #include "clang/Basic/Module.h"
30 #include "clang/Basic/Specifiers.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Frontend/FrontendDiagnostic.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include <algorithm>
35
36 using namespace clang;
37
getPrimaryMergedDecl(Decl * D)38 Decl *clang::getPrimaryMergedDecl(Decl *D) {
39 return D->getASTContext().getPrimaryMergedDecl(D);
40 }
41
42 // Defined here so that it can be inlined into its direct callers.
isOutOfLine() const43 bool Decl::isOutOfLine() const {
44 return !getLexicalDeclContext()->Equals(getDeclContext());
45 }
46
TranslationUnitDecl(ASTContext & ctx)47 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
48 : Decl(TranslationUnit, nullptr, SourceLocation()),
49 DeclContext(TranslationUnit), Ctx(ctx), AnonymousNamespace(nullptr) {
50 Hidden = Ctx.getLangOpts().ModulesLocalVisibility;
51 }
52
53 //===----------------------------------------------------------------------===//
54 // NamedDecl Implementation
55 //===----------------------------------------------------------------------===//
56
57 // Visibility rules aren't rigorously externally specified, but here
58 // are the basic principles behind what we implement:
59 //
60 // 1. An explicit visibility attribute is generally a direct expression
61 // of the user's intent and should be honored. Only the innermost
62 // visibility attribute applies. If no visibility attribute applies,
63 // global visibility settings are considered.
64 //
65 // 2. There is one caveat to the above: on or in a template pattern,
66 // an explicit visibility attribute is just a default rule, and
67 // visibility can be decreased by the visibility of template
68 // arguments. But this, too, has an exception: an attribute on an
69 // explicit specialization or instantiation causes all the visibility
70 // restrictions of the template arguments to be ignored.
71 //
72 // 3. A variable that does not otherwise have explicit visibility can
73 // be restricted by the visibility of its type.
74 //
75 // 4. A visibility restriction is explicit if it comes from an
76 // attribute (or something like it), not a global visibility setting.
77 // When emitting a reference to an external symbol, visibility
78 // restrictions are ignored unless they are explicit.
79 //
80 // 5. When computing the visibility of a non-type, including a
81 // non-type member of a class, only non-type visibility restrictions
82 // are considered: the 'visibility' attribute, global value-visibility
83 // settings, and a few special cases like __private_extern.
84 //
85 // 6. When computing the visibility of a type, including a type member
86 // of a class, only type visibility restrictions are considered:
87 // the 'type_visibility' attribute and global type-visibility settings.
88 // However, a 'visibility' attribute counts as a 'type_visibility'
89 // attribute on any declaration that only has the former.
90 //
91 // The visibility of a "secondary" entity, like a template argument,
92 // is computed using the kind of that entity, not the kind of the
93 // primary entity for which we are computing visibility. For example,
94 // the visibility of a specialization of either of these templates:
95 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
96 // template <class T, bool (&compare)(T, X)> class matcher;
97 // is restricted according to the type visibility of the argument 'T',
98 // the type visibility of 'bool(&)(T,X)', and the value visibility of
99 // the argument function 'compare'. That 'has_match' is a value
100 // and 'matcher' is a type only matters when looking for attributes
101 // and settings from the immediate context.
102
103 const unsigned IgnoreExplicitVisibilityBit = 2;
104 const unsigned IgnoreAllVisibilityBit = 4;
105
106 /// Kinds of LV computation. The linkage side of the computation is
107 /// always the same, but different things can change how visibility is
108 /// computed.
109 enum LVComputationKind {
110 /// Do an LV computation for, ultimately, a type.
111 /// Visibility may be restricted by type visibility settings and
112 /// the visibility of template arguments.
113 LVForType = NamedDecl::VisibilityForType,
114
115 /// Do an LV computation for, ultimately, a non-type declaration.
116 /// Visibility may be restricted by value visibility settings and
117 /// the visibility of template arguments.
118 LVForValue = NamedDecl::VisibilityForValue,
119
120 /// Do an LV computation for, ultimately, a type that already has
121 /// some sort of explicit visibility. Visibility may only be
122 /// restricted by the visibility of template arguments.
123 LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
124
125 /// Do an LV computation for, ultimately, a non-type declaration
126 /// that already has some sort of explicit visibility. Visibility
127 /// may only be restricted by the visibility of template arguments.
128 LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
129
130 /// Do an LV computation when we only care about the linkage.
131 LVForLinkageOnly =
132 LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
133 };
134
135 /// Does this computation kind permit us to consider additional
136 /// visibility settings from attributes and the like?
hasExplicitVisibilityAlready(LVComputationKind computation)137 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
138 return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
139 }
140
141 /// Given an LVComputationKind, return one of the same type/value sort
142 /// that records that it already has explicit visibility.
143 static LVComputationKind
withExplicitVisibilityAlready(LVComputationKind oldKind)144 withExplicitVisibilityAlready(LVComputationKind oldKind) {
145 LVComputationKind newKind =
146 static_cast<LVComputationKind>(unsigned(oldKind) |
147 IgnoreExplicitVisibilityBit);
148 assert(oldKind != LVForType || newKind == LVForExplicitType);
149 assert(oldKind != LVForValue || newKind == LVForExplicitValue);
150 assert(oldKind != LVForExplicitType || newKind == LVForExplicitType);
151 assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
152 return newKind;
153 }
154
getExplicitVisibility(const NamedDecl * D,LVComputationKind kind)155 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
156 LVComputationKind kind) {
157 assert(!hasExplicitVisibilityAlready(kind) &&
158 "asking for explicit visibility when we shouldn't be");
159 return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
160 }
161
162 /// Is the given declaration a "type" or a "value" for the purposes of
163 /// visibility computation?
usesTypeVisibility(const NamedDecl * D)164 static bool usesTypeVisibility(const NamedDecl *D) {
165 return isa<TypeDecl>(D) ||
166 isa<ClassTemplateDecl>(D) ||
167 isa<ObjCInterfaceDecl>(D);
168 }
169
170 /// Does the given declaration have member specialization information,
171 /// and if so, is it an explicit specialization?
172 template <class T> static typename
173 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
isExplicitMemberSpecialization(const T * D)174 isExplicitMemberSpecialization(const T *D) {
175 if (const MemberSpecializationInfo *member =
176 D->getMemberSpecializationInfo()) {
177 return member->isExplicitSpecialization();
178 }
179 return false;
180 }
181
182 /// For templates, this question is easier: a member template can't be
183 /// explicitly instantiated, so there's a single bit indicating whether
184 /// or not this is an explicit member specialization.
isExplicitMemberSpecialization(const RedeclarableTemplateDecl * D)185 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
186 return D->isMemberSpecialization();
187 }
188
189 /// Given a visibility attribute, return the explicit visibility
190 /// associated with it.
191 template <class T>
getVisibilityFromAttr(const T * attr)192 static Visibility getVisibilityFromAttr(const T *attr) {
193 switch (attr->getVisibility()) {
194 case T::Default:
195 return DefaultVisibility;
196 case T::Hidden:
197 return HiddenVisibility;
198 case T::Protected:
199 return ProtectedVisibility;
200 }
201 llvm_unreachable("bad visibility kind");
202 }
203
204 /// Return the explicit visibility of the given declaration.
getVisibilityOf(const NamedDecl * D,NamedDecl::ExplicitVisibilityKind kind)205 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
206 NamedDecl::ExplicitVisibilityKind kind) {
207 // If we're ultimately computing the visibility of a type, look for
208 // a 'type_visibility' attribute before looking for 'visibility'.
209 if (kind == NamedDecl::VisibilityForType) {
210 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
211 return getVisibilityFromAttr(A);
212 }
213 }
214
215 // If this declaration has an explicit visibility attribute, use it.
216 if (const auto *A = D->getAttr<VisibilityAttr>()) {
217 return getVisibilityFromAttr(A);
218 }
219
220 // If we're on Mac OS X, an 'availability' for Mac OS X attribute
221 // implies visibility(default).
222 if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
223 for (const auto *A : D->specific_attrs<AvailabilityAttr>())
224 if (A->getPlatform()->getName().equals("macosx"))
225 return DefaultVisibility;
226 }
227
228 return None;
229 }
230
231 static LinkageInfo
getLVForType(const Type & T,LVComputationKind computation)232 getLVForType(const Type &T, LVComputationKind computation) {
233 if (computation == LVForLinkageOnly)
234 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
235 return T.getLinkageAndVisibility();
236 }
237
238 /// \brief Get the most restrictive linkage for the types in the given
239 /// template parameter list. For visibility purposes, template
240 /// parameters are part of the signature of a template.
241 static LinkageInfo
getLVForTemplateParameterList(const TemplateParameterList * Params,LVComputationKind computation)242 getLVForTemplateParameterList(const TemplateParameterList *Params,
243 LVComputationKind computation) {
244 LinkageInfo LV;
245 for (const NamedDecl *P : *Params) {
246 // Template type parameters are the most common and never
247 // contribute to visibility, pack or not.
248 if (isa<TemplateTypeParmDecl>(P))
249 continue;
250
251 // Non-type template parameters can be restricted by the value type, e.g.
252 // template <enum X> class A { ... };
253 // We have to be careful here, though, because we can be dealing with
254 // dependent types.
255 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
256 // Handle the non-pack case first.
257 if (!NTTP->isExpandedParameterPack()) {
258 if (!NTTP->getType()->isDependentType()) {
259 LV.merge(getLVForType(*NTTP->getType(), computation));
260 }
261 continue;
262 }
263
264 // Look at all the types in an expanded pack.
265 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
266 QualType type = NTTP->getExpansionType(i);
267 if (!type->isDependentType())
268 LV.merge(type->getLinkageAndVisibility());
269 }
270 continue;
271 }
272
273 // Template template parameters can be restricted by their
274 // template parameters, recursively.
275 const auto *TTP = cast<TemplateTemplateParmDecl>(P);
276
277 // Handle the non-pack case first.
278 if (!TTP->isExpandedParameterPack()) {
279 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
280 computation));
281 continue;
282 }
283
284 // Look at all expansions in an expanded pack.
285 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
286 i != n; ++i) {
287 LV.merge(getLVForTemplateParameterList(
288 TTP->getExpansionTemplateParameters(i), computation));
289 }
290 }
291
292 return LV;
293 }
294
295 /// getLVForDecl - Get the linkage and visibility for the given declaration.
296 static LinkageInfo getLVForDecl(const NamedDecl *D,
297 LVComputationKind computation);
298
getOutermostFuncOrBlockContext(const Decl * D)299 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
300 const Decl *Ret = nullptr;
301 const DeclContext *DC = D->getDeclContext();
302 while (DC->getDeclKind() != Decl::TranslationUnit) {
303 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
304 Ret = cast<Decl>(DC);
305 DC = DC->getParent();
306 }
307 return Ret;
308 }
309
310 /// \brief Get the most restrictive linkage for the types and
311 /// declarations in the given template argument list.
312 ///
313 /// Note that we don't take an LVComputationKind because we always
314 /// want to honor the visibility of template arguments in the same way.
getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,LVComputationKind computation)315 static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
316 LVComputationKind computation) {
317 LinkageInfo LV;
318
319 for (const TemplateArgument &Arg : Args) {
320 switch (Arg.getKind()) {
321 case TemplateArgument::Null:
322 case TemplateArgument::Integral:
323 case TemplateArgument::Expression:
324 continue;
325
326 case TemplateArgument::Type:
327 LV.merge(getLVForType(*Arg.getAsType(), computation));
328 continue;
329
330 case TemplateArgument::Declaration:
331 if (const auto *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) {
332 assert(!usesTypeVisibility(ND));
333 LV.merge(getLVForDecl(ND, computation));
334 }
335 continue;
336
337 case TemplateArgument::NullPtr:
338 LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility());
339 continue;
340
341 case TemplateArgument::Template:
342 case TemplateArgument::TemplateExpansion:
343 if (TemplateDecl *Template =
344 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
345 LV.merge(getLVForDecl(Template, computation));
346 continue;
347
348 case TemplateArgument::Pack:
349 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
350 continue;
351 }
352 llvm_unreachable("bad template argument kind");
353 }
354
355 return LV;
356 }
357
358 static LinkageInfo
getLVForTemplateArgumentList(const TemplateArgumentList & TArgs,LVComputationKind computation)359 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
360 LVComputationKind computation) {
361 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
362 }
363
shouldConsiderTemplateVisibility(const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo)364 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
365 const FunctionTemplateSpecializationInfo *specInfo) {
366 // Include visibility from the template parameters and arguments
367 // only if this is not an explicit instantiation or specialization
368 // with direct explicit visibility. (Implicit instantiations won't
369 // have a direct attribute.)
370 if (!specInfo->isExplicitInstantiationOrSpecialization())
371 return true;
372
373 return !fn->hasAttr<VisibilityAttr>();
374 }
375
376 /// Merge in template-related linkage and visibility for the given
377 /// function template specialization.
378 ///
379 /// We don't need a computation kind here because we can assume
380 /// LVForValue.
381 ///
382 /// \param[out] LV the computation to use for the parent
383 static void
mergeTemplateLV(LinkageInfo & LV,const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo,LVComputationKind computation)384 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
385 const FunctionTemplateSpecializationInfo *specInfo,
386 LVComputationKind computation) {
387 bool considerVisibility =
388 shouldConsiderTemplateVisibility(fn, specInfo);
389
390 // Merge information from the template parameters.
391 FunctionTemplateDecl *temp = specInfo->getTemplate();
392 LinkageInfo tempLV =
393 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
394 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
395
396 // Merge information from the template arguments.
397 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
398 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
399 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
400 }
401
402 /// Does the given declaration have a direct visibility attribute
403 /// that would match the given rules?
hasDirectVisibilityAttribute(const NamedDecl * D,LVComputationKind computation)404 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
405 LVComputationKind computation) {
406 switch (computation) {
407 case LVForType:
408 case LVForExplicitType:
409 if (D->hasAttr<TypeVisibilityAttr>())
410 return true;
411 // fallthrough
412 case LVForValue:
413 case LVForExplicitValue:
414 if (D->hasAttr<VisibilityAttr>())
415 return true;
416 return false;
417 case LVForLinkageOnly:
418 return false;
419 }
420 llvm_unreachable("bad visibility computation kind");
421 }
422
423 /// Should we consider visibility associated with the template
424 /// arguments and parameters of the given class template specialization?
shouldConsiderTemplateVisibility(const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)425 static bool shouldConsiderTemplateVisibility(
426 const ClassTemplateSpecializationDecl *spec,
427 LVComputationKind computation) {
428 // Include visibility from the template parameters and arguments
429 // only if this is not an explicit instantiation or specialization
430 // with direct explicit visibility (and note that implicit
431 // instantiations won't have a direct attribute).
432 //
433 // Furthermore, we want to ignore template parameters and arguments
434 // for an explicit specialization when computing the visibility of a
435 // member thereof with explicit visibility.
436 //
437 // This is a bit complex; let's unpack it.
438 //
439 // An explicit class specialization is an independent, top-level
440 // declaration. As such, if it or any of its members has an
441 // explicit visibility attribute, that must directly express the
442 // user's intent, and we should honor it. The same logic applies to
443 // an explicit instantiation of a member of such a thing.
444
445 // Fast path: if this is not an explicit instantiation or
446 // specialization, we always want to consider template-related
447 // visibility restrictions.
448 if (!spec->isExplicitInstantiationOrSpecialization())
449 return true;
450
451 // This is the 'member thereof' check.
452 if (spec->isExplicitSpecialization() &&
453 hasExplicitVisibilityAlready(computation))
454 return false;
455
456 return !hasDirectVisibilityAttribute(spec, computation);
457 }
458
459 /// Merge in template-related linkage and visibility for the given
460 /// class template specialization.
mergeTemplateLV(LinkageInfo & LV,const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)461 static void mergeTemplateLV(LinkageInfo &LV,
462 const ClassTemplateSpecializationDecl *spec,
463 LVComputationKind computation) {
464 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
465
466 // Merge information from the template parameters, but ignore
467 // visibility if we're only considering template arguments.
468
469 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
470 LinkageInfo tempLV =
471 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
472 LV.mergeMaybeWithVisibility(tempLV,
473 considerVisibility && !hasExplicitVisibilityAlready(computation));
474
475 // Merge information from the template arguments. We ignore
476 // template-argument visibility if we've got an explicit
477 // instantiation with a visibility attribute.
478 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
479 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
480 if (considerVisibility)
481 LV.mergeVisibility(argsLV);
482 LV.mergeExternalVisibility(argsLV);
483 }
484
485 /// Should we consider visibility associated with the template
486 /// arguments and parameters of the given variable template
487 /// specialization? As usual, follow class template specialization
488 /// logic up to initialization.
shouldConsiderTemplateVisibility(const VarTemplateSpecializationDecl * spec,LVComputationKind computation)489 static bool shouldConsiderTemplateVisibility(
490 const VarTemplateSpecializationDecl *spec,
491 LVComputationKind computation) {
492 // Include visibility from the template parameters and arguments
493 // only if this is not an explicit instantiation or specialization
494 // with direct explicit visibility (and note that implicit
495 // instantiations won't have a direct attribute).
496 if (!spec->isExplicitInstantiationOrSpecialization())
497 return true;
498
499 // An explicit variable specialization is an independent, top-level
500 // declaration. As such, if it has an explicit visibility attribute,
501 // that must directly express the user's intent, and we should honor
502 // it.
503 if (spec->isExplicitSpecialization() &&
504 hasExplicitVisibilityAlready(computation))
505 return false;
506
507 return !hasDirectVisibilityAttribute(spec, computation);
508 }
509
510 /// Merge in template-related linkage and visibility for the given
511 /// variable template specialization. As usual, follow class template
512 /// specialization logic up to initialization.
mergeTemplateLV(LinkageInfo & LV,const VarTemplateSpecializationDecl * spec,LVComputationKind computation)513 static void mergeTemplateLV(LinkageInfo &LV,
514 const VarTemplateSpecializationDecl *spec,
515 LVComputationKind computation) {
516 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
517
518 // Merge information from the template parameters, but ignore
519 // visibility if we're only considering template arguments.
520
521 VarTemplateDecl *temp = spec->getSpecializedTemplate();
522 LinkageInfo tempLV =
523 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
524 LV.mergeMaybeWithVisibility(tempLV,
525 considerVisibility && !hasExplicitVisibilityAlready(computation));
526
527 // Merge information from the template arguments. We ignore
528 // template-argument visibility if we've got an explicit
529 // instantiation with a visibility attribute.
530 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
531 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
532 if (considerVisibility)
533 LV.mergeVisibility(argsLV);
534 LV.mergeExternalVisibility(argsLV);
535 }
536
useInlineVisibilityHidden(const NamedDecl * D)537 static bool useInlineVisibilityHidden(const NamedDecl *D) {
538 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
539 const LangOptions &Opts = D->getASTContext().getLangOpts();
540 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
541 return false;
542
543 const auto *FD = dyn_cast<FunctionDecl>(D);
544 if (!FD)
545 return false;
546
547 TemplateSpecializationKind TSK = TSK_Undeclared;
548 if (FunctionTemplateSpecializationInfo *spec
549 = FD->getTemplateSpecializationInfo()) {
550 TSK = spec->getTemplateSpecializationKind();
551 } else if (MemberSpecializationInfo *MSI =
552 FD->getMemberSpecializationInfo()) {
553 TSK = MSI->getTemplateSpecializationKind();
554 }
555
556 const FunctionDecl *Def = nullptr;
557 // InlineVisibilityHidden only applies to definitions, and
558 // isInlined() only gives meaningful answers on definitions
559 // anyway.
560 return TSK != TSK_ExplicitInstantiationDeclaration &&
561 TSK != TSK_ExplicitInstantiationDefinition &&
562 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
563 }
564
isFirstInExternCContext(T * D)565 template <typename T> static bool isFirstInExternCContext(T *D) {
566 const T *First = D->getFirstDecl();
567 return First->isInExternCContext();
568 }
569
isSingleLineLanguageLinkage(const Decl & D)570 static bool isSingleLineLanguageLinkage(const Decl &D) {
571 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
572 if (!SD->hasBraces())
573 return true;
574 return false;
575 }
576
getLVForNamespaceScopeDecl(const NamedDecl * D,LVComputationKind computation)577 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
578 LVComputationKind computation) {
579 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
580 "Not a name having namespace scope");
581 ASTContext &Context = D->getASTContext();
582
583 // C++ [basic.link]p3:
584 // A name having namespace scope (3.3.6) has internal linkage if it
585 // is the name of
586 // - an object, reference, function or function template that is
587 // explicitly declared static; or,
588 // (This bullet corresponds to C99 6.2.2p3.)
589 if (const auto *Var = dyn_cast<VarDecl>(D)) {
590 // Explicitly declared static.
591 if (Var->getStorageClass() == SC_Static)
592 return LinkageInfo::internal();
593
594 // - a non-volatile object or reference that is explicitly declared const
595 // or constexpr and neither explicitly declared extern nor previously
596 // declared to have external linkage; or (there is no equivalent in C99)
597 if (Context.getLangOpts().CPlusPlus &&
598 Var->getType().isConstQualified() &&
599 !Var->getType().isVolatileQualified()) {
600 const VarDecl *PrevVar = Var->getPreviousDecl();
601 if (PrevVar)
602 return getLVForDecl(PrevVar, computation);
603
604 if (Var->getStorageClass() != SC_Extern &&
605 Var->getStorageClass() != SC_PrivateExtern &&
606 !isSingleLineLanguageLinkage(*Var))
607 return LinkageInfo::internal();
608 }
609
610 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
611 PrevVar = PrevVar->getPreviousDecl()) {
612 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
613 Var->getStorageClass() == SC_None)
614 return PrevVar->getLinkageAndVisibility();
615 // Explicitly declared static.
616 if (PrevVar->getStorageClass() == SC_Static)
617 return LinkageInfo::internal();
618 }
619 } else if (const FunctionDecl *Function = D->getAsFunction()) {
620 // C++ [temp]p4:
621 // A non-member function template can have internal linkage; any
622 // other template name shall have external linkage.
623
624 // Explicitly declared static.
625 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
626 return LinkageInfo(InternalLinkage, DefaultVisibility, false);
627 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
628 // - a data member of an anonymous union.
629 const VarDecl *VD = IFD->getVarDecl();
630 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
631 return getLVForNamespaceScopeDecl(VD, computation);
632 }
633 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
634
635 if (D->isInAnonymousNamespace()) {
636 const auto *Var = dyn_cast<VarDecl>(D);
637 const auto *Func = dyn_cast<FunctionDecl>(D);
638 // FIXME: In C++11 onwards, anonymous namespaces should give decls
639 // within them internal linkage, not unique external linkage.
640 if ((!Var || !isFirstInExternCContext(Var)) &&
641 (!Func || !isFirstInExternCContext(Func)))
642 return LinkageInfo::uniqueExternal();
643 }
644
645 // Set up the defaults.
646
647 // C99 6.2.2p5:
648 // If the declaration of an identifier for an object has file
649 // scope and no storage-class specifier, its linkage is
650 // external.
651 LinkageInfo LV;
652
653 if (!hasExplicitVisibilityAlready(computation)) {
654 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
655 LV.mergeVisibility(*Vis, true);
656 } else {
657 // If we're declared in a namespace with a visibility attribute,
658 // use that namespace's visibility, and it still counts as explicit.
659 for (const DeclContext *DC = D->getDeclContext();
660 !isa<TranslationUnitDecl>(DC);
661 DC = DC->getParent()) {
662 const auto *ND = dyn_cast<NamespaceDecl>(DC);
663 if (!ND) continue;
664 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
665 LV.mergeVisibility(*Vis, true);
666 break;
667 }
668 }
669 }
670
671 // Add in global settings if the above didn't give us direct visibility.
672 if (!LV.isVisibilityExplicit()) {
673 // Use global type/value visibility as appropriate.
674 Visibility globalVisibility;
675 if (computation == LVForValue) {
676 globalVisibility = Context.getLangOpts().getValueVisibilityMode();
677 } else {
678 assert(computation == LVForType);
679 globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
680 }
681 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
682
683 // If we're paying attention to global visibility, apply
684 // -finline-visibility-hidden if this is an inline method.
685 if (useInlineVisibilityHidden(D))
686 LV.mergeVisibility(HiddenVisibility, true);
687 }
688 }
689
690 // C++ [basic.link]p4:
691
692 // A name having namespace scope has external linkage if it is the
693 // name of
694 //
695 // - an object or reference, unless it has internal linkage; or
696 if (const auto *Var = dyn_cast<VarDecl>(D)) {
697 // GCC applies the following optimization to variables and static
698 // data members, but not to functions:
699 //
700 // Modify the variable's LV by the LV of its type unless this is
701 // C or extern "C". This follows from [basic.link]p9:
702 // A type without linkage shall not be used as the type of a
703 // variable or function with external linkage unless
704 // - the entity has C language linkage, or
705 // - the entity is declared within an unnamed namespace, or
706 // - the entity is not used or is defined in the same
707 // translation unit.
708 // and [basic.link]p10:
709 // ...the types specified by all declarations referring to a
710 // given variable or function shall be identical...
711 // C does not have an equivalent rule.
712 //
713 // Ignore this if we've got an explicit attribute; the user
714 // probably knows what they're doing.
715 //
716 // Note that we don't want to make the variable non-external
717 // because of this, but unique-external linkage suits us.
718 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
719 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
720 if (TypeLV.getLinkage() != ExternalLinkage)
721 return LinkageInfo::uniqueExternal();
722 if (!LV.isVisibilityExplicit())
723 LV.mergeVisibility(TypeLV);
724 }
725
726 if (Var->getStorageClass() == SC_PrivateExtern)
727 LV.mergeVisibility(HiddenVisibility, true);
728
729 // Note that Sema::MergeVarDecl already takes care of implementing
730 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
731 // to do it here.
732
733 // As per function and class template specializations (below),
734 // consider LV for the template and template arguments. We're at file
735 // scope, so we do not need to worry about nested specializations.
736 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
737 mergeTemplateLV(LV, spec, computation);
738 }
739
740 // - a function, unless it has internal linkage; or
741 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
742 // In theory, we can modify the function's LV by the LV of its
743 // type unless it has C linkage (see comment above about variables
744 // for justification). In practice, GCC doesn't do this, so it's
745 // just too painful to make work.
746
747 if (Function->getStorageClass() == SC_PrivateExtern)
748 LV.mergeVisibility(HiddenVisibility, true);
749
750 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
751 // merging storage classes and visibility attributes, so we don't have to
752 // look at previous decls in here.
753
754 // In C++, then if the type of the function uses a type with
755 // unique-external linkage, it's not legally usable from outside
756 // this translation unit. However, we should use the C linkage
757 // rules instead for extern "C" declarations.
758 if (Context.getLangOpts().CPlusPlus &&
759 !Function->isInExternCContext()) {
760 // Only look at the type-as-written. If this function has an auto-deduced
761 // return type, we can't compute the linkage of that type because it could
762 // require looking at the linkage of this function, and we don't need this
763 // for correctness because the type is not part of the function's
764 // signature.
765 // FIXME: This is a hack. We should be able to solve this circularity and
766 // the one in getLVForClassMember for Functions some other way.
767 QualType TypeAsWritten = Function->getType();
768 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
769 TypeAsWritten = TSI->getType();
770 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
771 return LinkageInfo::uniqueExternal();
772 }
773
774 // Consider LV from the template and the template arguments.
775 // We're at file scope, so we do not need to worry about nested
776 // specializations.
777 if (FunctionTemplateSpecializationInfo *specInfo
778 = Function->getTemplateSpecializationInfo()) {
779 mergeTemplateLV(LV, Function, specInfo, computation);
780 }
781
782 // - a named class (Clause 9), or an unnamed class defined in a
783 // typedef declaration in which the class has the typedef name
784 // for linkage purposes (7.1.3); or
785 // - a named enumeration (7.2), or an unnamed enumeration
786 // defined in a typedef declaration in which the enumeration
787 // has the typedef name for linkage purposes (7.1.3); or
788 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
789 // Unnamed tags have no linkage.
790 if (!Tag->hasNameForLinkage())
791 return LinkageInfo::none();
792
793 // If this is a class template specialization, consider the
794 // linkage of the template and template arguments. We're at file
795 // scope, so we do not need to worry about nested specializations.
796 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
797 mergeTemplateLV(LV, spec, computation);
798 }
799
800 // - an enumerator belonging to an enumeration with external linkage;
801 } else if (isa<EnumConstantDecl>(D)) {
802 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
803 computation);
804 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
805 return LinkageInfo::none();
806 LV.merge(EnumLV);
807
808 // - a template, unless it is a function template that has
809 // internal linkage (Clause 14);
810 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
811 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
812 LinkageInfo tempLV =
813 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
814 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
815
816 // - a namespace (7.3), unless it is declared within an unnamed
817 // namespace.
818 } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
819 return LV;
820
821 // By extension, we assign external linkage to Objective-C
822 // interfaces.
823 } else if (isa<ObjCInterfaceDecl>(D)) {
824 // fallout
825
826 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
827 // A typedef declaration has linkage if it gives a type a name for
828 // linkage purposes.
829 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
830 return LinkageInfo::none();
831
832 // Everything not covered here has no linkage.
833 } else {
834 return LinkageInfo::none();
835 }
836
837 // If we ended up with non-external linkage, visibility should
838 // always be default.
839 if (LV.getLinkage() != ExternalLinkage)
840 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
841
842 return LV;
843 }
844
getLVForClassMember(const NamedDecl * D,LVComputationKind computation)845 static LinkageInfo getLVForClassMember(const NamedDecl *D,
846 LVComputationKind computation) {
847 // Only certain class members have linkage. Note that fields don't
848 // really have linkage, but it's convenient to say they do for the
849 // purposes of calculating linkage of pointer-to-data-member
850 // template arguments.
851 //
852 // Templates also don't officially have linkage, but since we ignore
853 // the C++ standard and look at template arguments when determining
854 // linkage and visibility of a template specialization, we might hit
855 // a template template argument that way. If we do, we need to
856 // consider its linkage.
857 if (!(isa<CXXMethodDecl>(D) ||
858 isa<VarDecl>(D) ||
859 isa<FieldDecl>(D) ||
860 isa<IndirectFieldDecl>(D) ||
861 isa<TagDecl>(D) ||
862 isa<TemplateDecl>(D)))
863 return LinkageInfo::none();
864
865 LinkageInfo LV;
866
867 // If we have an explicit visibility attribute, merge that in.
868 if (!hasExplicitVisibilityAlready(computation)) {
869 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
870 LV.mergeVisibility(*Vis, true);
871 // If we're paying attention to global visibility, apply
872 // -finline-visibility-hidden if this is an inline method.
873 //
874 // Note that we do this before merging information about
875 // the class visibility.
876 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
877 LV.mergeVisibility(HiddenVisibility, true);
878 }
879
880 // If this class member has an explicit visibility attribute, the only
881 // thing that can change its visibility is the template arguments, so
882 // only look for them when processing the class.
883 LVComputationKind classComputation = computation;
884 if (LV.isVisibilityExplicit())
885 classComputation = withExplicitVisibilityAlready(computation);
886
887 LinkageInfo classLV =
888 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
889 // If the class already has unique-external linkage, we can't improve.
890 if (classLV.getLinkage() == UniqueExternalLinkage)
891 return LinkageInfo::uniqueExternal();
892
893 if (!isExternallyVisible(classLV.getLinkage()))
894 return LinkageInfo::none();
895
896
897 // Otherwise, don't merge in classLV yet, because in certain cases
898 // we need to completely ignore the visibility from it.
899
900 // Specifically, if this decl exists and has an explicit attribute.
901 const NamedDecl *explicitSpecSuppressor = nullptr;
902
903 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
904 // If the type of the function uses a type with unique-external
905 // linkage, it's not legally usable from outside this translation unit.
906 // But only look at the type-as-written. If this function has an
907 // auto-deduced return type, we can't compute the linkage of that type
908 // because it could require looking at the linkage of this function, and we
909 // don't need this for correctness because the type is not part of the
910 // function's signature.
911 // FIXME: This is a hack. We should be able to solve this circularity and
912 // the one in getLVForNamespaceScopeDecl for Functions some other way.
913 {
914 QualType TypeAsWritten = MD->getType();
915 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
916 TypeAsWritten = TSI->getType();
917 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
918 return LinkageInfo::uniqueExternal();
919 }
920 // If this is a method template specialization, use the linkage for
921 // the template parameters and arguments.
922 if (FunctionTemplateSpecializationInfo *spec
923 = MD->getTemplateSpecializationInfo()) {
924 mergeTemplateLV(LV, MD, spec, computation);
925 if (spec->isExplicitSpecialization()) {
926 explicitSpecSuppressor = MD;
927 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
928 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
929 }
930 } else if (isExplicitMemberSpecialization(MD)) {
931 explicitSpecSuppressor = MD;
932 }
933
934 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
935 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
936 mergeTemplateLV(LV, spec, computation);
937 if (spec->isExplicitSpecialization()) {
938 explicitSpecSuppressor = spec;
939 } else {
940 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
941 if (isExplicitMemberSpecialization(temp)) {
942 explicitSpecSuppressor = temp->getTemplatedDecl();
943 }
944 }
945 } else if (isExplicitMemberSpecialization(RD)) {
946 explicitSpecSuppressor = RD;
947 }
948
949 // Static data members.
950 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
951 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
952 mergeTemplateLV(LV, spec, computation);
953
954 // Modify the variable's linkage by its type, but ignore the
955 // type's visibility unless it's a definition.
956 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
957 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
958 LV.mergeVisibility(typeLV);
959 LV.mergeExternalVisibility(typeLV);
960
961 if (isExplicitMemberSpecialization(VD)) {
962 explicitSpecSuppressor = VD;
963 }
964
965 // Template members.
966 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
967 bool considerVisibility =
968 (!LV.isVisibilityExplicit() &&
969 !classLV.isVisibilityExplicit() &&
970 !hasExplicitVisibilityAlready(computation));
971 LinkageInfo tempLV =
972 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
973 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
974
975 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
976 if (isExplicitMemberSpecialization(redeclTemp)) {
977 explicitSpecSuppressor = temp->getTemplatedDecl();
978 }
979 }
980 }
981
982 // We should never be looking for an attribute directly on a template.
983 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
984
985 // If this member is an explicit member specialization, and it has
986 // an explicit attribute, ignore visibility from the parent.
987 bool considerClassVisibility = true;
988 if (explicitSpecSuppressor &&
989 // optimization: hasDVA() is true only with explicit visibility.
990 LV.isVisibilityExplicit() &&
991 classLV.getVisibility() != DefaultVisibility &&
992 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
993 considerClassVisibility = false;
994 }
995
996 // Finally, merge in information from the class.
997 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
998 return LV;
999 }
1000
anchor()1001 void NamedDecl::anchor() { }
1002
1003 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1004 LVComputationKind computation);
1005
isLinkageValid() const1006 bool NamedDecl::isLinkageValid() const {
1007 if (!hasCachedLinkage())
1008 return true;
1009
1010 return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
1011 getCachedLinkage();
1012 }
1013
getObjCFStringFormattingFamily() const1014 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1015 StringRef name = getName();
1016 if (name.empty()) return SFF_None;
1017
1018 if (name.front() == 'C')
1019 if (name == "CFStringCreateWithFormat" ||
1020 name == "CFStringCreateWithFormatAndArguments" ||
1021 name == "CFStringAppendFormat" ||
1022 name == "CFStringAppendFormatAndArguments")
1023 return SFF_CFString;
1024 return SFF_None;
1025 }
1026
getLinkageInternal() const1027 Linkage NamedDecl::getLinkageInternal() const {
1028 // We don't care about visibility here, so ask for the cheapest
1029 // possible visibility analysis.
1030 return getLVForDecl(this, LVForLinkageOnly).getLinkage();
1031 }
1032
getLinkageAndVisibility() const1033 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1034 LVComputationKind computation =
1035 (usesTypeVisibility(this) ? LVForType : LVForValue);
1036 return getLVForDecl(this, computation);
1037 }
1038
1039 static Optional<Visibility>
getExplicitVisibilityAux(const NamedDecl * ND,NamedDecl::ExplicitVisibilityKind kind,bool IsMostRecent)1040 getExplicitVisibilityAux(const NamedDecl *ND,
1041 NamedDecl::ExplicitVisibilityKind kind,
1042 bool IsMostRecent) {
1043 assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1044
1045 // Check the declaration itself first.
1046 if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1047 return V;
1048
1049 // If this is a member class of a specialization of a class template
1050 // and the corresponding decl has explicit visibility, use that.
1051 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1052 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1053 if (InstantiatedFrom)
1054 return getVisibilityOf(InstantiatedFrom, kind);
1055 }
1056
1057 // If there wasn't explicit visibility there, and this is a
1058 // specialization of a class template, check for visibility
1059 // on the pattern.
1060 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND))
1061 return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
1062 kind);
1063
1064 // Use the most recent declaration.
1065 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1066 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1067 if (MostRecent != ND)
1068 return getExplicitVisibilityAux(MostRecent, kind, true);
1069 }
1070
1071 if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1072 if (Var->isStaticDataMember()) {
1073 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1074 if (InstantiatedFrom)
1075 return getVisibilityOf(InstantiatedFrom, kind);
1076 }
1077
1078 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1079 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1080 kind);
1081
1082 return None;
1083 }
1084 // Also handle function template specializations.
1085 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1086 // If the function is a specialization of a template with an
1087 // explicit visibility attribute, use that.
1088 if (FunctionTemplateSpecializationInfo *templateInfo
1089 = fn->getTemplateSpecializationInfo())
1090 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1091 kind);
1092
1093 // If the function is a member of a specialization of a class template
1094 // and the corresponding decl has explicit visibility, use that.
1095 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1096 if (InstantiatedFrom)
1097 return getVisibilityOf(InstantiatedFrom, kind);
1098
1099 return None;
1100 }
1101
1102 // The visibility of a template is stored in the templated decl.
1103 if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1104 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1105
1106 return None;
1107 }
1108
1109 Optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const1110 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1111 return getExplicitVisibilityAux(this, kind, false);
1112 }
1113
getLVForClosure(const DeclContext * DC,Decl * ContextDecl,LVComputationKind computation)1114 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
1115 LVComputationKind computation) {
1116 // This lambda has its linkage/visibility determined by its owner.
1117 if (ContextDecl) {
1118 if (isa<ParmVarDecl>(ContextDecl))
1119 DC = ContextDecl->getDeclContext()->getRedeclContext();
1120 else
1121 return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
1122 }
1123
1124 if (const auto *ND = dyn_cast<NamedDecl>(DC))
1125 return getLVForDecl(ND, computation);
1126
1127 return LinkageInfo::external();
1128 }
1129
getLVForLocalDecl(const NamedDecl * D,LVComputationKind computation)1130 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
1131 LVComputationKind computation) {
1132 if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1133 if (Function->isInAnonymousNamespace() &&
1134 !Function->isInExternCContext())
1135 return LinkageInfo::uniqueExternal();
1136
1137 // This is a "void f();" which got merged with a file static.
1138 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1139 return LinkageInfo::internal();
1140
1141 LinkageInfo LV;
1142 if (!hasExplicitVisibilityAlready(computation)) {
1143 if (Optional<Visibility> Vis =
1144 getExplicitVisibility(Function, computation))
1145 LV.mergeVisibility(*Vis, true);
1146 }
1147
1148 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1149 // merging storage classes and visibility attributes, so we don't have to
1150 // look at previous decls in here.
1151
1152 return LV;
1153 }
1154
1155 if (const auto *Var = dyn_cast<VarDecl>(D)) {
1156 if (Var->hasExternalStorage()) {
1157 if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
1158 return LinkageInfo::uniqueExternal();
1159
1160 LinkageInfo LV;
1161 if (Var->getStorageClass() == SC_PrivateExtern)
1162 LV.mergeVisibility(HiddenVisibility, true);
1163 else if (!hasExplicitVisibilityAlready(computation)) {
1164 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1165 LV.mergeVisibility(*Vis, true);
1166 }
1167
1168 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1169 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1170 if (PrevLV.getLinkage())
1171 LV.setLinkage(PrevLV.getLinkage());
1172 LV.mergeVisibility(PrevLV);
1173 }
1174
1175 return LV;
1176 }
1177
1178 if (!Var->isStaticLocal())
1179 return LinkageInfo::none();
1180 }
1181
1182 ASTContext &Context = D->getASTContext();
1183 if (!Context.getLangOpts().CPlusPlus)
1184 return LinkageInfo::none();
1185
1186 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1187 if (!OuterD)
1188 return LinkageInfo::none();
1189
1190 LinkageInfo LV;
1191 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1192 if (!BD->getBlockManglingNumber())
1193 return LinkageInfo::none();
1194
1195 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1196 BD->getBlockManglingContextDecl(), computation);
1197 } else {
1198 const auto *FD = cast<FunctionDecl>(OuterD);
1199 if (!FD->isInlined() &&
1200 !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1201 return LinkageInfo::none();
1202
1203 LV = getLVForDecl(FD, computation);
1204 }
1205 if (!isExternallyVisible(LV.getLinkage()))
1206 return LinkageInfo::none();
1207 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1208 LV.isVisibilityExplicit());
1209 }
1210
1211 static inline const CXXRecordDecl*
getOutermostEnclosingLambda(const CXXRecordDecl * Record)1212 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
1213 const CXXRecordDecl *Ret = Record;
1214 while (Record && Record->isLambda()) {
1215 Ret = Record;
1216 if (!Record->getParent()) break;
1217 // Get the Containing Class of this Lambda Class
1218 Record = dyn_cast_or_null<CXXRecordDecl>(
1219 Record->getParent()->getParent());
1220 }
1221 return Ret;
1222 }
1223
computeLVForDecl(const NamedDecl * D,LVComputationKind computation)1224 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1225 LVComputationKind computation) {
1226 // Internal_linkage attribute overrides other considerations.
1227 if (D->hasAttr<InternalLinkageAttr>())
1228 return LinkageInfo::internal();
1229
1230 // Objective-C: treat all Objective-C declarations as having external
1231 // linkage.
1232 switch (D->getKind()) {
1233 default:
1234 break;
1235
1236 // Per C++ [basic.link]p2, only the names of objects, references,
1237 // functions, types, templates, namespaces, and values ever have linkage.
1238 //
1239 // Note that the name of a typedef, namespace alias, using declaration,
1240 // and so on are not the name of the corresponding type, namespace, or
1241 // declaration, so they do *not* have linkage.
1242 case Decl::ImplicitParam:
1243 case Decl::Label:
1244 case Decl::NamespaceAlias:
1245 case Decl::ParmVar:
1246 case Decl::Using:
1247 case Decl::UsingShadow:
1248 case Decl::UsingDirective:
1249 return LinkageInfo::none();
1250
1251 case Decl::EnumConstant:
1252 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1253 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1254
1255 case Decl::Typedef:
1256 case Decl::TypeAlias:
1257 // A typedef declaration has linkage if it gives a type a name for
1258 // linkage purposes.
1259 if (!D->getASTContext().getLangOpts().CPlusPlus ||
1260 !cast<TypedefNameDecl>(D)
1261 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1262 return LinkageInfo::none();
1263 break;
1264
1265 case Decl::TemplateTemplateParm: // count these as external
1266 case Decl::NonTypeTemplateParm:
1267 case Decl::ObjCAtDefsField:
1268 case Decl::ObjCCategory:
1269 case Decl::ObjCCategoryImpl:
1270 case Decl::ObjCCompatibleAlias:
1271 case Decl::ObjCImplementation:
1272 case Decl::ObjCMethod:
1273 case Decl::ObjCProperty:
1274 case Decl::ObjCPropertyImpl:
1275 case Decl::ObjCProtocol:
1276 return LinkageInfo::external();
1277
1278 case Decl::CXXRecord: {
1279 const auto *Record = cast<CXXRecordDecl>(D);
1280 if (Record->isLambda()) {
1281 if (!Record->getLambdaManglingNumber()) {
1282 // This lambda has no mangling number, so it's internal.
1283 return LinkageInfo::internal();
1284 }
1285
1286 // This lambda has its linkage/visibility determined:
1287 // - either by the outermost lambda if that lambda has no mangling
1288 // number.
1289 // - or by the parent of the outer most lambda
1290 // This prevents infinite recursion in settings such as nested lambdas
1291 // used in NSDMI's, for e.g.
1292 // struct L {
1293 // int t{};
1294 // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1295 // };
1296 const CXXRecordDecl *OuterMostLambda =
1297 getOutermostEnclosingLambda(Record);
1298 if (!OuterMostLambda->getLambdaManglingNumber())
1299 return LinkageInfo::internal();
1300
1301 return getLVForClosure(
1302 OuterMostLambda->getDeclContext()->getRedeclContext(),
1303 OuterMostLambda->getLambdaContextDecl(), computation);
1304 }
1305
1306 break;
1307 }
1308 }
1309
1310 // Handle linkage for namespace-scope names.
1311 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1312 return getLVForNamespaceScopeDecl(D, computation);
1313
1314 // C++ [basic.link]p5:
1315 // In addition, a member function, static data member, a named
1316 // class or enumeration of class scope, or an unnamed class or
1317 // enumeration defined in a class-scope typedef declaration such
1318 // that the class or enumeration has the typedef name for linkage
1319 // purposes (7.1.3), has external linkage if the name of the class
1320 // has external linkage.
1321 if (D->getDeclContext()->isRecord())
1322 return getLVForClassMember(D, computation);
1323
1324 // C++ [basic.link]p6:
1325 // The name of a function declared in block scope and the name of
1326 // an object declared by a block scope extern declaration have
1327 // linkage. If there is a visible declaration of an entity with
1328 // linkage having the same name and type, ignoring entities
1329 // declared outside the innermost enclosing namespace scope, the
1330 // block scope declaration declares that same entity and receives
1331 // the linkage of the previous declaration. If there is more than
1332 // one such matching entity, the program is ill-formed. Otherwise,
1333 // if no matching entity is found, the block scope entity receives
1334 // external linkage.
1335 if (D->getDeclContext()->isFunctionOrMethod())
1336 return getLVForLocalDecl(D, computation);
1337
1338 // C++ [basic.link]p6:
1339 // Names not covered by these rules have no linkage.
1340 return LinkageInfo::none();
1341 }
1342
1343 namespace clang {
1344 class LinkageComputer {
1345 public:
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1346 static LinkageInfo getLVForDecl(const NamedDecl *D,
1347 LVComputationKind computation) {
1348 // Internal_linkage attribute overrides other considerations.
1349 if (D->hasAttr<InternalLinkageAttr>())
1350 return LinkageInfo::internal();
1351
1352 if (computation == LVForLinkageOnly && D->hasCachedLinkage())
1353 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1354
1355 LinkageInfo LV = computeLVForDecl(D, computation);
1356 if (D->hasCachedLinkage())
1357 assert(D->getCachedLinkage() == LV.getLinkage());
1358
1359 D->setCachedLinkage(LV.getLinkage());
1360
1361 #ifndef NDEBUG
1362 // In C (because of gnu inline) and in c++ with microsoft extensions an
1363 // static can follow an extern, so we can have two decls with different
1364 // linkages.
1365 const LangOptions &Opts = D->getASTContext().getLangOpts();
1366 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1367 return LV;
1368
1369 // We have just computed the linkage for this decl. By induction we know
1370 // that all other computed linkages match, check that the one we just
1371 // computed also does.
1372 NamedDecl *Old = nullptr;
1373 for (auto I : D->redecls()) {
1374 auto *T = cast<NamedDecl>(I);
1375 if (T == D)
1376 continue;
1377 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1378 Old = T;
1379 break;
1380 }
1381 }
1382 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1383 #endif
1384
1385 return LV;
1386 }
1387 };
1388 }
1389
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1390 static LinkageInfo getLVForDecl(const NamedDecl *D,
1391 LVComputationKind computation) {
1392 return clang::LinkageComputer::getLVForDecl(D, computation);
1393 }
1394
getQualifiedNameAsString() const1395 std::string NamedDecl::getQualifiedNameAsString() const {
1396 std::string QualName;
1397 llvm::raw_string_ostream OS(QualName);
1398 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1399 return OS.str();
1400 }
1401
printQualifiedName(raw_ostream & OS) const1402 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1403 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1404 }
1405
printQualifiedName(raw_ostream & OS,const PrintingPolicy & P) const1406 void NamedDecl::printQualifiedName(raw_ostream &OS,
1407 const PrintingPolicy &P) const {
1408 const DeclContext *Ctx = getDeclContext();
1409
1410 if (Ctx->isFunctionOrMethod()) {
1411 printName(OS);
1412 return;
1413 }
1414
1415 typedef SmallVector<const DeclContext *, 8> ContextsTy;
1416 ContextsTy Contexts;
1417
1418 // Collect contexts.
1419 while (Ctx && isa<NamedDecl>(Ctx)) {
1420 Contexts.push_back(Ctx);
1421 Ctx = Ctx->getParent();
1422 }
1423
1424 for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
1425 I != E; ++I) {
1426 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
1427 OS << Spec->getName();
1428 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1429 TemplateSpecializationType::PrintTemplateArgumentList(OS,
1430 TemplateArgs.data(),
1431 TemplateArgs.size(),
1432 P);
1433 } else if (const auto *ND = dyn_cast<NamespaceDecl>(*I)) {
1434 if (P.SuppressUnwrittenScope &&
1435 (ND->isAnonymousNamespace() || ND->isInline()))
1436 continue;
1437 if (ND->isAnonymousNamespace()) {
1438 OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1439 : "(anonymous namespace)");
1440 }
1441 else
1442 OS << *ND;
1443 } else if (const auto *RD = dyn_cast<RecordDecl>(*I)) {
1444 if (!RD->getIdentifier())
1445 OS << "(anonymous " << RD->getKindName() << ')';
1446 else
1447 OS << *RD;
1448 } else if (const auto *FD = dyn_cast<FunctionDecl>(*I)) {
1449 const FunctionProtoType *FT = nullptr;
1450 if (FD->hasWrittenPrototype())
1451 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1452
1453 OS << *FD << '(';
1454 if (FT) {
1455 unsigned NumParams = FD->getNumParams();
1456 for (unsigned i = 0; i < NumParams; ++i) {
1457 if (i)
1458 OS << ", ";
1459 OS << FD->getParamDecl(i)->getType().stream(P);
1460 }
1461
1462 if (FT->isVariadic()) {
1463 if (NumParams > 0)
1464 OS << ", ";
1465 OS << "...";
1466 }
1467 }
1468 OS << ')';
1469 } else if (const auto *ED = dyn_cast<EnumDecl>(*I)) {
1470 // C++ [dcl.enum]p10: Each enum-name and each unscoped
1471 // enumerator is declared in the scope that immediately contains
1472 // the enum-specifier. Each scoped enumerator is declared in the
1473 // scope of the enumeration.
1474 if (ED->isScoped() || ED->getIdentifier())
1475 OS << *ED;
1476 else
1477 continue;
1478 } else {
1479 OS << *cast<NamedDecl>(*I);
1480 }
1481 OS << "::";
1482 }
1483
1484 if (getDeclName())
1485 OS << *this;
1486 else
1487 OS << "(anonymous)";
1488 }
1489
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const1490 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1491 const PrintingPolicy &Policy,
1492 bool Qualified) const {
1493 if (Qualified)
1494 printQualifiedName(OS, Policy);
1495 else
1496 printName(OS);
1497 }
1498
isRedeclarableImpl(Redeclarable<T> *)1499 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1500 return true;
1501 }
isRedeclarableImpl(...)1502 static bool isRedeclarableImpl(...) { return false; }
isRedeclarable(Decl::Kind K)1503 static bool isRedeclarable(Decl::Kind K) {
1504 switch (K) {
1505 #define DECL(Type, Base) \
1506 case Decl::Type: \
1507 return isRedeclarableImpl((Type##Decl *)nullptr);
1508 #define ABSTRACT_DECL(DECL)
1509 #include "clang/AST/DeclNodes.inc"
1510 }
1511 llvm_unreachable("unknown decl kind");
1512 }
1513
declarationReplaces(NamedDecl * OldD,bool IsKnownNewer) const1514 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1515 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1516
1517 // Never replace one imported declaration with another; we need both results
1518 // when re-exporting.
1519 if (OldD->isFromASTFile() && isFromASTFile())
1520 return false;
1521
1522 // A kind mismatch implies that the declaration is not replaced.
1523 if (OldD->getKind() != getKind())
1524 return false;
1525
1526 // For method declarations, we never replace. (Why?)
1527 if (isa<ObjCMethodDecl>(this))
1528 return false;
1529
1530 // For parameters, pick the newer one. This is either an error or (in
1531 // Objective-C) permitted as an extension.
1532 if (isa<ParmVarDecl>(this))
1533 return true;
1534
1535 // Inline namespaces can give us two declarations with the same
1536 // name and kind in the same scope but different contexts; we should
1537 // keep both declarations in this case.
1538 if (!this->getDeclContext()->getRedeclContext()->Equals(
1539 OldD->getDeclContext()->getRedeclContext()))
1540 return false;
1541
1542 // Using declarations can be replaced if they import the same name from the
1543 // same context.
1544 if (auto *UD = dyn_cast<UsingDecl>(this)) {
1545 ASTContext &Context = getASTContext();
1546 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1547 Context.getCanonicalNestedNameSpecifier(
1548 cast<UsingDecl>(OldD)->getQualifier());
1549 }
1550 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1551 ASTContext &Context = getASTContext();
1552 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1553 Context.getCanonicalNestedNameSpecifier(
1554 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1555 }
1556
1557 // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
1558 // They can be replaced if they nominate the same namespace.
1559 // FIXME: Is this true even if they have different module visibility?
1560 if (auto *UD = dyn_cast<UsingDirectiveDecl>(this))
1561 return UD->getNominatedNamespace()->getOriginalNamespace() ==
1562 cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
1563 ->getOriginalNamespace();
1564
1565 if (isRedeclarable(getKind())) {
1566 if (getCanonicalDecl() != OldD->getCanonicalDecl())
1567 return false;
1568
1569 if (IsKnownNewer)
1570 return true;
1571
1572 // Check whether this is actually newer than OldD. We want to keep the
1573 // newer declaration. This loop will usually only iterate once, because
1574 // OldD is usually the previous declaration.
1575 for (auto D : redecls()) {
1576 if (D == OldD)
1577 break;
1578
1579 // If we reach the canonical declaration, then OldD is not actually older
1580 // than this one.
1581 //
1582 // FIXME: In this case, we should not add this decl to the lookup table.
1583 if (D->isCanonicalDecl())
1584 return false;
1585 }
1586
1587 // It's a newer declaration of the same kind of declaration in the same
1588 // scope: we want this decl instead of the existing one.
1589 return true;
1590 }
1591
1592 // In all other cases, we need to keep both declarations in case they have
1593 // different visibility. Any attempt to use the name will result in an
1594 // ambiguity if more than one is visible.
1595 return false;
1596 }
1597
hasLinkage() const1598 bool NamedDecl::hasLinkage() const {
1599 return getFormalLinkage() != NoLinkage;
1600 }
1601
getUnderlyingDeclImpl()1602 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1603 NamedDecl *ND = this;
1604 while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1605 ND = UD->getTargetDecl();
1606
1607 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1608 return AD->getClassInterface();
1609
1610 return ND;
1611 }
1612
isCXXInstanceMember() const1613 bool NamedDecl::isCXXInstanceMember() const {
1614 if (!isCXXClassMember())
1615 return false;
1616
1617 const NamedDecl *D = this;
1618 if (isa<UsingShadowDecl>(D))
1619 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1620
1621 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1622 return true;
1623 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1624 return MD->isInstance();
1625 return false;
1626 }
1627
1628 //===----------------------------------------------------------------------===//
1629 // DeclaratorDecl Implementation
1630 //===----------------------------------------------------------------------===//
1631
1632 template <typename DeclT>
getTemplateOrInnerLocStart(const DeclT * decl)1633 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1634 if (decl->getNumTemplateParameterLists() > 0)
1635 return decl->getTemplateParameterList(0)->getTemplateLoc();
1636 else
1637 return decl->getInnerLocStart();
1638 }
1639
getTypeSpecStartLoc() const1640 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1641 TypeSourceInfo *TSI = getTypeSourceInfo();
1642 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1643 return SourceLocation();
1644 }
1645
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)1646 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1647 if (QualifierLoc) {
1648 // Make sure the extended decl info is allocated.
1649 if (!hasExtInfo()) {
1650 // Save (non-extended) type source info pointer.
1651 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1652 // Allocate external info struct.
1653 DeclInfo = new (getASTContext()) ExtInfo;
1654 // Restore savedTInfo into (extended) decl info.
1655 getExtInfo()->TInfo = savedTInfo;
1656 }
1657 // Set qualifier info.
1658 getExtInfo()->QualifierLoc = QualifierLoc;
1659 } else {
1660 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1661 if (hasExtInfo()) {
1662 if (getExtInfo()->NumTemplParamLists == 0) {
1663 // Save type source info pointer.
1664 TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1665 // Deallocate the extended decl info.
1666 getASTContext().Deallocate(getExtInfo());
1667 // Restore savedTInfo into (non-extended) decl info.
1668 DeclInfo = savedTInfo;
1669 }
1670 else
1671 getExtInfo()->QualifierLoc = QualifierLoc;
1672 }
1673 }
1674 }
1675
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)1676 void DeclaratorDecl::setTemplateParameterListsInfo(
1677 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1678 assert(!TPLists.empty());
1679 // Make sure the extended decl info is allocated.
1680 if (!hasExtInfo()) {
1681 // Save (non-extended) type source info pointer.
1682 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1683 // Allocate external info struct.
1684 DeclInfo = new (getASTContext()) ExtInfo;
1685 // Restore savedTInfo into (extended) decl info.
1686 getExtInfo()->TInfo = savedTInfo;
1687 }
1688 // Set the template parameter lists info.
1689 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1690 }
1691
getOuterLocStart() const1692 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1693 return getTemplateOrInnerLocStart(this);
1694 }
1695
1696 namespace {
1697
1698 // Helper function: returns true if QT is or contains a type
1699 // having a postfix component.
typeIsPostfix(clang::QualType QT)1700 bool typeIsPostfix(clang::QualType QT) {
1701 while (true) {
1702 const Type* T = QT.getTypePtr();
1703 switch (T->getTypeClass()) {
1704 default:
1705 return false;
1706 case Type::Pointer:
1707 QT = cast<PointerType>(T)->getPointeeType();
1708 break;
1709 case Type::BlockPointer:
1710 QT = cast<BlockPointerType>(T)->getPointeeType();
1711 break;
1712 case Type::MemberPointer:
1713 QT = cast<MemberPointerType>(T)->getPointeeType();
1714 break;
1715 case Type::LValueReference:
1716 case Type::RValueReference:
1717 QT = cast<ReferenceType>(T)->getPointeeType();
1718 break;
1719 case Type::PackExpansion:
1720 QT = cast<PackExpansionType>(T)->getPattern();
1721 break;
1722 case Type::Paren:
1723 case Type::ConstantArray:
1724 case Type::DependentSizedArray:
1725 case Type::IncompleteArray:
1726 case Type::VariableArray:
1727 case Type::FunctionProto:
1728 case Type::FunctionNoProto:
1729 return true;
1730 }
1731 }
1732 }
1733
1734 } // namespace
1735
getSourceRange() const1736 SourceRange DeclaratorDecl::getSourceRange() const {
1737 SourceLocation RangeEnd = getLocation();
1738 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1739 // If the declaration has no name or the type extends past the name take the
1740 // end location of the type.
1741 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1742 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1743 }
1744 return SourceRange(getOuterLocStart(), RangeEnd);
1745 }
1746
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)1747 void QualifierInfo::setTemplateParameterListsInfo(
1748 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1749 // Free previous template parameters (if any).
1750 if (NumTemplParamLists > 0) {
1751 Context.Deallocate(TemplParamLists);
1752 TemplParamLists = nullptr;
1753 NumTemplParamLists = 0;
1754 }
1755 // Set info on matched template parameter lists (if any).
1756 if (!TPLists.empty()) {
1757 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1758 NumTemplParamLists = TPLists.size();
1759 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1760 }
1761 }
1762
1763 //===----------------------------------------------------------------------===//
1764 // VarDecl Implementation
1765 //===----------------------------------------------------------------------===//
1766
getStorageClassSpecifierString(StorageClass SC)1767 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1768 switch (SC) {
1769 case SC_None: break;
1770 case SC_Auto: return "auto";
1771 case SC_Extern: return "extern";
1772 case SC_PrivateExtern: return "__private_extern__";
1773 case SC_Register: return "register";
1774 case SC_Static: return "static";
1775 }
1776
1777 llvm_unreachable("Invalid storage class");
1778 }
1779
VarDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass SC)1780 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1781 SourceLocation StartLoc, SourceLocation IdLoc,
1782 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1783 StorageClass SC)
1784 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1785 redeclarable_base(C), Init() {
1786 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1787 "VarDeclBitfields too large!");
1788 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1789 "ParmVarDeclBitfields too large!");
1790 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1791 "NonParmVarDeclBitfields too large!");
1792 AllBits = 0;
1793 VarDeclBits.SClass = SC;
1794 // Everything else is implicitly initialized to false.
1795 }
1796
Create(ASTContext & C,DeclContext * DC,SourceLocation StartL,SourceLocation IdL,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S)1797 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1798 SourceLocation StartL, SourceLocation IdL,
1799 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1800 StorageClass S) {
1801 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1802 }
1803
CreateDeserialized(ASTContext & C,unsigned ID)1804 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1805 return new (C, ID)
1806 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1807 QualType(), nullptr, SC_None);
1808 }
1809
setStorageClass(StorageClass SC)1810 void VarDecl::setStorageClass(StorageClass SC) {
1811 assert(isLegalForVariable(SC));
1812 VarDeclBits.SClass = SC;
1813 }
1814
getTLSKind() const1815 VarDecl::TLSKind VarDecl::getTLSKind() const {
1816 switch (VarDeclBits.TSCSpec) {
1817 case TSCS_unspecified:
1818 if (!hasAttr<ThreadAttr>() &&
1819 !(getASTContext().getLangOpts().OpenMPUseTLS &&
1820 getASTContext().getTargetInfo().isTLSSupported() &&
1821 hasAttr<OMPThreadPrivateDeclAttr>()))
1822 return TLS_None;
1823 return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1824 LangOptions::MSVC2015)) ||
1825 hasAttr<OMPThreadPrivateDeclAttr>())
1826 ? TLS_Dynamic
1827 : TLS_Static;
1828 case TSCS___thread: // Fall through.
1829 case TSCS__Thread_local:
1830 return TLS_Static;
1831 case TSCS_thread_local:
1832 return TLS_Dynamic;
1833 }
1834 llvm_unreachable("Unknown thread storage class specifier!");
1835 }
1836
getSourceRange() const1837 SourceRange VarDecl::getSourceRange() const {
1838 if (const Expr *Init = getInit()) {
1839 SourceLocation InitEnd = Init->getLocEnd();
1840 // If Init is implicit, ignore its source range and fallback on
1841 // DeclaratorDecl::getSourceRange() to handle postfix elements.
1842 if (InitEnd.isValid() && InitEnd != getLocation())
1843 return SourceRange(getOuterLocStart(), InitEnd);
1844 }
1845 return DeclaratorDecl::getSourceRange();
1846 }
1847
1848 template<typename T>
getDeclLanguageLinkage(const T & D)1849 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
1850 // C++ [dcl.link]p1: All function types, function names with external linkage,
1851 // and variable names with external linkage have a language linkage.
1852 if (!D.hasExternalFormalLinkage())
1853 return NoLanguageLinkage;
1854
1855 // Language linkage is a C++ concept, but saying that everything else in C has
1856 // C language linkage fits the implementation nicely.
1857 ASTContext &Context = D.getASTContext();
1858 if (!Context.getLangOpts().CPlusPlus)
1859 return CLanguageLinkage;
1860
1861 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1862 // language linkage of the names of class members and the function type of
1863 // class member functions.
1864 const DeclContext *DC = D.getDeclContext();
1865 if (DC->isRecord())
1866 return CXXLanguageLinkage;
1867
1868 // If the first decl is in an extern "C" context, any other redeclaration
1869 // will have C language linkage. If the first one is not in an extern "C"
1870 // context, we would have reported an error for any other decl being in one.
1871 if (isFirstInExternCContext(&D))
1872 return CLanguageLinkage;
1873 return CXXLanguageLinkage;
1874 }
1875
1876 template<typename T>
isDeclExternC(const T & D)1877 static bool isDeclExternC(const T &D) {
1878 // Since the context is ignored for class members, they can only have C++
1879 // language linkage or no language linkage.
1880 const DeclContext *DC = D.getDeclContext();
1881 if (DC->isRecord()) {
1882 assert(D.getASTContext().getLangOpts().CPlusPlus);
1883 return false;
1884 }
1885
1886 return D.getLanguageLinkage() == CLanguageLinkage;
1887 }
1888
getLanguageLinkage() const1889 LanguageLinkage VarDecl::getLanguageLinkage() const {
1890 return getDeclLanguageLinkage(*this);
1891 }
1892
isExternC() const1893 bool VarDecl::isExternC() const {
1894 return isDeclExternC(*this);
1895 }
1896
isInExternCContext() const1897 bool VarDecl::isInExternCContext() const {
1898 return getLexicalDeclContext()->isExternCContext();
1899 }
1900
isInExternCXXContext() const1901 bool VarDecl::isInExternCXXContext() const {
1902 return getLexicalDeclContext()->isExternCXXContext();
1903 }
1904
getCanonicalDecl()1905 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
1906
1907 VarDecl::DefinitionKind
isThisDeclarationADefinition(ASTContext & C) const1908 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
1909 // C++ [basic.def]p2:
1910 // A declaration is a definition unless [...] it contains the 'extern'
1911 // specifier or a linkage-specification and neither an initializer [...],
1912 // it declares a static data member in a class declaration [...].
1913 // C++1y [temp.expl.spec]p15:
1914 // An explicit specialization of a static data member or an explicit
1915 // specialization of a static data member template is a definition if the
1916 // declaration includes an initializer; otherwise, it is a declaration.
1917 //
1918 // FIXME: How do you declare (but not define) a partial specialization of
1919 // a static data member template outside the containing class?
1920 if (isStaticDataMember()) {
1921 if (isOutOfLine() &&
1922 (hasInit() ||
1923 // If the first declaration is out-of-line, this may be an
1924 // instantiation of an out-of-line partial specialization of a variable
1925 // template for which we have not yet instantiated the initializer.
1926 (getFirstDecl()->isOutOfLine()
1927 ? getTemplateSpecializationKind() == TSK_Undeclared
1928 : getTemplateSpecializationKind() !=
1929 TSK_ExplicitSpecialization) ||
1930 isa<VarTemplatePartialSpecializationDecl>(this)))
1931 return Definition;
1932 else
1933 return DeclarationOnly;
1934 }
1935 // C99 6.7p5:
1936 // A definition of an identifier is a declaration for that identifier that
1937 // [...] causes storage to be reserved for that object.
1938 // Note: that applies for all non-file-scope objects.
1939 // C99 6.9.2p1:
1940 // If the declaration of an identifier for an object has file scope and an
1941 // initializer, the declaration is an external definition for the identifier
1942 if (hasInit())
1943 return Definition;
1944
1945 if (hasAttr<AliasAttr>())
1946 return Definition;
1947
1948 if (const auto *SAA = getAttr<SelectAnyAttr>())
1949 if (!SAA->isInherited())
1950 return Definition;
1951
1952 // A variable template specialization (other than a static data member
1953 // template or an explicit specialization) is a declaration until we
1954 // instantiate its initializer.
1955 if (isa<VarTemplateSpecializationDecl>(this) &&
1956 getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
1957 return DeclarationOnly;
1958
1959 if (hasExternalStorage())
1960 return DeclarationOnly;
1961
1962 // [dcl.link] p7:
1963 // A declaration directly contained in a linkage-specification is treated
1964 // as if it contains the extern specifier for the purpose of determining
1965 // the linkage of the declared name and whether it is a definition.
1966 if (isSingleLineLanguageLinkage(*this))
1967 return DeclarationOnly;
1968
1969 // C99 6.9.2p2:
1970 // A declaration of an object that has file scope without an initializer,
1971 // and without a storage class specifier or the scs 'static', constitutes
1972 // a tentative definition.
1973 // No such thing in C++.
1974 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1975 return TentativeDefinition;
1976
1977 // What's left is (in C, block-scope) declarations without initializers or
1978 // external storage. These are definitions.
1979 return Definition;
1980 }
1981
getActingDefinition()1982 VarDecl *VarDecl::getActingDefinition() {
1983 DefinitionKind Kind = isThisDeclarationADefinition();
1984 if (Kind != TentativeDefinition)
1985 return nullptr;
1986
1987 VarDecl *LastTentative = nullptr;
1988 VarDecl *First = getFirstDecl();
1989 for (auto I : First->redecls()) {
1990 Kind = I->isThisDeclarationADefinition();
1991 if (Kind == Definition)
1992 return nullptr;
1993 else if (Kind == TentativeDefinition)
1994 LastTentative = I;
1995 }
1996 return LastTentative;
1997 }
1998
getDefinition(ASTContext & C)1999 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2000 VarDecl *First = getFirstDecl();
2001 for (auto I : First->redecls()) {
2002 if (I->isThisDeclarationADefinition(C) == Definition)
2003 return I;
2004 }
2005 return nullptr;
2006 }
2007
hasDefinition(ASTContext & C) const2008 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2009 DefinitionKind Kind = DeclarationOnly;
2010
2011 const VarDecl *First = getFirstDecl();
2012 for (auto I : First->redecls()) {
2013 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2014 if (Kind == Definition)
2015 break;
2016 }
2017
2018 return Kind;
2019 }
2020
getAnyInitializer(const VarDecl * & D) const2021 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2022 for (auto I : redecls()) {
2023 if (auto Expr = I->getInit()) {
2024 D = I;
2025 return Expr;
2026 }
2027 }
2028 return nullptr;
2029 }
2030
isOutOfLine() const2031 bool VarDecl::isOutOfLine() const {
2032 if (Decl::isOutOfLine())
2033 return true;
2034
2035 if (!isStaticDataMember())
2036 return false;
2037
2038 // If this static data member was instantiated from a static data member of
2039 // a class template, check whether that static data member was defined
2040 // out-of-line.
2041 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2042 return VD->isOutOfLine();
2043
2044 return false;
2045 }
2046
getOutOfLineDefinition()2047 VarDecl *VarDecl::getOutOfLineDefinition() {
2048 if (!isStaticDataMember())
2049 return nullptr;
2050
2051 for (auto RD : redecls()) {
2052 if (RD->getLexicalDeclContext()->isFileContext())
2053 return RD;
2054 }
2055
2056 return nullptr;
2057 }
2058
setInit(Expr * I)2059 void VarDecl::setInit(Expr *I) {
2060 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2061 Eval->~EvaluatedStmt();
2062 getASTContext().Deallocate(Eval);
2063 }
2064
2065 Init = I;
2066 }
2067
isUsableInConstantExpressions(ASTContext & C) const2068 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
2069 const LangOptions &Lang = C.getLangOpts();
2070
2071 if (!Lang.CPlusPlus)
2072 return false;
2073
2074 // In C++11, any variable of reference type can be used in a constant
2075 // expression if it is initialized by a constant expression.
2076 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2077 return true;
2078
2079 // Only const objects can be used in constant expressions in C++. C++98 does
2080 // not require the variable to be non-volatile, but we consider this to be a
2081 // defect.
2082 if (!getType().isConstQualified() || getType().isVolatileQualified())
2083 return false;
2084
2085 // In C++, const, non-volatile variables of integral or enumeration types
2086 // can be used in constant expressions.
2087 if (getType()->isIntegralOrEnumerationType())
2088 return true;
2089
2090 // Additionally, in C++11, non-volatile constexpr variables can be used in
2091 // constant expressions.
2092 return Lang.CPlusPlus11 && isConstexpr();
2093 }
2094
2095 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2096 /// form, which contains extra information on the evaluated value of the
2097 /// initializer.
ensureEvaluatedStmt() const2098 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2099 auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2100 if (!Eval) {
2101 auto *S = Init.get<Stmt *>();
2102 // Note: EvaluatedStmt contains an APValue, which usually holds
2103 // resources not allocated from the ASTContext. We need to do some
2104 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2105 // where we can detect whether there's anything to clean up or not.
2106 Eval = new (getASTContext()) EvaluatedStmt;
2107 Eval->Value = S;
2108 Init = Eval;
2109 }
2110 return Eval;
2111 }
2112
evaluateValue() const2113 APValue *VarDecl::evaluateValue() const {
2114 SmallVector<PartialDiagnosticAt, 8> Notes;
2115 return evaluateValue(Notes);
2116 }
2117
2118 namespace {
2119 // Destroy an APValue that was allocated in an ASTContext.
DestroyAPValue(void * UntypedValue)2120 void DestroyAPValue(void* UntypedValue) {
2121 static_cast<APValue*>(UntypedValue)->~APValue();
2122 }
2123 } // namespace
2124
evaluateValue(SmallVectorImpl<PartialDiagnosticAt> & Notes) const2125 APValue *VarDecl::evaluateValue(
2126 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2127 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2128
2129 // We only produce notes indicating why an initializer is non-constant the
2130 // first time it is evaluated. FIXME: The notes won't always be emitted the
2131 // first time we try evaluation, so might not be produced at all.
2132 if (Eval->WasEvaluated)
2133 return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2134
2135 const auto *Init = cast<Expr>(Eval->Value);
2136 assert(!Init->isValueDependent());
2137
2138 if (Eval->IsEvaluating) {
2139 // FIXME: Produce a diagnostic for self-initialization.
2140 Eval->CheckedICE = true;
2141 Eval->IsICE = false;
2142 return nullptr;
2143 }
2144
2145 Eval->IsEvaluating = true;
2146
2147 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2148 this, Notes);
2149
2150 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2151 // or that it's empty (so that there's nothing to clean up) if evaluation
2152 // failed.
2153 if (!Result)
2154 Eval->Evaluated = APValue();
2155 else if (Eval->Evaluated.needsCleanup())
2156 getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
2157
2158 Eval->IsEvaluating = false;
2159 Eval->WasEvaluated = true;
2160
2161 // In C++11, we have determined whether the initializer was a constant
2162 // expression as a side-effect.
2163 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2164 Eval->CheckedICE = true;
2165 Eval->IsICE = Result && Notes.empty();
2166 }
2167
2168 return Result ? &Eval->Evaluated : nullptr;
2169 }
2170
checkInitIsICE() const2171 bool VarDecl::checkInitIsICE() const {
2172 // Initializers of weak variables are never ICEs.
2173 if (isWeak())
2174 return false;
2175
2176 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2177 if (Eval->CheckedICE)
2178 // We have already checked whether this subexpression is an
2179 // integral constant expression.
2180 return Eval->IsICE;
2181
2182 const auto *Init = cast<Expr>(Eval->Value);
2183 assert(!Init->isValueDependent());
2184
2185 // In C++11, evaluate the initializer to check whether it's a constant
2186 // expression.
2187 if (getASTContext().getLangOpts().CPlusPlus11) {
2188 SmallVector<PartialDiagnosticAt, 8> Notes;
2189 evaluateValue(Notes);
2190 return Eval->IsICE;
2191 }
2192
2193 // It's an ICE whether or not the definition we found is
2194 // out-of-line. See DR 721 and the discussion in Clang PR
2195 // 6206 for details.
2196
2197 if (Eval->CheckingICE)
2198 return false;
2199 Eval->CheckingICE = true;
2200
2201 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2202 Eval->CheckingICE = false;
2203 Eval->CheckedICE = true;
2204 return Eval->IsICE;
2205 }
2206
getInstantiatedFromStaticDataMember() const2207 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2208 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2209 return cast<VarDecl>(MSI->getInstantiatedFrom());
2210
2211 return nullptr;
2212 }
2213
getTemplateSpecializationKind() const2214 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2215 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2216 return Spec->getSpecializationKind();
2217
2218 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2219 return MSI->getTemplateSpecializationKind();
2220
2221 return TSK_Undeclared;
2222 }
2223
getPointOfInstantiation() const2224 SourceLocation VarDecl::getPointOfInstantiation() const {
2225 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2226 return Spec->getPointOfInstantiation();
2227
2228 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2229 return MSI->getPointOfInstantiation();
2230
2231 return SourceLocation();
2232 }
2233
getDescribedVarTemplate() const2234 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2235 return getASTContext().getTemplateOrSpecializationInfo(this)
2236 .dyn_cast<VarTemplateDecl *>();
2237 }
2238
setDescribedVarTemplate(VarTemplateDecl * Template)2239 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2240 getASTContext().setTemplateOrSpecializationInfo(this, Template);
2241 }
2242
getMemberSpecializationInfo() const2243 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2244 if (isStaticDataMember())
2245 // FIXME: Remove ?
2246 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2247 return getASTContext().getTemplateOrSpecializationInfo(this)
2248 .dyn_cast<MemberSpecializationInfo *>();
2249 return nullptr;
2250 }
2251
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)2252 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2253 SourceLocation PointOfInstantiation) {
2254 assert((isa<VarTemplateSpecializationDecl>(this) ||
2255 getMemberSpecializationInfo()) &&
2256 "not a variable or static data member template specialization");
2257
2258 if (VarTemplateSpecializationDecl *Spec =
2259 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2260 Spec->setSpecializationKind(TSK);
2261 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2262 Spec->getPointOfInstantiation().isInvalid())
2263 Spec->setPointOfInstantiation(PointOfInstantiation);
2264 }
2265
2266 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2267 MSI->setTemplateSpecializationKind(TSK);
2268 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2269 MSI->getPointOfInstantiation().isInvalid())
2270 MSI->setPointOfInstantiation(PointOfInstantiation);
2271 }
2272 }
2273
2274 void
setInstantiationOfStaticDataMember(VarDecl * VD,TemplateSpecializationKind TSK)2275 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2276 TemplateSpecializationKind TSK) {
2277 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2278 "Previous template or instantiation?");
2279 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2280 }
2281
2282 //===----------------------------------------------------------------------===//
2283 // ParmVarDecl Implementation
2284 //===----------------------------------------------------------------------===//
2285
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,Expr * DefArg)2286 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2287 SourceLocation StartLoc,
2288 SourceLocation IdLoc, IdentifierInfo *Id,
2289 QualType T, TypeSourceInfo *TInfo,
2290 StorageClass S, Expr *DefArg) {
2291 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2292 S, DefArg);
2293 }
2294
getOriginalType() const2295 QualType ParmVarDecl::getOriginalType() const {
2296 TypeSourceInfo *TSI = getTypeSourceInfo();
2297 QualType T = TSI ? TSI->getType() : getType();
2298 if (const auto *DT = dyn_cast<DecayedType>(T))
2299 return DT->getOriginalType();
2300 return T;
2301 }
2302
CreateDeserialized(ASTContext & C,unsigned ID)2303 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2304 return new (C, ID)
2305 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2306 nullptr, QualType(), nullptr, SC_None, nullptr);
2307 }
2308
getSourceRange() const2309 SourceRange ParmVarDecl::getSourceRange() const {
2310 if (!hasInheritedDefaultArg()) {
2311 SourceRange ArgRange = getDefaultArgRange();
2312 if (ArgRange.isValid())
2313 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2314 }
2315
2316 // DeclaratorDecl considers the range of postfix types as overlapping with the
2317 // declaration name, but this is not the case with parameters in ObjC methods.
2318 if (isa<ObjCMethodDecl>(getDeclContext()))
2319 return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
2320
2321 return DeclaratorDecl::getSourceRange();
2322 }
2323
getDefaultArg()2324 Expr *ParmVarDecl::getDefaultArg() {
2325 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2326 assert(!hasUninstantiatedDefaultArg() &&
2327 "Default argument is not yet instantiated!");
2328
2329 Expr *Arg = getInit();
2330 if (auto *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2331 return E->getSubExpr();
2332
2333 return Arg;
2334 }
2335
getDefaultArgRange() const2336 SourceRange ParmVarDecl::getDefaultArgRange() const {
2337 if (const Expr *E = getInit())
2338 return E->getSourceRange();
2339
2340 if (hasUninstantiatedDefaultArg())
2341 return getUninstantiatedDefaultArg()->getSourceRange();
2342
2343 return SourceRange();
2344 }
2345
isParameterPack() const2346 bool ParmVarDecl::isParameterPack() const {
2347 return isa<PackExpansionType>(getType());
2348 }
2349
setParameterIndexLarge(unsigned parameterIndex)2350 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2351 getASTContext().setParameterIndex(this, parameterIndex);
2352 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2353 }
2354
getParameterIndexLarge() const2355 unsigned ParmVarDecl::getParameterIndexLarge() const {
2356 return getASTContext().getParameterIndex(this);
2357 }
2358
2359 //===----------------------------------------------------------------------===//
2360 // FunctionDecl Implementation
2361 //===----------------------------------------------------------------------===//
2362
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const2363 void FunctionDecl::getNameForDiagnostic(
2364 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2365 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2366 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2367 if (TemplateArgs)
2368 TemplateSpecializationType::PrintTemplateArgumentList(
2369 OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
2370 }
2371
isVariadic() const2372 bool FunctionDecl::isVariadic() const {
2373 if (const auto *FT = getType()->getAs<FunctionProtoType>())
2374 return FT->isVariadic();
2375 return false;
2376 }
2377
hasBody(const FunctionDecl * & Definition) const2378 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2379 for (auto I : redecls()) {
2380 if (I->Body || I->IsLateTemplateParsed) {
2381 Definition = I;
2382 return true;
2383 }
2384 }
2385
2386 return false;
2387 }
2388
hasTrivialBody() const2389 bool FunctionDecl::hasTrivialBody() const
2390 {
2391 Stmt *S = getBody();
2392 if (!S) {
2393 // Since we don't have a body for this function, we don't know if it's
2394 // trivial or not.
2395 return false;
2396 }
2397
2398 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2399 return true;
2400 return false;
2401 }
2402
isDefined(const FunctionDecl * & Definition) const2403 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2404 for (auto I : redecls()) {
2405 if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
2406 I->hasAttr<AliasAttr>()) {
2407 Definition = I->IsDeleted ? I->getCanonicalDecl() : I;
2408 return true;
2409 }
2410 }
2411
2412 return false;
2413 }
2414
getBody(const FunctionDecl * & Definition) const2415 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2416 if (!hasBody(Definition))
2417 return nullptr;
2418
2419 if (Definition->Body)
2420 return Definition->Body.get(getASTContext().getExternalSource());
2421
2422 return nullptr;
2423 }
2424
setBody(Stmt * B)2425 void FunctionDecl::setBody(Stmt *B) {
2426 Body = B;
2427 if (B)
2428 EndRangeLoc = B->getLocEnd();
2429 }
2430
setPure(bool P)2431 void FunctionDecl::setPure(bool P) {
2432 IsPure = P;
2433 if (P)
2434 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2435 Parent->markedVirtualFunctionPure();
2436 }
2437
2438 template<std::size_t Len>
isNamed(const NamedDecl * ND,const char (& Str)[Len])2439 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2440 IdentifierInfo *II = ND->getIdentifier();
2441 return II && II->isStr(Str);
2442 }
2443
isMain() const2444 bool FunctionDecl::isMain() const {
2445 const TranslationUnitDecl *tunit =
2446 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2447 return tunit &&
2448 !tunit->getASTContext().getLangOpts().Freestanding &&
2449 isNamed(this, "main");
2450 }
2451
isMSVCRTEntryPoint() const2452 bool FunctionDecl::isMSVCRTEntryPoint() const {
2453 const TranslationUnitDecl *TUnit =
2454 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2455 if (!TUnit)
2456 return false;
2457
2458 // Even though we aren't really targeting MSVCRT if we are freestanding,
2459 // semantic analysis for these functions remains the same.
2460
2461 // MSVCRT entry points only exist on MSVCRT targets.
2462 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2463 return false;
2464
2465 // Nameless functions like constructors cannot be entry points.
2466 if (!getIdentifier())
2467 return false;
2468
2469 return llvm::StringSwitch<bool>(getName())
2470 .Cases("main", // an ANSI console app
2471 "wmain", // a Unicode console App
2472 "WinMain", // an ANSI GUI app
2473 "wWinMain", // a Unicode GUI app
2474 "DllMain", // a DLL
2475 true)
2476 .Default(false);
2477 }
2478
isReservedGlobalPlacementOperator() const2479 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2480 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2481 assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2482 getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2483 getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2484 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2485
2486 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2487 return false;
2488
2489 const auto *proto = getType()->castAs<FunctionProtoType>();
2490 if (proto->getNumParams() != 2 || proto->isVariadic())
2491 return false;
2492
2493 ASTContext &Context =
2494 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2495 ->getASTContext();
2496
2497 // The result type and first argument type are constant across all
2498 // these operators. The second argument must be exactly void*.
2499 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2500 }
2501
isReplaceableGlobalAllocationFunction() const2502 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
2503 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2504 return false;
2505 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2506 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2507 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2508 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2509 return false;
2510
2511 if (isa<CXXRecordDecl>(getDeclContext()))
2512 return false;
2513
2514 // This can only fail for an invalid 'operator new' declaration.
2515 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2516 return false;
2517
2518 const auto *FPT = getType()->castAs<FunctionProtoType>();
2519 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic())
2520 return false;
2521
2522 // If this is a single-parameter function, it must be a replaceable global
2523 // allocation or deallocation function.
2524 if (FPT->getNumParams() == 1)
2525 return true;
2526
2527 // Otherwise, we're looking for a second parameter whose type is
2528 // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'.
2529 QualType Ty = FPT->getParamType(1);
2530 ASTContext &Ctx = getASTContext();
2531 if (Ctx.getLangOpts().SizedDeallocation &&
2532 Ctx.hasSameType(Ty, Ctx.getSizeType()))
2533 return true;
2534 if (!Ty->isReferenceType())
2535 return false;
2536 Ty = Ty->getPointeeType();
2537 if (Ty.getCVRQualifiers() != Qualifiers::Const)
2538 return false;
2539 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2540 return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace();
2541 }
2542
getLanguageLinkage() const2543 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2544 return getDeclLanguageLinkage(*this);
2545 }
2546
isExternC() const2547 bool FunctionDecl::isExternC() const {
2548 return isDeclExternC(*this);
2549 }
2550
isInExternCContext() const2551 bool FunctionDecl::isInExternCContext() const {
2552 return getLexicalDeclContext()->isExternCContext();
2553 }
2554
isInExternCXXContext() const2555 bool FunctionDecl::isInExternCXXContext() const {
2556 return getLexicalDeclContext()->isExternCXXContext();
2557 }
2558
isGlobal() const2559 bool FunctionDecl::isGlobal() const {
2560 if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
2561 return Method->isStatic();
2562
2563 if (getCanonicalDecl()->getStorageClass() == SC_Static)
2564 return false;
2565
2566 for (const DeclContext *DC = getDeclContext();
2567 DC->isNamespace();
2568 DC = DC->getParent()) {
2569 if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
2570 if (!Namespace->getDeclName())
2571 return false;
2572 break;
2573 }
2574 }
2575
2576 return true;
2577 }
2578
isNoReturn() const2579 bool FunctionDecl::isNoReturn() const {
2580 return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2581 hasAttr<C11NoReturnAttr>() ||
2582 getType()->getAs<FunctionType>()->getNoReturnAttr();
2583 }
2584
2585 void
setPreviousDeclaration(FunctionDecl * PrevDecl)2586 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2587 redeclarable_base::setPreviousDecl(PrevDecl);
2588
2589 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2590 FunctionTemplateDecl *PrevFunTmpl
2591 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
2592 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2593 FunTmpl->setPreviousDecl(PrevFunTmpl);
2594 }
2595
2596 if (PrevDecl && PrevDecl->IsInline)
2597 IsInline = true;
2598 }
2599
getCanonicalDecl()2600 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
2601
2602 /// \brief Returns a value indicating whether this function
2603 /// corresponds to a builtin function.
2604 ///
2605 /// The function corresponds to a built-in function if it is
2606 /// declared at translation scope or within an extern "C" block and
2607 /// its name matches with the name of a builtin. The returned value
2608 /// will be 0 for functions that do not correspond to a builtin, a
2609 /// value of type \c Builtin::ID if in the target-independent range
2610 /// \c [1,Builtin::First), or a target-specific builtin value.
getBuiltinID() const2611 unsigned FunctionDecl::getBuiltinID() const {
2612 if (!getIdentifier())
2613 return 0;
2614
2615 unsigned BuiltinID = getIdentifier()->getBuiltinID();
2616 if (!BuiltinID)
2617 return 0;
2618
2619 ASTContext &Context = getASTContext();
2620 if (Context.getLangOpts().CPlusPlus) {
2621 const auto *LinkageDecl =
2622 dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext());
2623 // In C++, the first declaration of a builtin is always inside an implicit
2624 // extern "C".
2625 // FIXME: A recognised library function may not be directly in an extern "C"
2626 // declaration, for instance "extern "C" { namespace std { decl } }".
2627 if (!LinkageDecl) {
2628 if (BuiltinID == Builtin::BI__GetExceptionInfo &&
2629 Context.getTargetInfo().getCXXABI().isMicrosoft() &&
2630 isInStdNamespace())
2631 return Builtin::BI__GetExceptionInfo;
2632 return 0;
2633 }
2634 if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
2635 return 0;
2636 }
2637
2638 // If the function is marked "overloadable", it has a different mangled name
2639 // and is not the C library function.
2640 if (hasAttr<OverloadableAttr>())
2641 return 0;
2642
2643 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2644 return BuiltinID;
2645
2646 // This function has the name of a known C library
2647 // function. Determine whether it actually refers to the C library
2648 // function or whether it just has the same name.
2649
2650 // If this is a static function, it's not a builtin.
2651 if (getStorageClass() == SC_Static)
2652 return 0;
2653
2654 return BuiltinID;
2655 }
2656
2657
2658 /// getNumParams - Return the number of parameters this function must have
2659 /// based on its FunctionType. This is the length of the ParamInfo array
2660 /// after it has been created.
getNumParams() const2661 unsigned FunctionDecl::getNumParams() const {
2662 const auto *FPT = getType()->getAs<FunctionProtoType>();
2663 return FPT ? FPT->getNumParams() : 0;
2664 }
2665
setParams(ASTContext & C,ArrayRef<ParmVarDecl * > NewParamInfo)2666 void FunctionDecl::setParams(ASTContext &C,
2667 ArrayRef<ParmVarDecl *> NewParamInfo) {
2668 assert(!ParamInfo && "Already has param info!");
2669 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2670
2671 // Zero params -> null pointer.
2672 if (!NewParamInfo.empty()) {
2673 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2674 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2675 }
2676 }
2677
setDeclsInPrototypeScope(ArrayRef<NamedDecl * > NewDecls)2678 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
2679 assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
2680
2681 if (!NewDecls.empty()) {
2682 NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
2683 std::copy(NewDecls.begin(), NewDecls.end(), A);
2684 DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size());
2685 // Move declarations introduced in prototype to the function context.
2686 for (auto I : NewDecls) {
2687 DeclContext *DC = I->getDeclContext();
2688 // Forward-declared reference to an enumeration is not added to
2689 // declaration scope, so skip declaration that is absent from its
2690 // declaration contexts.
2691 if (DC->containsDecl(I)) {
2692 DC->removeDecl(I);
2693 I->setDeclContext(this);
2694 addDecl(I);
2695 }
2696 }
2697 }
2698 }
2699
2700 /// getMinRequiredArguments - Returns the minimum number of arguments
2701 /// needed to call this function. This may be fewer than the number of
2702 /// function parameters, if some of the parameters have default
2703 /// arguments (in C++) or are parameter packs (C++11).
getMinRequiredArguments() const2704 unsigned FunctionDecl::getMinRequiredArguments() const {
2705 if (!getASTContext().getLangOpts().CPlusPlus)
2706 return getNumParams();
2707
2708 unsigned NumRequiredArgs = 0;
2709 for (auto *Param : params())
2710 if (!Param->isParameterPack() && !Param->hasDefaultArg())
2711 ++NumRequiredArgs;
2712 return NumRequiredArgs;
2713 }
2714
2715 /// \brief The combination of the extern and inline keywords under MSVC forces
2716 /// the function to be required.
2717 ///
2718 /// Note: This function assumes that we will only get called when isInlined()
2719 /// would return true for this FunctionDecl.
isMSExternInline() const2720 bool FunctionDecl::isMSExternInline() const {
2721 assert(isInlined() && "expected to get called on an inlined function!");
2722
2723 const ASTContext &Context = getASTContext();
2724 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
2725 !hasAttr<DLLExportAttr>())
2726 return false;
2727
2728 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
2729 FD = FD->getPreviousDecl())
2730 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
2731 return true;
2732
2733 return false;
2734 }
2735
redeclForcesDefMSVC(const FunctionDecl * Redecl)2736 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
2737 if (Redecl->getStorageClass() != SC_Extern)
2738 return false;
2739
2740 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
2741 FD = FD->getPreviousDecl())
2742 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
2743 return false;
2744
2745 return true;
2746 }
2747
RedeclForcesDefC99(const FunctionDecl * Redecl)2748 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
2749 // Only consider file-scope declarations in this test.
2750 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
2751 return false;
2752
2753 // Only consider explicit declarations; the presence of a builtin for a
2754 // libcall shouldn't affect whether a definition is externally visible.
2755 if (Redecl->isImplicit())
2756 return false;
2757
2758 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
2759 return true; // Not an inline definition
2760
2761 return false;
2762 }
2763
2764 /// \brief For a function declaration in C or C++, determine whether this
2765 /// declaration causes the definition to be externally visible.
2766 ///
2767 /// For instance, this determines if adding the current declaration to the set
2768 /// of redeclarations of the given functions causes
2769 /// isInlineDefinitionExternallyVisible to change from false to true.
doesDeclarationForceExternallyVisibleDefinition() const2770 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
2771 assert(!doesThisDeclarationHaveABody() &&
2772 "Must have a declaration without a body.");
2773
2774 ASTContext &Context = getASTContext();
2775
2776 if (Context.getLangOpts().MSVCCompat) {
2777 const FunctionDecl *Definition;
2778 if (hasBody(Definition) && Definition->isInlined() &&
2779 redeclForcesDefMSVC(this))
2780 return true;
2781 }
2782
2783 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2784 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
2785 // an externally visible definition.
2786 //
2787 // FIXME: What happens if gnu_inline gets added on after the first
2788 // declaration?
2789 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
2790 return false;
2791
2792 const FunctionDecl *Prev = this;
2793 bool FoundBody = false;
2794 while ((Prev = Prev->getPreviousDecl())) {
2795 FoundBody |= Prev->Body.isValid();
2796
2797 if (Prev->Body) {
2798 // If it's not the case that both 'inline' and 'extern' are
2799 // specified on the definition, then it is always externally visible.
2800 if (!Prev->isInlineSpecified() ||
2801 Prev->getStorageClass() != SC_Extern)
2802 return false;
2803 } else if (Prev->isInlineSpecified() &&
2804 Prev->getStorageClass() != SC_Extern) {
2805 return false;
2806 }
2807 }
2808 return FoundBody;
2809 }
2810
2811 if (Context.getLangOpts().CPlusPlus)
2812 return false;
2813
2814 // C99 6.7.4p6:
2815 // [...] If all of the file scope declarations for a function in a
2816 // translation unit include the inline function specifier without extern,
2817 // then the definition in that translation unit is an inline definition.
2818 if (isInlineSpecified() && getStorageClass() != SC_Extern)
2819 return false;
2820 const FunctionDecl *Prev = this;
2821 bool FoundBody = false;
2822 while ((Prev = Prev->getPreviousDecl())) {
2823 FoundBody |= Prev->Body.isValid();
2824 if (RedeclForcesDefC99(Prev))
2825 return false;
2826 }
2827 return FoundBody;
2828 }
2829
getReturnTypeSourceRange() const2830 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
2831 const TypeSourceInfo *TSI = getTypeSourceInfo();
2832 if (!TSI)
2833 return SourceRange();
2834 FunctionTypeLoc FTL =
2835 TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
2836 if (!FTL)
2837 return SourceRange();
2838
2839 // Skip self-referential return types.
2840 const SourceManager &SM = getASTContext().getSourceManager();
2841 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
2842 SourceLocation Boundary = getNameInfo().getLocStart();
2843 if (RTRange.isInvalid() || Boundary.isInvalid() ||
2844 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
2845 return SourceRange();
2846
2847 return RTRange;
2848 }
2849
hasUnusedResultAttr() const2850 bool FunctionDecl::hasUnusedResultAttr() const {
2851 QualType RetType = getReturnType();
2852 if (RetType->isRecordType()) {
2853 const CXXRecordDecl *Ret = RetType->getAsCXXRecordDecl();
2854 const auto *MD = dyn_cast<CXXMethodDecl>(this);
2855 if (Ret && Ret->hasAttr<WarnUnusedResultAttr>() &&
2856 !(MD && MD->getCorrespondingMethodInClass(Ret, true)))
2857 return true;
2858 }
2859 return hasAttr<WarnUnusedResultAttr>();
2860 }
2861
2862 /// \brief For an inline function definition in C, or for a gnu_inline function
2863 /// in C++, determine whether the definition will be externally visible.
2864 ///
2865 /// Inline function definitions are always available for inlining optimizations.
2866 /// However, depending on the language dialect, declaration specifiers, and
2867 /// attributes, the definition of an inline function may or may not be
2868 /// "externally" visible to other translation units in the program.
2869 ///
2870 /// In C99, inline definitions are not externally visible by default. However,
2871 /// if even one of the global-scope declarations is marked "extern inline", the
2872 /// inline definition becomes externally visible (C99 6.7.4p6).
2873 ///
2874 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2875 /// definition, we use the GNU semantics for inline, which are nearly the
2876 /// opposite of C99 semantics. In particular, "inline" by itself will create
2877 /// an externally visible symbol, but "extern inline" will not create an
2878 /// externally visible symbol.
isInlineDefinitionExternallyVisible() const2879 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2880 assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2881 assert(isInlined() && "Function must be inline");
2882 ASTContext &Context = getASTContext();
2883
2884 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2885 // Note: If you change the logic here, please change
2886 // doesDeclarationForceExternallyVisibleDefinition as well.
2887 //
2888 // If it's not the case that both 'inline' and 'extern' are
2889 // specified on the definition, then this inline definition is
2890 // externally visible.
2891 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
2892 return true;
2893
2894 // If any declaration is 'inline' but not 'extern', then this definition
2895 // is externally visible.
2896 for (auto Redecl : redecls()) {
2897 if (Redecl->isInlineSpecified() &&
2898 Redecl->getStorageClass() != SC_Extern)
2899 return true;
2900 }
2901
2902 return false;
2903 }
2904
2905 // The rest of this function is C-only.
2906 assert(!Context.getLangOpts().CPlusPlus &&
2907 "should not use C inline rules in C++");
2908
2909 // C99 6.7.4p6:
2910 // [...] If all of the file scope declarations for a function in a
2911 // translation unit include the inline function specifier without extern,
2912 // then the definition in that translation unit is an inline definition.
2913 for (auto Redecl : redecls()) {
2914 if (RedeclForcesDefC99(Redecl))
2915 return true;
2916 }
2917
2918 // C99 6.7.4p6:
2919 // An inline definition does not provide an external definition for the
2920 // function, and does not forbid an external definition in another
2921 // translation unit.
2922 return false;
2923 }
2924
2925 /// getOverloadedOperator - Which C++ overloaded operator this
2926 /// function represents, if any.
getOverloadedOperator() const2927 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
2928 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
2929 return getDeclName().getCXXOverloadedOperator();
2930 else
2931 return OO_None;
2932 }
2933
2934 /// getLiteralIdentifier - The literal suffix identifier this function
2935 /// represents, if any.
getLiteralIdentifier() const2936 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
2937 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
2938 return getDeclName().getCXXLiteralIdentifier();
2939 else
2940 return nullptr;
2941 }
2942
getTemplatedKind() const2943 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
2944 if (TemplateOrSpecialization.isNull())
2945 return TK_NonTemplate;
2946 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
2947 return TK_FunctionTemplate;
2948 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
2949 return TK_MemberSpecialization;
2950 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
2951 return TK_FunctionTemplateSpecialization;
2952 if (TemplateOrSpecialization.is
2953 <DependentFunctionTemplateSpecializationInfo*>())
2954 return TK_DependentFunctionTemplateSpecialization;
2955
2956 llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
2957 }
2958
getInstantiatedFromMemberFunction() const2959 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
2960 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
2961 return cast<FunctionDecl>(Info->getInstantiatedFrom());
2962
2963 return nullptr;
2964 }
2965
2966 void
setInstantiationOfMemberFunction(ASTContext & C,FunctionDecl * FD,TemplateSpecializationKind TSK)2967 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
2968 FunctionDecl *FD,
2969 TemplateSpecializationKind TSK) {
2970 assert(TemplateOrSpecialization.isNull() &&
2971 "Member function is already a specialization");
2972 MemberSpecializationInfo *Info
2973 = new (C) MemberSpecializationInfo(FD, TSK);
2974 TemplateOrSpecialization = Info;
2975 }
2976
isImplicitlyInstantiable() const2977 bool FunctionDecl::isImplicitlyInstantiable() const {
2978 // If the function is invalid, it can't be implicitly instantiated.
2979 if (isInvalidDecl())
2980 return false;
2981
2982 switch (getTemplateSpecializationKind()) {
2983 case TSK_Undeclared:
2984 case TSK_ExplicitInstantiationDefinition:
2985 return false;
2986
2987 case TSK_ImplicitInstantiation:
2988 return true;
2989
2990 // It is possible to instantiate TSK_ExplicitSpecialization kind
2991 // if the FunctionDecl has a class scope specialization pattern.
2992 case TSK_ExplicitSpecialization:
2993 return getClassScopeSpecializationPattern() != nullptr;
2994
2995 case TSK_ExplicitInstantiationDeclaration:
2996 // Handled below.
2997 break;
2998 }
2999
3000 // Find the actual template from which we will instantiate.
3001 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3002 bool HasPattern = false;
3003 if (PatternDecl)
3004 HasPattern = PatternDecl->hasBody(PatternDecl);
3005
3006 // C++0x [temp.explicit]p9:
3007 // Except for inline functions, other explicit instantiation declarations
3008 // have the effect of suppressing the implicit instantiation of the entity
3009 // to which they refer.
3010 if (!HasPattern || !PatternDecl)
3011 return true;
3012
3013 return PatternDecl->isInlined();
3014 }
3015
isTemplateInstantiation() const3016 bool FunctionDecl::isTemplateInstantiation() const {
3017 switch (getTemplateSpecializationKind()) {
3018 case TSK_Undeclared:
3019 case TSK_ExplicitSpecialization:
3020 return false;
3021 case TSK_ImplicitInstantiation:
3022 case TSK_ExplicitInstantiationDeclaration:
3023 case TSK_ExplicitInstantiationDefinition:
3024 return true;
3025 }
3026 llvm_unreachable("All TSK values handled.");
3027 }
3028
getTemplateInstantiationPattern() const3029 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
3030 // Handle class scope explicit specialization special case.
3031 if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3032 return getClassScopeSpecializationPattern();
3033
3034 // If this is a generic lambda call operator specialization, its
3035 // instantiation pattern is always its primary template's pattern
3036 // even if its primary template was instantiated from another
3037 // member template (which happens with nested generic lambdas).
3038 // Since a lambda's call operator's body is transformed eagerly,
3039 // we don't have to go hunting for a prototype definition template
3040 // (i.e. instantiated-from-member-template) to use as an instantiation
3041 // pattern.
3042
3043 if (isGenericLambdaCallOperatorSpecialization(
3044 dyn_cast<CXXMethodDecl>(this))) {
3045 assert(getPrimaryTemplate() && "A generic lambda specialization must be "
3046 "generated from a primary call operator "
3047 "template");
3048 assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() &&
3049 "A generic lambda call operator template must always have a body - "
3050 "even if instantiated from a prototype (i.e. as written) member "
3051 "template");
3052 return getPrimaryTemplate()->getTemplatedDecl();
3053 }
3054
3055 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3056 while (Primary->getInstantiatedFromMemberTemplate()) {
3057 // If we have hit a point where the user provided a specialization of
3058 // this template, we're done looking.
3059 if (Primary->isMemberSpecialization())
3060 break;
3061 Primary = Primary->getInstantiatedFromMemberTemplate();
3062 }
3063
3064 return Primary->getTemplatedDecl();
3065 }
3066
3067 return getInstantiatedFromMemberFunction();
3068 }
3069
getPrimaryTemplate() const3070 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3071 if (FunctionTemplateSpecializationInfo *Info
3072 = TemplateOrSpecialization
3073 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3074 return Info->Template.getPointer();
3075 }
3076 return nullptr;
3077 }
3078
getClassScopeSpecializationPattern() const3079 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
3080 return getASTContext().getClassScopeSpecializationPattern(this);
3081 }
3082
3083 const TemplateArgumentList *
getTemplateSpecializationArgs() const3084 FunctionDecl::getTemplateSpecializationArgs() const {
3085 if (FunctionTemplateSpecializationInfo *Info
3086 = TemplateOrSpecialization
3087 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3088 return Info->TemplateArguments;
3089 }
3090 return nullptr;
3091 }
3092
3093 const ASTTemplateArgumentListInfo *
getTemplateSpecializationArgsAsWritten() const3094 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3095 if (FunctionTemplateSpecializationInfo *Info
3096 = TemplateOrSpecialization
3097 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3098 return Info->TemplateArgumentsAsWritten;
3099 }
3100 return nullptr;
3101 }
3102
3103 void
setFunctionTemplateSpecialization(ASTContext & C,FunctionTemplateDecl * Template,const TemplateArgumentList * TemplateArgs,void * InsertPos,TemplateSpecializationKind TSK,const TemplateArgumentListInfo * TemplateArgsAsWritten,SourceLocation PointOfInstantiation)3104 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3105 FunctionTemplateDecl *Template,
3106 const TemplateArgumentList *TemplateArgs,
3107 void *InsertPos,
3108 TemplateSpecializationKind TSK,
3109 const TemplateArgumentListInfo *TemplateArgsAsWritten,
3110 SourceLocation PointOfInstantiation) {
3111 assert(TSK != TSK_Undeclared &&
3112 "Must specify the type of function template specialization");
3113 FunctionTemplateSpecializationInfo *Info
3114 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3115 if (!Info)
3116 Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
3117 TemplateArgs,
3118 TemplateArgsAsWritten,
3119 PointOfInstantiation);
3120 TemplateOrSpecialization = Info;
3121 Template->addSpecialization(Info, InsertPos);
3122 }
3123
3124 void
setDependentTemplateSpecialization(ASTContext & Context,const UnresolvedSetImpl & Templates,const TemplateArgumentListInfo & TemplateArgs)3125 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3126 const UnresolvedSetImpl &Templates,
3127 const TemplateArgumentListInfo &TemplateArgs) {
3128 assert(TemplateOrSpecialization.isNull());
3129 DependentFunctionTemplateSpecializationInfo *Info =
3130 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3131 TemplateArgs);
3132 TemplateOrSpecialization = Info;
3133 }
3134
3135 DependentFunctionTemplateSpecializationInfo *
Create(ASTContext & Context,const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)3136 DependentFunctionTemplateSpecializationInfo::Create(
3137 ASTContext &Context, const UnresolvedSetImpl &Ts,
3138 const TemplateArgumentListInfo &TArgs) {
3139 void *Buffer = Context.Allocate(
3140 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3141 TArgs.size(), Ts.size()));
3142 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3143 }
3144
3145 DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)3146 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3147 const TemplateArgumentListInfo &TArgs)
3148 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3149
3150 NumTemplates = Ts.size();
3151 NumArgs = TArgs.size();
3152
3153 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3154 for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3155 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3156
3157 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3158 for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3159 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3160 }
3161
getTemplateSpecializationKind() const3162 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3163 // For a function template specialization, query the specialization
3164 // information object.
3165 FunctionTemplateSpecializationInfo *FTSInfo
3166 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3167 if (FTSInfo)
3168 return FTSInfo->getTemplateSpecializationKind();
3169
3170 MemberSpecializationInfo *MSInfo
3171 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
3172 if (MSInfo)
3173 return MSInfo->getTemplateSpecializationKind();
3174
3175 return TSK_Undeclared;
3176 }
3177
3178 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)3179 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3180 SourceLocation PointOfInstantiation) {
3181 if (FunctionTemplateSpecializationInfo *FTSInfo
3182 = TemplateOrSpecialization.dyn_cast<
3183 FunctionTemplateSpecializationInfo*>()) {
3184 FTSInfo->setTemplateSpecializationKind(TSK);
3185 if (TSK != TSK_ExplicitSpecialization &&
3186 PointOfInstantiation.isValid() &&
3187 FTSInfo->getPointOfInstantiation().isInvalid())
3188 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3189 } else if (MemberSpecializationInfo *MSInfo
3190 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3191 MSInfo->setTemplateSpecializationKind(TSK);
3192 if (TSK != TSK_ExplicitSpecialization &&
3193 PointOfInstantiation.isValid() &&
3194 MSInfo->getPointOfInstantiation().isInvalid())
3195 MSInfo->setPointOfInstantiation(PointOfInstantiation);
3196 } else
3197 llvm_unreachable("Function cannot have a template specialization kind");
3198 }
3199
getPointOfInstantiation() const3200 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3201 if (FunctionTemplateSpecializationInfo *FTSInfo
3202 = TemplateOrSpecialization.dyn_cast<
3203 FunctionTemplateSpecializationInfo*>())
3204 return FTSInfo->getPointOfInstantiation();
3205 else if (MemberSpecializationInfo *MSInfo
3206 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3207 return MSInfo->getPointOfInstantiation();
3208
3209 return SourceLocation();
3210 }
3211
isOutOfLine() const3212 bool FunctionDecl::isOutOfLine() const {
3213 if (Decl::isOutOfLine())
3214 return true;
3215
3216 // If this function was instantiated from a member function of a
3217 // class template, check whether that member function was defined out-of-line.
3218 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3219 const FunctionDecl *Definition;
3220 if (FD->hasBody(Definition))
3221 return Definition->isOutOfLine();
3222 }
3223
3224 // If this function was instantiated from a function template,
3225 // check whether that function template was defined out-of-line.
3226 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3227 const FunctionDecl *Definition;
3228 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3229 return Definition->isOutOfLine();
3230 }
3231
3232 return false;
3233 }
3234
getSourceRange() const3235 SourceRange FunctionDecl::getSourceRange() const {
3236 return SourceRange(getOuterLocStart(), EndRangeLoc);
3237 }
3238
getMemoryFunctionKind() const3239 unsigned FunctionDecl::getMemoryFunctionKind() const {
3240 IdentifierInfo *FnInfo = getIdentifier();
3241
3242 if (!FnInfo)
3243 return 0;
3244
3245 // Builtin handling.
3246 switch (getBuiltinID()) {
3247 case Builtin::BI__builtin_memset:
3248 case Builtin::BI__builtin___memset_chk:
3249 case Builtin::BImemset:
3250 return Builtin::BImemset;
3251
3252 case Builtin::BI__builtin_memcpy:
3253 case Builtin::BI__builtin___memcpy_chk:
3254 case Builtin::BImemcpy:
3255 return Builtin::BImemcpy;
3256
3257 case Builtin::BI__builtin_memmove:
3258 case Builtin::BI__builtin___memmove_chk:
3259 case Builtin::BImemmove:
3260 return Builtin::BImemmove;
3261
3262 case Builtin::BIstrlcpy:
3263 case Builtin::BI__builtin___strlcpy_chk:
3264 return Builtin::BIstrlcpy;
3265
3266 case Builtin::BIstrlcat:
3267 case Builtin::BI__builtin___strlcat_chk:
3268 return Builtin::BIstrlcat;
3269
3270 case Builtin::BI__builtin_memcmp:
3271 case Builtin::BImemcmp:
3272 return Builtin::BImemcmp;
3273
3274 case Builtin::BI__builtin_strncpy:
3275 case Builtin::BI__builtin___strncpy_chk:
3276 case Builtin::BIstrncpy:
3277 return Builtin::BIstrncpy;
3278
3279 case Builtin::BI__builtin_strncmp:
3280 case Builtin::BIstrncmp:
3281 return Builtin::BIstrncmp;
3282
3283 case Builtin::BI__builtin_strncasecmp:
3284 case Builtin::BIstrncasecmp:
3285 return Builtin::BIstrncasecmp;
3286
3287 case Builtin::BI__builtin_strncat:
3288 case Builtin::BI__builtin___strncat_chk:
3289 case Builtin::BIstrncat:
3290 return Builtin::BIstrncat;
3291
3292 case Builtin::BI__builtin_strndup:
3293 case Builtin::BIstrndup:
3294 return Builtin::BIstrndup;
3295
3296 case Builtin::BI__builtin_strlen:
3297 case Builtin::BIstrlen:
3298 return Builtin::BIstrlen;
3299
3300 default:
3301 if (isExternC()) {
3302 if (FnInfo->isStr("memset"))
3303 return Builtin::BImemset;
3304 else if (FnInfo->isStr("memcpy"))
3305 return Builtin::BImemcpy;
3306 else if (FnInfo->isStr("memmove"))
3307 return Builtin::BImemmove;
3308 else if (FnInfo->isStr("memcmp"))
3309 return Builtin::BImemcmp;
3310 else if (FnInfo->isStr("strncpy"))
3311 return Builtin::BIstrncpy;
3312 else if (FnInfo->isStr("strncmp"))
3313 return Builtin::BIstrncmp;
3314 else if (FnInfo->isStr("strncasecmp"))
3315 return Builtin::BIstrncasecmp;
3316 else if (FnInfo->isStr("strncat"))
3317 return Builtin::BIstrncat;
3318 else if (FnInfo->isStr("strndup"))
3319 return Builtin::BIstrndup;
3320 else if (FnInfo->isStr("strlen"))
3321 return Builtin::BIstrlen;
3322 }
3323 break;
3324 }
3325 return 0;
3326 }
3327
3328 //===----------------------------------------------------------------------===//
3329 // FieldDecl Implementation
3330 //===----------------------------------------------------------------------===//
3331
Create(const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)3332 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
3333 SourceLocation StartLoc, SourceLocation IdLoc,
3334 IdentifierInfo *Id, QualType T,
3335 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3336 InClassInitStyle InitStyle) {
3337 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3338 BW, Mutable, InitStyle);
3339 }
3340
CreateDeserialized(ASTContext & C,unsigned ID)3341 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3342 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3343 SourceLocation(), nullptr, QualType(), nullptr,
3344 nullptr, false, ICIS_NoInit);
3345 }
3346
isAnonymousStructOrUnion() const3347 bool FieldDecl::isAnonymousStructOrUnion() const {
3348 if (!isImplicit() || getDeclName())
3349 return false;
3350
3351 if (const auto *Record = getType()->getAs<RecordType>())
3352 return Record->getDecl()->isAnonymousStructOrUnion();
3353
3354 return false;
3355 }
3356
getBitWidthValue(const ASTContext & Ctx) const3357 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3358 assert(isBitField() && "not a bitfield");
3359 auto *BitWidth = static_cast<Expr *>(InitStorage.getPointer());
3360 return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
3361 }
3362
getFieldIndex() const3363 unsigned FieldDecl::getFieldIndex() const {
3364 const FieldDecl *Canonical = getCanonicalDecl();
3365 if (Canonical != this)
3366 return Canonical->getFieldIndex();
3367
3368 if (CachedFieldIndex) return CachedFieldIndex - 1;
3369
3370 unsigned Index = 0;
3371 const RecordDecl *RD = getParent();
3372
3373 for (auto *Field : RD->fields()) {
3374 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3375 ++Index;
3376 }
3377
3378 assert(CachedFieldIndex && "failed to find field in parent");
3379 return CachedFieldIndex - 1;
3380 }
3381
getSourceRange() const3382 SourceRange FieldDecl::getSourceRange() const {
3383 switch (InitStorage.getInt()) {
3384 // All three of these cases store an optional Expr*.
3385 case ISK_BitWidthOrNothing:
3386 case ISK_InClassCopyInit:
3387 case ISK_InClassListInit:
3388 if (const auto *E = static_cast<const Expr *>(InitStorage.getPointer()))
3389 return SourceRange(getInnerLocStart(), E->getLocEnd());
3390 // FALLTHROUGH
3391
3392 case ISK_CapturedVLAType:
3393 return DeclaratorDecl::getSourceRange();
3394 }
3395 llvm_unreachable("bad init storage kind");
3396 }
3397
setCapturedVLAType(const VariableArrayType * VLAType)3398 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
3399 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3400 "capturing type in non-lambda or captured record.");
3401 assert(InitStorage.getInt() == ISK_BitWidthOrNothing &&
3402 InitStorage.getPointer() == nullptr &&
3403 "bit width, initializer or captured type already set");
3404 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3405 ISK_CapturedVLAType);
3406 }
3407
3408 //===----------------------------------------------------------------------===//
3409 // TagDecl Implementation
3410 //===----------------------------------------------------------------------===//
3411
getOuterLocStart() const3412 SourceLocation TagDecl::getOuterLocStart() const {
3413 return getTemplateOrInnerLocStart(this);
3414 }
3415
getSourceRange() const3416 SourceRange TagDecl::getSourceRange() const {
3417 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3418 return SourceRange(getOuterLocStart(), E);
3419 }
3420
getCanonicalDecl()3421 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
3422
setTypedefNameForAnonDecl(TypedefNameDecl * TDD)3423 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
3424 TypedefNameDeclOrQualifier = TDD;
3425 if (const Type *T = getTypeForDecl()) {
3426 (void)T;
3427 assert(T->isLinkageValid());
3428 }
3429 assert(isLinkageValid());
3430 }
3431
startDefinition()3432 void TagDecl::startDefinition() {
3433 IsBeingDefined = true;
3434
3435 if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
3436 struct CXXRecordDecl::DefinitionData *Data =
3437 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3438 for (auto I : redecls())
3439 cast<CXXRecordDecl>(I)->DefinitionData = Data;
3440 }
3441 }
3442
completeDefinition()3443 void TagDecl::completeDefinition() {
3444 assert((!isa<CXXRecordDecl>(this) ||
3445 cast<CXXRecordDecl>(this)->hasDefinition()) &&
3446 "definition completed but not started");
3447
3448 IsCompleteDefinition = true;
3449 IsBeingDefined = false;
3450
3451 if (ASTMutationListener *L = getASTMutationListener())
3452 L->CompletedTagDefinition(this);
3453 }
3454
getDefinition() const3455 TagDecl *TagDecl::getDefinition() const {
3456 if (isCompleteDefinition())
3457 return const_cast<TagDecl *>(this);
3458
3459 // If it's possible for us to have an out-of-date definition, check now.
3460 if (MayHaveOutOfDateDef) {
3461 if (IdentifierInfo *II = getIdentifier()) {
3462 if (II->isOutOfDate()) {
3463 updateOutOfDate(*II);
3464 }
3465 }
3466 }
3467
3468 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
3469 return CXXRD->getDefinition();
3470
3471 for (auto R : redecls())
3472 if (R->isCompleteDefinition())
3473 return R;
3474
3475 return nullptr;
3476 }
3477
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)3478 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
3479 if (QualifierLoc) {
3480 // Make sure the extended qualifier info is allocated.
3481 if (!hasExtInfo())
3482 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3483 // Set qualifier info.
3484 getExtInfo()->QualifierLoc = QualifierLoc;
3485 } else {
3486 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3487 if (hasExtInfo()) {
3488 if (getExtInfo()->NumTemplParamLists == 0) {
3489 getASTContext().Deallocate(getExtInfo());
3490 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
3491 }
3492 else
3493 getExtInfo()->QualifierLoc = QualifierLoc;
3494 }
3495 }
3496 }
3497
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)3498 void TagDecl::setTemplateParameterListsInfo(
3499 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
3500 assert(!TPLists.empty());
3501 // Make sure the extended decl info is allocated.
3502 if (!hasExtInfo())
3503 // Allocate external info struct.
3504 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3505 // Set the template parameter lists info.
3506 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
3507 }
3508
3509 //===----------------------------------------------------------------------===//
3510 // EnumDecl Implementation
3511 //===----------------------------------------------------------------------===//
3512
anchor()3513 void EnumDecl::anchor() { }
3514
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool IsScoped,bool IsScopedUsingClassTag,bool IsFixed)3515 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
3516 SourceLocation StartLoc, SourceLocation IdLoc,
3517 IdentifierInfo *Id,
3518 EnumDecl *PrevDecl, bool IsScoped,
3519 bool IsScopedUsingClassTag, bool IsFixed) {
3520 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
3521 IsScoped, IsScopedUsingClassTag, IsFixed);
3522 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3523 C.getTypeDeclType(Enum, PrevDecl);
3524 return Enum;
3525 }
3526
CreateDeserialized(ASTContext & C,unsigned ID)3527 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3528 EnumDecl *Enum =
3529 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
3530 nullptr, nullptr, false, false, false);
3531 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3532 return Enum;
3533 }
3534
getIntegerTypeRange() const3535 SourceRange EnumDecl::getIntegerTypeRange() const {
3536 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
3537 return TI->getTypeLoc().getSourceRange();
3538 return SourceRange();
3539 }
3540
completeDefinition(QualType NewType,QualType NewPromotionType,unsigned NumPositiveBits,unsigned NumNegativeBits)3541 void EnumDecl::completeDefinition(QualType NewType,
3542 QualType NewPromotionType,
3543 unsigned NumPositiveBits,
3544 unsigned NumNegativeBits) {
3545 assert(!isCompleteDefinition() && "Cannot redefine enums!");
3546 if (!IntegerType)
3547 IntegerType = NewType.getTypePtr();
3548 PromotionType = NewPromotionType;
3549 setNumPositiveBits(NumPositiveBits);
3550 setNumNegativeBits(NumNegativeBits);
3551 TagDecl::completeDefinition();
3552 }
3553
getTemplateSpecializationKind() const3554 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
3555 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
3556 return MSI->getTemplateSpecializationKind();
3557
3558 return TSK_Undeclared;
3559 }
3560
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)3561 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3562 SourceLocation PointOfInstantiation) {
3563 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
3564 assert(MSI && "Not an instantiated member enumeration?");
3565 MSI->setTemplateSpecializationKind(TSK);
3566 if (TSK != TSK_ExplicitSpecialization &&
3567 PointOfInstantiation.isValid() &&
3568 MSI->getPointOfInstantiation().isInvalid())
3569 MSI->setPointOfInstantiation(PointOfInstantiation);
3570 }
3571
getInstantiatedFromMemberEnum() const3572 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
3573 if (SpecializationInfo)
3574 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
3575
3576 return nullptr;
3577 }
3578
setInstantiationOfMemberEnum(ASTContext & C,EnumDecl * ED,TemplateSpecializationKind TSK)3579 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3580 TemplateSpecializationKind TSK) {
3581 assert(!SpecializationInfo && "Member enum is already a specialization");
3582 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3583 }
3584
3585 //===----------------------------------------------------------------------===//
3586 // RecordDecl Implementation
3587 //===----------------------------------------------------------------------===//
3588
RecordDecl(Kind DK,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3589 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
3590 DeclContext *DC, SourceLocation StartLoc,
3591 SourceLocation IdLoc, IdentifierInfo *Id,
3592 RecordDecl *PrevDecl)
3593 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
3594 HasFlexibleArrayMember = false;
3595 AnonymousStructOrUnion = false;
3596 HasObjectMember = false;
3597 HasVolatileMember = false;
3598 LoadedFieldsFromExternalStorage = false;
3599 assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3600 }
3601
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3602 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3603 SourceLocation StartLoc, SourceLocation IdLoc,
3604 IdentifierInfo *Id, RecordDecl* PrevDecl) {
3605 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
3606 StartLoc, IdLoc, Id, PrevDecl);
3607 R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3608
3609 C.getTypeDeclType(R, PrevDecl);
3610 return R;
3611 }
3612
CreateDeserialized(const ASTContext & C,unsigned ID)3613 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3614 RecordDecl *R =
3615 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
3616 SourceLocation(), nullptr, nullptr);
3617 R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3618 return R;
3619 }
3620
isInjectedClassName() const3621 bool RecordDecl::isInjectedClassName() const {
3622 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3623 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3624 }
3625
isLambda() const3626 bool RecordDecl::isLambda() const {
3627 if (auto RD = dyn_cast<CXXRecordDecl>(this))
3628 return RD->isLambda();
3629 return false;
3630 }
3631
isCapturedRecord() const3632 bool RecordDecl::isCapturedRecord() const {
3633 return hasAttr<CapturedRecordAttr>();
3634 }
3635
setCapturedRecord()3636 void RecordDecl::setCapturedRecord() {
3637 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
3638 }
3639
field_begin() const3640 RecordDecl::field_iterator RecordDecl::field_begin() const {
3641 if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
3642 LoadFieldsFromExternalStorage();
3643
3644 return field_iterator(decl_iterator(FirstDecl));
3645 }
3646
3647 /// completeDefinition - Notes that the definition of this type is now
3648 /// complete.
completeDefinition()3649 void RecordDecl::completeDefinition() {
3650 assert(!isCompleteDefinition() && "Cannot redefine record!");
3651 TagDecl::completeDefinition();
3652 }
3653
3654 /// isMsStruct - Get whether or not this record uses ms_struct layout.
3655 /// This which can be turned on with an attribute, pragma, or the
3656 /// -mms-bitfields command-line option.
isMsStruct(const ASTContext & C) const3657 bool RecordDecl::isMsStruct(const ASTContext &C) const {
3658 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
3659 }
3660
LoadFieldsFromExternalStorage() const3661 void RecordDecl::LoadFieldsFromExternalStorage() const {
3662 ExternalASTSource *Source = getASTContext().getExternalSource();
3663 assert(hasExternalLexicalStorage() && Source && "No external storage?");
3664
3665 // Notify that we have a RecordDecl doing some initialization.
3666 ExternalASTSource::Deserializing TheFields(Source);
3667
3668 SmallVector<Decl*, 64> Decls;
3669 LoadedFieldsFromExternalStorage = true;
3670 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
3671 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
3672 }, Decls);
3673
3674 #ifndef NDEBUG
3675 // Check that all decls we got were FieldDecls.
3676 for (unsigned i=0, e=Decls.size(); i != e; ++i)
3677 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
3678 #endif
3679
3680 if (Decls.empty())
3681 return;
3682
3683 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
3684 /*FieldsAlreadyLoaded=*/false);
3685 }
3686
mayInsertExtraPadding(bool EmitRemark) const3687 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
3688 ASTContext &Context = getASTContext();
3689 if (!Context.getLangOpts().Sanitize.hasOneOf(
3690 SanitizerKind::Address | SanitizerKind::KernelAddress) ||
3691 !Context.getLangOpts().SanitizeAddressFieldPadding)
3692 return false;
3693 const auto &Blacklist = Context.getSanitizerBlacklist();
3694 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
3695 // We may be able to relax some of these requirements.
3696 int ReasonToReject = -1;
3697 if (!CXXRD || CXXRD->isExternCContext())
3698 ReasonToReject = 0; // is not C++.
3699 else if (CXXRD->hasAttr<PackedAttr>())
3700 ReasonToReject = 1; // is packed.
3701 else if (CXXRD->isUnion())
3702 ReasonToReject = 2; // is a union.
3703 else if (CXXRD->isTriviallyCopyable())
3704 ReasonToReject = 3; // is trivially copyable.
3705 else if (CXXRD->hasTrivialDestructor())
3706 ReasonToReject = 4; // has trivial destructor.
3707 else if (CXXRD->isStandardLayout())
3708 ReasonToReject = 5; // is standard layout.
3709 else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding"))
3710 ReasonToReject = 6; // is in a blacklisted file.
3711 else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(),
3712 "field-padding"))
3713 ReasonToReject = 7; // is blacklisted.
3714
3715 if (EmitRemark) {
3716 if (ReasonToReject >= 0)
3717 Context.getDiagnostics().Report(
3718 getLocation(),
3719 diag::remark_sanitize_address_insert_extra_padding_rejected)
3720 << getQualifiedNameAsString() << ReasonToReject;
3721 else
3722 Context.getDiagnostics().Report(
3723 getLocation(),
3724 diag::remark_sanitize_address_insert_extra_padding_accepted)
3725 << getQualifiedNameAsString();
3726 }
3727 return ReasonToReject < 0;
3728 }
3729
findFirstNamedDataMember() const3730 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
3731 for (const auto *I : fields()) {
3732 if (I->getIdentifier())
3733 return I;
3734
3735 if (const auto *RT = I->getType()->getAs<RecordType>())
3736 if (const FieldDecl *NamedDataMember =
3737 RT->getDecl()->findFirstNamedDataMember())
3738 return NamedDataMember;
3739 }
3740
3741 // We didn't find a named data member.
3742 return nullptr;
3743 }
3744
3745
3746 //===----------------------------------------------------------------------===//
3747 // BlockDecl Implementation
3748 //===----------------------------------------------------------------------===//
3749
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)3750 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
3751 assert(!ParamInfo && "Already has param info!");
3752
3753 // Zero params -> null pointer.
3754 if (!NewParamInfo.empty()) {
3755 NumParams = NewParamInfo.size();
3756 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
3757 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3758 }
3759 }
3760
setCaptures(ASTContext & Context,ArrayRef<Capture> Captures,bool CapturesCXXThis)3761 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
3762 bool CapturesCXXThis) {
3763 this->CapturesCXXThis = CapturesCXXThis;
3764 this->NumCaptures = Captures.size();
3765
3766 if (Captures.empty()) {
3767 this->Captures = nullptr;
3768 return;
3769 }
3770
3771 this->Captures = Captures.copy(Context).data();
3772 }
3773
capturesVariable(const VarDecl * variable) const3774 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
3775 for (const auto &I : captures())
3776 // Only auto vars can be captured, so no redeclaration worries.
3777 if (I.getVariable() == variable)
3778 return true;
3779
3780 return false;
3781 }
3782
getSourceRange() const3783 SourceRange BlockDecl::getSourceRange() const {
3784 return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
3785 }
3786
3787 //===----------------------------------------------------------------------===//
3788 // Other Decl Allocation/Deallocation Method Implementations
3789 //===----------------------------------------------------------------------===//
3790
anchor()3791 void TranslationUnitDecl::anchor() { }
3792
Create(ASTContext & C)3793 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
3794 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
3795 }
3796
anchor()3797 void ExternCContextDecl::anchor() { }
3798
Create(const ASTContext & C,TranslationUnitDecl * DC)3799 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
3800 TranslationUnitDecl *DC) {
3801 return new (C, DC) ExternCContextDecl(DC);
3802 }
3803
anchor()3804 void LabelDecl::anchor() { }
3805
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II)3806 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3807 SourceLocation IdentL, IdentifierInfo *II) {
3808 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
3809 }
3810
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,SourceLocation GnuLabelL)3811 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3812 SourceLocation IdentL, IdentifierInfo *II,
3813 SourceLocation GnuLabelL) {
3814 assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
3815 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
3816 }
3817
CreateDeserialized(ASTContext & C,unsigned ID)3818 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3819 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
3820 SourceLocation());
3821 }
3822
setMSAsmLabel(StringRef Name)3823 void LabelDecl::setMSAsmLabel(StringRef Name) {
3824 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
3825 memcpy(Buffer, Name.data(), Name.size());
3826 Buffer[Name.size()] = '\0';
3827 MSAsmName = Buffer;
3828 }
3829
anchor()3830 void ValueDecl::anchor() { }
3831
isWeak() const3832 bool ValueDecl::isWeak() const {
3833 for (const auto *I : attrs())
3834 if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
3835 return true;
3836
3837 return isWeakImported();
3838 }
3839
anchor()3840 void ImplicitParamDecl::anchor() { }
3841
Create(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type)3842 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
3843 SourceLocation IdLoc,
3844 IdentifierInfo *Id,
3845 QualType Type) {
3846 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type);
3847 }
3848
CreateDeserialized(ASTContext & C,unsigned ID)3849 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
3850 unsigned ID) {
3851 return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr,
3852 QualType());
3853 }
3854
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInlineSpecified,bool hasWrittenPrototype,bool isConstexprSpecified)3855 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
3856 SourceLocation StartLoc,
3857 const DeclarationNameInfo &NameInfo,
3858 QualType T, TypeSourceInfo *TInfo,
3859 StorageClass SC,
3860 bool isInlineSpecified,
3861 bool hasWrittenPrototype,
3862 bool isConstexprSpecified) {
3863 FunctionDecl *New =
3864 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
3865 SC, isInlineSpecified, isConstexprSpecified);
3866 New->HasWrittenPrototype = hasWrittenPrototype;
3867 return New;
3868 }
3869
CreateDeserialized(ASTContext & C,unsigned ID)3870 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3871 return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
3872 DeclarationNameInfo(), QualType(), nullptr,
3873 SC_None, false, false);
3874 }
3875
Create(ASTContext & C,DeclContext * DC,SourceLocation L)3876 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3877 return new (C, DC) BlockDecl(DC, L);
3878 }
3879
CreateDeserialized(ASTContext & C,unsigned ID)3880 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3881 return new (C, ID) BlockDecl(nullptr, SourceLocation());
3882 }
3883
Create(ASTContext & C,DeclContext * DC,unsigned NumParams)3884 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
3885 unsigned NumParams) {
3886 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
3887 CapturedDecl(DC, NumParams);
3888 }
3889
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumParams)3890 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3891 unsigned NumParams) {
3892 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
3893 CapturedDecl(nullptr, NumParams);
3894 }
3895
Create(ASTContext & C,EnumDecl * CD,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)3896 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
3897 SourceLocation L,
3898 IdentifierInfo *Id, QualType T,
3899 Expr *E, const llvm::APSInt &V) {
3900 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
3901 }
3902
3903 EnumConstantDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3904 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3905 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
3906 QualType(), nullptr, llvm::APSInt());
3907 }
3908
anchor()3909 void IndirectFieldDecl::anchor() { }
3910
3911 IndirectFieldDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,NamedDecl ** CH,unsigned CHS)3912 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
3913 IdentifierInfo *Id, QualType T, NamedDecl **CH,
3914 unsigned CHS) {
3915 return new (C, DC) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
3916 }
3917
CreateDeserialized(ASTContext & C,unsigned ID)3918 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
3919 unsigned ID) {
3920 return new (C, ID) IndirectFieldDecl(nullptr, SourceLocation(),
3921 DeclarationName(), QualType(), nullptr,
3922 0);
3923 }
3924
getSourceRange() const3925 SourceRange EnumConstantDecl::getSourceRange() const {
3926 SourceLocation End = getLocation();
3927 if (Init)
3928 End = Init->getLocEnd();
3929 return SourceRange(getLocation(), End);
3930 }
3931
anchor()3932 void TypeDecl::anchor() { }
3933
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3934 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
3935 SourceLocation StartLoc, SourceLocation IdLoc,
3936 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
3937 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
3938 }
3939
anchor()3940 void TypedefNameDecl::anchor() { }
3941
getAnonDeclWithTypedefName(bool AnyRedecl) const3942 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
3943 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
3944 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
3945 auto *ThisTypedef = this;
3946 if (AnyRedecl && OwningTypedef) {
3947 OwningTypedef = OwningTypedef->getCanonicalDecl();
3948 ThisTypedef = ThisTypedef->getCanonicalDecl();
3949 }
3950 if (OwningTypedef == ThisTypedef)
3951 return TT->getDecl();
3952 }
3953
3954 return nullptr;
3955 }
3956
CreateDeserialized(ASTContext & C,unsigned ID)3957 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3958 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
3959 nullptr, nullptr);
3960 }
3961
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3962 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
3963 SourceLocation StartLoc,
3964 SourceLocation IdLoc, IdentifierInfo *Id,
3965 TypeSourceInfo *TInfo) {
3966 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
3967 }
3968
CreateDeserialized(ASTContext & C,unsigned ID)3969 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3970 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
3971 SourceLocation(), nullptr, nullptr);
3972 }
3973
getSourceRange() const3974 SourceRange TypedefDecl::getSourceRange() const {
3975 SourceLocation RangeEnd = getLocation();
3976 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
3977 if (typeIsPostfix(TInfo->getType()))
3978 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3979 }
3980 return SourceRange(getLocStart(), RangeEnd);
3981 }
3982
getSourceRange() const3983 SourceRange TypeAliasDecl::getSourceRange() const {
3984 SourceLocation RangeEnd = getLocStart();
3985 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
3986 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3987 return SourceRange(getLocStart(), RangeEnd);
3988 }
3989
anchor()3990 void FileScopeAsmDecl::anchor() { }
3991
Create(ASTContext & C,DeclContext * DC,StringLiteral * Str,SourceLocation AsmLoc,SourceLocation RParenLoc)3992 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
3993 StringLiteral *Str,
3994 SourceLocation AsmLoc,
3995 SourceLocation RParenLoc) {
3996 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
3997 }
3998
CreateDeserialized(ASTContext & C,unsigned ID)3999 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
4000 unsigned ID) {
4001 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4002 SourceLocation());
4003 }
4004
anchor()4005 void EmptyDecl::anchor() {}
4006
Create(ASTContext & C,DeclContext * DC,SourceLocation L)4007 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4008 return new (C, DC) EmptyDecl(DC, L);
4009 }
4010
CreateDeserialized(ASTContext & C,unsigned ID)4011 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4012 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4013 }
4014
4015 //===----------------------------------------------------------------------===//
4016 // ImportDecl Implementation
4017 //===----------------------------------------------------------------------===//
4018
4019 /// \brief Retrieve the number of module identifiers needed to name the given
4020 /// module.
getNumModuleIdentifiers(Module * Mod)4021 static unsigned getNumModuleIdentifiers(Module *Mod) {
4022 unsigned Result = 1;
4023 while (Mod->Parent) {
4024 Mod = Mod->Parent;
4025 ++Result;
4026 }
4027 return Result;
4028 }
4029
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)4030 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4031 Module *Imported,
4032 ArrayRef<SourceLocation> IdentifierLocs)
4033 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
4034 NextLocalImport()
4035 {
4036 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4037 auto *StoredLocs = getTrailingObjects<SourceLocation>();
4038 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4039 StoredLocs);
4040 }
4041
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)4042 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4043 Module *Imported, SourceLocation EndLoc)
4044 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
4045 NextLocalImport()
4046 {
4047 *getTrailingObjects<SourceLocation>() = EndLoc;
4048 }
4049
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)4050 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4051 SourceLocation StartLoc, Module *Imported,
4052 ArrayRef<SourceLocation> IdentifierLocs) {
4053 return new (C, DC,
4054 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4055 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4056 }
4057
CreateImplicit(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)4058 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4059 SourceLocation StartLoc,
4060 Module *Imported,
4061 SourceLocation EndLoc) {
4062 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4063 ImportDecl(DC, StartLoc, Imported, EndLoc);
4064 Import->setImplicit();
4065 return Import;
4066 }
4067
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumLocations)4068 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4069 unsigned NumLocations) {
4070 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4071 ImportDecl(EmptyShell());
4072 }
4073
getIdentifierLocs() const4074 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4075 if (!ImportedAndComplete.getInt())
4076 return None;
4077
4078 const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4079 return llvm::makeArrayRef(StoredLocs,
4080 getNumModuleIdentifiers(getImportedModule()));
4081 }
4082
getSourceRange() const4083 SourceRange ImportDecl::getSourceRange() const {
4084 if (!ImportedAndComplete.getInt())
4085 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4086
4087 return SourceRange(getLocation(), getIdentifierLocs().back());
4088 }
4089